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Abstract—We propose a highly scalable cluster-based hierar-
chical trust management protocol for wireless sensor networks
(WSNs) to effectively deal with selfish or malicious nodes. Unlike
prior work, we consider multidimensional trust attributes derived
from communication and social networks to evaluate the overall
trust of a sensor node. By means of a novel probability model,
we describe a heterogeneous WSN comprising a large number
of sensor nodes with vastly different social and quality of service
(QoS) behaviors with the objective to yield “ground truth” node
status. This serves as a basis for validating our protocol design
by comparing subjective trust generated as a result of protocol
execution at runtime against objective trust obtained from actual
node status. To demonstrate the utility of our hierarchical trust
management protocol, we apply it to trust-based geographic
routing and trust-based intrusion detection. For each applica-
tion, we identify the best trust composition and formation to
maximize application performance. Our results indicate that
trust-based geographic routing approaches the ideal performance
level achievable by flooding-based routing in message delivery
ratio and message delay without incurring substantial message
overhead. For trust-based intrusion detection, we discover that
there exists an optimal trust threshold for minimizing false
positives and false negatives. Furthermore, trust-based intrusion
detection outperforms traditional anomaly-based intrusion detec-
tion approaches in both the detection probability and the false
positive probability.

Index Terms—Trust management, security, wireless sensor
networks, routing, intrusion detection, performance analysis.

I. INTRODUCTION

A WIRELESS sensor network (WSN) is usually composed
of a large number of spatially distributed autonomous

sensor nodes (SNs) to cooperatively monitor physical or envi-
ronmental conditions, such as temperature, sound, vibration,
pressure, motion or pollutants. A SN deployed in the WSN
has the capability to read the sensed information and transmit
or forward information to base stations or a sink node through
multi-hop routing. While SNs have popularly used for various
monitoring purposes such as wild animals, weather, or envi-
ronments for battlefield surveillance, they also have severely
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restricted resources such as energy, memory, and computa-
tional power. Further, wireless environments give more design
challenges due to inherently unreliable communication. A
more serious issue is that nodes may be compromised and
perform malicious attacks such as packet dropping or packet
modifications to disrupt normal operations of a WSN wherein
SNs usually perform unattended operations. A large number
of SNs deployed in the WSN also require a scalable algorithm
for highly reconfigurable communication operations.

In this work, we propose a hierarchical trust management
protocol leveraging clustering to cope with a large number
of heterogeneous SNs for scalability and reconfigurability, as
well as to cope with selfish or malicious SNs for survivability
and intrusion tolerance. We address the key design issues
of trust management including trust composition (i.e., what
trust components are considered), trust aggregation (i.e., how
information is aggregated for each trust component), and trust
formation (i.e., how trust is formed from individual trust
components). The scientific contributions of the paper are as
follows:

1) Unlike most existing reputation and trust management
schemes in the literature [1], we consider not only
quality of service (QoS) trust derived from communica-
tion networks, but also social trust derived from social
networks [2] to judge if a node is trustworthy to deal
with selfish (uncooperative) or malicious nodes.

2) Untreated in the literature, we design and validate a
hierarchical trust management protocol that can dy-
namically learn from past experiences and adapt to
changing environment conditions (e.g., increasing hos-
tility or misbehaving node population) to maximize
application performance and enhance operation agility.
This is achieved by addressing critical issues of hier-
archical trust management, namely, trust composition,
aggregation, and formation. For trust composition, we
explore novel social and QoS trust components. For trust
aggregation, we identify the best way to aggregate trust
(direct vs. indirect trust evaluation) and propagate trust
(trust data collection, dissemination and analysis) for
each individual trust component, and ascertain protocol
accuracy by means of a novel model-based analysis
methodology. For trust formation, we identify the best
way to form trust out of social and QoS trust properties
depending on application requirements to maximize
application performance. Dynamic trust management is
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achieved by first determining the best trust formation
model, given a set of model parameters specifying the
environment conditions (e.g., increasing hostility) and
then at runtime by learning and adapting to changing
environment conditions using the best trust formation
model identified from static analysis.

3) To achieve the goals of identifying the best trust com-
position, trust aggregation and trust formation for WSN
applications, we develop a novel model-based analy-
sis methodology for analyzing and validating protocol
design. The novelty lies in the new design notion of
objective trust derived from global knowledge or ground
truth derived from the mathematical model against
which subjective trust obtained as a result of executing
the trust management protocol may be compared and
validated. This requires a mathematical model based
on Stochastic Petri Net (SPN) techniques [3] and an
iteration solution technique be developed to faithfully
describe a large number of heterogeneous entities with
a variety of QoS and social behaviors to yield global
knowledge or ground truth of node status, thus provid-
ing objective trust against which subjective trust from
protocol execution can be validated. The end product is a
model-based analysis tool for evaluation of hierarchical
trust management protocol designs applicable to a wide
range of WSN applications, allowing trust composition,
trust aggregation, and trust formation designs to be
incorporated, tested and validated.

4) Untreated in the literature, we explore and validate a
new design concept of application-level trust optimiza-
tion in response to changing conditions to maximize
application performance or best satisfy application re-
quirements. To demonstrate the utility of the hierarchical
trust management protocol, we apply it to trust-based
geographic routing [4], [5] and trust-based intrusion
detection. For the trust-based geographic routing appli-
cation, we identify the best trust formation model to
optimize application performance in delivery ratio or
message delay in the presence of misbehaving nodes.
For the trust-based intrusion detection application, we
identify the best trust formation model as well as the
best application-level drop-dead trust threshold below
which a node is considered misbehaving to optimize
application performance in false alarm probability.

The rest of the paper is organized as follows. In Section II
we survey existing work in trust management for WSNs, as
well as trust-based routing and trust-based intrusion detection
in WSNs. In Section III, we describe the system model. In
Section IV, we describe our hierarchical trust management
protocol addressing the issues of trust formation, trust aggre-
gation, and trust composition in a hierarchically structured
WSN. In Section V, we develop a probability model to
describe a clustered WSN consisting of a large number of
nodes with vastly different social and QoS behaviors to yield
ground truth node status for validation purposes. In Section
VI, we apply the hierarchical trust management protocol to the
clustered WSN described in Section V and identify the best
trust aggregation model for each individual trust component,

such that subjective trust obtained as a result of executing
the protocol is close to objective trust obtained from ground
truth node status. In Section VII, we apply the hierarchical
trust management protocol to trust-based geographic routing
as an application and identify the best trust formation model
for optimizing application performance in delivery ratio and
delay with dynamic trust management control. In Section
VIII, we apply the hierarchical trust management protocol
to trust-based intrusion detection with application-level trust
optimization as another application, with results and physical
interpretations given. Finally in Section IX, we conclude the
paper and outline some future research areas.

II. RELATED WORK

In the literature, trust has been used in WSNs for assessing
the availability, reliability, or security property of a node
(e.g., whether a node is malicious or not) based on past
interaction experiences [6]–[11]. Ganeriwal et al. [7] proposed
a reputation-based framework for data integrity in WSNs. The
proposed reputation system takes information collected by
each node using a Watchdog mechanism (for direct monitoring
and observations) to detect invalid data and uncooperative
nodes. Yao et al. [11] proposed a parameterized and local-
ized trust management scheme for WSN security, particularly
for secure routing, where each node only maintains highly
abstracted parameters to evaluate its neighbors. Aivaloglou
and Gritzalis [6] proposed a hybrid trust and reputation man-
agement protocol for WSNs by combining certificate-based
and behavior-based trust evaluations. However, [6], [7], [11]
cited above only considered a node’s QoS property in trust
evaluation. Also the analysis was conducted based on a flat
WSN architecture which is not scalable. Liu et al. [8] and
Moraru et al. [9] proposed trust management protocols and
applied them to geographic routing in WSNs. However, no
hierarchical trust management was considered for managing
clustered WSNs. Their work again evaluated trust based on
QoS aspects only such as packet dropping and the degree
of cooperativeness, while our work considers both QoS and
social trust for trust evaluation of a SN.

Capra et al. [12], [13] discussed the notion of human trust
which could be formed from three sources: direct experiences,
credentials and recommendations. In particular, recommenda-
tions are trust information coming from other nodes in the
social context. We consider only two sources in our notion
of trust, namely, direct experiences and recommendations,
since it is hard for SNs with limited resources to carry
credentials. A significant difference of Capra’s work from our
work is that we specifically consider individual QoS and social
trust property, say, X , and devise specific trust aggregation
protocols using direct experiences and recommendations to
form trust property X , while Capra used the three sources of
information to form human trust. Moreover, because different
trust properties have their own intrinsic trust nature and react
differently to trust decay over time, we identify the best way
for each trust property X to take in direct experiences and
recommendations information so that the assessment of trust
property X would be the most accurate against actual status
in trust property X . Another significant difference is that we
consider trust formation as the issue of forming the overall
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“trust” out of individual social and QoS trust properties,
while Capra considered it as the issue of forming human
trust out of the three sources of trust information. Lastly,
we introduce new design concepts of dynamic trust manage-
ment and application-level trust optimization in response to
changing conditions to maximize application performance, and
demonstrate the feasibility with trust-based applications, by
identifying the best way to form trust as well as use trust
out of individual social and QoS trust properties at runtime to
optimize application performance.

Shaikh et al. [10] proposed a group-based trust management
scheme for clustered WSNs in which each SN performs peer
evaluation based on direct observations or recommendations,
and each cluster head (CH) evaluates other CHs as well as
SNs under its own cluster. This work is similar to ours in that
a hierarchical structure is employed for scalability. However,
trust in their case is assessed only based on past interaction
experiences in message delivery, which in our case is just
one possible trust component along with other social and
QoS trust components comprising the overall trust metric.
Furthermore, we address the trust formation issue (i.e., how
a peer-to-peer trust value is formed) to maximize application
performance. Zhang et al. [14] followed the same hierarchical
trust architecture and considered multi-attribute trust values
instead of just one as in [10]. They also considered a decay
function that captures the changing nature of trust in trust
calculations. However, their work is theoretical in nature
without addressing what trust attributes should be used (a
trust composition issue), how trust is aggregated accurately
(a trust aggregation issue), or what weights should be put
on trust attributes to form trust (a trust formation issue). On
the contrary, our work addresses all three aspects of trust
management. Moreover, we address protocol validation issues
by devising a mathematical model yielding objective trust
against which subjective trust from protocol execution may
be compared for assessing its accuracy.

Intrusion detection is the last defense to cope with malicious
nodes for WSNs in which SNs can be compromised due to
capture or virus infection. Existing work was mostly based
on anomaly detection [15] techniques to discover deviations
from expected behaviors, including rule-based [16], [17],
weighted summation [18], data clustering [19], and Support
Vector Machine (SVM) [20]. In rule-based anomaly detection
[16], [17], typically rules based on QoS metrics are being
setup to detect suspected attack behaviors, e.g., if a SN does
not forward a packet within a time limit, if a SN forwards
the same packet multiple times without suppression, or if a
packet is received directly from a non-neighbor SN or from a
neighbor SN who is not supposed to send a packet during a
particular time interval, then the SN in question is suspected
of maliciousness. When a SN’s “maliciousness count” exceeds
a tolerance limit, the SN is diagnosed as compromised. The
main drawback of rule-based anomaly detection is that it
cannot cope with anomalies not covered by rules, thus leading
to high false negatives when unknown anomalies appear. In
the weighted summation approach [18], each SN has a weight
associated with it representing the trustworthiness of its sensor
reading output. The system periodically calculates the average
sensor reading output by taking a weighted summation out

of all sensor reading outputs. The weight associated with
a SN is dynamically updated according to the deviation of
the SN’s output from the average output. A larger deviation
results in a lower weight. Once the weight of a SN falls
below a threshold, the SN is considered a malicious node.
The main drawback of this approach is a high false positive
probability may result. In the clustering based approach [19],
SNs reporting similar sensor reading data out of selected data
features are clustered together. Consequently, a SN that does
not belong to any cluster or belong to a small cluster is
considered an outlier or a compromised SN. The effectiveness
of this approach hinges on the accuracy of the underlying
clustering algorithm achievable only through heavy learning
and computation which may impede its use for real time
operation. In SVM-based anomaly detection [20], a kernel
function is chosen to map the input data space into a higher-
dimensional space. The anomaly detection is formulated as
a quadratic optimization problem to find a minimum hyper-
sphere that includes the majority of the data points with a
certain degree of similarity. The data points that are outside
of this hyper-sphere are considered anomalies. However, the
challenge of using SVM-based intrusion detection in WSNs
is the computational complexity of solving the optimization
problem, thus preventing its use for real time operation. A
general problem with anomaly detection is high false alarms
because noises in wireless transmission may cause uncertainty
of information, and limited resources may cause inability
to collect accurate and needed information. In this paper,
we develop and analyze trust-based intrusion detection and
compare its performance with weighted summation [18] and
data clustering [19] anomaly detection techniques.

Trust-based intrusion detection has received much attention
in the literature because of its elasticity against uncertainty
and resiliency against attacks. Wang et al. [21] proposed an
intrusion detection mechanism based on trust for mobile ad
hoc networks (MANETs). They employed the concepts of
evidence chain and trust fluctuation to evaluate a node in the
network, with the evidence chain detecting misbehaviors of a
node, and the trust fluctuation reflecting the high variability
of a node’s trust value over a time window. Ebinger et
al. [22] introduced a cooperative intrusion detection method
also for MANETs based on trust evaluation and reputation
exchange. They split the reputation information into trust and
confidence for reputation exchanges and then combine them
into trustworthiness for intrusion detection. Theodorakopoulos
et al. [23] modeled trust evaluation as a path problem and
used path semiring and distance semiring operators to combine
opinions such that two nodes can establish an indirect trust
relation without previous direct interactions. Here we note that
most trust-based intrusion detection mechanisms employed for
MANETs cannot be directly implemented in WSNs due to
limited battery power and resources in SNs. In this paper, we
propose hierarchical trust management leveraging clustering
to implement light-weight trust-based intrusion detection for
WSNs. To the best of our knowledge [1], [24], our work is the
first to use trust to implement intrusion detection functionality
and evaluate its effectiveness for clustered WSNs.

This work extends from our preliminary work [25] which
considered hierarchical trust management for WSNs and its
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application to trust-based routing, and [26] which considered
its application to trust-based intrusion detection. The protocol
design is extended with new design concepts of (a) trust ag-
gregation protocol accuracy, i.e., identifying and validating the
best trust aggregation and propagation protocol setting for each
individual trust property X such that subjective trust obtained
as a result of protocol execution is close to objective trust or
ground truth; (b) dynamic trust management, i.e., identifying
and validating the best way to form trust out of QoS and social
trust properties dynamically (in terms of the best weights used
for trust properties) in response to changing conditions such
as increasing hostility to maximize application performance;
and (c) application-level trust optimization, i.e., identifying the
best way to use trust for application performance optimization.
Both applications (described in Sections VII and VIII) have
been substantially extended to demonstrate the feasibility of
these new design concepts.

III. SYSTEM MODEL

We consider a cluster-based WSN consisting of multiple
clusters, each with a cluster head (CH) and a number of
SNs in the corresponding geographical area. CH nodes have
more power and resources than SN nodes. The CH in each
cluster may be selected based on an election protocol such
as HEED [27] at runtime to balance energy consumption vs.
CH functionality. A SN forwards its sensor reading to its CH
through SNs in the same cluster and the CH then forwards the
data to the base station or the destination node (or sink node)
through other CHs.

Leveraging this two-level of hierarchy in the WSN, our trust
management protocol is conducted using periodic peer-to-peer
trust evaluation between two SNs and between two CHs. The
trust update interval is Δt which is a system design parameter.
At the SN level, each SN is responsible to report its peer-to-
peer trust evaluation results towards other SNs in the same
cluster to its CH which performs CH-to-SN trust evaluation
towards all SNs in its cluster. Similarly a CH is responsible
to report its peer-to-peer trust evaluation results towards other
CHs in the system to the base station which performs station-
to-CH trust evaluation towards all CHs in the system. In
Section IV, we will describe the protocols for performing peer-
to-peer, CH-to-SN and station-to-CH trust evaluations.

Unlike prior work, we compose our trust metric by con-
sidering both social trust and QoS trust to take into ac-
count the effect of both aspects of trust on trustworthiness.
Social trust in the context of wireless sensors may include
intimacy, honesty, privacy, centrality, and connectivity. QoS
trust may include competence, cooperativeness, reliability, task
completion capability, etc. We formulate our trust protocol
such that it is generic and can take a combination of social
trust and QoS trust metrics to form the overall trust metric.
Without loss of generality, in this work we consider intimacy
(for measuring closeness based on interaction experiences)
and honesty (for measuring regularity/anomaly) to measure
social trust derived from social networks. We choose energy
(for measuring competence) and unselfishness (for measuring
cooperativeness) to measure QoS trust derived from commu-
nication networks. The intimacy trust component reflects the
relative degree of interaction experiences between two nodes.

It follows the maturity model proposed in [28] in that the more
positive experiences SN A had with SN B, the more trust and
confidence SN A will have toward SN B. The honesty trust
component strongly implies whether a node is malicious or
not. The assumption is that a compromised node is malicious
in nature and thus dishonest. Energy is an important metric in
WSNs since SNs are extremely constrained in energy. We use
energy as a QoS trust metric to measure if a SN is competent
in performing its intended function. The unselfishness trust
component reflects if a SN can cooperatively execute the
intended protocol.

Our trust management protocol can apply to any WSN
consisting of heterogeneous SNs with vastly different initial
energy levels and different degrees of malicious or selfish
behaviors. We apply the trust management protocol to a
clustered WSN in which a SN may adjust its behavior dynam-
ically according to its own operational state and environmental
conditions. A SN is more likely to become selfish when it has
low energy or it has many unselfish neighbor nodes around.
Further, a SN is more likely to become compromised when
it has more compromised neighbors around. A CH consumes
more energy than SNs. After a SN or CH is compromised,
it may consume even more energy to perform attacks. On
the other hand, a selfish node consumes less energy than an
unselfish node as its selfish behavior is reflected by stopping
sensing functions and arbitrarily dropping messages.

A compromised SN can perform various attacks includ-
ing forgery attacks, jamming attacks, Sybil attacks, denial
of service attacks, black/sink hole attacks (absorbing and
dropping packets), and slandering attacks. Depending on the
system failure definition, some of these attacks if successfully
performed are fatal. For example if a compromised node uses
its shared secret key to perform a forgery attack and the
tampered packet reaches the sink node, it can be considered as
a system failure as the consequence of the sink node receiving
false information may be catastrophic. Thus, the only defense
of the system is to quickly detect and evict compromised
nodes before a system failure occurs. In this paper, we show
that our hierarchical trust management protocol is resilient to
black/sink hole attacks and slandering attacks including good-
mouthing attacks (recommending a bad node as a good node),
and bad-mouthing attacks (recommending a good node as a
bad node) in trust-based routing applications (in Section VII).
Also our trust management protocol can be effectively applied
to implement trust-based intrusion detection (in Section VIII)
to deal with other types of attacks.

IV. HIERARCHICAL TRUST MANAGEMENT PROTOCOL

We first describe our hierarchical trust management address-
ing the problem of trust formation, trust aggregation and trust
composition. Later we apply it to the clustered WSN described
in the system model to demonstrate its effectiveness.

Our hierarchical trust management protocol maintains two
levels of trust: SN-level trust and CH-level trust. Each SN
evaluates other SNs in the same cluster while each CH
evaluates other CHs and SNs in its cluster. The peer-to-peer
trust evaluation is periodically updated based on either direct
observations or indirect observations. When two nodes are
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neighbors within radio range, they evaluate each other based
on direct observations via snooping or overhearing. Each SN
sends its trust evaluation results toward other SNs in the same
cluster to its CH. Each CH performs trust evaluation toward
all SNs within its cluster. Similarly, each CH sends its trust
evaluation results toward other CHs in the WSN to a “CH
commander” which may reside on the base station if one is
available, or on a CH elected if a base station is not available.
The CH commander performs trust evaluation toward all CHs
in the system. The election protocol is outside of the scope of
the paper. The reader is referred to HEED [27] for a possible
solution.

These two levels of peer-to-peer trust evaluation process
consider four different trust components described earlier:
intimacy, honesty, energy, and unselfishness. The trust value
that node i evaluates towards node j at time t, Tij(t), is
represented as a real number in the range of [0, 1] where 1
indicates complete trust, 0.5 ignorance, and 0 distrust. Tij(t)
is computed by:

Tij(t) = w1T
intimacy
ij (t) + w2T

honesty
ij (t)

+w3T
energy
ij (t) + w4T

unselfishness
ij (t) (1)

where w1, w2, w3, and w4 are weights associated with
these four trust components with w1 + w2 + w3 + w4 = 1.
Deciding the best values of w1, w2, w3, and w4 to maximize
application performance is a trust formation issue which we
aim to explore in this paper (see Section VII and Section VIII).
Here we note that in the special case in which intimacy and
honesty are equally important and energy and unselfishness
are also equally important, Equation 1 can be rewritten
as Tij(t) = 0.5wsocial

[
T intimacy
ij (t) + T honesty

ij (t)
]

+

0.5wQoS

[
T energy
ij (t) + T unselfishness

ij (t)
]

with wsocial +

wQoS = 1.

A. Peer-to-Peer Trust Evaluation

Here we describe how peer-to-peer trust evaluation is con-
ducted, particularly between two peer SNs or two peer CHs.
When a trustor (node i) evaluates a trustee (node j) at time
t, it updates TX

ij (t) where X indicates a trust component as
follows:

TX
ij (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1− α)TX
ij (t−Δt) + αTX,direct

ij (t),
if i and j are 1− hop neighbors;

avgκ∈Ni

{
(1− γ)TX

ij (t−Δt) + γTX,recom
kj (t)

}
,

otherwise.
(2)

In Equation 2, if node i is a 1-hop neighbor of node j,
node i will use its new trust based on direct observations(
TX,direct
ij (t)

)
and its old trust based on past experiences(

TX
ij (t−Δt)

)
where Δt is the trust update interval toward

node j to update TX
ij (t). A parameter α (0 ≤ α ≤ 1) is

used here to weigh these two trust values and to consider
trust decay over time, i.e., the decay of the old trust value and
the contribution of the new trust value. A larger α means
that trust evaluation will rely more on direct observations.
Here TX,direct

ij (t) indicates node i’s trust value toward node j
based on direct observations accumulated over the time period

[0, t]. Below we describe how each trust component value
TX,direct
ij (t) can be obtained based on direct observations for

the case node i and node j are 1-hop neighbors:
T intimacy,direct
ij (t): This measures the level of interaction

experiences following the maturity model [28]. It is computed
by the number of interactions between nodes i and j over
the maximum number of interactions between node i and any
neighbor node over the time period [0, t].
T honesty,direct
ij (t): This refers to the belief of node i that

node j is honest based on node i’s direct observations toward
node j. Node i estimates T honesty,direct

ij (t) by keeping a count
of suspicious dishonest experiences of node j which node i
has observed during [0, t] using a set of anomaly detection
rules such as a high discrepancy in the sensor reading or
recommendation has been experienced, as well as interval,
retransmission, repetition, and delay rules as in [17], [29]. If
the count exceeds a system-defined threshold, node j is con-
sidered totally dishonest at time t, i.e., T honesty,direct

ij (t) = 0.
Otherwise, T honesty,direct

ij (t) is computed by 1 minus the
ratio of the count to the threshold. An assumption is that a
compromised node must be dishonest.
T energy,direct
ij (t): This refers to the belief of node i that

node j still has adequate energy (representing competence)
to perform its intended function. It may be measured by
the percentage of node j’s remaining energy. To calculate
T energy,direct
ij (t), node i estimates node j’s remaining energy

by overhearing node j’s packet transmission activities over the
time period [0, t], utilizing an energy consumption model as
in [30]–[32].
T unselfishness,direct
ij (t): This provides the degree of unselfish-

ness of node j as evaluated by node i based on direct observa-
tions over [0, t]. Node i can apply overhearing and snooping
techniques to detect selfish behaviors of node j such as not
faithfully performing sensing and reporting functions, data
forwarding functions [10], or the prescribed trust management
protocol execution. Node i may give recent interaction expe-
riences a higher priority over old experiences in estimating
T unselfishness,direct
ij (t). An assumption is that a compromised

node must be uncooperative and thus selfish.
On the other hand, if node i is not a 1-hop neighbor

of node j, node i will use its past experience TX
ij (t−Δt)

and recommendations from its 1-hop neighbors TX,recom
kj (t)

(where k is a recommender) to update TX
ij (t). Node i will

only use its 1-hop neighbors (Ni) as recommenders for energy
conservation and scalability. If Ni is an empty set, then node
i is an orphan in which case γ = 0 and node i will not be able
to contribute to peer-to-peer trust management. The parameter
γ is used here to weigh recommendations vs. past experiences
and to consider trust decay over time as follows:

γ =
βTik(t)

1 + βTik(t)
(3)

Here we introduce another parameter β ≥ 0 to specify the
impact of “indirect recommendations” on TX

ij (t) such that the
weight assigned to indirect recommendations is normalized to
βTik(t) relative to 1 assigned to past experiences. Essentially,
the contribution of recommended trust increases proportionally
as either Tik(t) or β increases. Instead of having a fixed weight
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ratio Tik(t) to 1 for the special case in which β = 1, we allow
the weight ratio to be adjusted by adjusting the value of β
and test its effect on protocol resiliency against slandering
attacks such as good-mouthing and bad-mouthing attacks.
Here, Tik(t) is node i’s trust toward node k as a recommender
(for node i to judge if node k provides correct information).
The recommendation TX,recom

kj (t) provided by node k to node
i about node j depends on if node k is a good node. If node
k is a good node, TX,recom

kj (t) is simply equal to TX
kj (t). If

node k is a bad node, it can provide TX,recom
kj (t) = 0 when

node j is a good node by means of bad-mouthing attacks, and
can provide TX,recom

kj (t) = 1 when node j is a bad node by
means of good-mouthing attacks. In our analysis we assume
this worst-case attack behavior to test our protocol resiliency.
The new trust value TX

ij (t) = 0 obtained from Equation 2
would be the average of the combined trust values of past
trust information and recommendations collected at time t.

B. CH-to-SN Trust Evaluation

Each SN reports its trust evaluation toward other SNs in
the same cluster to its CH. The CH then applies a generic
statistical analysis method (such as Equation 4 below) to
Tij (t) values received to perform CH-to-SN trust evaluation
towards node j. Further, the CH can also leverage Tij (t)
values received to detect if there is any outlier as an evidence
of good-mouthing or bad-mouthing attacks. Based on the
resulting CH-to-SN trust evaluation result toward node j,
the CH determines whether node j is untrustworthy and
needs to be excluded from sensor reading and routing duties.
Specifically a CH, c, when evaluating a SN, j, will perform
intrusion detection by comparing the system minimum trust
threshold T th with node j’s trust value, Tcj (t), obtained by:

Tcj (t) = avgi∈Mc�Tci(t)≥T th {Tij (t)} (4)

where Mc is the set of SNs in the cluster. CH c will announce
j as compromised if Tcj (t) is less than T th; otherwise,
node j is not compromised. Note that we only take into
account the trust values received from those SNs which are
considered trustworthy by the CH. That is, CH c will take
a trust recommendation from node i only if Tci (t) ≥ T th.
Later in Section VIII we will illustrate a statistical analysis
methodology to implement trust-based intrusion detection as
an application to hierarchical trust evaluation.

C. Station-to-CH Trust Evaluation

Here we first note that the transmission power and capacity
of CHs generally are higher than those of SNs. Thus, the one-
hop radio range of CHs is higher than that of SNs. Also a
CH after gathering and possibly aggregating sensor readings
will forward the information hop-by-hop to the base station
through other CHs. Thus, there are a lot of interaction experi-
ences between two neighbor CHs in a WSN, just like two SNs
in a cluster. Consequently, CH-to-CH peer evaluation will be
conducted in a similar way as SN-to-SN peer evaluation, as
discussed in Section IV.A. Each CH reports its trust evaluation
toward other CHs in the WSN to the base station which
is infallible with physical protection. The CH commander

Energy SN

CN DCN

T_ENERGY T_SELFISH T_REDEMP

T_COMPRO T_IDS

Fig. 1. SPN model for a sensor node or a cluster head.

resided on the base station then applies the same statistical
analysis method (as in Equation 4) to Tij (t) values received
from all CHs in the system to perform station-to-CH trust
evaluation towards CH j. The base station determines whether
CH j is considered untrustworthy and needs to be excluded
from cluster head duties.

V. PERFORMANCE MODEL

We develop a probability model based on stochastic Petri
nets (SPN) [3] techniques to describe the behavior of each
SN or CH in the WSN described in Section III. It provides a
basis for obtaining ground truth status of nodes in the system,
thereby allowing us to derive objective trust against which
subjective trust obtained as a result of executing our hierarchi-
cal trust management protocol can be checked and validated.
We use SPN as our analytical tool due to its capability to
represent a large number of states for complex systems where
an underlying model is a semi-Markov or Markov model.
Further, we develop a novel iterative hierarchical modeling
technique to avoid state explosion problems and to yield
efficient solutions.

Fig. 1 shows the SPN model that describes the behavior of
a SN (or a CH). We consider a heterogeneous WSN consisting
of NSN SNs uniformly distributed in an M×M square-shaped
operational area. Each SN is attached to a CH based on its
location and so the system will have NCH clusters each with
a CH. CHs and SNs have radio range of R and r, respectively.
The trust update interval is Δt. Nodes are stationary after the
initial deployment.

Below we explain how we construct the SPN model for
describing the behaviors of a single node and how we compose
a performance model for the entire WSN using a number of
such SPN models (one for each node in the system).

Energy: Place Energy indicates the remaining energy level
of the node. The initial number of tokens in place Energy
is set to Einit. A token will be released from place Energy
when transition T_ENERGY is triggered. The rate of transition
T_ENERGY indicates the energy consumption rate. A CH
consumes more energy than a SN. The energy consumption
rate is also affected by a node’s state. It is lower when
a node becomes selfish. It is higher when a node is com-
promised because it takes energy to perform attacks. We
denote ΔE−SN , ΔE−CH and ΔE−compromised as the energy
consumption rates per Δt time for a normal SN, a normal CH,
and a compromised node, respectively, which can be obtained
by analyzing historical data with ΔE−SN < ΔE−CH <
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ΔE−compromised. The energy consumption rates for a selfish
SN and a selfish CH are ρΔE−SN and ρΔE−CH per Δt time
unit, respectively, with 0 ≤ ρ ≤ 1 denoting the energy saving
ratio of a selfish node compared with a normal node.

Selfishness: In our WSN system model, a node may become
selfish to save energy. A selfish node may stop reading data
and drop packets it receives. An unselfish node may turn
selfish in every trust evaluation interval Δt according to its re-
maining energy and the number of unselfish neighbors around.
A selfish node may redeem itself as unselfish to achieve a
service availability goal when it senses many selfish neighbor
SNs around it to balance individual welfare vs. system welfare.
We model these behaviors by putting a token into place SN
when transition T_SELFISH is triggered and removing the
token from place SN when transition T_REDEMP is triggered.
A token in place SN thus indicates that the node is selfish. A
node’s selfish probability is modeled by:

Pselfish = μ
Econsumed

Einit
+ (1− μ)

N unselfish
neighbor

Nneighbor
(5)

where μ is a weight associated with the energy term and (1−μ)
is the weight associated with the selfish neighborhood term.
Econsumed is energy consumed and Einit is the node’s initial
energy level. Thus, Econsumed/Einit represents the percentage
of energy consumed. N unselfish

neighbor/Nneighbor is the percentage

of unselfish neighbors where N unselfish
neighbor is the number of

unselfish neighbors and Nneighbor is the total number of
neighbors. A node’s selfish probability tends to be lower
when a node has more energy and higher when the node
has more unselfish neighbors as there are sufficient unselfish
neighbors around to take care of sensor tasks. Thus, the
rates of transitions T_SELFISH and T_REDEMP are given by
Pselfish/Δt and (1− Pselfish) /Δt, respectively. All nodes
are unselfish initially with no token in place SN. We set μ to
0.5 to give equal weighting to energy and selfish neighborhood
terms for the example WSN described in Section III.

Compromise: A node becomes compromised when transi-
tion T_COMPRO fires and a token is put in place CN. The
rate to T_COMPRO is modeled by:

λc = λc−init

N compromised
neighbor

N uncompromised
neighbor

(6)

where λc−init is the initial node compromise rate which can
be obtained by first-order approximation based on historical
data about the targeted network environment. N compromised

neighbor and

N uncompromised
neighbor are the numbers of compromised and uncompro-

mised nodes in the neighborhood. N compromised
neighbor /N uncompromised

neighbor

refers to the ratio of the number of compromised 1-hop
neighbors to the number of uncompromised 1-hop neighbors.
Equation 6 models that a node is more likely to be compro-
mised when there are more 1-hop compromised nodes around
it due to collusive attacks. The hierarchically structured WSN
has a trust-based intrusion detection system (IDS) in place (see
Section VIII). We model the IDS behavior through transition
T_IDS. A compromised node can be caught by IDS with
the rate (1 − Pfn)/TIDS for transition T_IDS where Pfn

is the IDS false negative probability and TIDS is the IDS
detection interval. When a compromised node is detected by

the IDS, a token will move to place DCN. In addition, we
model false positives generated by the IDS (i.e., diagnosing a
good node as a bad node) by associating a rate of Pfn/TIDS

with transition T_IDS which is enabled only when the node is
not compromised, that is, when there is no token in place CN.
Note that all nodes are good, i.e., not compromised, initially.
Note that trust-based intrusion detection (see Section VIII)
will be used for determining IDS Pfn and Pfp. Also since a
compromised node will exhibit uncooperative behaviors (not
following the protocol), a compromised node is selfish. This
is modeled by moving a token to place SN when a token
is moved into CN. Different from a selfish node, however, a
compromised node will not redeem itself to become unselfish
again as it is malicious in nature.

The overall performance model for describing the behaviors
of a WSN consists of NSN SPN subnet models one for each
SN, and NCH SPN subnet models one for each CH, with
vastly different energy consumption, selfish/redemption and
compromise rates. Below we describe how one could leverage
SPN outputs to obtain subjective trust and objective trust
values to validate our hierarchical trust management protocol.

A. Subjective Trust Evaluation

Recall that under our proposed trust management protocol,
node i will subjectively assess its trust toward node j, Tij (t),
based on its direct observations and indirect recommendations
obtained toward node j according to Equations 1 and 2. In
particular, for the direct trust assessment part when node j is a
1-hop neighbor of node i, node i will apply intimacy, honesty,
energy and unselfishness detection mechanisms in the protocol
design described in Section IV to assess TX,direct

ij (t) based
on direct observations over the time period [0, t]. Because the
assessment is direct, assuming that the detection mechanisms
are effective, TX,direct

ij (t) computed by node i will be close
to actual status of node j at time t, which can be obtained
from the SPN model output.

In Table 1, we show how to compute actual status of node
j at time t and thus TX,direct

ij (t) based on assigning status
values to states in the underlying semi-Markov chain of the
SPN model, with the state representation of node j being
(Energy, CN, DCN, SN). Specifically, T honesty,direct

ij (t) is
approximated by assigning a status value of 0 (representing
complete dishonesty) to states in which node j is compromised
detected (i.e., DCN is 1) and a status value of 1 (representing
complete honesty) to all other states. The reason is that a com-
promised node must be dishonest. The dishonesty detection
mechanisms employed by node i for direct assessment of node
j’s dishonesty, however, are at most as good as those employed
by the IDS which will announce node j as compromised when
it identifies node j as compromised, i.e., when DCN is 1.
T energy,direct
ij (t) is computed by assigning a status value of

Energy/Einit to all states. T unselfishness,direct
ij (t) is computed by

assigning a status value of 1 to states in which node j is not
selfish (i.e., SN is 0) and a status value of 0 to states in which
node j is selfish (i.e., SN is 1).

To compute T intimacy,direct
ij (t), we first note that status

information in intimacy is not directly available from the state
representation. Based on our peer-to-peer trust evaluation pro-
tocol (Section IV.A), T intimacy,direct

ij (t) is computed by the
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TABLE I
STATUS VALUE ASSIGNMENTS TO COMPUTE TX,direct

ij (t)

Item Value Condition (of node j)
a/ c If mark(SN) = 1 AND mark(CN) = 0 

kram fI c /b (CN) = 1 
1 Otherwise 
1 If mark(DCN) = 0 

 esiwrehtO 0
 mark(Energy)/Einit none 

1 If mark(SN) = 0 
 esiwrehtO 0

number of interactions between nodes i and j over the maxi-
mum number of interactions between node i and any neighbor
node over the time period [0, t]. If during the period there is no
interaction between nodes i and j, then T intimacy,direct

ij (t) =

0. Here we predict what T intimacy,direct
ij (t) would be when

there is a normal level of interactions of data forwarding activ-
ities, conditioning on the status of node j, i.e., compromised,
selfish or normal. We consider four types of interactions during
geographic forwarding, given that node i is the initiating node:
(1) Requesting: node i broadcasts a packet delivery request
to its 1-hop neighbors; (2) Reply: nodes that are closer to
the destination node than node i will reply to node i; (3)
Selection: node i selects up to L nodes with the highest trust
values to forward the packet; and (4) Overhearing: node i
overhears if the packet has been forwarded. Node i then keeps
track of its interaction experiences with node j to compute
T intimacy,direct
ij (t). Let the average numbers of interactions

of node i with a selfish node, a compromised node and a
normal node be a, b and c, respectively. The values of a, b,
c are computed dynamically. Below we predict their values
from node i’s perspective for the case in which a selfish node
drops 50% of packets and a compromised node drops 100%
of packets. On the one hand, if node i requests a neighbor to
forward a packet then (1) the expected number of interactions
between node i and a selfish node j is 25% × 50% × 3
because there will be three interactions (reply, selection, and
overhearing) only if the selfish node is in the quadrant closest
to the destination node (with 25% probability) and does not
drop the packet (with 50% probability); (2) the expected
number of interactions between node i and a compromised
node j is 0 because a compromised node discards all requests
from node i; and (3) the expected number of interactions
between node i and a normal node j is 25%×3 because there
will be three interactions only if that node is in the quadrant
closest to the destination node (with 25% probability). On
the other hand, if node i receives a request from node j to
forward a packet, the expected number of interactions will
be 25% × 2 because from node i’s perspective there will be
two interactions (reply and selection) only if node i is in the
quadrant closest to the target node. Summarizing above, we
have:

a = 25%× 50%× 3 + 25%× 2;

b = 0 + 25%× 2;

c = 25%× 3 + 25%× 2. (7)

Consequently, we compute T intimacy,direct
ij (t) by assigning

a status value of a/c to states in which node j is selfish (i.e.,
SN is 1), b/c to states in which node j is compromised (i.e.,
CN is 1), and c/c = 1 to states in which node j is a normal
node (SN=0 and CN=0).

Here we should emphasize that in practice node i would
just follow the protocol execution to assess TX,direct

ij (t) using
detection mechanisms designed to assess trust property X
based on local information. The computational procedure de-
scribed above is to predict TX,direct

ij (t) that would have been
obtained by node i based on the argument that a node’s direct
observation trust assessment would be close to ground truth.
Once node i obtains TX,direct

ij (t) for X = honesty, energy,
unselfishness and intimacy, it will compute TX

ij (t) based on
Equation 2 and subsequently Tij(t) based on Equation 1 for
subjective trust evaluation.

B. Objective Trust Evaluation

To validate subjective trust evaluation, we compute objec-
tive trust based on actual status as provided by the SPN
model output using exactly the same status value assignment
as shown in Table 1 to yield ground truth status of node j at
time t. The objective trust value of node j, Tj,obj(t), is also a
weighted linear combination of four trust component values:

Tj,obj(t) = w1T
intimacy
j,obj (t) + w2T

honesty
j,obj (t)

+ w3T
energy
j,obj (t) + w4T

unselfishness
j,obj (t) (8)

Note that here T intimacy
j,obj (t), T honesty

j,obj (t), T energy
j,obj (t) and

T unselfishness
j,obj (t) are objective trust component values, reflecting

node j’s ground truth status at time t.

VI. TRUST EVALUATION RESULTS

In this section, we show numerical results obtained through
model-based evaluation as described in Section IV. The basis
is the example WSN described in Section III characterized
by a set of parameter values listed in Table 2. We consider
a WSN with 900 SNs (and 81 CHs) evenly spread out in a
900m× 900m operational area based on uniform distribution.
The initial energy lifetime of a SN varies from 360 days to 480
days while the CHs have much higher initial energy lifetime
ranging from 720 days to 960 days. The radio ranges of a
SN and a CH are r = 50m and R = 150m, respectively.
The WSN is assumed to be deployed in a hostile environment
with the node’s average compromising interval in the range
of 80 days to 360 days. We consider the worst case of good-
mouthing attacks (providing the highest trust value of 1 for
a malicious node) and bad-mouthing attacks (providing the
lowest trust value of 0 against a good node). The node is
a good node at time t = 0 and then becomes a bad node
based on its compromise rate. The false positive and negative
probabilities (Pfp and Pfn) are in the range of 1% to 5% as
a result of trust-based intrusion detection (see Section VIII).
Because of the anticipated long system lifetime, to save energy
the trust update interval Δt is set to 80 hours. Thus, the
amount of energy consumed per Δt time for a normal SN
is also set to 80 hours. The amount of energy consumed
per Δt time for a normal CH and a compromised node are
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TABLE II
DEFAULT PARAMETER VALUES USED

Para Value Para Value Para    Value 
M 900m R 150m r 50m
NSN 900 NCH 81 Δt 80hrs
α [0,1] β [0,100] 1/λc-init [80,360]days
ΔE-SN 80hrs ΔE-CH 160hrs ΔE-compromised 240hrs
ρ 1/3 TIDS 80hrs Pfp,Pfn [1-5]%   
Einit [360,480] days for SNs, [720,960] days for CHs. 

ΔE−CH = 160 hours and ΔE−compromised = 240 hours,
respectively. The energy saving ratio of a selfish node relative
to a normal node, ρ, is 1/3 denoting that a selfish node will
only consume energy at 1/3 of the speed of its unselfish
counterpart. After 5-10 runs of trust update from the initial
state, the test score quickly stabilizes but does not converge
to a single value because we consider a dynamic environment
in which trust in energy and honesty is decreasing over time
due to energy consumption and node capture.

Our trust evaluation consists of two parts. The first part is
about trust composition and trust aggregation. The second part
is about trust formation. Our assertion is that, because different
trust properties have their own intrinsic trust nature and react
differently to trust decay over time, each trust property X
has its own best α and β values under which subjective
assessment of TX

ij (t) from Equation 2 would be the most
accurate against actual status of node j in trust property X .
Once we are assured of the accuracy of each trust property
X , we can then address the trust formation issue for each
application in hand, i.e., identifying the best way to form trust
out of individual QoS and social trust properties such that
the application performance is maximized. We will evaluate
trust formation in Section VII and Section VIII when we
apply hierarchical trust management to trust-based geographic
routing and trust-based intrusion detection.

Recall that a higher α value indicates that subjective trust
evaluation relies more on direct observations compared with
past experiences while a higher β value indicates that subjec-
tive trust evaluation relies more on indirect recommendations
provided by the recommenders compared with past experi-
ences. Below we present CH-to-SN trust evaluation results
based on peer-to-peer trust evaluation results reported by SNs
in the same cluster, and compare them against objective trust
evaluated based on the SN’s actual status. We omit reporting
station-to-CH evaluation results here as the same trends have
been observed.

Fig. 2 shows the effect of α and β on the mean square
error between subjective trust obtained from Equation 2 and
objective trust obtained from actual status for X =intimacy.
The diagrams for other trust properties exhibit a similar trend
and are not shown here due to space constraints. We vary
α from 0 to 1 and β from 0 to 100 to cover all possible
values. We see that as α increases (using a larger α indicates
that subjective trust evaluation relies more on direct observa-
tions compared with past experiences), the mean square error
first decreases and then increases. Subjective trust initially
approaches objective trust as more recent direct observations
are used. However, there is a crossover point (e.g., α ≥ 0.8
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Fig. 2. Effect of α and β on accuracy of subjective trust evaluation for X
= Intimacy.

TABLE III
BEST α AND β VALUES FOR TRUST PROPERTY X

Trust Property α β MSE  
Intimacy 0.8 2 0.3% 
Honesty 0.7 1 0.9% 
Energy 0.6 1 0.1% 
Unselfishness 0.9 5 0.1% 

when β = 10) after which subjective trust deviates more from
objective trust because of underestimation. On the other hand,
as β increases (using a larger β indicates that subjective trust
evaluation relies more on indirect recommendations provided
by recommenders compared with past experiences), subjective
trust initially approaches objective trust, but deviates more
from objective trust after a crossover point (e.g., β ≥ 2 when
α = 0.6) is reached. This reason is that using too much
indirect recommendations in subjective trust evaluation gives
malicious nodes a higher change to successfully launch good-
mouthing and bad-mouthing attacks. Fig. 2 shows that using
α = 0.8 and β = 2 yields subjective trust values very close to
objective trust values in X =intimacy with the mean square
error less than 0.3%.

The best α and β values intrinsically depend on the nature
of each trust property as well as a given set of parameter values
as those listed in Table 2 characterizing the environmental
and operational conditions. We summarize the best α and β
values for each trust property in Table 3. The last column
“MSE” shows the mean square error between subjective trust
and objective trust in trust property X . Since the trust score
in individual trust property X reflects the actual trust value
in property X , the combined trust score given by Equation
1 will also reflect the actual trust value given by Equation
8 (i.e., with MSE ≤ 0.9% for any combination). Overall, we
observe a close correlation between subjective trust evaluation
and objective trust evaluation, thus supporting our claim
that subjective trust obtained as a result of executing our
proposed hierarchical trust management protocol approaches
true objective trust.
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VII. TRUST-BASED GEOGRAPHIC ROUTING

In this section, we apply the proposed hierarchical trust
management protocol to trust-based geographic routing as an
application. In geographic routing, a node disseminates a mes-
sage to a maximum of L neighbors closest to the destination
node (or the sink node). In trust-based geographic routing,
node i forwards a message to a maximum of L neighbors
not only closest to the destination node but also with the
highest trust values Tij(t). We conduct a performance analysis
to compare our trust-based geographic routing protocol with
baseline routing protocols, namely, flooding-based [33] and
traditional geographic routing. In flooding-based routing, a
node floods a message to all its neighbors until a copy of
the packet reaches the destination node. It yields the highest
message delivery ratio and the lowest message delay at the
expense of the highest message overhead.

Recall that for all routing protocols, the source SN first
forwards a message to its CH (through multiple hops if nec-
essary). Then, the CH forwards the message to the sink node
through other CHs. Without loss of generality, we normalize
the average delay for forwarding a message between two
neighbor SNs to τ . The average delay between two neighbor
CHs is normalized to 2τ . We collect data for delivering 1000
messages, each with a source sensor and a sink node randomly
selected. We consider two cases: L = 1 and L = 2 for
both trust-based geographic routing and geographic routing.
In the comparative analysis, we vary the degree of selfish
or compromised nodes from 0% to 90%. Note that 30% of
compromised or selfish nodes means that 30% of nodes are
compromised or selfish in the system without a fixed ratio
being used for these two types of nodes. We use parameter
values as listed in Table 2 for characterizing environmental and
operational conditions. We also use the optimal set of (α, β)
for each individual trust property as identified in Section VI
(see Table 3) to ensure subjective trust is close to objective
trust.

A. Best Trust Formation to Maximize Application Perfor-
mance

We first identify the best way to form trust out of social
and QoS trust properties (i.e., identifying weights to assign
to individual trust properties) so that the performance of
trust-based geographic routing is maximized. Without loss of
generality and for ease of disposition, we assume that the
weights assigned to social trust properties, i.e., intimacy and
honesty, are the same each of 0.5 × wsocial, and the weights
assigned to QoS trust properties, i.e., energy and unselfishness,
are the same each of 0.5 × wQoS with wsocial + wQoS = 1.
Fig. 3 shows the effect of wsocial on the message delivery
ratio of trust-based geographic routing with varying population
percentage of compromised or selfish nodes. We observe that
using solely either social trust (wsocial = 1) or QoS trust
(wsocial = 0) yields a lower message delivery ratio, while
considering both social and QoS trust properties helps generate
a higher message delivery ratio. Fig. 3 identifies that for the
example WSN described in Section III characterized by a set
of parameter values listed in Table 2, the maximum message
delivery ratio performance is obtained when wsocial = 0.4
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and wQoS = 0.6. Hence, this weight setting represents the
best trust formation in the trust-based geographic routing
application.

B. Dynamic Trust Management

Fig. 3 illustrates the utility of dynamic trust management
and application-level trust optimization for trust-based ge-
ographic routing applications, i.e., when the system senses
that the hostility expressed in terms of the percentage of
compromised or selfish nodes (the Y coordinate of Fig.
3) is increasing, it can dynamically adjust wsocial (the X
coordinate) to optimize application performance in message
delivery ratio (the Z coordinate of Fig. 3).

C. Performance Comparison

Fig. 4 shows the message delivery ratio under various
routing protocols. Our trust-based geographic routing protocol
(L = 1 or L = 2) outperforms traditional geographic routing
(L = 1 or L = 2) and approaches flooding-based routing,
especially as the percentage of compromised or selfish nodes
increases. The delivery ratio for all three routing protocols
drops below 0.1 when the percentage of compromised or
selfish nodes is higher than 80%. We observe that even
the message delivery ratio of our trust-based geographic
routing without redundancy (L = 1) is higher than that of
the geographic routing with redundancy (L = 2) when the
percentage of compromised or selfish nodes is higher than
40%. We attribute this to the ability of trust-based geographic
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routing being able to successfully avoid forwarding messages
to untrustworthy nodes based on Tij(t) values obtained from
our hierarchical trust management protocol.

Fig. 5 shows the average delay for those messages that are
successfully delivered under various routing protocols for a
special case in which the source SN and the sink node are at
least a distance (700m) away. We create this case to ensure
there are sufficient intermediate nodes on any path to reach
the sink node. We first observe that the message delivery delay
increases as the percentage of compromised or selfish nodes
increases due to more messages being dropped by compro-
mised or selfish nodes resided on shorter routes. Flooding-
based routing has the best performance since it can always find
the shortest path to reach the destination sink node through
flooding. Geographic routing (L = 1 or L = 2) has almost
the same performance with flooding-based routing due to its
greedy nature for selecting nodes closest to the destination sink
node for message forwarding. However, geographic routing
with L = 1 fails to deliver any message when the percentage
of compromised or selfish nodes is higher than 50% because
there is no short route to reach the destination node over a
long distance. Trust-based geographic routing with L = 1 has
the highest delay but with L = 2 approaches the performance
of flooding-based routing and geographic routing. In general,
traditional geographic routing performs better than trust-based
geographic routing in message delay. This is expected because
unlike traditional geographic routing, trust-based geographic
routing tends to find forwarding nodes that are trustworthy
but possibly not residing on the most direct path to the sink
node. Consequently it incurs a higher delay compared with
traditional geographic routing. However, we note that once we
allow more message copies (e.g., L = 2) to be disseminated
by a node to its neighbors, trust-based geographic routing
just like traditional geographic routing quickly approaches the
ideal performance bound in message delay, especially as the
percentage of compromised or selfish nodes increases.

Fig. 6 compares message overhead in terms of the number
of message copies propagated before the destination sink node
receives one copy. Both geographic routing and trust-based
geographic routing perform significantly better than flooding-
based routing. Trust-based geographic routing incurs more
message overhead than traditional geographic routing because
the path selected by trust-based geographic routing is often
the most trustworthy path, not necessarily the shortest path.
Nevertheless, we observe that the overhead increase of trust-
based geographic routing over traditional geographic routing
is small compared with that of flooding-based routing over
traditional geographic routing. The system thus can effectively
trade off message overhead for message delivery ratio and
message delay. Finally, we observe that the number of message
copies propagated for all three routing protocols is close to 3
when the percentage of compromised or selfish nodes is higher
than 80%. The reason is that the message can be successfully
delivered only when the source node and the sink node are
close to each other. Otherwise, there is a high probability that
compromised or selfish nodes reside on a long route will drop
the message copies received.

Overall Figs. 4-6 demonstrate that our trust-based geo-
graphic routing protocol with L = 2 can significantly improve
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Fig. 6. Message overhead.

the delivery ratio and message delay (close to those of
flooding-based routing) in the presence of compromised or
selfish nodes, without sacrificing too much message overhead.
Here we note that the system can effectively trade off message
overhead (energy consumption) for high delivery ratio and low
message delay by adjusting the level of redundancy (L). As
L increases the performance of our trust-based geographic
routing protocol in delivery ratio and message delay will
approach that of flooding-based routing.

VIII. TRUST-BASED INTRUSION DETECTION

In this section we apply hierarchical trust management
to trust-based intrusion detection as another application. We
first describe the algorithm that can be used by a high-level
node such as a CH (or a base station) to perform trust-based
intrusion detection of the SNs (or CHs respectively) under its
control. Then we develop a statistical method to assess trust-
based IDS false positive and false negative probabilities.

Without loss of generality, in this section we illustrate
how a CH performs trust-based intrusion detection on SNs
in its cluster. A similar treatment applies to a base station
performing trust-based intrusion detection on CHs in a WSN.

A. Algorithm for Trust-Based Intrusion Detection

Our trust-based IDS algorithm is based on selecting a
system minimum trust threshold, T th, below which a node
is considered compromised and needs to be excluded from
sensor reading and routing duties. The underlying principle
is that a compromised node will exhibit several social and
QoS trust behaviors, i.e., low intimacy and low honesty (for
social trust) as well as low energy and low unselfishness (for
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QoS trust), thus exposing itself as a compromised node under
hierarchical trust evaluation.

A CH performs CH-to-SN trust evaluation toward node
j after receiving Tij (t) values from all SNs in the cluster.
More specifically a CH, c, when evaluating a SN, j, will
compute node j’s trust value, Tcj (t), by Equation 4. CH c
will announce node j as compromised if Tcj (t) is less than
T th; otherwise, node j is not compromised.

B. Statistical Analysis

Consider that the trust value toward node j is a random
variable following normal distribution commonly used for
statistical analyses with mean value μj(t). Also consider
that there are n sample values of Tij (t) submitted by n
SNs considered trustworthy by the CH. With these n sample
values, Xj (t) is related to the sample mean, sample standard
deviation and true mean following t-distribution with n − 1
degree of freedom as follows:

Xj (t) =
Tij (t)− μj (t)

Sj (t) /
√
n

(9)

where Tij (t), Sj (t), and μj (t) are the sample mean, sample
standard deviation, and true mean of node j’s trust value
at time t, respectively. Thus, the probability that node j is
diagnosed as a compromised node at time t is:

Θj (t) = Pr
(
μj (t) < T th

)
= Pr

(
Xj (t) >

Tij (t)− T th

Sj (t) /
√
n

)
(10)

The false positive of the IDS can be obtained by calculating
Θj (t) under the condition that node j is not compromised.
Similarly, the false negative probability can be obtained by
calculating 1 − Θj (t) under the condition that node j is
compromised.

P fp
j (t) = Pr

(
Xj (t) >

TN
ij (t)− T th

SN
j (t) /

√
n

)
(11)

P fn
j (t) = Pr

(
Xj (t) ≤

TC
ij (t)− T th

SC
j (t) /

√
n

)
(12)

Equations 11 and 12 above give the false positive prob-
ability, P fp

j (t), and false negative probability, P fn
j (t), of

our proposed trust-based intrusion detection algorithm at time
t, respectively. TN

ij (t) and SN
j (t) are the mean value and

standard deviation of node j’s trust values reported by other
nodes in the same cluster, under the condition that node j
is not compromised. TC

ij (t) and SC
j (t) are the mean value

and standard deviation, under the condition that node j is
compromised. TN

ij (t) and TC
ij (t) can be easily obtained by

applying the Bayes’ theorem to the calculation of Tij (t).
P fp
j (t) and P fn

j (t) vary over time. The average false
positive and false negative probabilities, denoted by P fp

j and
P fn
j can be obtained by weighting on the probability of node

j being compromised at time t, i.e.,

P fp
j =

∑SL
t=0

(
P fp
j (t)

(
1− PC

j (t)
))

∑SL
t=0

(
1− PC

j (t)
) (13)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

00.
10.

20.
30.

40.
50.
60.
70.
80.
91

trust threshold 
(Tth) 

m
ax

(P
fp

, P
fn

) 

weight of social trust 
(wsocial) 

False Positive  Flase Negative 

Fig. 7. Effect of T th and wsocial on max(Pfp, Pfn).

P fn
j =

∑SL
t=0

(
P fn
j (t)

(
1− PC

j (t)
))

∑SL
t=0 P

C
j (t)

(14)

where PC
j (t) is the probability that node j is compromised

at time t which can be obtained from the SPN model output,
and SL is the anticipated WNS lifetime period over which the
weighted calculation is performed.

C. Best Trust Formation to Maximize Application Perfor-
mance

Here we identify the best way to form trust out of social
and QoS trust properties (i.e., identifying weights to assign to
individual trust properties) and to assign the minimum trust
threshold, T th, so that the performance of trust-based intrusion
detection is maximized, i.e., both false positives and false
negatives are minimized. We again consider the example WSN
described in Section III characterized by a set of parameter
values listed in Table 2 with its lifetime SL = 150 days.

Fig. 7 shows max(Pfp, Pfn) vs. T th and wsocial in this
system as a result of executing our trust-based intrusion
detection algorithm, where Pfp and Pfn are the time-averaged
false positive and false negative probabilities as calculated
from Equations 13 and 14, respectively, over all nodes in the
system. We observe that as the minimum trust threshold T th

increases, the false negative probability Pfn decreases while
the false positive probability Pfp increases. More importantly,
there exists an optimal trust threshold T th,opt at which both
false negative and false positive probabilities are minimized.
As trust formation affects how trust is formed from social and
QoS trust components, we also observe that T th,opt is sensitive
to wsocial. Fig. 7 identifies that for the example WSN when
T th,opt = 0.6 and wsocial = 0.6, both false positive and false
negative probabilities are minimized to fall below 5%.

D. Dynamic Trust Management

Fig. 7 is for the case in which the expected system lifetime
SL is 150 days of operations. Fig. 8 shows the optimal trust
threshold T th,opt as SL varies. Here, the value of wsocial is
fixed to 0.6 to isolate its effect. For a WSN with a prolonged
operation, each SL value represents a time point characterized
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Fig. 8. Optimal trust threshold vs. system lifetime.

by a distinct hostility level such as the percentage of compro-
mised and selfish nodes. We observe that as SL increases,
the value of T th,opt at which the false alarm probability
is minimized decreases. The reason is that a node’s trust
value decreases over time due to energy depletion even if
the node is not compromised. The system sensing hostility
change at runtime can apply the best wsocial and T th,opt

setting identified from static analysis to optimize application
performance in false alarm probability.

E. Performance Comparison

We perform a comparative performance analysis of our
trust-based intrusion detection algorithm with two anomaly
detection schemes, namely, weighted summation [18] and
data clustering [19]. We use the ROC (Receiver Operating
Characteristic) curve [19] as the performance metric since both
false negative probability (Pfn) and false positive probability
(Pfp) are critical measures and ROC objectively reflects the
sensitivity of detection probability (i.e., 1− Pfn) as the false
positive probability varies.

The first baseline anomaly detection scheme is weighted
summation-based IDS [18]. In this approach, each SN has a
weight associated with it and this weight changes dynamically,
reflecting the trustworthiness of the SN’s output relative to
the average output out of all SNs. We use the trust recom-
mendation value from each SN toward a particular SN, say,
SNi, as the SN’s output. The average trust recommendation
value is obtained by a summation of the trust recommendation
values weighted by the respective weights from all SNs except
SNi. If the trust recommendation value from a SN deviates
too much from the average value, the weight value associated
with that SN decreases by θ (weight penalty); otherwise the
weight value remains the same. The weight value is updated
dynamically until it falls below a weight threshold (wt), in
which case the corresponding SN is reported as malicious.
The weight penalty (θ) and weight threshold (wt) largely
determine the false positive probability. We vary θ and wt

over the range of [0, 1] to obtain the detection probability as
the false positive probability varies.

The second baseline anomaly detection scheme is fixed
width data clustering-based IDS [19]. In this approach, the
maximum radius of a cluster (cw) is defined and a data point
is put into a cluster if the distance between the centroid of
the cluster and this data point is smaller than cw; otherwise
this data point makes a new cluster. Data points that exhibit
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dissimilarity with others will tend to cluster into a small
cluster or standalone by themselves. These lone data points are
reported as malicious. To apply fixed width data clustering-
based IDS, we use trust values of SNs as collected by a CH as
data points for clustering. As the maximum radius of a cluster
cw affects the false positive and negative probabilities, we vary
cw over the range of [0, 0.2] to collect the performance results.

In our trust-based intrusion detection algorithm, the false
positive and negative probabilities essentially depend on the
minimum trust threshold (T th) and the weight of social trust
(wsocial). We vary these two parameters over the range of
[0, 1] to collect the performance results.

In Fig. 9 we compare the ROC curves of our trust-based
IDS algorithm against those by weighted summation-based
IDS and fixed width data cluster-based IDS for SL = 240
days. The results presented are the best results of all three
IDS schemes by fine-tuning the design parameters as described
above under the same network environment characterized by
Table 2.

We observe from Fig. 9 that as a design tradeoff, as the
false positive probability increases, the detection probability
increases for all IDS schemes. We observe that our trust-based
IDS algorithm outperforms both weighted summation-based
IDS and fixed width data clustering-based IDS, especially
when the false positive probability is limited to 5% which
is considered desirable in intrusion detection. The strength of
our trust-based IDS algorithm is especially pronounced when
the false positive probability approaches zero. This is very
desirable since our trust-based IDS algorithm can still maintain
a high detection probability (> 90%) when the false positive
probability is close to zero at which the detection probability
of anomaly detection-based IDS schemes drops sharply.

IX. CONCLUSION

In this paper, we proposed a hierarchical dynamic trust man-
agement protocol for cluster-based wireless sensor networks,
considering two aspects of trustworthiness, namely, social trust
and QoS trust. We developed a probability model utilizing
stochastic Petri nets techniques to analyze the protocol per-
formance, and validated subjective trust against objective trust
obtained based on ground truth node status. We demonstrated
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the feasibility of dynamic hierarchical trust management and
application-level trust optimization design concepts with trust-
based geographic routing and trust-based IDS applications, by
identifying the best way to form trust as well as use trust out
of individual social and QoS trust properties at runtime to
optimize application performance. The results indicated that
our trust-based geographic routing protocol performs close to
the ideal performance of flooding-based routing in delivery
ratio and message delay without sacrificing much in message
overhead compared with traditional geographic routing proto-
cols which do not use trust. Our trust-based IDS algorithm
outperforms traditional anomaly-based IDS techniques in the
detection probability while maintaining sufficiently low false
positives.

There are several future research directions, including (a)
devising and validating a decentralized trust management
scheme for autonomous WSNs without base stations; (b)
investigating the impact of the cluster size and the trust
update interval to the protocol performance and lifetime of
a given WSN; and (c) investigating the feasibility of applying
hierarchical trust management to more dynamic networks such
as mobile WSNs, mobile cyber physical systems, or MANETs.
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