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Abstract—In this paper we analyze the effect of intrusion
detection and response on the reliability of a cyber physical
system (CPS) comprising sensors, actuators, control units,
and physical objects for controlling and protecting a physical
infrastructure. We develop a probability model based on
Stochastic Petri nets to describe the behavior of the CPS in
the presence of both malicious nodes exhibiting a range of
attacker behaviors, and an intrusion detection and response
system (IDRS) for detecting and responding to malicious events
at runtime. Our results indicate that adjusting detection and
response strength in response to attacker strength and behavior
detected can significantly improve the reliability of the CPS. We
report numerical data for a CPS subject to persistent, random
and insidious attacks with physical interpretations given.
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I. INTRODUCTION

A cyber physical system (CPS) typically comprises sensors,
actuators, control units, and physical objects for controlling
and protecting a physical infrastructure. Because of the dire
consequence of a CPS failure, protecting a CPS from malicious
attacks is of paramount importance. In this paper we address
the reliability issue of a CPS designed to sustain malicious
attacks over a prolonged mission period without energy
replenishment. A CPS often operates in a rough environment
wherein energy replenishment is not possible and nodes may
be compromised (or captured) at times. Thus, an intrusion
detection and response system (IDRS) must detect malicious
nodes without unnecessarily wasting energy to prolong the
system lifetime.

Intrusion detection system (IDS) design for CPSs has
attracted considerable attention [1], [6]. Detection techniques
in general can be classified into three types: signature based,
anomaly based, and specification based techniques. In the area
of signature based IDS techniques, Oman and Phillips [15]
study an IDS for CPSs that tests an automated XML profile
to Snort signature transform in an electricity distribution
laboratory. Verba and Milvich [19] study an IDS for CPSs
that takes a multitrust hybrid approach using signature based
detection and traffic analysis. Our work is different from these
studies in that we use specification based detection rather
than signature based detection to deal with unknown attacker
patterns.

In the area of anomaly based IDS techniques, Barbosa
and Pras [2] study an IDS for CPSs that tests state machine
and Markov chain approaches to traffic analysis on a water
distribution system based on a comprehensive vulnerability
assessment. Linda, et al. [12] study an IDS for CPSs that uses
error-back propagation and Levenberg-Marquardt approaches
with window based feature extraction. Gao, et al. [10] study an
IDS for CPSs that uses a three stage back propagation artificial
neural network (ANN) based on Modbus features. Bellettini
and Rrushi [3] study an IDS for CPSs that seeds the runtime
stack with NULL calls, applies shuffle operations and performs
detection using product machines. Yang, et al. [20] study an
IDS for CPSs that uses SNMP to drive prediction, residual
calculation and detection modules for an experimental testbed.
Bigham, et al. [4] study an IDS for CPSs that demonstrates
promising control of detection and false negative rates. Tsang
and Kwong [18] study a rich multitrust IDS for CPSs that
uses a novel machine learning approach. Xie, et al. [13]
surveys IDS for CPSs that advocates an anomaly based layered
approach. Our work is different from these studies in that we
use specification based rather than anomaly based techniques
to avoid using resource-constrained sensors or actuators in a
CPS for profiling anomaly patterns (e.g., through learning)
and to avoid high false positives (treating good nodes as bad
nodes).

In the area of specification-based IDS techniques, Cheung,
et al. [7] study a specification based IDS that uses PVS
to transform protocol, communication pattern and service
availability specifications into a format compatible with
EMERALD. Carcano, et al. [5] propose a specification based
IDS that extends [9] and distinguishes faults and attacks,
describes a language to express a CPS specification, and
establishes a critical state distance metric. Zimmer, et al.
[21] study a specification based IDS that instruments a
target application and uses a scheduler to confirm timing
analysis results. Our work is also specification based. However,
our work is different from these prior studies in that
we automatically map a specification into a state machine
consisting of good and bad states and simply measure a node’s
deviation from good states at runtime for intrusion detection.
Moreover we apply specification-based techniques to host-
level intrusion detection only. To cope with incomplete and
uncertain information available to nodes in the CPS and to



mitigate the effect of node collusion, we devise system-level
intrusion detection based on multitrust to yield a low false
alarm probability.

While the literature is abundant in the collection and
analysis aspects of intrusion detection, the response aspect
is little treated. In particular, there is a gap with respect to
intrusion detection and response. Our IDRS design addresses
both intrusion detection and response issues, with the goal to
maximize the CPS lifetime.

Our methodology for CPS reliability assessment is model-
based analysis. Specifically, we develop a probability model
to assess the reliability property of a CPS equipped with an
intrusion detection and response system (IDRS) for detecting
and responding to malicious events detected. Untreated in the
literature, we consider a variety of attacker behaviors including
persistent, random and insidious attacker models and identify
the best design settings of the detection strength and response
strength to best balance energy conservation vs. intrusion
tolerance for achieving high reliability, when given a set of
parameter values characterizing the operational environment
and network conditions.

The rest of the paper is organized as follows: Section II
gives the system model. Section III develops a mathematical
model based on Stochastic Petri Nets [16] for theoretical
analysis. Section IV discusses the parameterization process
for the reference CPS. Section V presents numerical data with
physical interpretations given. Finally, Section VI summarizes
the paper and outlines some future research areas.

II. SYSTEM MODEL/REFERENCE CONFIGURATION

A. Reference CPS

Our reference CPS model is based on the CPS infrastructure
described in [14] comprising at the sensor layer 128 sensor-
carried mobile nodes. Each node ranges its neighbors
periodically. Each node uses its sensor to measure any
detectable phenomena nearby. Each node transmits a CDMA
waveform. Neighbors receiving that waveform transform the
timing of the PN code (1023 symbols) and RF carrier
(915 MHz) into distance. Essentially each node performs
sensing and reporting functions to provide information to
upper layer control devices to control and protect the CPS
infrastructure, and in addition utilizes its ranging function for
node localization and intrusion detection.

The reference model is a special case of a single-enclave
system with homogeneous nodes. The IDS functionality is
distributed to all nodes in the system for intrusion/fault
tolerance. On top of the sensor-carried mobile nodes sits an
enclave control node responsible for setting system parameters
in response to dynamically changing conditions such as
changes of attacker strength. The control module is assumed
fault/intrusion free through security/hardware protection
mechanisms against capture attacks/hardware failure.

B. Security Failure

While our approach is general enough to take any security
failure definition, we consider two security failure conditions.

The first condition is based on the Byzantine fault model [11].
That is, if one-third or more of the nodes are compromised,
then the system fails. The reason is that once the system
contains 1/3 or more compromised nodes, it is impossible
to reach a consensus, hence inducing a security failure.
The second condition is impairment failure. This is, heavy
impairment due to attacks will result in a security failure
when the system is not able to respond to attacks in a timely
manner. This is modeled by defining an impairment-failure
period beyond which the system cannot sustain the damage.

C. Attack Model

The first step in investigating network security is to define
the attack model. We consider capture attacks which turn a
good node into a bad insider node. At the sensor/actuator
layer of the CPS architecture, a bad node can perform
data spoofing attacks (reporting spoof sensor data) and bad
command execution attacks. At the networking layer, a bad
node can perform various communication attacks including
selective forwarding, packet dropping, packet spoofing, packet
replaying, packet flooding and even Sybil attacks to disrupt
the system’s packet routing functionality. At the control
layer, a bad node can perform control-level attacks including
aggregated data spoofing attacks, and command spoofing
attacks. Nodes at the control layer, however, are less
susceptible to capture attacks because they are normally
deployed in a physical confine which protects them from
tampering. For this reason in this paper our primary interest is
on capture attacks of sensor/actuator nodes performing basic
sensing, actuating and networking functions.

We consider three attacker models: persistent, random,
and insidious. A persistent attacker performs attacks with
probability one (i.e., whenever it has a chance). The primary
objective is to cause impairment failure. A random attacker
performs attacks randomly with probability prandom. The
primary objective is to evade detection. It may take a longer
time for a random attacker to cause impairment failure since
the attack is random. However random attackers are hidden so
it may increase the probability of Byzantine security failure
once the number of bad nodes equals or exceeds 1/3 of the
node population. An insidious attacker is hidden all the time to
evade detection until a critical mass of compromised nodes is
reached to perform “all in” attacks. The primary objective is to
maximize the failure probability caused by either impairment
or Byzantine security failure.

D. Host Intrusion Detection

Our host intrusion detection protocol design is based on
two core techniques: behavior rule specification and vector
similarity specification. The basic idea of behavior rule
specification is to specify the behavior of an entity (a sensor
or an actuator) by a set of rules from which a state machine
is automatically derived. Then, node misbehavior can be
assessed by observing the behaviors of the node against
the state machine (or behavior rules). The basic idea of
vector similarity specification is to compare similarity of



a sequence of sensor readings, commands or votes among
entities performing the same set of functions. A state machine
is also automatically derived from which a similarity test
is performed to detect outliers. More specifically, the states
derived in the state machine would be labeled as secure
vs. insecure. A monitoring node then applies snooping and
overhearing techniques observing the percentage of time a
neighbor node is in secure states over a detection interval,
say, TIDS . A longer sojourn time in secure states indicates
greater specification compliance while a shorter sojourn time
indicates less specification compliance. If the compliance
degree of node i denoted by Xi falls below a minimum
compliance threshold denoted by CT , node i is considered
compromised. We apply these two host IDS techniques to the
reference CPS as follows: (a) a monitoring node periodically
determines a sequence of locations of a sensor-carried mobile
node within radio range through ranging and detects if
the location sequence (corresponding to the state sequence)
deviates from the expected location sequence; (b) a monitoring
node periodically collects votes from neighbor nodes who
have participated in system intrusion detection (described
below) and detects dissimilarity of vote sequences among these
neighbors for outlier detection.

The measurement of compliance degree of a node frequently
is not perfect and can be affected by noise and unreliable
wireless communication in the CPS. We model the compliance
degree by a random variable X with G(·) = Beta(α, β)
distribution [17], with the value 0 indicating that the output is
totally unacceptable (zero compliance) and 1 indicating the
output is totally acceptable (perfect compliance), such that
G(a), 0 ≤ a ≤ 1, is given by

G(a) =
∫ a

0

Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1 dx (1)

and the expected value of X is given by

EB [X] =
∫ 1

0

x
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1 dx =
α

α + β
(2)

The α and β parameters are to be estimated based on the
method of maximum likelihood by using the compliance
degree history collected during the system’s testing phase in
which the system is tested with its anticipated attacker event
profile and where the compliance degree is assessed using the
specification-based host IDS technique described earlier. The
compliance degree history collected this way is the realization
of a sequence of random variables (c1, c2, ..., cn) where ci is
the ith compliance degree output observed during the testing
phase, and n is the total number of compliance degree outputs
observed. The maximum likelihood estimates of α and β are
obtained by numerically solving the following equations:

n∂Γ(α̂+β̂)
∂α̂

Γ(α̂ + β̂)
− n∂Γ(α̂)

∂α̂

Γ(α̂)
+

n∑
i=1

log ci = 0

n∂Γ(α̂+β̂)

∂β̂

Γ(α̂ + β̂)
−

n∂Γ(β̂)

∂β̂

Γ(α̂)
+

n∑
i=1

log(1 − ci) = 0 (3)

where

∂Γ(α̂ + β̂)
∂α̂

=
∫ ∞

0

(log x)xα̂+β̂−1e−xdx.

A less general, though simpler model, is to consider a single
parameter Beta(β) distribution with α equal to 1. In this case,
the density is β(1 − x)β−1 for 0 ≤ x ≤ 1 and 0 otherwise.
The maximum likelihood estimate of β is

β̂ =
n

n∑
i=1

log(
1

1 − ci
)

(4)

Host intrusion detection is characterized by per-node false
negative and false positive probabilities, denoted by pfn and
pfp, respectively. While many detection criteria are possible,
we consider a threshold criterion in this paper. That is, if a
bad node’s compliance degree denoted by Xb is higher than
a system minimum compliance threshold CT then there is a
false negative. Suppose that the compliance degree Xb of a
bad node is modeled by a G(·) = Beta(α, β) distribution as
described above. Then the host IDS false negative probability
pfn is given by:

pfn = Pr{Xb > CT } = 1 − G(CT ). (5)

On the other hand, if a good node’s compliance degree denoted
by Xg is less than CT then there is a false positive. Again
suppose that the compliance degree Xg of a good node is
modeled by a G(·) = Beta(α, β) distribution. Then the host
false positive probability pfp is given by:

pfp = Pr{Xg ≤ CT } = G(CT ). (6)

Here we observe that these two probabilities are largely
affected by the setting of the minimum compliance threshold
CT . A large CT induces a small false negative probability at
the expense of a large false positive probability. Conversely,
a small CT induces a small false positive probability at the
expense of a large false negative probability. A proper setting
of CT in response to attacker strength detected at runtime
helps maximize the system lifetime.

E. System Intrusion Detection

Our system IDS technique is based on majority voting
of host IDS results to cope with incomplete and uncertain
information available to nodes in the CPS. Our system-
level IDS technique involves the selection of m detectors
as well as the invocation interval TIDS to best balance
energy conservation vs. intrusion tolerance for achieving
high reliability. Each node periodically exchanges its routing
information, location, and identifier with its neighbor nodes.
A coordinator is selected randomly among neighbors so
that the adversaries will not have specific targets. We add
randomness to the coordinator selection process by introducing
a hashing function that takes in the identifier of a node
concatenated with the current location of the node as the hash
key. The node with the smallest returned hash value would
then become the coordinator. Because candidate nodes know



each other’s identifier and location, they can independently
execute the hash function to determine which node would
be the coordinator. The coordinator then selects m detectors
randomly (including itself), and lets all detectors know each
others’ identities so that each voter can send its yes/no vote
to other detectors. Vote authenticity is achieved via preloaded
public keys. At the end of the voting process, all detectors will
know the same result, that is, the node is diagnosed as good,
or as bad based on the majority vote.

The system IDS is characterized by system false negative
and false positive probabilities, denoted by Pfn and Pfp,
respectively. These two false alarm probabilities are not
constant but vary dynamically, depending on the percentage of
bad nodes in the system when majority voting is performed.
We will derive these two probabilities in the paper.

F. Intrusion Response

Our IDRS reacts to malicious events detected at runtime by
adjusting the minimum compliance threshold CT . For example
when it senses an increasing attacker strength, it can increase
the compliance threshold CT with the objective to prevent
impairment security failure. This results in a smaller false
negative probability, which has a positive effect of reducing
the number of bad nodes in the system and decreasing the
probability of impairment security failure. However it also
results in a larger false positive probability, which has a
negative effect of reducing the number of good nodes in
the system and consequently increasing the probability of
Byzantine security failure. To compensate for the negative
effect, the IDRS increases the audit rate (by decreasing
the intrusion detection interval) or increases the number of
detectors to reduce the false positive probability at the expense
of more energy consumption. The relationship between the
minimum compliance threshold CT set vs. pfn and pfp

must be determined at static time so the system can adjust
CT dynamically in response to malicious events detected at
runtime.

III. MODEL AND ANALYSIS

Table I lists the set of parameters used in our model-
based analysis of intrusion detection and response designs.
The parameter N defines the starting network size (i.e., the
number of nodes). The hostility of the network is characterized
by a per-node capture rate λc; pfp and pfn are host IDS
false positive and false negative probabilities, respectively,
while Pfp and Pfn are system-level IDS false positive and
false negative probabilities, respectively; TIDS is the intrusion
detection interval; m is the number of detectors used in the
system IDS.

Our theoretical model utilizes Stochastic Petri Nets (SPN)
techniques [8]. Figure 1 shows the SPN model describing the
ecosystem of a CPS with intrusion detection and response
under capture, impairment and Byzantine security attacks. The
underlying model of the SPN model is a continuous-time
semi-Markov process with a state representation (Ng , Nb, Ne,
impaired, energy) where Ng is the number of good nodes,

TABLE I
PARAMETERS USED FOR ANALYSIS OF INTRUSION DETECTION AND

RESPONSE DESIGN

Parameter Meaning Type
N number of nodes in a CPS input
λc per node compromise rate (Hz) input
pfp probability of per-host IDS false positive input
pfn probability of per-host IDS false negative input
TIDS intrusion detection interval (s) input
m number of detectors in the system IDS input
Pfp probability of system IDS false positive derived
Pfn probability of system IDS false negative derived
prandom random attack probability by a random attacker input
pa attack probability by an insidious attacker derived
NIDS maximum IDS cycles before energy exhaustion derived
MTTF system lifetime output

TABLE II
TRANSITION RATES OF THE SPN MODEL.

Transition Name Rate
TENERGY 1

NIDS×TIDS

TCP Ng × λc

TFP
Ng×Pfp

TIDS

TIDS
Nb×(1−Pfn)

TIDS

TIF pa × Nb × λif

Nb is the number of bad nodes, Ne is the number of nodes
evicted (as they are considered as bad nodes by intrusion
detection), impaired is a binary variable with 1 indicating
impairment security failure, and energy is a binary variable
with 1 indicating energy availability and 0 indicating energy
exhaustion.

Fig. 1. SPN Model for Intrusion Detection and Response.

Table II annotates transitions and gives transition rates used
in the SPN model. The SPN model shown in Figure 1 is
constructed as follows:

• We use places to hold tokens each representing a node.
Initially, all N nodes are good nodes (e.g., 128 in our
reference CPS) and put in place Ng as tokens.

• We use transitions to model events. Specifically, TCP
models good nodes being compromised; TFP models a
good node being falsely identified as compromised; TIDS
models a bad node being detected correctly.

• Good nodes may become compromised because of
capture attacks with per-node compromising rate λc.



This is modeled by associating transition TCP with an
aggregate rate λc×Ng . Firing TCP will move tokens one
at a time (if it exists) from place Ng to place Nb. Tokens
in place Nb represent bad nodes performing impairment
attacks with probability pa.

• When a bad node is detected by the system IDS as
compromised, the number of compromised nodes evicted
will be incremented by 1, so place Ne will hold one
more token. On the other hand, the number of undetected
compromised nodes will be decremented by 1, i.e., place
Nb will hold one less token. These detection events are
modeled by associating transition TIDS with a rate of
Nb×(1−Pfn)

TIDS
with 1−Pfn accounting for the system IDS

true negative probability.
• The system-level IDS can incorrectly identify a good

node as compromised. This is modeled by moving a good
node in place Ng to place Ne from firing transition TFP
with a rate of Ng×Pfp

TIDS
with Pfp accounting for the system

IDS false positive probability.
• The system energy is exhausted after time NIDS ×

TIDS where NIDS is the maximum number of intrusion
detection intervals the CPS can possibly perform before
it exhausts its energy due to performing ranging, sensing,
and intrusion detection functions. It can be estimated
by considering the amount of energy consumed in
each TIDS interval. This energy exhaustion event is
modeled by placing a token in place energy initially
and firing transition TENERGY with rate 1

NIDS×TIDS
.

When the energy exhaustion event occurs, the token in
place energy will be vanished and the system enters
an absorbing state meaning the lifetime is over. This is
modeled by disabling all transitions in the SPN model.

• When the number of bad nodes (i.e., tokens in place Nb)
is at least 1/3 of the total number of nodes (tokens in
place Ng and Nb), the system fails because of a Byzantine
failure. The system lifetime is over and is modeled again
by disabling all transitions in the SPN model.

• Bad nodes in place Nb perform attacks with probability
pa and cause impairment to the system. After
an impairment-failure time period is elapsed, heavy
impairment due to attacks will result in a security failure.
We model this by firing transition TIF with a rate of
pa × Nb × λif indicating the amount of time needed by
paNb bad nodes to reach this level of impairment beyond
which the system cannot sustain the damage. The value
of λif is system specific and is determined by domain
experts predicting the amount of time needed for a bad
node to cause severe functional impairment. A token is
flown into place impaired when such a security failure
occurs. Once a token is in place impaired, the system
enters an absorbing state meaning the lifetime is over.
Again it is modeled by disabling all transitions in the
SPN model.

Here we note that the last two bullet points cover the two
conditions that would cause a security failure.

We utilize the SPN model to analyze two design tradeoffs:
• Detection strength vs. energy consumption: As we

increase the detection frequency (a smaller TIDS) or the
number of detectors (a larger m), the detection strength
increases, thus preventing the system from running into a
security failure. However, this increases the rate at which
energy is consumed, thus resulting in a shorter lifetime.
Consequently, there is an optimal setting of TIDS and m
under which the system MTTF is maximized, given the
node capture rate and attack model.

• Detection response vs. attacker strength: As the random
attack probability pa decreases, the attacker strength
decreases, thus lowering the probability of security
failure due to impairment attacks. However, compromised
nodes become more hidden and difficult to detect
because they leave less evidence traceable, resulting
in a higher per-host false negative probability pfn

and consequently a higher system-level false negative
probability Pfn. This increases the probability of security
failure due to Byzantine attacks. The system can respond
to instantaneous attacker strength detected and adjust CT

to trade a high per-host false positive probability pfp off
for a low per-host false negative probability pfn, or vice
versa, so as to minimize the probability of security failure.
Hence, there exists an optimal setting of CT as a function
of attacker strength detected at time t under which the
system security failure probability is minimized.

Let L be a binary random variable denoting the lifetime of
the system such that it takes on the value of 1 if the system is
alive at time t and 0 otherwise. Then, the expected value of L
is the reliability of the system R(t) at time t. Consequently,
the integration of R(t) from t = 0 to ∞ gives the mean time
to failure (MTTF) or the average lifetime of the system we
aim to maximize. The binary value assignment to L can be
done by means of a reward function assigning a reward ri of
0 or 1 to state i at time t as follows:

ri =
{

1 if system is alive in state i
0 if system fails due to security or energy failure

A state is represented by the distribution of tokens to places in
the SPN model. For example, with the SPN model defined in
Figure 1, the underlying state is represented by (Ng , Nb, Ne,
impaired, energy). When place energy contains zero token,
it indicates energy exhaustion. When Ng is less than or equal
to twice of Nb, it indicates a Byzantine failure. When place
impaired contains a token, it indicates a security failure due
to significant functional impairment. Once the binary value of
0 or 1 is assigned to all states of the system as described above,
the reliability of the system R(t) is the expected value of L
weighted on the probability of the system stays at a particular
state at time t, which we can obtain easily from solving the
SPN model using SPNP [8]. The MTTF of the system is equal
to the cumulative reward to absorption, i.e.,

MTTF =
∫ ∞

0

R(t)dt (7)

which we can again compute easily using SPNP.



IV. PARAMETERIZATION

TABLE III
PARAMETERS AND THEIR VALUES FOR THE REFERENCE CPS.

Parameter Meaning Default value
N number of nodes or network size 128
n̄ number of neighbors within radio range 32
pfn per-host false negative probability [1-20%]
pfp per-host false positive probability [1-20%]
λc per-node capture rate 1/[1-24hr]
TIDS intrusion detection interval [1-60min]
m number of intrusion detectors per node [3,11]
α number of ranging operations 5
Et energy for transmission per node 0.000125 J
Er energy for reception per node 0.00005 J
Ea energy for analyzing data per node 0.00174 J
Es energy for sensing per node 0.0005 J
Eo initial system energy 16128 kJ

We consider the reference CPS model introduced in Section
II operating in a 2 × 2 area with a network size (N ) of 128
nodes. Hence, the number of neighbors within radio range,
denoted by n̄, initially is about 128/4=32 nodes. A node in our
reference CPS uses a 35 Wh battery, so its energy is 126000
J. The system energy initially, denoted by Eo, is therefore
126000 J × 128 = 16128000 J. Table III lists the set of
parameters and their values for the reference CPS.

A. System-Level IDS Pfn and Pfp

We first parameterize the system IDS Pfn and Pfp given
per-host IDS false positive probability pfp and per-host IDS
false negative probability as input. We first note that Pfn

and Pfp highly depend on the attacker behavior. A persistent
attacker constantly performs slandering attacks such that it will
vote a bad node as a good node, and conversely a good node
as a bad node, to eventually cause a security failure. However,
a random or an insidious attacker will only perform slandering
attacks randomly with probability pa to avoid detection.

We first differentiate the number of active bad nodes, Na
b ,

from the number of inactive bad nodes, N i
b , with Na

b + N i
b =

Nb, such that at any time:

Na
b = pa × Nb (8)

N i
b = (1 − pa) × Nb (9)

The difference between an active bad node and an inactive
bad node is that an inactive bad node behaves as if it were a
good node in order to evade detection, including casting votes
the same way as a good node would, when it participates in
the system-level IDS voting process.

For a persistent attacker, pa = 1. For a random attacker,
pa = prandom. For an insidious attacker, to maximize
the benefit of colluding attacks, a compromised node stays
dormant until a critical mass of compromised nodes is gathered
so that pa = 1 when Nb ≥ NT

b , and pa = 0 otherwise, where
NT

b is a parameter reflecting the insidiousness degree. In other
words, all bad nodes engage in active attacks when there is a
critical mass of compromised nodes in the system.

We calculate Pfn by Equation 10. The equation for Pp
fp is

the same except replacing pfn by pfp in the right hand side
expression.

We explain Equation 10 for obtaining Pfn in detail below.
The explanation for Pfp follows the same logic. In Equation
10, m this is the number of detectors and ma is the majority of
m. The first summation aggregates the probability of a false
negative stemming from selecting a majority of active bad
nodes. That is, it is equal to the number of ways to choose a
majority of m nodes from the set of active bad nodes times the
number of ways to choose a minority of m nodes from the set
of good nodes and inactive bad nodes divided by the number
of ways to choose m nodes from the set of all good and bad
nodes. The second summation aggregates the probability of a
false negative stemming from selecting a minority of m nodes
from the set of active bad nodes which always cast incorrect
votes, coupled with selecting a sufficient number of nodes
from the set of good nodes and inactive bad nodes which make
incorrect votes with probability pfn, resulting in a majority of
incorrect votes being cast.

B. Host IDS pfn and pfp

Next we parameterize the host IDS false negative probability
pfn and false positive probability pfp for persistent, random
and insidious attacks. The system, after a thorough testing and
debugging phase, determines a minimum threshold CT such
that pfn and pfp measured based on Equations 5 and 6 are
acceptable to system design. Let pp

fn and pp
fp be the false

negative probability and the false positive probability of the
host IDS when pa = 1 (e.g., under persistent attacks). Let the
minimum threshold CT value set for the persistent attack case
be denoted by Cp

T .
Let pr

fn and pr
fp be the false negative probability and the

false positive probability of the host IDS when pa < 1
(e.g., under random attacks). For the case of random attacks
with probability pa < 1, conceivably the amount of evidence
observable from a bad node would be diminished proportional
to pa. Consequently, with the same minimum threshold Cp

T

being used, the host false negative probability would increase.
We again utilize Equations 5 and 6 to obtain pr

fn and pr
fp for

each given pa value during the testing and debugging phase.
Here we note that the host false positive probability would
remain the same, i.e., pr

fp = pp
fp because the attacker behavior

does not affect false positives, given the same minimum
threshold Cp

T being used.
Lastly let pi

fn and pi
fp be the false negative probability

and the false positive probability of the host IDS under
insidious attacks. Obviously, the false positive probability is
not affected, so pi

fp = pp
fp. Since insidious nodes stay dormant

until a critical mass is achieved to perform “all in” attacks, the
false negative probability is one during the dormant period
and is equal to that under persistent attacks during the “all in”
attack period. Specifically,

pi
fn =

{
pp

fn if Nb ≥ NT
b

1 otherwise
(11)



Pfn =
m−ma∑

i=0

⎡
⎢⎢⎣

(
Na

b

ma + i

) (
Ng + N i

b

m − (ma + i)
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b

m
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k
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(
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)
(1 − pfn)(m−j−k)

]

(
Ng + N i

b + Na
b

m

)

⎤
⎥⎥⎥⎥⎥⎦

TABLE IV
β IN BETA(1,β) AND RESULTING pfn AND pfp VALUES UNDER VARIOUS

ATTACK MODELS.

Attack Type β pfn pfp

Random with Pa=1.000 (Persistent) 1.20 6.3% 7.3%
Random with Pa=0.800 1.00 10.0% 7.3%
Random with Pa=0.400 0.75 17.8% 7.3%
Random with Pa=0.200 0.50 31.6% 7.3%
Random with Pa=0.100 0.20 63.1% 7.3%
Random with Pa=0.050 0.13 74.1% 7.3%
Random with Pa=0.025 0.09 81.3% 7.3%
Insidious 0; 1.20 100%; 6.3% 7.3%

Here we note that pfn and pfp obtained above for persistent,
random, or insidious attacks would be a function of time as
input to Equation 10 for calculating system-level IDS Pfn and
Pfp dynamically.

We apply the statistical analysis described by Equations 1-4
to get the maximum likelihood estimates of β (with α set as 1)
under each attacker behavior model and then utilize Equations
5 and 6 to yield pfn and pfp. The system minimum threshold
CT is set to Cp

T = 0.9 to yield pp
fn=6.3% and pp

fp=7.3%. Table
IV summarizes β values and the resulting pfn and pfp values
under various attacker behavior models. The persistent attack
model is a special case in which pa = 1. The insidious attack
model is another special case in which pa = 1 during the “all
in” attack period and pa = 0 during the dormant period.

C. Parameterizing CT for Dynamic Intrusion Response

The parameterization of pfn and pfp above is based on
a constant CT being used (i.e., Cp

T =0.9). A dynamic IDS
response design is to adjust CT in response to the attacker
strength detected with the goal to maximize the system
lifetime. The attacker strength of a node, say node i, may be
estimated periodically by node i’s intrusion detectors. That is,
the compliance degree value of node i, Xi(t), as collected by
m intrusion detectors based on observations collected during
[t − TIDS , t], is compared against the minimum threshold
Cp

T set for persistent attacks. If Xi(t) < Cp
T then node i

is considered a bad node performing active attacks at time
t; otherwise it is a good node. This information is passed
to the control module who subsequently estimates Na

b (t)
representing the attacker strength at time t.

In this paper we investigate a simple yet efficient IDS
response design. The basic idea is to decrease the per-host false

negative probability pfn when the attacker strength is high, so
we may quickly remove active attackers from the system to
prevent impairment failure. This is achieved by increasing the
CT value. Conversely, when there is little attacker evidence
detected, we lower CT so we may quickly decrease the
probability of a good node being misidentified as a bad node,
i.e., lowering the per-host false positive probability, to prevent
Byzantine failure.

While there are many possible ways to dynamically control
CT , in this paper we consider a linear one-to-one mapping
function as follows:

CT (t) = Cp
T + δCT

× (Na
b − 1) (12)

Here CT (t) refers to the CT value set at time t as a response to
the attacker strength measured by Na

b (t) detected at time t; Cp
T

is the minimum threshold set by the system for the persistent
attack case; and δCT

is the increment to CT per active bad
node detected. Essentially we set CT to Cp

T when Na
b (t)

detected at time t is 1, and linearly increase (or decrease)
CT with increasing (or decreasing) attacker strength detected.
With Cp

T = 0.9 in our CPS reference system, we set δCT
= 0.5

and parameterize CT (t) as follows:

CT (t) =

⎧⎪⎪⎨
⎪⎪⎩

0.85 if Na
b = 0

0.90 if Na
b = 1

0.95 if Na
b = 2

0.99 if Na
b ≥ 3

(13)

Note that when CT is closer to 1, a node will more likely
be considered as compromised even if it wanders only for a
small amount of time in insecure states. A large CT induces
a small per-host false negative probability pfn at the expense
of a large per-host false positive probability pfp.

D. Energy

Lastly, we parameterize NIDS , the maximum number of
intrusion detection cycles the system can possibly perform
before energy exhaustion, as follows:

N =
Eo

ETIDS

(14)

where Eo is the initial energy of the reference CPS and ETIDS

is the energy consumed per TIDS interval due to ranging,
sensing, and intrusion detection functions, calculated as:

ETIDS
= n × (Eranging + Esensing + Edetection) (15)



where Eranging , Esensing , Edetection stand for energy spent
for ranging, sensing, and intrusion detection in a TIDS

interval, respectively. Here the energy spent per node is
multiplied with the node population in the CPS to get the
total energy spent by all nodes per cycle.

In Equation 15, Eranging stands for the energy spent for
periodic ranging. It is calculated as:

Eranging = α × [Et + n̄ × (Er + Ea)] (16)

Here a node spends Et energy to transmit a CDMA waveform.
Its n̄ neighbors each spend Er energy to receive the waveform
and each spend Ea energy to transform it into distance. This
operation is repeated for α times for determining a sequence
of locations. In Equation 15, Esensing stands for the amount
of energy consumed due to periodic sensing. It is computed
as:

Esensing = n̄ × (Es + Ea). (17)

Here a node spends Es energy for sensing navigation and
multipath mitigation data and Ea energy for analyzing sensed
data for each of its n̄ neighbors. Finally, Edetection stands for
the energy used for performing intrusion detection on a target
node. It can be calculated by:

Edetection = m×(Et+n̄·Er)+m×(Et+(m−1)·(Er+Ea)).
(18)

Here we consider the energy required to choose m intrusion
detectors to evaluate a target node (the first term) and the
energy required for m intrusion detectors to vote (the second
term). Specifically, the first term is the number of intrusion
detectors times the cost of transmitting plus the number of
nodes in radio range times the cost of receiving. The second
term is the number of intrusion detectors times the cost of
transmitting plus the number of peer intrusion detectors times
the cost of receiving plus the cost of analyzing the vote.

V. NUMERICAL DATA

In this section we present numerical data for reliability
assessment as a result of executing intrusion detection and
response in a CPS. Our objective is to identify optimal design
settings in terms of the optimal values of TIDS , m and
CT under which we can best trade off energy consumption
vs. intrusion detection, as well as response effectiveness vs.
impairment security failure to maximize the system MTTF,
when given a set of parameter values characterizing the
operational and networking conditions.

A. Effect of Intrusion Detection Strength

We first examine the effect of intrusion detection strength
measured by the intrusion interval, TIDS , and the number
of intrusion detectors, m. We only present results for the
reference CPS under persistent attacks, as the results for other
types of attacks show similar trends.

Figure 2 shows MTTF vs. TIDS as the number of detectors
(m) in the system-level IDS varies over the range of [3,11] in
increments of 2. We see that there exists an optimal TIDS

value at which the system lifetime is maximized to best

tradeoff energy consumption vs. intrusion tolerance. Initially
when TIDS is too small, the system performs ranging, sensing
and intrusion detection too frequently and quickly exhausts
its energy, resulting in a small lifetime. As TIDS increases,
the system saves more energy and its lifetime increases.
Finally when TIDS is too large, although the system can save
even more energy, it fails to catch bad nodes often enough,
resulting in the system having many bad nodes. Bad nodes
through active attacks can cause impairment security failure.
Furthermore, when the system has 1/3 or more bad nodes out
of the total population, a Byzantine failure ensues. We observer
that the optimal TIDS value at which the system MTTF is
maximized is sensitive to the m value. The general trend is
that as m increases, the optimal TIDS value decreases. Here
we observe that m = 7 is optimal to yield the maximum MTTF
because too many intrusion detectors would induce energy
exhaustion failure, while too few intrusion detectors would
induce security failure. Using m = 7 can best balance energy
exhaustion failure vs. security failure for high reliability.
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Figure 3 shows MTTF vs. TIDS as the compromising rate



λc varies over the range of once per 4 hours to once per 24
hours to test the sensitivity of MTTF with respect to λc (with
m fixed at five to isolate its effect). We first observe that as
λc increases, MTTF decreases because a higher λc will cause
more compromised nodes to be present in the system. We
also observe that the optimal TIDS decreases as λc increases.
This is because when more compromised nodes exist, the
system needs to execute intrusion detection more frequently
to maximize MTTF. Figure 3 identifies the best TIDS to be
used to maximize the lifetime of the reference CPS to balance
energy exhaustion vs. security failure, when given CT and λc

characterizing the operational and networking conditions of
the system.

B. Effect of Attacker Behavior

In this section, we analyze the effect of various attacker
behavior models, including persistent (with pa = 1, pi

fn and
pi

fp given as input), random (with pa = prandom, pr
fn, and

pr
fp given as input), and insidious attacks (with pa = 1 when

Nb ≥ NT
b = 10 and pa = 0 otherwise, pi

fp, and pi
fn defined

by Equation 11 given as input). The analysis conducted here
is based on static CT . In the next section, we will analyze
the effect of dynamic CT as a response to attacker strength
detected at runtime.

Figure 4 shows MTTF vs. TIDS with varying prandom

values. We first observe that the system MTTF is low when
prandom is small (e.g., prandom = 0.025). This is because
when prandom is small, most bad nodes are dormant and
remain in the system without being detected. Thus, the system
suffers from Byzantine failure quickly, leading to a low MTTF.
As prandom increases from 0.025 to 0.2, the system MTTF
increases because of a higher chance of bad nodes being
detected and removed from the system, thus reducing the
probability of Byzantine security failure. As prandom increases
further, however, the system MTTF decreases again because of
a higher probability of impairment security failure as there will
be more bad nodes actively performing impairment attacks.
In the extreme case of prandom = 1, all bad nodes perform
attacks and the system failure is mainly caused by impairment.
The maximum MTTF occurs when prandom = 0.2 at which
point the probability of security failure due to either type
of security attacks is minimized. Here we should note that
the result of prandom = 0.2 yielding the highest MTTF is
a balance of impairment security failure rate vs. Byzantine
failure rate dictated by the parameter settings of the reference
CPS as given in Tables III and IV.

Figure 5 compares MTTF vs. TIDS of the reference
CPS under the three attacker types head-to-head. It shows
that the MTTF is the highest for the reference CPS under
random attacks. The MTTF of the CPS under persistent
attacks is the second highest. As expected, the reference CPS
under insidious attacks has the lowest MTTF. We attribute
this to the fact that unlike persistent attacks which aim to
cause impairment failure, insidious attacks while dormant can
cause Byzantine failure and while “all in” can also cause
impairment failure. The extent to which the system MTTF
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Fig. 4. MTTF vs. TIDS and prandom.

differs depends on the relative rate at which impairment failure
vs. Byzantine failure occurs. The former is dictated by λif

and the latter is dictated by how fast the Byzantine failure
condition is satisfied. The result that the MTTF difference
between persistent attacks (the second curve) and insidious
attacks (the last curve) is relatively significant is due to a large
Byzantine failure rate compared with the impairment failure
rate. On the other hand, the reference CPS under random
attacks can more effectively prevent either Byzantine failure
or impairment failure from occurring by removing bad nodes
as soon as they perform attacks. The system MTTF difference
between random vs. persistent attacks again depends on the
relative rate at which impairment failure vs. Byzantine failure
occurs.
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C. Effect of Intrusion Response

In this section, we analyze the effect of intrusion response,
i.e., dynamic CT as a response to attacker strength detected
at runtime, on the system MTTF.

Figure 6 shows MTTF vs. TIDS under the static CT design
and the dynamic CT design for the persistent attack case. We



see there is a significant gain in MTTF under dynamic CT

over static CT . The reason is that with persistent attacks, all
bad nodes are actively performing attacks, so the system is
better off by increasing CT to a high level to quickly remove
bad nodes to prevent impairment failure. We also observe that
in the case the optimal TIDS at which MTTF is maximized
decreases compared with the static CT case so to as quickly
remove bad nodes from the system.
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Figure 7 shows MTTF vs. TIDS under the static CT design
and the dynamic CT design for the random attack case with
prandom = 0.2. We pick the case of prandom = 0.2 because
it yields the highest MTTF among all random attack cases
in the reference CPS system (see Figure 4). Here again we
observe that dynamic CT performs significantly better than
static CT , when operating at the identified optimal TIDS value.
The optimal TIDS value under dynamic CT design again is
smaller than that under static CT design to quickly remove
nodes that perform active attacks.

Figure 8 shows MTTF vs. TIDS under the static CT design
and the dynamic CT design for the insidious attack case. Here

we observe the MTTF difference is relatively small compared
with persistent or random attacks. The reason is that bad
nodes do not perform active attacks until a critical mass is
reached, so dynamic CT would set a lower CT value during the
dormant period while rapidly setting a higher CT value during
the attack period. Since the attack period is relatively short
compared with the dormant period, the gain in MTTF isn’t
very significant. Nevertheless, we observe even for insidious
attacks, dynamic CT still performs better than static CT .

As our CT dynamic control function (Equation 12) adjusts
CT solely based on the attacker strength detected regardless of
the attacker type, we conclude that the dynamic CT design as
a response to attacker strength detected at runtime can improve
MTTF compared with the static CT design.
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VI. CONCLUSIONS

In this paper, we developed a probability model to analyze
reliability of a cyber physical system in the presence of both
malicious nodes exhibiting a range of attacker behaviors, and
an intrusion detection and response system for detecting and
responding to malicious events at runtime. For each attacker
behavior, we identified the best detection strength (in terms
of the detection interval and the number of detectors), and
the best response strength (in terms of the per-host minimum
compliance threshold for setting the false positive and negative
probabilities) under which the reliability of the system may be
maximized.

There are several future research directions, including (a)
investigating other intrusion detection criteria (e.g., based on
accumulation of deviation from good states) other than the
current binary criterion used in the paper based on a minimum
compliance threshold to improve the false negative probability
without compromising the false positive probability; (b)
investigating other intrusion response criteria (e.g., exponential
increase of the minimum compliance threshold) other than the
linear function used in the paper and analyzing the effect on
the system lifetime; (c) exploring other attack behavior models
(e.g., an oracle attacker that can adjust the attacker strength



depending on the detection strength to maximize security
failure) and investigating the best dynamic response design to
cope with such attacks; (d) developing a more elaborate model
to describe the relationship between intrusion responses and
attacker behaviors and justifying such a relationship model
by means of extensive empirical studies; and (e) extending
the analysis to hierarchically-structured intrusion detection and
response system design for a large CPS consisting of multiple
enclaves each comprising heterogeneous entities subject to
different operational and environment conditions and attack
threats.
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