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a b s t r a c t

In this paper, we utilize admission control algorithms designed for revenue optimization with QoS guar-
antees to derive optimal pricing of multiple service classes in wireless cellular networks. A service pro-
vider typically adjusts pricing only periodically. Once a ‘‘global” optimal pricing is derived, it would stay
static for a period of time, allowing users to be charged with the same rate while roaming. We utilize a
hybrid partitioning-threshold admission control algorithm to analyze a pricing scheme that correlates
service demand with pricing, and to periodically determine optimal pricing under which the system rev-
enue is maximized while guaranteeing that QoS requirements of multiple service classes are satisfied.
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1. Introduction

Next generation wireless networks will provide diverse multi-
media services to mobile users, including real-time services such
as video and audio streaming, and non-real-time services such as
image and text access. As these multiple multimedia service clas-
ses have distinct quality of service (QoS) requirements, it is impor-
tant to design admission control algorithms that admit roaming
users of different service types to satisfy their distinct QoS require-
ments while maximizing the utilization of system resources.

The blocking probability of new calls and the dropping proba-
bility of handoff calls are two important QoS metrics. Mobile users
in a cellular network establish a connection through their local
base station. A base station has a fixed number of wireless channels
and can only support a limited number of connections (or calls)
simultaneously due to bandwidth limitations. A handoff occurs
when a mobile user with an ongoing connection leaves the current
cell and enters another cell. Thus, an ongoing, incoming connection
may be dropped during a handoff if there is insufficient bandwidth
in the new cell to support it. We can reduce the handoff call drop
probability by rejecting new connection requests. However, this in-
creases the new call blocking probability. Thus, there is a tradeoff
between the handoff and new call blocking probabilities.

Call admission control for single-class network traffic, such as
voice, has been studied extensively [6–8,14]. For multiple service

classes, call admission algorithms offered in [5,13,16,17] make
acceptance decisions for new and handoff calls to satisfy QoS
requirements in order to keep the dropping probability of handoff
calls and the blocking probability of new calls below a specified
threshold. All these algorithms concern QoS requirements, not
pricing or revenue issues of service classes. Chen et al. [3] first pro-
posed the concept of maximizing the ‘‘payoff” of the system
through admission control in the context of multimedia services.
Recently, Chen et al. [4] developed a class of admission control
algorithms integrated with pricing with QoS guarantees based on
partitioning [3] and threshold-based [13] and a hybrid partition-
ing-threshold algorithm combining both for revenue optimization
in wireless networks. However, these studies aimed at allocating
system resources to maximize the revenue received given that a
fixed price has been assigned by the service provider. In this paper,
we address the issue of determining optimal pricing. We utilize
admission control algorithms to derive optimal pricing of multiple
service classes in mobile wireless networks for revenue optimiza-
tion with QoS guarantees.

The area of optimal pricing for service multiple classes in wire-
less networks is relatively unexplored. Hou et al. [9] proposed a dy-
namic pricing approach in response to changing call arrival rates to
satisfy QoS requirements. We dispose dynamic pricing as a valid
approach since changing pricing during call services is disturbing
to callers. Instead, we consider pricing is static for each service
class and is changed only periodically. Aldebert et al. [1] presented
an empirical study that reveals the relationship between pricing
and demand for residential telecommunication service. Rappoport
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et al. [15] analyzed a consumer survey to estimate the demand for
wireless internet access. Keon and Anandalingam [10] proposed an
optimal pricing approach in the context of wired networks consid-
ering a pricing scheme that would charge customers for the use of
a connection through a sequence of switches based on a pricing-
demand relationship identified in [1,12] to optimize revenue. Our
paper concerns pricing for service-oriented classes charged by
the amount of time a call uses the service, rather than being
charged per connection.

The basic idea for finding optimal pricing is that for each cell we
periodically and statistically determine a set of reference parame-
ter values for each service class, including the arrival/departure
rates of new calls, and the arrival/departure rates of handoff calls,
characterizing the cell’s current operating and workload condi-
tions. Then, by utilizing a pricing-demand relation function as sug-
gested in [11,12], we adjust pricing relative to the reference
pricing, thereby predicting the arrival/departure rates of each ser-
vice class relative to the service class’s reference arrival/departure
rates in each cell. For each price adjustment, a call admission con-
trol algorithm developed in the paper is utilized by each cell to
determine the maximum revenue obtainable. The end product is
a table generated periodically by each cell listing all candidate
price combinations considered by the service provider, and the
associated ‘‘local” revenue obtainable as a result of executing an
admission control algorithm cognizant of revenue optimization.
The tables from individual cells then will be merged by the net-
work service provider to determine ‘‘global” optimal pricing across
all the cells in the system. The optimal price per class determined
this way is the same across cells in the system, so a user would be
charged with the same rate for a service as it roams across cells in
the system. When the price of a service call is changed, the new
rate would be applied to all cells in the system. Thus, a user would
not have to deal with the annoying issue associated with dynamic
pricing that it may be charged more when it roams into a cell that
is overloaded, so a higher price may be imposed by that cell to re-
duce traffic in the cell.

The goal of this paper is to utilize admission control algo-
rithms designed for revenue optimization with QoS guarantees
to derive optimal pricing. A service provider typically adjusts
pricing only periodically. Once a ‘‘global” optimal pricing is de-
rived, it would stay static for a period of time, allowing users to
be charged with the same rate while roaming. We show that a
hybrid admission control algorithm combining the benefits of
partitioning and threshold-based call admission control would
perform the best in terms of pricing optimization to maximize
the revenue earned with QoS guarantees to multiple service clas-
ses over a wide range of input parameters characterizing the
operating conditions.

The rest of the paper is organized as follows. Section 2 states the
system model and gives assumptions used in characterizing the
operational environment of a wireless network. Section 3 presents
our pricing scheme and methodology for finding optimal pricing.
Section 4 describes a class of call admission control algorithm de-
signed for revenue optimization with QoS guarantees for mobile
wireless networks. Section 5 discusses applicability in terms of
how call admission control can be utilized to derive optimal pric-
ing for multiple service classes and presents numerical results with
physical interpretation given. Finally, Section 6 summarizes the pa-
per and outlines some future research areas.

2. System model

A cellular network consists of a number of cells, each of which
has a base station at the center to provide network services to
mobile hosts within the cell. We assume there exists a number
of distinct service classes, S1; S2; . . . ; Sn, characterized by service type

attribute. A service type can be real-time or non-real-time. Further-
more, there are two call types: handoff and new. Of these call types,
handoff calls always have higher priority than new calls. Each ser-
vice type requires a number of bandwidth channels to satisfy its
intrinsic bandwidth QoS requirement. Each combination of service
type and call type may also impose a system-wide QoS require-
ment. For example, the handoff call drop probability of real-time
service type being less than 2% can be a QoS requirement. Assume
that for each service class, say i, a QoS constraint exists on the
handoff call blocking probability threshold Bi

ht and the new call
blocking probability threshold Bi

nt.
From the perspective of a single cell, each service class/call type

combination is characterized by its arrival rate, and departure rate.
Let ki

n denote the arrival rate of new calls of service class i and li
n be

the corresponding departure rate. Similarly, let ki
h denote the arri-

val rate of handoff calls of service class i, and li
h be the correspond-

ing departure rate. These parameters can be determined by
inspecting statistics collected by the base station in the cell and
by consulting with base stations of neighbor cells [4]. Without loss
of generality we assume that a cell has C channels where C can vary
depending on the amount of bandwidth available in the cell. When
a call of service class i enters a handoff area from a neighboring
cell, a handoff call request is generated. Each call has its specific
QoS bandwidth requirement dictated by its service traffic type
attribute. Assume that a service call of service class i requires ki

channels regardless of its call type.
Another parameter that is associated with each service class is

service pricing which determines the revenue that the system re-
ceives when the service is rendered. The service provider would like
to maximize the total revenue obtained by the system by means of
optimal pricing for service classes and performing admission con-
trol functions subject to the bandwidth resources available in the
system. The system achieves total revenue maximization first in a
distributed manner by maximizing each cell’s revenue for all ser-
vice price combinations with the consideration of QoS constraints
and then in a centralized manner by choosing the best price combi-
nation which generates the maximum total revenue for the system.
That is, for possible service price combinations, each cell makes
admission control decisions for new and handoff call requests in or-
der to maximize the revenue received from servicing new and
handoff calls in the cell. At the end, each cell generates a pricing-
revenue table to be used by a central entity to determine best pric-
ing that maximizes the total system revenue while satisfying QoS.

The optimal pricing and the total revenue obtained by the sys-
tem are inherently related to the pricing algorithm employed by
the service provider. While many pricing algorithms exist [10],
the most prevalent with general public acceptance to date is the
‘‘charge-by-time” scheme by which a user is charged by the
amount of time in service. We assume that such a ‘‘charge-by-
time” pricing scheme is adopted by the service provider such that
a call of service class i has a ‘‘charge-rate” of vi per time unit. That
is, if a call of service class i is admitted into a cell, and subsequently
handed off to the next cell or terminated in the cell, a reward of vi

multiplied with the amount of time the service is rendered in the
cell will be ‘‘earned” by the system. There is no distinction for
handoff vs. new calls in pricing as long as the call is in the same
service class. As suggested by empirical studies [1,12,15] pricing
changes of each service class affect demands received for these ser-
vices. We assume that QoS requirements are not affected by pric-
ing change as indicated in [2]. Thus, the determination of optimal
pricing vi to each service class is part of revenue optimization.
The performance model developed in the paper allows a service
provider to calculate the revenue earned per unit time under an
admission control algorithm by each individual cell such that the
revenue obtained by the system is maximized while satisfying
QoS constraints.
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3. Methodology

We consider a ‘‘charge-by-time” pricing scheme with the goal
to maximize the revenue obtainable by each cell while satisfying
the QoS requirements. Many empirical studies have been done to
determine the relationship between price and demand of telecom-
munication services. Our methodology to determine optimal pric-
ing is applicable to any generic function of the form k ¼ f ðvÞ to
relate demand changes with price changes. Without loss of gener-
ality, we consider the following pricing-demand function
[1,12,15]:

ki ¼ aiðmiÞ�ei
; ð1Þ

where ki and ki denote the arrival rate and pricing of service i
while ai and ei are constants correlating ki and mi. The elasticity
constant ei determines the effect of pricing changes on service de-
mand. The demand of consumers toward a product depends on
the affordability and necessity of the product. If the increase in de-
mand is slower than the decrease in pricing, consumers are re-
garded as inelastic to price changes. On the other hand, if the
increase in demand is faster than the decrease in pricing of the
product, consumers are considered elastic toward the product. In
Eq. (1), the elasticity constant ei indicates the elasticity of consum-
ers to pricing changes of calls in service class i. A value greater
than 1 predicts that lower pricing would generate higher arrival
rates, while a value less than 1 predicts higher pricing would gen-
erate higher arrival rates. The elasticity ei value can be determined
by analyzing statistical data collected for each service class. How-
ever, ei should be greater than 1 for most service classes as sug-
gested by [1,12,15] reflecting the fact that lower pricing would
stimulate higher demand or higher arrival rates for the service
provided, and consequently generate higher revenue. The propor-
tionality constant ai differs from cell to cell and can be calculated
from Eq. (1) once the reference arrival rates (ki), the current price
(vi) and the elasticity constant ei are known through statistical
data.

For the case in which two service classes exist, the total revenue
RT generated by each cell is the sum of the revenue generated from
each service class:

RT ¼ R1
h þ R1

n þ R2
h þ R2

n: ð2Þ

Here, R1
h represents revenue earned from servicing class 1 handoff

calls, R1
n represents revenue earned from servicing class 1 new calls,

and so on. Here, we note that pricing of a service class implicitly
determines the arrival rate of that service class based on Eq. (1),
which in turn affects the revenue obtainable by the system. If we
lowered pricing of a service class, the arrival rate of that service
class would increase. Since all service classes in a cell share band-
width channels, if we lowered pricing of all service classes with
the intent to increase revenue, QoS requirements would be violated
because of system overload. Thus, the search for optimal prices to
maximize the system revenue while satisfying QoS is a combinato-
rial problem.

Our approach is to calculate the maximum revenue obtainable
as a result of applying a call admission control algorithm when
given five parameter values for each service class i, namely, ki

n,
li

nk
i
h, li

h and vi, and use the revenue obtained as the objective
function to guide the search process. Since pricing changes under
the ‘‘charge-by-time” scheme are often incremental so there are
not too many possibilities to search for the optimal combination.
Hence, our approach is to exhaustively search all possible combi-
nations of ½mi;min; mi;max� for all service classes and look for the best
combination of service class prices that would maximize the
system revenue while satisfying QoS. Specifically for each service
class Si, we obtain a 5-tuple ‘‘reference” parameter values

ðki
n;li

nk
i
h;li

h; v
iÞ as the reference state. Then we determine the

pricing range ½mi;min; mi;max� for the service class such that mi;min

and mi;max are determined as minimum and maximum pricing
acceptable by the customer base as apprised by the service pro-
vider. We then divide the pricing range ½mi;min; mi;max� into bi parts,
resulting in bi þ 1 potential prices for class i to be evaluated. We
then take a price combination of potential prices for all classes
and deduce the corresponding arrival rates of service classes
based on Eq. (1) with respect to the reference state. The optimal
pricing problem essentially corresponds to finding the best price
combination that will maximize the system revenue with QoS
guarantees.

Specifically in the first step, for each service class Si where
i 2 f1; . . . ;ng, we determine bi þ 1 prices with equal increment of
di between vi;min and vi;max by using the following formula:

mi;j ¼ mi;min þ j � di; i 2 f0; . . . ;ng and j 2 f0; . . . ;big; ð3Þ

where

di ¼ ðmi;min � mi;maxÞ=bi: ð4Þ

Basically, Eqs. (3) and (4) determine bi þ 1 potential prices, namely,
mi;min, mi;j þ di, mi;min þ 2di; . . . ; mi;min þ ðbi � 1Þdi and mi;max for class i.
We apply this step to all classes. Therefore, the total number of pos-
sible price combinations for all service classes from which to search
for optimal pricing, denoted by g, is equal to

g ¼ ðb1 þ 1Þðb2 þ 1Þ . . . ðbn þ 1Þ: ð5Þ

In the second step, we predict the arrival rates of service clas-
ses for a given price combinations. Based on Eq. (1), the pre-
dicted new call arrival rate of the jth price increment for Si is
given by

ki;j
n ¼ ai � mi;j

� ��ei

: ð6Þ

Here, we note that ei remains the same while ai differs from one cell
to another. Since the user mobility is not affected by pricing
changes, the ratio of new call arrival rates to handoff call arrival
rates remains a constant. Thus, the predicted handoff call arrival
rate of the jth price increment for Si is given by

ki;j
h ¼ f i � ki;j

n ; ð7Þ

where f i denotes the ratio of the statistically determined reference
handoff call arrival rate to the reference new call arrival rate for Si,
given by

f i ¼ ki;current
h =ki;current

n : ð8Þ

Note that f i is a constant because handoff requests coming into
each cell are modeled as the sum of the handoff requests coming
into the reference cell from neighboring cells. Eq. (7) holds as long
as the arrival rate increase or decrease in neighboring cells gener-
ates proportional increase or decrease on the handoff rate coming
into the reference cell from these cells.

For all possible combinations, each of which generating a new
5-tuple ðki;j

n ;li
nk

i;j
h ;li

h; v
i;jÞ, we determine the revenue generated un-

der a call admission control algorithm and store all the revenue
values obtained in an n-dimensional revenue table where n de-
notes the number of service classes. This calculation procedure is
done periodically by each cell. Tables in all the cells are collected
and merged to determine global optimal pricing that would maxi-
mize the overall system revenue (sum of revenue from individual
cells). In Section 4, we discuss how to utilize admission control
algorithms integrated with pricing for revenue optimization to
build such a table in individual cells based on this methodology.
Later in Section 5, we discuss how these tables can be integrated
to find global optimal pricing.
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4. Admission control integrated with pricing for revenue
optimization with QoS guarantees

Here, we give a brief overview of partitioning and threshold-
based call admission control algorithms integrated with pricing
as well as a hybrid partitioning-threshold algorithm for revenue
optimization with QoS guarantees. We utilize these algorithms
to calculate system revenue obtainable and determine optimal
pricing based on the methodology discussed in Section 3. For
ease of presentation, we assume that there are two service types,
class 1 (high-priority) and class 2 (low-priority), distinguished
primarily by their traffic type, i.e., real-time vs. non-real-time.
Our methodology can be easily applied to the case in which
more than two service classes exist. The traffic input parameters
to our algorithm are k1

n , l1
n; k1

h and l1
h for class 1 and k2

n , l2
n; k2

h

and l2
h for class 2. A call admission control algorithm adopted

(among the three) will be executed by each individual cell to
generate the system revenue obtainable while satisfying QoS
constraints expressed in terms of B1

ht, B2
ht, B1

nt, and B2
nt, when gi-

ven charge-by-time pricing of m1 and m2 for classes 1 and 2.

4.1. Partitioning admission control

A partitioning call admission control policy divides the total
number of channels in a cell into several fixed partitions with
each partition specifically reserved to serve a particular service
class (real-time vs. non-real-time) and call type (new vs. hand-
off). In our system, the total number of channels, C, is divided
into C1

h , C1
n, C2

h , and C2
n channels for high-priority handoff calls,

high-priority new calls, low-priority handoff calls, and low-prior-
ity new calls, respectively. Let ðn1

h;n
1
n;n

2
h;n

2
nÞ be the numbers of

calls corresponding to the four fixed partitions denoted by
C1

h;C
1
n;C

2
h;C

2
nÞ. Then n1

hk1 ¼ C1
h , n1

nk1 ¼ C1
n, n2

hk2 ¼ C2
h , and n2

nk2 ¼
C2

n such that C1
h þ C1

n þ C2
h þ C2

n ¼ C. The optimization problem
for the partitioning algorithm is to identify the best partition
ðC1

h;C
1
n;C

2
h;C

2
nÞ that would maximize the cell’s revenue while sat-

isfying the imposed QoS constraints defined by

B1
h < B1

ht;B1
n < B1

nt; B2
h < B2

ht;B2
n < B2

nt; ð9Þ

where B1
h and B2

h are the call dropping probabilities for handoff
calls for various classes 1 and 2, respectively, and B1

n and B2
n are

the blocking probability for new calls for classes 1 and 2,
respectively.

A partitioning solution is ‘‘legitimate” if Condition 9 is satis-
fied. Since no sharing is allowed among partitions, the system be-
haves as if it is managing four concurrent subsystems, each of
which behaves like an M/M/n/n queue. The call dropping proba-
bilities for handoff calls for various service classes (i.e., B1

h and
B2

hÞ and the blocking probability for new calls for various service
classes (i.e., B1

n and B2
nÞ can be determined easily by calculating

the probability of the partition allocated to serve the specific calls
being full. We can calculate the revenue generated per unit time
by the partition reserved to serve only high-priority handoff calls
by associating a reward of i � v1 for state i in the M=M=n1

h=n1
h

queue. The same way applies to other partitions. Specifically,
we can compute the revenue per unit time to the cell by
PRðC; k1

h; k
1
n; k

2
h; k

2
nÞ ¼ PR1

hþ PR1
n þ PR2

h þ PR2
n, where the notation

PRðC; k1
h; k

1
n; k

2
h; k

2
nÞ stands for the revenue earned by the partition-

ing algorithm as a function of C; k1
h; k

1
n; k

2
h; k

2
n (with other parame-

ters not listed), while PR1
h , PR1

n, PR2
h , and PR2

n stand for the revenues
generated per unit time due to high-priority handoff calls, high-
priority new calls, low-priority handoff calls, and low-priority
new calls, respectively, as given by (only PR1

h is shown below
since expressions for others are similar)

PR1
h ¼

Xn1
h

i¼1

im1

1
i!

k1
h

l1
h

� �i

1þ
Pn1

h
j¼1

1
j!

k1
h

l1
h

� �j
: ð10Þ

The optimal partition ðC1
h;C

1
n;C

2
h;C

2
nÞ is the one that maximizes

PRðC; k1
h; k

1
n; k

2
h; k

2
nÞ and can be computed fairly easily by exhaus-

tively searching through all the combinations that satisfy
C1

h þ C1
n þ C2

h þ C2
n ¼ C. For a modern computer running Pentium

4, this takes only a few seconds for C ¼ 80 channels. This is attrib-
uted to the existence of close-form solutions for computing B1

h , B1
n,

B2
h , B2

n , PR1
h , PR1

n , PR2
h , and PR2

n under partitioning admission control.

4.2. Threshold-based admission control

In the threshold-based admission control algorithm, we select a
threshold CT to separate class 1 from class 2 based on the service
type, i.e., real-time vs. non-real time. The meaning of the threshold
is that when the number of channels used in the cell exceeds CT

then new or handoff calls from service class 2 (low-priority) will
not be admitted. Within each service class, we further create
thresholds to differentiate handoff from new calls such that C1

hT

is the threshold for class 1 high-priority handoff calls; C1
nT is the

threshold for class 1 high-priority new calls; C2
hT is the threshold

for class 2 low-priority handoff calls; and C2
nT is the threshold for

class 2 low-priority new calls. Since we give handoff calls a higher
priority than new calls, the following additional conditions must
also be satisfied, C1

nT P CT, C1
hT P CT, C2

nT 6 CT, and C2
hT 6 CT. A

threshold-based admission control integrated with pricing for rev-
enue optimization with QoS guarantees thus aims to find the opti-
mal set ðC1

hT ;C
1
nT ; C

2
hT ;C

2
nTÞ satisfying the above conditions that

would yield the highest revenue with QoS guarantees.
The threshold-based admission control algorithm can be ana-

lyzed by using a SPN model [4] to compute Bi
h and Bi

n of class i. A
‘‘legitimate” solution from a threshold admission control algorithm
must generate B1

n, B1
h , B2

n, and B2
h to satisfy the QoS constraints spec-

ified by Condition 9. We compute the revenue generated per unit
time from the threshold-based admission control algorithm to
the cell by: TRðC; k1

h; k
1
n; k

2
h; k

2
nÞ ¼ TR1

h þ TR1
n þ TR2

h þ TR2
n. Here, TR1

h ,
TR1

n, TR2
h , and TR2

n stand for the revenues generated per unit time
due to high-priority handoff calls, high-priority new calls, low-pri-
ority handoff calls, and low-priority new calls, respectively, given
by: TRi

h ¼ ð1� Bi
hÞk

i
hvi=li

h, and TRi
n ¼ ð1� Bi

nÞk
i
nvi=li

n.
The optimal threshold set ðC1

hT ;C
1
nT ;C

2
hT ;C

2
nTÞ is the one that max-

imizes TRðC; k1
h; k

1
n; k

2
h; k

2
nÞ and can be computed by searching

through all the combinations that satisfy C1
nT P CT, C1

hT P CT ,
C2

nT 6 CT , and C2
hT 6 CT . For a modern computer running Pentium

4, this takes a few minutes for C ¼ 80 channels. It takes a longer
computation time compared with partitioning admission control
because there is no close-form solution for B1

h , B1
n , B2

h , B2
n, TR1

h , TR1
n ,

TR2
h , and TR2

n and it requires evaluating the SPN performance model
developed [4] to generate the blocking probabilities and the reve-
nue obtainable by the system with QoS guarantees.

4.3. Hybrid partitioning-threshold admission control

The hybrid partitioning-threshold admission control algorithm
takes advantage of both partitioning and threshold-based. The hy-
brid algorithm divides the channels into fixed partitions the same
way as the partitioning algorithm does. In addition, to take advan-
tage of multiplexing, a ‘‘shared” partition is reserved to allow calls
of all service classes/types to compete for its usage in accordance
with the threshold algorithm. The shared partition is available
for use by a service class/type only if the partition reserved for that
service class/type is used-up. Let n1

hs;n
1
ns;n

2
hs;n

2
ns be the numbers of
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high-priority handoff calls, high-priority new calls, low-priority
handoff calls, and low-priority new calls, respectively, in the
shared partition. Let Cs be the number of channels allocated to
the shared partition under the hybrid algorithm. Then, the number
of calls of various service classes and types admitted into the
shared partition are limited by Cs channels allocated to the shared
partition, that is, n1

hsk
1 þ n1

nsk
1 þ n2

hsk
2 þ n2

nsk
2
6 Cs subject to the

constraint that C1
h þ C1

n þ C2
h þ C2

n þ Cs ¼ C. The QoS constraints
are specified by Condition 9.

Note that the hybrid algorithm encompasses the partitioning
algorithm as a special case in which Cs ¼ 0 and also the thresh-
old-based algorithm as another special case in which C1

h , C1
n, C2

h ,
and C2

n are all zero. The performance model for the hybrid algo-
rithm is composed of two sub-models: one for the partitioning
algorithm with the four fixed partitions C1

h , C1
n , C2

h , and C2
n and

one for the threshold-based algorithm for which C ¼ Cs. Since the
fixed partitions are modeled as M/M/n/n queues, the arrival rates
into the shared partition from high-priority handoff calls (k1

hs),
high-priority new calls (k1

ns), low-priority handoff calls (k2
hs), and

low-priority new calls (k2
ns) are simply the spill-over rates from

their respective M=M=n=n queues, e.g.,

k1
hs ¼ k1

h

1
n1

h
!

k1
h

l1
h

� �n1
h

1þ
Pn1

h
j¼1

1
j!

k1
h

l1
h

� �j
: ð11Þ

Here, only k1
hs is shown since expressions for k1

ns, k2
hs, and k2

ns are sim-
ilar. From the perspective of the shared partition, the arrival rates
are thus k1

hs, k1
ns, k2

hs, and k2
ns and the total number of channels avail-

able is Cs with all other parameters remained the same. Hence, we
compute the revenue generated per unit time from the hybrid
admission control algorithm to the cell by the sum of revenue
earned from the fixed partitions plus that from the shared partition,
i.e., HRðC; k1

h; k
1
n; k

2
h; k

2
nÞ ¼ PRðC � Cs; k

1
h; k

1
n; k

2
h; k

2
nÞ þ TRðCs; k

1
hs; k

1
ns;

k2
hs; k

2
nsÞ. The optimization problem for the hybrid algorithm is to

identify the best partition ðC1
h;C

1
n;C

2
h;C

2
n;CsÞ and the best threshold

ðC1
s hT ;C

1
s nT ;C

2
s hT ; C

2
s nTÞ within Cs that would maximize the cell’s rev-

enue subject to the imposed QoS constraints defined by Condition 9.
It could be found by searching through all the combinations that
satisfy C1

h þmC1
n þ C2

h þ C2
n þ Cs ¼ C and C1

s nT P CsT , C1
s hT P CsT ,

C2
s nT 6 CsT , and C2

s hT 6 CsT where CsT is a threshold used within the
shared partition Cs, CsT 6 Cs, to separate class 1 from class 2. For a
modern computer running Pentium 4, this takes minutes to search
for the best solution for C ¼ 80 channels. Again there is no close-
form solution for B1

h;B
1
n;B

2
h; B

2
n , and HR and it requires evaluating

the SPN performance model developed [4] to generate the blocking
probabilities and the revenue obtainable by the system with QoS
guarantees.

5. Numerical analysis

We present numerical data for g ¼ 6� 8 ¼ 48 possible future
price combinations by applying the revenue formulas derived for
partitioning, threshold-based and hybrid admission control algo-
rithms. These possible future price combinations are relative to
current pricing (of the reference system) such that the price incre-
ment/decrement is considered acceptable to the service provider.
We compare performance characteristics of these admission con-
trol algorithms with QoS guarantees with physical interpretations
given. The analysis considers two classes. Class 1 (real-time) de-
mands more resources with higher QoS constraints than class 2
(non-real-time). Thus, class 1 has more stringent call blocking
probabilities than class 2, as well as higher pricing. We consider
the call arrival process for each class follows the Poisson distribu-
tion which has been frequently used in the literature to model call

arrivals. Thus, the inter-arrival time of service calls is exponentially
distributed. We note that because we use the SPN model for perfor-
mance evaluation we can also accept general time distributions to
relax this assumption.

The input parameters are C, k1
h , l1

h , k1
n, l1

n , k2
h , l2

h , k2
n, l2

n, m1, m2, a1,
a2, e1, e2, k1, k2, B1

ht, B2
ht, B1

nt, and B2
nt. We set C ¼ 80 channels, k1 ¼ 4

and k2 ¼ 1 for a typical cell in mobile wireless networks to service
real-time and non-real-time traffic such that there are 80 channels
in the cell with a class 1 call (real-time) consuming 4 channels and
a class 2 call (non-real-time) consuming 1 channel. We assume
that the statistical data collected for the reference cell would pro-
vide k1

h ¼ 5, l1
h ¼ 1, k1

n ¼ 2, l1
n ¼ 1, k2

h ¼ 4:4, l2
h ¼ 1, k2

n ¼ 4:4, l2
n ¼ 1

per minute, and the current pricing is m1 ¼ 80 cents/min,
m2 ¼ 12 cents/min. Similarly, we set elasticity constants to values
greater than 1, e1 ¼ 1:3 and e2 ¼ 1:7 for class 1 and class 2 calls,
respectively. We apply Eq. (6) to calculate proportionality con-
stants a1 ¼ 600 and a2 ¼ 300 for class 1 and class 2 calls, respec-
tively, for our reference cell. We vary service prices in the range
½50;100� for m1 and ½6;20� for m2 and the resulting call arrival rates
are calculated by using Eqs. (6) and (7).

Figs. 1–3 show the maximum revenue obtained by partitioning,
threshold-based and hybrid admission control algorithms, respec-
tively. Class 1 and class 2 prices are shown on the Y and X coordi-
nates, respectively, in the unit of cents/min. The maximum
revenue obtainable by a legitimate solution is shown on the Z coor-
dinate also in the unit of cents/min.

Fig. 1 indicates that the revenue obtainable increases as the
anticipated arrival rate increases as a result of lowering the prices,
as long as the QoS constraints can still be satisfied. Nevertheless, as
k1

h and k1
n increase to 2.4 and 6 for v1 ¼ 70, the partitioning admis-

sion control algorithm fails to yield a legitimate solution because
the workload is too heavy to satisfy the imposed QoS constraints.
Likewise as k2

h and k2
n increase to 8.7 when v2 ¼ 8, the algorithm

fails to yield a legitimate solution. The maximum revenue at 664
is established at v1 ¼ 80 and v2 ¼ 10 (the highest point in Fig. 1)
as these prices result in the highest arrival rate that can be handled
with QoS guarantees. The best partition reserved to handle the
traffic generated for ðv1 ¼ 80; v2 ¼ 10Þ is
ðC1

h ¼ 10; C1
n ¼ 5;C2

h ¼ 11;C2
n ¼ 9Þ while the best partition reserved

to handle the traffic generated in the current system for
ðv1 ¼ 80; v2 ¼ 12Þ is ðC1

h ¼ 10;C1
n ¼ 5;C2

h ¼ 10;C2
n ¼ 10Þ. As the arri-

val rate of class 2 becomes higher due to the price cut of v2 from 12
to 10, partitioning admission control in this case reduces C2

n and in-
creases C2

h to satisfy the higher QoS requirement of class 2 handoff
calls.

Fig. 2 shows that the highest revenue at 722 is achieved under
threshold admission control when v1 ¼ 80 and v2 ¼ 6 (the highest
point in Fig. 2). To satisfy QoS requirements of class 1 calls, the sys-
tem applies thresholds C1

nT ¼ 80;C1
hT ¼ 80;C2

nT ¼ 76;C2
hT ¼ 76 to

Fig. 1. Maximum revenue obtained by partitioning admission control algorithm.
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handle higher class 2 traffic generated for ðv1 ¼ 80; v2 ¼ 6Þ, as op-
posed to all thresholds being set to 80 for the current system with
ðv1 ¼ 80; v2 ¼ 12Þ. By sharing resources among service classes and
controlling the effect of higher class 2 arrival rates by applying
lower threshold values, threshold-based admission control per-
forms better than partitioning admission control.

Fig. 3 illustrates the maximum revenues obtainable with hybrid
admission control with QoS guarantees as a function of v1 and v2.
The highest revenue at 736 is achieved when v1 ¼ 60 and v2 ¼ 8
(the highest point in Fig. 3). Recall that hybrid admission control
reserves ðC1

h ¼ 7;C1
n ¼ 3;C2

h ¼ 1;C2
n ¼ 1;Cs ¼ 38Þ to handle the traf-

fic generated for the reference system with ðv1 ¼ 80; v2 ¼ 12Þ. To
handle higher class 1 and class 2 arrival rates due to optimal pric-
ing at (v1 ¼ 60 and v2 ¼ 8), it reserves ðC1

h ¼ 6;C1
n ¼ 1;C2

h ¼ 1;C2
n ¼

0; Cs ¼ 51Þ and applies a lower threshold to class 2 calls in the com-
mon partition. In response to a higher class 1 and class 2 arrival
rates, hybrid admission control tends to increase the size of Cs

partition.
Comparing Fig. 3 with Figs. 1 and 2, it is clearly seen that the hy-

brid admission control algorithm outperforms both partitioning
and threshold based algorithms. The multiplexing power of the
shared partition is clearly demonstrated by the fact that hybrid al-
ways significantly outperforms partitioning in terms of revenue

obtainable over a wide range of class 1 and class 2 service call ar-
rival values, while being able to sustain a higher workload and pro-
vide QoS guarantees. We observe that the performance of
threshold-based admission control is comparable to hybrid admis-
sion control until both class 1 and class 2 arrivals become very high
ðk1

h ¼ 7:3; k1
n ¼ 2:9; k2

h ¼ 8:7; k2
n ¼ 8:7 anticipated when v1 ¼ 60 and

v2 ¼ 8). At these high arrival rates, threshold-based admission con-
trol fails to yield a legitimate solution compared with hybrid
admission control. We attribute the superiority of hybrid admis-
sion control over partitioning and threshold-based admission con-
trol to the ability to optimally reserve dedicated resources for high-
priority classes through fixed partitioning to reduce interference
from low-priority classes, and to optimally allocate resources to
the shared partition in accordance with threshold-based admission
control to exploit the multiplexing power for all classes. We con-
clude that the channel allocation made by the hybrid admission
control algorithm represents the best possible way to handle high-
er arrival rates and to allow a wider ranger of pricing for revenue
optimization. Also hybrid admission control generates maximum
revenue obtainable while satisfying QoS requirements for the
example cell.

To apply the results obtained in the paper, each cell would
independently collect statistical data periodically to estimate a
set of reference arrival and departure rates of new/handoff calls
of various service classes based on statistical analysis [4]. Each
cell then determines the proportionality constant ai for each ser-
vice class by applying Eq. (1) based on current pricing, the arrival
rate, and the elasticity constant ei of each service class. Later each
cell determines new/handoff call arrival rates for a range of
‘‘future” potential pricing for each service class also based on
Eq. (1). Finally, for each candidate price combination, each cell
calculates optimal ðC1

h;C
1
n;C

2
h;C

2
n;CsÞ and optimal ðC1hT

s ;C1nT
s ;C2hT

s ;

C2nT
s Þ within Cs if the hybrid admission control algorithm is used

for revenue optimization with QoS guarantees assuming two clas-
ses exist. The optimal settings for all future price combinations
are then summarized in a revenue table and reported to a central
entity which collects and analyzes revenue tables from all the
cells in the system. To guarantee QoS, the particular future price
combination that satisfies QoS constraints in all of the cells while
maximizing the aggregate revenue would be chosen as the win-
ner for optimal pricing.

The system provider can have each cell generate such a revenue
table only periodically, e.g., every 3 months, as deemed economi-
cally feasible by the service provider for changing pricing to service
classes. When the end of the current period is approaching, a new

Fig. 2. Maximum revenue rate obtained by threshold admission control algorithm.

Fig. 3. Maximum revenue obtained by hybrid admission control algorithm.
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set of reference arrival and departure rates of new/handoff calls of
various service classes that have been collected over the last period
will be used as input to build the revenue table by each cell. Thus,
the revenue table can be built by each cell in the background peri-
odically. With C=80 channels in a cell, the computational time ta-
ken for a cell to regenerate the revenue table is less than 1 day
when using a modern Pentium 4 machine. The system-wide opti-
mal pricing per service class then can be determined by the service
provider using the methodology introduced here. Such optimal
pricing determined will then remain static across cells for all ser-
vice classes till the next period.

The above approach is distributed in nature and will only re-
quire the central entity to collect revenue tables reported by indi-
vidual cells, and just pick the price combination that satisfies QoS
constraints in all of the cells while maximizing the aggregate rev-
enue. Another approach is based on centralized control by having
the central entity guide the search such that cells will be instructed
to evaluate a particular price combination only when needed until
the best price combination is found. This approach has the advan-
tage that each cell does not regenerate the entire revenue table.

Finally the service provider may elect to have different pricing
in different days of the week (e.g., weekday vs. weekend rate) or
even in different times of the day (e.g., day-time vs. night-time
rate). In this case, the same methodology developed in the paper
applies, except that it is being applied separately to each time seg-
ment. For example, if there is a distinction of weekend vs. weekday
rate, then two separate sets of reference arrival and departure rates
of new/handoff calls would be collected for weekend and weekday
time segments, and used as input to generate optimal pricing sep-
arately for these two time segments.

6. Summary

In this paper, we proposed and analyzed a methodology to
determine optimal pricing for revenue optimization with QoS
guarantees in wireless mobile networks, utilizing admission con-
trol algorithms integrated with pricing. Our methodology is based
on the idea that the maximum revenue generated by a cell while
satisfying QoS depends on both the admission control algorithm
chosen by the system and pricing applied to each service class.
To determine optimal pricing, we first applied an empirical func-
tion that relates pricing with demand so as to predict the change
to the arrival rate of a service class when its price changes. Then
we tested a range of future pricing for each of the multiple service
classes, each combination of which generates a new set of demand
arrival rates as input to feed into a call admission control algorithm
to calculate the revenue generated with QoS guarantees as the
objective function. We discovered that a hybrid scheme combining
the benefits of both partitioning and threshold-based performs the
best in terms of revenue maximization with QoS guarantees and
optimal pricing that maximizes the revenue earned.

This work is only a beginning of the design concept of utilizing
admission control algorithms cognizing revenue optimization with
QoS guarantees to determine optimal pricing in wireless networks.
Possible future research directions extending from this work in-
clude (a) designing and analyzing a search algorithm to guide the
search for the best price combination so as to avoid having each
cell regenerate the entire revenue table periodically; (b) consider-
ing other pricing schemes (flat rate or charge by connection) and
investigating optimal resource allocation settings under which hy-
brid admission control can yield the highest revenue with QoS
guarantees; (c) considering other revenue collection model, e.g.,
revenue is collected on call termination or revenue is lost when a
call is terminated prematurely.
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