
1

Simulation Modeling

• Imitation of the operation of a real-world
process or system over time

• Objective: to collect data as if a real system
were being observed

• Data collected from the simulation are used
to estimate the performance/dependability
measures of the system

2

Discrete Event Simulation

• modeling of the system as it evolves over
time by a representation in which the state
variables change only at a countable
number of points in time

• terminology:
– simulation clock: a variable that gives the

current value of the simulated time
– event: an instantaneous occurrence which may

change the state of the system

3

Simulation Terminology
– event list: a list (data structure) consisting of event

records with each record containing the time of
occurrence of a particular event, e.g., the arrival
time, the departure time of a client

– timing routine: a subroutine which determines and
removes the most imminent event record from the
event list and advances the simulation clock to the
time when the corresponding event is to occur

– event routine: a subroutine which updates the state
of the system when a particular type of event occurs

• one event routine for each type of event

4

Event Scheduling
• Determine the number of event types in the

system, e.g., 1: arrival, 2: request for service, 3:
service completion, 4: timer, etc.

• Place one or more initial event records in the
event list, each containing
– event time, event type, customer class, etc.

• Determine the most imminent event in the event list (by
the timing routine) in a loop until a specified stopping
rule is satisfied
– update the simulation clock when an event record is

removed from the event list

5

Event Scheduling (cont.)
– Pass the control to the event routine corresponding

to the event type
– Update the state of the system
– Gather the statistics if necessary

• Report the simulation results when the
simulation is completed
– For example

• the average response time per client
• the loss probability of calls
• the system throughput
• the average number of clients served over a time

period

6

Simulation using smpl
• In the smpl view of systems, there are three

types of entities:
– resources: facilities

• smpl provides functions to define, request, release and
preempt (queueing) facilities

– tokens: active entities of the systems, e.g., tasks,
users (indistinguishable or distinguishable)

– events: a change of state of any system entity is an
event

• smpl provides functions for scheduling and for selecting
events in the order of event occurrence time

7

Structure of An smpl Program
Initialization routine;

timing control routine to select the most imminent event
from the event list (event clock is updated implicitly)
{

event type 1: event routine for event type 1;
event type 2: event routine for event type 2;
.
.

event type n: event routine for event type n;
}

statistics reporting routine;

8

Initialization Routine
smpl(m, s)
int m=0; /* always 0 */
char *s;

smpl provides seeds for 15 streams for generating random
numbers. To collect a set of 15 sample values of a particular
performance measure, one can invoke smpl() 15 times:

loop: repeat 15 times
{
smpl(0, “hw1”);

}
One can also use stream(1), stream(2), etc. to specify the
stream number to be used in a simulation run

9

Facility Definition and Control
fd = facility(s, n)
char *s;
int n; /* # of servers */
=> define a queueing server with “n” servers;
smpl automatically manages enqueueing/dequeueing activities

r = request(fd_id, token_id, pri)
int fd_id; int token_id; int pri;
=> request a server of facility “fd_id” be reserved for the token
designated by “token_id” with priority “pri” (higher is better)

r=0: facility is reserved
r=1: facility is busy and the request is blocked in the queue
ordered on priority

10

r = preempt(fd_id, tkn_id, pri)
int fd_id, tkn_id, pri;
=> same as request() except that it will preempt the server if it is busy
serving a task with priority < “pri”
=> the event record corresponding to the preempted token (for the
service completion event) is removed from the event list and a queue
entry with the residual time is created
r=0: facility is reserved
r=1: facility is busy and the request is blocked in the queue
ordered on priority

release(fd_id, tkn_id)
int fd_id; int tkn_id;
=> release the facility and if the queue is not empty, reschedule an
event with the event occurrence time at NOW for a blocked task, and
reschedule an event with the event occurrence time at NOW+ the
residual time for a preempted task.

Facility Definition and Control

create an event of the same type
and put it in the event list

11

schedule(event_id, te, tkn_id)
int event_id;
real te; /* time interval relative to the current time */
int tkn_id;
=> schedule the event with id “event_id” to occur at NOW+te
=> this essentially inserts an event record with the event occurrence
time NOW+te into the event list
=> part of the information in the event record is event_id, tkn_id
and the event occurrence time NOW+te

Example: schedule(2, 0.0, token_id)
=> schedule event type #2 associated with token id “token_id” to
occur NOW

Scheduling Events

12

cause(event_id, tkn_id)
int *event_id;
int *tkn_id;
=> remove the most imminent event from the event list and
automatically advance the simulation clock to the event occurrence
time
=> return the event number (type) and token id to the caller

Typically in the smpl program, we use a select statement on
the event_id returned, so as to transfer the control to the
appropriate event routine.

Timing Routine

13

cancel(event_id)
int event_id;
=> search the event list and remove the first event with the event
number = event_id

Canceling Events

Get Current Simulation Time

t = real time()
=> return the current simulation clock value
=> real is a predefined type; it is the same as double in C

14

n= int inq(fd);
=> returning # of tokens currently in queue (not including the ones
in service)

r = int status(fd)
=> r=0: facility is free; r=1: facility is busy

u = real U(fd)
=> mean # of tokens in service

n = real Lq(fd)
=> mean # of tokens in queue excluding the ones in service

b = real B(fd)
=> mean busy period = accumulated busy time/release counts

Status Functions

15

r = real drand48(); /* available on UNIX machines */
=> return r in the range of (0,1)

r = real expntl(x)
double x;
=> return an exponentially distributed sample value with mean x

r = real uniform(a,b)
double a,b; => return a real number r in the range of (a,b)

k = int random(i,j)
int i, j; => return an integer k in the range of (i,j)

r = real normal(x,s)
=> return a normally distributed sample value with mean x and
standard deviation s

Random Variate Generation (rand.c)

16

trace(n)
int n;
=> generate trace messages when a facility is defined, requested, or
released, or whenever an event is scheduled or caused

n=0: trace is off
n=1: free-running, i.e., trace messages are generated continuously
n=2: screen by screen running (press any key to resume tracing)
n=3: message by message running (press any key to resume)

Traces and Debugging

17

M/M/1 smpl program
#include “smpl.h”
main()
{
real Ta=200, Ts=100, te=200000;
int customer=1, event, server;
smpl(0, “M/M/1 Queue”);
server = facility(“server”,1);
schedule(1, 0.0, customer);
while (time()< te)
{

cause(&event, &customer);
switch(event)
{
case 1: /* arrival */

schedule(2,0.0, customer);
schedule(1, expntl(Ta), customer);
break;

case 2: /* request server */
if (request(server, customer,0)==0)
schedule(3, expntl(Ts), customer);
break;

case 3: /* completion */
release(server, customer);
break;

}
}
report();
}

18

Confidence Interval and Level

• Suppose we collect N sample values Y1, Y2,
…, YN from N simulation runs

• sample mean Y = (Y1 + Y2 + …+ YN)/N
• true mean is 
• Define 1- as the probability that the absolute

value of the difference between Y and  is
equal to or less than H
– that is, prob[Y-H <=  <= Y+H] = 1- 

Confidence interval Confidence
level

Confidence interval half-width

19

Confidence Interval and Level
(cont.)

• When Y1, Y2, …, YN are independent random
variables from a normal distribution with the
mean , H is defined by H = t/2;N-1* /sqrt(N)
where t is the student’s t distribution and 2 is
the sample variance given by 2 = i (Yi - Y)2

/(N-1) (and thus  is the standard deviation).

20

Batch Mean Analysis by smpl

• Use a batch size m around 2000 observations to
collect a sample value Yi to justify the normal
distribution assumption (by central limit theorem).

• Delete d = 0.1 m initial observations
• Collect k = 10 batches and compute the confidence

interval half-width H
• If the desired accuracy has not been reached, collect

another batch and compute H again. Repeat as
necessary.

m m
samples to
generate Y1

samples to
generate Y2

21

BMA: stat.c and bmeans.c
• Based on 95% confidence level (= 0.05) with 10%

confidence accuracy (H/Y = 10%)
• The following three routines are provided:
• init_bm(d, m): d is number of initial observations to

be discarded and m is the number of observations to
collect one sample Yi

• obs(y): y is the observation value generated out of a
simulation run
– if the returning value is 1, it means that the required

confidence level and accuracy have been reached;
otherwise, need to continue calling this function obs(y)

• civals(Y, H, k): Y, H and k are passed in by
reference. This function returns the final result.

22

M/M/1 smpl program with BMA
#include “smpl.h”
#define TOKENS 1000
#define TRUE 1
#define FALSE 0

main()
{
real Ta=200.0,Ts=100.0,mean,hw;
int tk_id=0,customer=0,event,server,nb;
real ts[TOKENS]; /* start time stamp */
int cont=TRUE;
smpl(0,"M/M/1 Queue with BMA");
init_bm(200,2000); /* d=200; m=2000 */
server=facility("server",1);
schedule(1,0.0,tk_id);
while (cont)

{
cause(&event,&customer);
switch(event)
{

case 1: /* arrival */
ts[customer] = time();
schedule(2,0.0, customer);
if (++tk_id >= TOKENS) tk_id=0;
schedule(1,expntl(Ta),tk_id);
break;

case 2: /* request server */
if (request(server, customer,0)==0)
schedule(3,expntl(Ts),customer);

break;
case 3: /* release server */

release(server, customer);
if (obs(time()-ts[customer]) == 1)

cont = FALSE;
break;

}
} /* end while */

civals(&mean, &hw, &nb);
printf(”Y= %f; H= %f after %d batches\n”,

mean, hw, nb);
}

23

Bmeans.c
#include "smpl.h"
#include "stat.c"

static int d,k,m,n;
static real smy,smY,smY2,Y, h;

init_bm(m0,mb)
int m0,mb;
{ /* set deletion amount & batch size */
d=m0; m=mb; smy=smY=smY2=0.0;
k=n=0;

}
obs(y)
real y;
{
int r=0; real var;
if (d) then {d--; return(r);}
smy+=y; n++;
if (n==m) then
{ /* batch complete: update sums & counts */
smy/=n; smY+=smy; smY2+=smy*smy; k++;

printf("batch %2d mean = %.3f",k,smy);
smy=0.0; n=0; /* reset batch variables */
if (k>=10) then
{ /* compute grand mean & half width */

Y=smY/k; var=(smY2-k*Y*Y)/(k-1);
h=T(0.025,k-1)*sqrt(var/k);
printf(", rel. HW = %.3f",h/Y);
if (h/Y<=0.1) then r=1;

}
printf("\n");

}
return(r);

}

civals(mean,hw,nb)
real *mean,*hw; int *nb;
{ /* return batch means analysis results */
*mean=Y; *hw=h; *nb=k;

}

