Simulation Modeling

* Imitation of the operation of a real-world
process or system over time

* Objective: to collect data as if a real system
were being observed

» Data collected from the simulation are used
to estimate the performance/dependability
measures of the system



Discrete Event Simulation

* modeling of the system as 1t evolves over
time by a representation in which the state
variables change only at a countable
number of points 1n time

 terminology:

— simulation clock: a variable that gives the
current value of the simulated time

— event: an instantaneous occurrence which may
change the state of the system




Simulation Terminology

— event list: a list (data structure) consisting of event
records with each record containing the time of
occurrence of a particular event, e.g., the arrival
time, the departure time of a client

— timing routine: a subroutine which determines and
removes the most imminent event record from the
event list and advances the simulation clock to the
time when the corresponding event 1s to occur

— event routine: a subroutine which updates the state
of the system when a particular type of event occurs

* one event routine for each type of event



Event Scheduling

* Determine the number of event types in the
system, €.g., 1: arrival, 2: request for service, 3:
service completion, 4: timer, etc.

 Place one or more initial event records in the
event list, each containing

— event time, event type, customer class, etc.

e Determine the most imminent event in the event list (by
the timing routine) 1n a loop until a specified stopping
rule 1s satisfied

— update the simulation clock when an event record 1s

removed from the event list )



Event Scheduling (cont.)

— Pass the control to the event routine corresponding
to the event type

— Update the state of the system

— Gather the statistics 1f necessary

* Report the simulation results when the
simulation 1s completed

— For example
 the average response time per client
* the loss probability of calls
* the system throughput

 the average number of clients served over a time
period >



Simulation using smpl

 In the smpl view of systems, there are three
types of entities:

— resources: facilities

« smpl provides functions to define, request, release and
preempt (queueing) facilities

— tokens: active entities of the systems, €.g., tasks,
users (1ndistinguishable or distinguishable)

— events: a change of state of any system entity 1s an
event

 smpl provides functions for scheduling and for selecting
events in the order of event occurrence time



Structure of An smpl Program

Initialization routine;

timing control routine to select the most imminent event
from the event list (event clock 1s updated implicitly)

d

event type 1: event routine for event type 1;
event type 2: event routine for event type 2;

event type n: event routine for event type n;

)

statistics reporting routine;



Initialization Routine

smpl(m, s)
int m=0; /* always 0 */
char *s;

smpl provides seeds for 15 streams for generating random
numbers. To collect a set of 15 sample values of a particular
performance measure, one can invoke smpl() 15 times:

loop: repeat 15 times
d
smpl(0, “hw1”);
)
One can also use stream(1), stream(2), etc. to specify the
stream number to be used in a simulation run q



Facility Definition and Control

fd = facility(s, n)

char *s;

int n; /* # of servers */

=> define a queueing server with “n” servers;

smpl automatically manages enqueueing/dequeueing activities

r = request(fd 1d, token 1d, pri)

int fd 1d; int token 1d; int pri;

=> request a server of facility “fd 1d” be reserved for the token
designated by “token 1d” with priority “pr1” (higher is better)

r=0: facility 1s reserved
r=1: facility 1s busy and the request 1s blocked in the queue
ordered on priority



Facility Definition and Control
r = preempt(fd 1d, tkn 1id, pr1)
int fd 1d, tkn 1d, pri1;
=> same as request() except that it will preempt the server if it 1s busy
serving a task with priority < “pr1”
=> the event record corresponding to the preempted token (for the
service completion event) 1s removed from the event list and a queue
entry with the residual time 1s created
r=0: facility 1s reserved
r=1: facility 1s busy and the request 1s blocked in the queue
ordered on priority

release(fd 1d, tkn 1d)
int fd 1d; int tkn 1d;
=> release the facility and if the queue 1s not €mpty, reschedule an
event with the event occurrence time at NOW for a blocked task, and
reschedule an event with the event occurrence time at NOW+ thg
residual time for a preempted task.



Scheduling Events

schedule(event 1d, te, tkn 1d)

int event 1d;

real te; /* time interval relative to the current time */

int tkn_1d;

=> schedule the event with 1d “event 1d” to occur at NOW+te

=> this essentially inserts an event record with the event occurrence
time NOW+te into the event list

=> part of the information in the event record 1s event 1d, tkn 1d
and the event occurrence time NOW-+te

Example: schedule(2, 0.0, token 1d)
=> schedule event type #2 associated with token 1d “token 1d” to
occur NOW

11



Timing Routine

cause(event 1d, tkn 1d)

int *event 1d;

int *tkn_1d;

=> remove the most imminent event from the event list and
automatically advance the simulation clock to the event occurrence
time

=> return the event number (type) and token 1d to the caller

Typically in the smpl program, we use a select statement on

the event 1d returned, so as to transfer the control to the
appropriate event routine.

12



Canceling Events

cancel(event 1d)

int event 1d;

=> gearch the event list and remove the first event with the event
number = event 1d

Get Current Simulation Time

t = real time()
=> return the current simulation clock value
=>real 1s a predefined type; it 1s the same as double in C

13



Status Functions

n= 1nt inq(fd);
=>returning # of tokens currently in queue (not including the ones
n service)

r = 1nt status(fd)
=> r=0: facility 1s free; r=1: facility 1s busy

u = real U(fd)
=> mean # of tokens 1n service

n = real Lq(fd)
=>mean # of tokens in queue excluding the ones in service

b = real B(fd)
=> mean busy period = accumulated busy time/release counts 14



Random Variate Generation (rand.c)

r = real drand48(); /* available on UNIX machines */
=> return r 1n the range of (0,1)

r = real expntl(x)
double x;
=> return an exponentially distributed sample value with mean x

r = real uniform(a,b)
double a,b; => return a real number r 1n the range of (a,b)

k = int random(i,})
int 1, J; => return an integer k 1n the range of (1,))

r = real normal(x,s)
=> return a normally distributed sample value with mean x and
standard deviation s 15



Traces and Debugging

trace(n)

Int n;

=> generate trace messages when a facility is defined, requested, or
released, or whenever an event 1s scheduled or caused

n=0: trace 1s off

n=1: free-running, 1.e., trace messages are generated continuously
n=2: screen by screen running (press any key to resume tracing)
n=3: message by message running (press any key to resume)

16



M/M/1 smpl program

#include “smpl.h”

main() case 2: /* request server */

d if (request(server, customer,0)==0)
.real Ta=200, Ts=100, te=200000; schedule(3, expntl(Ts), customer);
int customer=1, event, server; break:

smpl(0, “M/M/1 Queue”);

- case 3: /* completion */
server = facility(“server”,1);

release(server, customer);

schedule(1, 0.0, customer); break:
while (time()< te)

{ )
cause(&event, &customer); !
switch(event) report();

{ }

case 1: /* arrival */
schedule(2,0.0, customer);

schedule(1, expntl(Ta), customer);
break;

17



Confidence Interval and Level

Suppose we collect N sample values Y, Y-,
..., Y~ from N simulation runs

sample mean Y =(Y: + Y2+ ...+ Y~ )/N
true mean 1s u

Define 1-a as the probability that the absolute
value of the difference between Y and pu 1s
equal to or less than H} Confidence interval half-width

— thatis, prob[Y-H<=pu<=Y+H]=1-«

_ )
~— N
Confidence interval Confidence |,
level




Confidence Interval and Level
(cont.)

* When Y, Y2, ..., Yy are independent random
variables from a normal distribution with the
mean p, H 1s defined by H =1, ;™ o/sqrt(N)
where t 1s the student’s t distribution and o2 15
the sample variance given by 62= Xi(Yi- Yy
/(N-1) (and thus o 1s the standard deviation).

19



Batch Mean Analysis by smpl

I I I I
«— M — — m —

samples to

samples to
generate Y 1

generate Y2

Use a batch size m around 2000 observations to
collect a sample value Y to justify the normal
distribution assumption (by central limit theorem).
Delete d = 0.1 m initial observations

Collect k = 10 batches and compute the confidence
interval half-width H

If the desired accuracy has not been reached, collect
another batch and compute H again. Repeat as

necessary. *



BMA: stat.c and bmeans.c

Based on 95% confidence level (o = 0.05) with 10%
confidence accuracy (H/Y = 10%)

The following three routines are provided:

init bm(d, m): d 1s number of initial observations to
be discarded and m 1s the number of observations to
collect one sample Yi

obs(y): y 1s the observation value generated out of a
simulation run

— 1f the returning value 1s 1, it means that the required
confidence level and accuracy have been reached;
otherwise, need to continue calling this function obs(y)

civals(Y, H, k): Y, H and k are passed in by
reference. This function returns the final result.



M/M/1 smpl program with BMA

case 1: /* arrival */

#include “smpl.h” _
#define TOKENS 1000 ts|customer] = time();
#define TRUE 1 schedule(2,0.0, customer);
#define FALSE 0 if (++tk_id >= TOKENS) tk 1d=0;
schedule(1,expntl(Ta),tk id);

main() break;
{ case 2: /* request server */
real Ta=200.0,Ts=100.0,mean,hw: if (request(server, customer,0)==0)
int tk_id=0,customer=0,event,server,nb; schedule(3,expntl(Ts),customer);
real ts{ TOKENS]; /* start time stamp */ break;
int cont=TRUE: case 3: /* release server */
smpl(0,"M/M/1 Queue with BMA"); Telease(server, customer);
init bm(200,2000); /* d=200; m=2000 */ if (obs(time()-ts[customer]) == 1)
server=facility("server",1); cont = FALSE;
schedule(1,0.0,tk_id); break;
while (cont) h .

{ + /* end while */

cause(&event,&customer); civals(&mean, &hw, &nb);
switch(event) printf(”Y= %f; H= %f after %d batches\n”,
{ mean, hw, nb);
} 22



Bmeans.c
printf("batch %2d mean = %.31" k,smy);

#include "smpl.h" smy=0.0; n=0; /* reset batch variables */
#include "stat.c" if (k>=10) then

{ /* compute grand mean & half width */
Y=smY/k; var=(smY2-k*Y*Y)/(k-1);
h=T(0.025,k-1)*sqrt(var/k);
printf(", rel. HW = %.3f",h/Y);
if (h/Y<=0.1) then r=1;

static int d,k,m,n;
static real smy,smY,smY2,Y, h;

init_bm(mO0,mb)
int m0,mb;
{ /* set deletion amount & batch size */
d=m0; m=mb; smy=smY=smY2=0.0;

h
printf("\n");

}k n=0; return(r);
obs(y) }
re{al y; civals(mean,hw,nb)

real *mean,*hw; int *nb;
{ /* return batch means analysis results */
*mean=Y; *hw=h; *nb=k;

int r=0; real var;

if (d) then {d--; return(r);}
smy+=y; nt+;

if (n==m) then j

{ /* batch complete: update sums & counts */

smy/=n; smY+=smy; smY2+=smy*smy; k++; 23



