Case Study 1: Replicated File Management

Source: S. Jajodia & D. Mutchler,
“Dynamic voting algorithms for maintaining
the consistency of a replicated database”
ACM Trans, Database Systems, Vol. 15, No. 2,

one copy: ← if failed, then it is not accessible

\[
\text{Availability} = \frac{\mu}{\lambda + \mu}
\]

\[
A(\infty) \equiv \text{Availability} = \frac{\mu}{\lambda + \mu}
\]

\[
A(t) \equiv P_1(t) = \frac{\mu}{\mu + \lambda} + \frac{\lambda}{\lambda + \mu} e^{-(\mu + \lambda)t}
\]

\[
1 - A(t) \equiv P_0(t) = \frac{\lambda}{\mu + \lambda} + \frac{\lambda}{\lambda + \mu} e^{-(\mu + \lambda)t}
\]
Can we use replicated copies to improve availability? consider only the update operations: suppose we have 7 copies

Cannot update just one copy and leave the others unchanged → will create inconsistency problems

Must maintain one-copy illusion to the user
Consistency algorithms for replicated data:

Static: n copies
(simple voting) *can do update if a majority of n copies can be reached & updated

Communication failure

This partition can do update

This partition cannot do update

No partition can do any update

A write quorum

Another write quorum

This partition can still do update
Dynamic voting:
can do update if a majority of current (up-to-date) copies
(since the last update) can be found and updated. These majority
copies are called in the “major partition”.

Each copy is associated with a set of local variables to make it possible:
1) version number (VN): to tell if the local copy is current
2) site cardinality (SC): to tell how many copies are current, e.g., if in
the last update, 5 copies were updated, then SC = 5

Communication failure

No failure

This partition can do update
because 4 is a majority
** All copies within the major partition are updated & the new SC is set to the # of copies in the major partition.

This partition can do update because 2 is a majority of SC=3

no partition can do update. System halts & must wait for repairs to occur.
Reunion Scenarios

Still not a major partition because the # of copies with the highest version # (i.e. 4) is 1 which is not a majority of 2 (the SC associated with the current copy).

No major partition exists

Repair of network partitioning

No major partition exists

A major partition now

Repair of network partitioning

repaired subsequently
Availability modeling:

Site-failure only model: there is only one partition system models:

1) failure rate of each site is λ
2) repair rate of each site is μ
3) updates are frequent and there is always an update immediately following a failure/repair.

Static: n copies

$$\frac{k}{n} = \text{prob}\{\text{an update request arrives at one of } k \text{ sites in the major partition}\}$$

Site Availability:

$$A(\infty) = \sum_{k=\lfloor \frac{n}{2} \rfloor + 1}^{n} \frac{k}{n} \binom{n}{k} \left(\frac{\mu}{\lambda + \mu}\right)^k \left(1 - \frac{\mu}{\lambda + \mu}\right)^{n-k}$$
Dynamic: no simple probability expression exists

Resort to Markov modeling

or

Petri net modeling

state representation

\((X, Y, Z)\)

\(X\) of \(Y\) current copies are alive
\(\therefore Y - X\) of \(Y\) current copies are down

\(Y = \) current site cardinality (\(SC\)) or \# of current copies

\(Z\) of the \(n-Y\) other sites are alive but out-of-date

\(n: \#\) of initial copies (e.g., \(n=7\))
Site Availability: $A(\infty) = \sum_{i=2}^{n} \left\{ \text{prob}\{(i,i,0)\} \times \frac{i}{n} \right\}$

Q: What would be the Markov model for a “distinguished site id” design?

* in state (1,2,0): no update can be performed because 1 is not a majority of 2.

127
Analysis results under the “site-failure only” assumption:

* static voting is better than dynamic voting when $n=3$

up-to-date permitted in static but not permitted in dynamic voting

* when $n>3$ dynamic voting is better