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Chap 5: Product-Form Queuing Networks (QN)

Entities: 1) service centers — with different service disciplines
2) customers (jobs) — single class

— multiple classes
(each/w a different workload)

3) links connecting service centers

CPU2

CPU3

CPU1

disk 1

disk 2

exit

queue
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Service disciplines
1) FCFS
2) Priority — can be preemptive or non-preemptive
3) Round Robin (RR) — time-slot based
4) Processor Sharing (PS) — the server’s capability is equally

divided among all jobs
5) Last-Come-First-Serve Preemptive Resume (LCFSPR)

— stack push-pop style

Open vs. Closed QNM
Open: customers arrive from an external source, spend time in the 

system & finally depart.
Closed: # of customers circulating among the service centers is 

a constant, i.e., no external source of jobs & no departure. 



131

What is a “product-form” solution for a QNM?
- The joint probability of the queue sizes in the network is a product   
of the probabilities of queue sizes in individual service centers.

e.g., a tandem queuing network with 2 servers

1
21

n1, n2

n1-1, n2+1

n1+1, n2n1-1, n2

n1, n2+1

n1+1, n2-1n1, n2-1

1 1

1

1

2

2

a job arrives at server 1a job leaves server 2

a job leaves server 1

Markov 
Model
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By solving the steady-state global balance equations (one for each state),
it can be shown that:

The joint population probability that there are n1 jobs at server 1 & 
n2 jobs at server 2 is the product of the population probabilities for 
two individual M/M/1 queues.

𝑃ሺ𝑛ଵ, 𝑛ଶሻ ൌ ሺ1 െ 𝜌ଵሻ𝜌ଵ
௡భሺ1 െ 𝜌ଶሻ𝜌ଶ

௡మ

                  ൌ 𝑃ሺ𝑛ଵሻ ⋅ 𝑃ሺ𝑛ଶሻ
where 𝜌ଵ ൌ

𝜆ଵ
𝜇ଵ

 & 𝜌ଶ ൌ
𝜆ଵ
𝜇ଶ

Prob. that the 
system has

n1 at server 1
& n2 at server 2

For the 1st 
M/M/1 queue

For the 2nd
M/M/1 queue

1
1

1
2
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Product-Form Queuing Networks

This is true when the following characteristics hold (p. 93, text):
1. The routing of customers from one service center to the next must be 

history independent, i.e., memory less (or Markovian).
2. The queuing disciplines may be FCFS, PS (Processor Sharing), IS (Infinite 

Server) or LCFSPR (Last Come First Serve with Preemptive-Resume)
3. For an FCFS center, the service time distribution must be exponential; for other 

servers, the service time distribution does not have to be exponential but must 
be differentiable (w. r. t. time)

4. A product-form network may have multiple chains (multiple classes) of jobs 
and may be open with respect to some chains of jobs and closed with respect to 
others. External arrivals for all open chains must be Poisson.

𝑃ሺ𝑛ଵ, 𝑛ଶ, . . . 𝑛௃ሻ ൌ ෑ 𝑃௝

௃

௝ୀଵ

ሺ𝑛௝ሻ
Pj(nj) is a function only

of the j-th center

A QN is said to have a product-form solution if
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Open product-form QNs:
All jobs arrive from an external source & depart to a sink. 

𝜆௝ ൌ 𝑟௝ ൅ ෍ 𝜆௞

௃

௞ୀଵ

𝑞௞௝

From the 
external source

From other
centers in 

the network

r1
21

Ex:

1 = r1
2 = 1×1 

 1 = 2 = r1

A general method to solve an open 
system QNM with a PF solution:
1) get input arrival rate for each 

center.
2) analyze each center separately.
3) get aggregate measures, e.g., 

𝑛 ൌ ෍ 𝑛௞
௞

Arrival rate to j:
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e.g.  r1 = 0.5, 1 = 1 & 2 = 2   𝜌ଵ ൌ
𝜆ଵ
𝜇ଵ

ൌ 0.5, 𝜌ଶ ൌ
𝜆ଶ
𝜇ଶ

ൌ
0.5
2 ൌ 0.25

Evaluate each center independently

𝑛ଵ ൌ
𝜌ଵ

1 െ 𝜌ଵ
ൌ

0.5
1 െ 0.5 ൌ 1;  𝑛ଶ ൌ

𝜌ଶ
1 െ 𝜌ଶ

ൌ
0.25

1 െ 0.25 ൌ
1
3

𝑅ଵ ൌ
𝑛ଵ
𝜆ଵ

ൌ
1

0.5 ൌ 2;          𝑅ଶ ൌ
𝑛ଶ
𝜆ଶ

ൌ
1
3

0.5 ൌ
2
3

 time spent in the 
system by a customer: 1   ൅    1   ൅  

1
6 ൅

1
2 ൌ 8

3ൗ  time units

Waiting time
at center 1,
𝑤ଵ ൌ 𝑅ଵ െ 1 𝜇ଵൗ
ൌ 2 െ 1

1ൗ  ൌ 1

Waiting time
at center 2,
𝑤ଶ ൌ 𝑅ଶ െ 1 𝜇ଶൗ

     ൌ
2
3 െ

1
2 ൌ

1
6
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Ex: open product-form
QNM with feedback

1
3

2r1

P1
P3

P2

ଵ ଵ ଶ ଷ
ଶ ଵ ଶ
ଷ ଵ ଷ

ଵ ଵ ଶ ଵ ଷ

ଵ
ଵ

ଶ ଷ

ଵ

ଵ

Q:  X, n, R?

X= 1 P1 = (r1/ P1) ×P1= r1

n = n1+n2+n3

R = n/X
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In general, consider a network with J service centers 
serving N jobs:

Closed Product-Form Networks

A network with a set of jobs circulating indefinitely or a network
in which a job leaving the network will be replaced instantly by a 
statistically identical new job. e.g.,

21

N = 4

௝ ௞

௃

௞ୀଵ
௞௝

probability that a job leaving 
center k moves to center j

Visit count
to center j

A particular center’s visit count 
is set to one based on 
the model’s physical meaning. 
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Solution Technique: Mean Value Analysis Algorithm — it yields 
the average values of performance measures.

In a closed system with N jobs, when a job arrives, it actually 
sees only (N-1) jobs distributed in the system.

Notation:
୨

௝

௝

௝
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Formulas:

𝑟௝ 𝑘 ൌ
1
𝜇௝

1 ൅ 𝑛௝ 𝑘 െ 1

𝑇 𝑘 ൌ
𝑘
𝑅

ൌ
𝑘

∑ 𝑣௝ ∗ 𝑟௝ 𝑘௃
௝ୀଵ

   by Little′s Law

𝑡௝ 𝑘 ൌ 𝑣௝ ∗ 𝑇 𝑘
𝑛௝ 𝑘 ൌ 𝑡௝ 𝑘 ∗ 𝑟௝ 𝑘    by Little′s Law

Recursion:

k=0 k=1
𝑛௝ 0 ൌ 0 → 𝑟௝ 𝑘 → 𝑅 ൌ ෍ 𝑣௝𝑟௝ 𝑘

௃

௝ୀଵ

→ 𝑇 𝑘 → 𝑡௝ 𝑘 → 𝑛௝ 𝑘

k=k+1 until k=N

for all j’s

Given
j
vj

𝑟௝ 𝑘 is estimated just like in M/M/1 
except that population is one less

A particular center’s visit count 
is set to one based on 
the model’s physical meaning. 
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e.g.,

2=11=2

N=4 Set v1 to 1 then v2 = 1
(Q relative visit count is the same for

both centers in this example)

P.100, text

k=0 Starting with 𝑛ଵ 0 ൌ 0; 𝑛ଶ 0 ൌ 0

𝑟ଵ 1 ൌ
1
2 1 ൅ 0 ൌ

1
2

 𝑟ଶ 1 ൌ
1
1 1 ൅ 0 ൌ 1

𝑅 1 ൌ
1
2 ൅ 1 ൌ

3
2

𝑇 1 ൌ
1
3
2

ൌ
2
3

𝑡ଵ 1 ൌ
2
3  & 𝑡ଶ 1 ൌ

2
3

𝑛ଵ 1 ൌ
2
3 ∗

1
2 ൌ

1
3  

𝑛ଶ 1 ൌ
2
3 ∗ 1 ൌ

2
3

k=1
(Little’s Law)

(Q v1 = v2 = 1)

𝑟ଵ 2 ൌ
1
2 1 ൅

1
3 ൌ

2
3

𝑟ଶ 2 ൌ
1
1 1 ൅

2
3 ൌ

5
3

𝑅 2 ൌ
2
3 ൅

5
3 ൌ

7
3

𝑇 2 ൌ
2
7
3

ൌ
6
7

𝑡ଵ 2 ൌ
6
7  & 𝑡ଶ 2 ൌ

6
7

𝑛ଵ 2 ൌ
6
7 ∗

2
3 ൌ

4
7  

𝑛ଶ 2 ൌ
6
7 ∗

5
3 ൌ

10
7

k=2
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𝑟ଵ 3 ൌ
1
2 1 ൅

4
7 ൌ

11
14

𝑟ଶ 3 ൌ
1
1 1 ൅

10
7 ൌ

17
7

𝑅 3 ൌ
11
14 ൅

17
7 ൌ

45
14

𝑇 3 ൌ
3

45
14ൗ

ൌ
14
15

𝑡ଵ 3 ൌ  𝑡ଶ 3 ൌ
14
15

𝑛ଵ 3 ൌ
14
15 ∗

11
14 ൌ

11
15

𝑛ଶ 3 ൌ
14
15 ∗

17
7 ൌ

34
15

k=3

𝑟ଵ 4 ൌ
1
2 1 ൅

11
15 ൌ

13
15

𝑟ଶ 4 ൌ
1
1 1 ൅

34
15 ൌ

49
15

𝑅 4 ൌ
13
15 ൅

49
15 ൌ

62
15

𝑇 4 ൌ
4

62
15ൗ

ൌ
60
62 ൌ

30
31

𝑡ଵ 4 ൌ  𝑡ଶ 4 ൌ
30
31

𝑛ଵ 4 ൌ
30
31 ∗

13
15 ൌ

26
31

𝑛ଶ 4 ൌ
30
31 ∗

49
15 ൌ

98
31

k=4

(last iteration)
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Using sharpe to solve closed QNMs

There are 6 types of service centers in a closed QNM which can be 
specified in a sharpe program:

1. FCFS — Syntax: station-name fcfs rate                Q: how to calculate rj (k) for an IS center?

2. IS — Syntax: station-name is rate — there are infinite # of servers in the center
3. MS — Syntax: station-name ms #servers rate — there are multiple servers in the 

center, each with the identical service rate
4. LCFSPR — Syntax: station-name lcfspr rate
5. PS — Syntax: station-name ps rate — all n jobs present at the center share one

server with each job seeing the server speed reduced by a factor of n

6. LDS (Load-dependent server) — Syntax: station-name lds rate1, rate2, …
— all jobs at the center again share one server but  the service rate of the server

is load dependent (i.e., depending on the # of jobs present in the center)

Single-chain Multiple-chain

Automatically computed by sharpe

Must be specified in the sharpe code 
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Program structure for defining a single-chain (or single class) 
product-form queuing network model (for a closed system)

pfqn {(para-list)}
* section 1: station-to-station probabilities

< station-name station-name expression>
end

* section 2: station types & parameters
< station-name station-type expression, …>
end

* section 3: number of customers per chain (or per class)
< chain-name expression>
end

B.4.6.  P.361  text
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CPU

1

M

P1= 0.667

P2= 0.233

disk 1

disk 2
42.9 ms

30 ms

P0= 0.1

20 ms

25 s

Terminals

e.g., p.222 & p.102 Service time
per visit

* central server model
bind

P1 0.667
P2 0.233

end
pfqn csm
CPU disk1          P1
CPU disk2          P2
CPU terminals    1-P1-P2
terminals   CPU 1
disk1 CPU 1
disk2 CPU 1
end

Section
1

* station types & parameters
terminals     IS 1/25
CPU fcfs 1000/20
disk1 fcfs 1000/30
disk2 fcfs 1000/42.9
end

* number of jobs
chain1 M
end

Section
2

Section
3

For other service disciplines
see p.362, text

These are rate
parameters
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* (continued)
* reporting per center (CPU) measures
loop i, 2, 10, 2

bind M    i
expr tput (csm, CPU)
expr util (csm, CPU)
expr qlength (csm, CPU)  
expr rtime (csm, CPU)

end
* calculate the system response time 
* by applying Little’s Law
∗ 𝑅 ൌ 𝑛/𝑥,  where
∗ 𝑛:   𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 in the central system
∗ 𝑥:  𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 of the central system

func x() \
tput (csm, CPU) * (1-P1-P2)

func nbar() \
qlength (csm, CPU) + \
qlength (csm, disk1) + \
qlength (csm, disk2)

bind M 10
* calculate the average response time per
* terminal user once it enters the central
* system when M=10 in the terminal center

expr nbar()/x()
end /* end the entire program */

Apply MVA to this closed system and set the visit count to 1 for the terminals center. 
You should get the same output. Note: set rterminals = 25s because it is a IS center. 

qlength returns per-center population 
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Program structure for defining a multiple-chain product-form 
queuing network model (for a closed system)

mpfqn {(parameter-list)}
* section 1: station to station probabilities for each chain.

<chain chain-name
<station-name  station-name expression>

:
end>

end
* section 2: station types & parameters

<<station-name  station-type  expression, …>
<chain-name expression, …>

:
end>

end
* section 3: number of jobs per chain

<chain-name expression>
end
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Example: diskCPU Two classes:
chain A: 2 jobs
chain B: 1 job

Service time
(service demand)

DA,CPU = 2; DA,disk = 1
DB,CPU = 3; DB,disk = 2

Performance measures of interest?
— Response time of a job (system)
— Response time of a class A job  (per class)
— Response time of a class B job in the CPU center (per center per class)
— Throughput of the CPU center for class A jobs (per center per class)
— Utilization of the CPU center for class B jobs (per center per class)
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* An example of using sharpe for solving a multiple-class product form queuing network
* Two classes: A and B; assume visit count is 1 for each center
* number of jobs: (2A, 1B)
* number of stations: 2 -- cpu and disk
* DA,cpu = 2
* DA,disk = 1
* DB,cpu = 3
* DB,disk = 2
*want to know RA, XA,(nA,cpu),(UA,cpu)

mpfqn simple
* section1: station to station transition probabilities
chain A
cpu disk 1
disk cpu 1
end
chain B
cpu disk 1
disk cpu 1
end
end

diskCPU

DA,CPU = 2; DA,disk = 1
DB,CPU = 3; DB,disk = 2
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*In general, need to calculate RA=nA/XA.
*But for the simple system here, we
*can calculate RA = RA,cpu + RA,disk
expr mrtime(simple,cpu,A)

+mrtime(simple,disk,A)
*XA = XA, cpu for this simple system
expr mtput(simple,cpu,A)
*population of class A at CPU: nA,cpu
expr mqlength(simple,cpu,A)
*utilization of class A at CPU: UA,cpu
expr mutil(simple,cpu,A)

end
-------------------------------------------------
Output:
mrtime(simple,cpu,A)
+mrtime(simple,disk,A):   6.3478e+00
-------------------------------------------
mtput(simple,cpu,A):   3.1507e-01
-------------------------------------------
mqlength(simple,cpu,A):   1.4795e+00
-------------------------------------------
mutil(simple,cpu,A):   6.3014e-01

*section 2: station types and parameters
cpu ps
A 1/2
B 1/3
end
disk ps
A 1/1
B 1/2
end
end
*section 3: number of customers in each 
* chain
A 2
B 1
end

Per-center per class-> per class measures
Summation applies to population only

Per-class measures -> system measures
Summation applies to

population and throughput
Once you know population and throughput
You can know the response time by 
Little’s Law


