
150

Chap 11: Hierarchical Models
Objective: to avoid large models so as to improve solution efficiency.

12

1

2
3

5

4

14 15

13
11

8
6 7

9 10

Ex1:

12

14 15

13
11

bridge 1

bridge 2



W

Y

X

Z
v1

v3
v2

v4 v5

upper-level model
(a reliability block diagram)

Lower-level model for a bridge
(a reliability graph)

151

P.265
Partial
sharpe
code
shown

relgraph rbridge (v1, v2, v3, v4, v5)
w x exp (v1)
x z exp (v2)
w y exp (v4)
y z exp (v5)
bidirect
x y exp (v3)
end
block rel-in-block
comp 11 exp (u11)
comp 12 exp (u12)
comp 13 exp (u13)
comp 14 exp (u14)
comp 15 exp (u15)
comp bridge1 cdf (rbridge; u1, u2, u3, u4, u5)
comp bridge2 cdf (rbridge; u6, u7, u8, u9, u10)
parallel C 12 13
series D bridge1 11 C
series E 14 bridge2 15
parallel top D E
end
eval (rel-in-block) 0 50000 500
end

152

Ex2: A queuing model with resource constraints
P.277

CPU

1

M

P1= 0.667

P2= 0.233

disk 1

disk 2
42.9 ms

30 ms

P0= 0.1

20 ms

25 sec

of running
jobs in the

central server
is limited to

n < M

Within the
dashed line

is the
central
server
system

Not in product-form
because of resource
limitations causing
input flow ≠ output
flow

1

M


A load
dependent

center

In product-form:
both servers can be
evaluated independently








 if),(
,...2,1 if),(

)(
ninX

niiX
iX

153

* low-level model
pfqn inner(n)
CPU disk1 P1
CPU disk2 P2
CPU CPU 1-P1P2
disk1 CPU 1
disk2 CPU 1
end
CPU fcfs 1000/20
disk1 fcfs 1000/30
disk2 fcfs 1000/42.9
end
chain1 n
end
end

* high-level model
pfqn outer(M)
term central 1.0
central term 1.0
end

1

M

central (lds)

term
25 sec.
think
time

*station types
term is 1/25
central lds X(1), X(2), X(3), X(4)
end
chain1 M
end

* define function for lds throughput X(n)
func X(n) tput(inner,CPU;n)*(1- P1-P2)

* can also be obtained as
* (1000/20 * util(inner,CPU;n))*(1- P1-P2)
* by Little’s Law, i.e., xCPU = CPU * CPU

bind
P1 0.667
P2 0.233

end
* reporting each terminal user’s response time in
* the central system as the number of users (M)
* increases

loop i, 0, 4, 1
expr 5*(2^i)
expr rtime(outer, central; 5*(2^i))

end
end

Service
rate of
CPU

Utilization
of CPU

154

Ex3: A queuing model with job priorities
two classes of jobs: 1 & 2

low priority high priority at the CPU only

1

M

1=1/12; 2=1/7

class 1: 0.1 sec.
class 2: 0.06 sec.

(class 2 has higher
priority at CPU)

service
demand

P0(class 1)=1/15
P0(class 2)=1/31

P1(class 1)=8/15
P1(class 2)=5/31

P2(class 1)=5/15
P2(class 2)=15/31CPU

P3(class 1)=1/15
P3(class 2)=10/31

disk1
0.03 sec.

disk3
0.03 sec.

disk2
0.03 sec.

M1=3 & M2=4

P.284
text

155

* performance measures of interest: response time & queue length
at CPU.

* not in product-form because of priority scheduling.

Approximation solution: suppose u2 is the utilization of the CPU
dedicated to class 2 jobs. Then the CPU service rate for class 1
jobs is slowed down by a factor of (1-u2)

* we don’t know u2 since it is an output, but we need it as an
input for class 1 jobs.

 use iterative technique

Create two CPUs, one for class 1 & the other for class 2,
with the CPU service rate to class 1 jobs reduced by a
factor of (1-u2)

156

Sharpe code (see p.285, text)
mpfqn iter (M1, M2, u2)

* chain 1 for class 1 jobs
chain 1
CPU1 disk1 8/15
CPU1 disk2 5/15
CPU1 disk3 1/15
CPU1 terminals 1/15
disk1 CPU1 1
disk2 CPU1 1
disk3 CPU1 1
end

* chain 2 for class 2 jobs
chain 2
CPU2 disk1 5/31
CPU2 disk2 15/31
CPU2 disk3 10/31
CPU2 terminals 1/31
disk1 CPU2 1
disk2 CPU2 1
disk3 CPU2 1
terminals CPU2 1
end
end

Section 1:
routing

prob. per
class

* Section 2: server types
CPU1 fcfs (1-u2)*1/0.1
end
CPU2 fcfs 1/0.06
end
disk1 fcfs 1/0.03
end
disk2 fcfs 1/0.03
end
disk3 fcfs 1/0.03
end
terminals is
1 1/12
2 1/7
end
end

* Section 3: number of jobs per class
1 M1
2 M2
end

Section
2

class 1
class 2

Section
3

Service
rate of
class 1
jobs is

reduced
by a

factor
of (1-u2)

157

* we don’t know what the initial value of u2 is,
* so make a guess u2=0 initially

bind u2 mutil (iter, CPU2, 2; 3, 4, 0)

* continue this for a sufficient # of iterations
until u2 converges  try 5 times
loop i, 1, 5, 1

bind u2 mutil (iter, CPU2, 2; 3, 4, u2)
end

* outputs are:
* i=1 u2  0.659839
* i=2 u2  0.659838
* i=3 u2  0.659838
* (converged after 3 iterations)
* try starting u2 with another initial value,
* say u2 =0.9

bind u2 0.9
loop 1, 1, 5, 1

bind u2 mutil (iter, CPU2, 2; 3, 4, u2)
end

system
name station

name chain 2

parameters for
M1, M2, & u2

M1=3; M2=4 & u2 is equal to the u2 in the previous iteration

* outputs are
* i=1 u2  0.660454
* i=2 u2  0.659839
* i=3 u2  0.659838
* printing response time & queue size

expr mrtime (iter, CPU1, 1; 3, 4, u2)
expr mrtime (iter, CPU2, 2; 3, 4, u2)
mqlength (iter, CPU1, 1; 3, 4, u2)
mqlength (iter, CPU2, 2; 3, 4, u2)

* outputs are
* R1,CPU=0.47534
* R2,CPU=0.10511

end

u2 is also
converged

in 3
iterations

1559.1n *

0911.1n *

CUP,2

CPU,1





R1,CPU=0.28483
R2,CPU=0.15834

5197.1n

76545.0n

CUP,2

CPU,1





to be compared with
the corresponding
parameter values
without priority

scheduling

158

Ex4: M/M/1/k queue with server failure & repair

0,1 1,1

9,0

9,1

10,0

10,1

0,0 2,0

2,1

1,0







 




 









         

…

P.233, text & p.294 : failure rate : job arrival rate
: repair rate : job service rate1-level model

M/M/1/10

prob {idle server} = prob(0,0) + prob(0,1)
rejection probability = prob(10,0) + prob(10,1)

State representation (a, b)

of jobs
1 alive
0 failed

159

Two-level model

observation: job arrivals/services are much faster than server
failures/repairs

 isolate out the fast recurrent set of states from the 1-level model,
analyze it for steady-state probabilities & replace it by a single
state in the original model.

 the assumption below is justified:

“ the set of states ………….. whose
transitions are job arrivals and departures will reach equilibrium
between the times when a failure/repair occurs.”

0,1 1,1 9,1 10,1

160

High-level:

0,0 1,0 2,0 9,0 10,0

1

    
……...





  

Low-level:

0,1 1,1 9,1 10,12,1















…

Prob{idle server} = prob(high-model,)
+ prob(high-model,) * prob(low-model,)

0,0

0,11

Rejection prob = prob(high-model,)
+ prob(high-model,) * prob(low-model,)

10,0

10,11

