Case Study #3: Analysis of Replicated Data with Repair Dependency

Ing-Ray Chen and Ding-Chau Wang
The Computer Journal
Vol. 39, No. 9, 1996, pp. 767-779
Availability of replicated data

• Pessimistic control algorithms for replicated data permit only one partition to perform update operations at any given time so as to ensure mutual exclusion of the replicated data object.

• Existing availability modeling and analysis of pessimistic control algorithms for replicated data management are constrained to either site-failure-only or link-failure-only models, but not both.

• This paper investigates the effect of repair dependency which occurs when many sites and links may have to share the same repairman due to repair constraints.
Dynamic voting for replicated data management

- Dynamic voting: \((VN_i, SC_i, DS_i)\) be the local state variables associated with the copy stored in site \(S_i\)
- Site \(i\) is in the major partition if:
 - the cardinality (the number of copies it can access) is larger than one half of \(SC_i\)
 - the cardinality is exactly equal to one half of \(SC_i\) and it contains the distinguished site \(DS_i\)
- If a site is in the major partition, it can commit an update locally. After an update is done, all copies in the major partition are updated.
System model

• Sites and links have independent failure rates λ_s and λ_l.
• A repairman repairs a failed site with rate μ_s and a failed link with rate μ_l.
• There is always an update (called an immediate update) after a failure or repair event since the update rate is much faster than the failure/repair rate

• Site subnet
 – A site can be in one of four states
 • up and current (upcc)
 • up and out-of-date (upoc)
 • down and current (downcc)
 • down and out-of-date (downoc)
When an update arrives and a major partition exists, a token will be put into ready.

Only one out of the six transitions can fire, all with the same priority level.

Site Subnet Model: one for each site

g_i true: i is in major partition

$ar{g}_i$ true: i is not in major partition

$(t_5, 3, \bar{g}_i)$

- t_5 is the name of the transition, 3 is the priority of the transition, and \bar{g}_i is the enabling function
- t_5 will fire if \bar{g}_i is true and site i is up and current

FIGURE 1. Local status update actions by site i.
gi true: i is in major partition

\lnot gi true: i is not in major partition

t2’s enabling function gi returns TRUE if site i is in the major partition

• t2 will fire if site i is in up and out-of-date state and gi returns true
 • After t2 fires, upoc \rightarrow upcc & the new state will be up and current

FIGURE 1. Local status update actions by site i.
• Transitions tf and $tfbar$ are given the highest priority levels (5 and 4)
• When an update event arrives, a token will be put in place “update event”

After all sites are evaluated and each site's status are updated, tds and tsc which have lowest priority levels will execute

FIGURE 2. Global status-update actions triggered by an update operation.
tsc updates the site cardinality: The multiplicity of \(tsc \rightarrow sc \) is the number of sites with mark (upcc) >0 in the major partition. The new site cardinality is stored as the number of tokens in place sc.

FIGURE 2. Global status-update actions triggered by an update operation.
System subnet

tds updates the distinguished site:
The multiplicity of $tds \rightarrow ds$ is the maximum $\#(upcc)$ value among all the sites in the major partition
After an update, the site ID of the new distinguished site will be stored as the number of tokens in place ds

FIGURE 2. Global status-update actions triggered by an update operation.
Site failure/repair subnets: one for each site

Independent Repairman Model

- This subnet describes the effect of site i’s failure and repair on the system state.
- Site i can only be in one state at a time, so only one transition out of these two subnets is possible at any time.

FIGURE 3. Site failure/repair events.
Link failure/repair subnets: one for each link

- subscript ij refers to the link between nodes i and j
- failure events: $\text{uplink}_{ij} \rightarrow \text{dwlink}_{ij}$
 - With rate of λ_i
- repair events: $\text{dwlink}_{ij} \rightarrow \text{uplink}_{ij}$
 - With rate of μ_i

FIGURE 4. Link failure/repair events.
<table>
<thead>
<tr>
<th>Place</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$upcc_i$</td>
<td>$Copy_i$ is up and current</td>
</tr>
<tr>
<td>$downcc_i$</td>
<td>$Copy_i$ is down and current</td>
</tr>
<tr>
<td>$upoc_i$</td>
<td>$Copy_i$ is up and out of date</td>
</tr>
<tr>
<td>$downoc_i$</td>
<td>$Copy_i$ is down and out of date</td>
</tr>
<tr>
<td>$uplink_{ij}$</td>
<td>$Link_{ij}$ is up</td>
</tr>
<tr>
<td>$dwlink_{ij}$</td>
<td>$Link_{ij}$ is down</td>
</tr>
<tr>
<td>$update_event$</td>
<td>An update is initiated</td>
</tr>
<tr>
<td>sc_ready</td>
<td>An SC is initiated</td>
</tr>
<tr>
<td>sc</td>
<td>#(sc) indicates the SC</td>
</tr>
<tr>
<td>ds_ready</td>
<td>A DS change is initiated</td>
</tr>
<tr>
<td>ds</td>
<td>#(ds) indicates the ID of the DS</td>
</tr>
<tr>
<td>$ready_i$</td>
<td>A local update at site i is in process</td>
</tr>
</tbody>
</table>
TABLE 2. Arc multiplicity functions.

<table>
<thead>
<tr>
<th>Arc</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$sc \rightarrow tsc$</td>
<td>(sc)</td>
</tr>
<tr>
<td>$tsc \rightarrow sc$</td>
<td># of sites in the major partition with $mark(upcc) > 0$</td>
</tr>
<tr>
<td>$ds \rightarrow tds$</td>
<td>(ds)</td>
</tr>
<tr>
<td>$tds \rightarrow ds$</td>
<td>Max $(upcc)$ among all sites in the major partition</td>
</tr>
<tr>
<td>Tr.</td>
<td>Enabling function</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>t</td>
<td>$f()$</td>
</tr>
</tbody>
</table>
| | \{IF \exists a partition \mathcal{M} with sum equal to
| | # of sites in \mathcal{M} with $\text{mark}(\text{upcc}) > 0$;
| | AND IF (sum $> \#(sc)/2$) OR
| | (sum $= \#(sc)/2$ AND
| | $\text{mark}(\text{upcc}_{\#(ds)})$ AND site $\#(ds) \in \mathcal{M}$)
| | THEN RETURN 1;
| | ELSE RETURN 0} |
| t_{2i} | $g_i()$ |
| | \{Look at $\text{mark}(\text{uplink}_{jk}) \forall j \forall k$ to
| | determine site i’s partition;
| | IF site i’s in the major partition \mathcal{M}
| | THEN RETURN 1;
| | ELSE RETURN 0} |
| t_{3i} | $g_i()$ |
| t_{4i} | $\bar{g}_i() \{1 - g_i()\}$ |
| t_{5i} | $\bar{g}_i()$ |
FIFO repairman model

• We can make use of the independent repairman model and modify the repair rates to account for repair dependencies.
• FIFO repairman model has only one repairman
• The repair rate is “deflated” by the total number of failed sites and links to account for the effect of repair resource sharing
• If a state has 3 failed entities: two failed sites and one failed link,
 – For the independent repairman model, repair rates are μ_s, μ_s and μ_l
 – For the FIFO repairman model, repair rates are $\mu_s / 3$, $\mu_s / 3$ and $\mu_l / 3$.
<table>
<thead>
<tr>
<th>Timed Tr.</th>
<th>Rate value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(tccf_i)</td>
<td>(\lambda_s)</td>
</tr>
<tr>
<td>(tccr_i)</td>
<td>(\mu_s)</td>
</tr>
<tr>
<td>(tocf_i)</td>
<td>(\lambda_s)</td>
</tr>
<tr>
<td>(tocr_i)</td>
<td>(\mu_s)</td>
</tr>
<tr>
<td>(tlinkf_{ij})</td>
<td>(\lambda_l)</td>
</tr>
<tr>
<td>(tlinkr_{ij})</td>
<td>(\mu_l)</td>
</tr>
</tbody>
</table>

\[
\text{TABLE 5. Rates of timed transitions for FIFO repair.}
\]

\[
\begin{align*}
\sum_{j,k,k\neq j} #(downcc_j + downoc_j + dwlink_{jk}) \\
\sum_{j,k,k\neq j} #(downcc_j + downoc_j + dwlink_{jk}) \\
\sum_{j,k,k\neq j} #(downcc_j + downoc_j + dwlink_{jk})
\end{align*}
\]
Linear-order repairman model

- Repairing failed site/link in a prescribed order
- Giving a higher repair priority to a higher linearly ordered site to increase the chance of finding the majority partition
- Creating a new enabling function associated with each repair transition
- Only one enabling function at any state shall return TRUE based on the prescribed linear order and all others shall return FALSE.
<table>
<thead>
<tr>
<th>Transition</th>
<th>Enabling function</th>
</tr>
</thead>
</table>
| $tccr_i, \ tocr_i$ | $h_{\text{site}}(i)$
{\begin{align*}
\text{IF site } i \text{ failed and the repair rank of site } i \text{ is higher than those of other failed sites or links in the linear order} \\
\text{THEN RETURN TRUE;} \\
\text{ELSE RETURN FALSE}
\end{align*}} |
| $tlink_{ij}$ | $h_{\text{link}}(i, j)$
{\begin{align*}
\text{IF link } ij \text{ failed and the repair rank of link } ij \text{ is higher than those of other failed sites or links in the linear order} \\
\text{THEN RETURN TRUE;} \\
\text{ELSE RETURN FALSE}
\end{align*}} |
Linear-order repairman model

• Example:

A 5-site ring topology with the linear repair order being sites 5,4,3,2,1 followed by links 45,51,43,32,21.

Suppose sites 4, 2 and link 51 are down
Site 4 is chosen to be repaired first
Linear-order repairman model

- Enabling functions associated with sites 4 and 2 and link 51 will return TRUE, FALSE and FALSE, respectively, meaning that site 4 will be repaired first over site 2 and link 51.
Best-first repairman model

- Preference given to the site or link which can most improve the site availability of the system after its repair with respect to the current state.
- If more than one failed site or link whose repair would lead to the existence of a major partition, then a tie-breaker rule will be applied to select one distinct member of the group to be repaired next.
Best-First Repair Strategy

Tie-Breaker Rules

• Choosing a failed entity such that after repair it will lead to the largest SC in the major partition

• Choosing a failed entity that will likely to stay alive after repair, e.g., when choosing between a failed site vs. a failed link, if $\mu_s / \lambda_s \geq \mu_l / \lambda_l$, then repair the failed site, otherwise repair the failed link

• Choosing a site (among failed sites) that is the highest linearly ordered in the group so it has a better chance to become the DS.
Repair Example

Effective: best-first repair (SC is 4 after repair)

Ineffective: linear-order repair (SC is 3 after repair)
<table>
<thead>
<tr>
<th>Transition</th>
<th>Enabling function</th>
</tr>
</thead>
</table>
| $tccr_i, toc_r_i$ | $h_{1_{site}}(i)$
{IF site i failed and the hypothetical site availability after repairing site i is higher than those of other failed sites or links in the system
THEN RETURN TRUE;
ELSE RETURN FALSE} |
| $tlinkr_{ij}$ | $h_{1_{link}}(i, j)$
{IF link ij failed and the hypothetical site availability after repairing link ij is higher than those of other failed sites or links in the system
THEN RETURN TRUE;
ELSE RETURN FALSE} |
Evaluation

• Tested with a 5-site ring topology
• Four repairman models:
 – Independent
 – FIFO
 – Linear-order
 – Best-first
Model complexity: number of states

<table>
<thead>
<tr>
<th></th>
<th>Independent</th>
<th>FIFO</th>
<th>Linear-order</th>
<th>Best-first</th>
</tr>
</thead>
<tbody>
<tr>
<td># of states in the Markov model</td>
<td>8674</td>
<td>8674</td>
<td>5429</td>
<td>3821</td>
</tr>
</tbody>
</table>
Performance metrics and reward assignments for calculation

<table>
<thead>
<tr>
<th></th>
<th>Definition</th>
<th>Reward Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Availability</td>
<td>The steady-state probability that a major partition exists.</td>
<td>Reward rate = 1 for those states in which enabling function $f()$ is evaluated to TRUE. Reward rate = 0, otherwise.</td>
</tr>
<tr>
<td>Site Availability</td>
<td>The probability that an update arriving at an arbitrary site will succeed.</td>
<td>Reward rate = $1 \times \frac{k}{n}$ for those states in which enabling function $f()$ is evaluated to TRUE where k is the number of up and current copies in the major partition. Reward rate = 0, otherwise</td>
</tr>
</tbody>
</table>

k: # of ‘up and current’ site in the major partition in a particular state
n: total number of sites in a system (n=5 in a 5-site ring topology)
Results:

independent repairman model

\(\mu_i; \lambda_i \uparrow \) site availability \(\uparrow \)
\(\mu_s; \lambda_s \uparrow \) site availability \(\uparrow \)

Fallible sites only or fallible links only will overestimate the site availability unrealistically.

FIGURE 5. Site availability of five-site ring under independent repairman model.
Results: Comparison of repairman models

- Site availability with independent repair is higher than those with dependent repair
- Independent > Best-first > Linear-Order > FIFO for the site availability metric
Results: Comparison of repairman models

- System availability is higher than the corresponding site availability
- Independent > Best-first > Linear-Order > FIFO for the system availability metric

FIGURE 7. System availability of five-site ring under various repairman models.
Results - difference in availability between repairman models

- When ratio $\mu/\lambda > 20$: difference among these three models is small.
 - Sites/links can be repaired much faster than they could fail.
- When ratio μ/λ is $5 \sim 15$: difference becomes larger.
 - Effective repairs have more prominent impact.
- When ratio $\mu/\lambda < 1$: difference among these three models is small again.
 - Sites/links can fail much faster than they could be repaired. Effective repairs have less impact.
Conclusions

• A significant difference in availability exists between two systems with independent and dependent repairman models, except when the repair rate is much higher than the failure rate.

• When several sites and links share the same repairman, the best-first repairman model always provides a better availability than the FIFO and linear-order repairman models.

• Ignoring concurrent site/link failure modes or repair dependency can overestimate the availability of replicated data.