Chap 9: Reliability & Availability Modeling

Reliability Block Diagram using sharpe

\[
\text{block name } \{(\text{param-list})\} \quad \text{optional}
\]

\[
[< \text{block line} > \quad \text{end}
\]

can be one of the following:

P.358 Appendix B
1) `comp name exponential-polynomial`

 Referring to the cumulative dist function (cdf)

 \[
 F(t) = 1 - e^{-\lambda t} \quad \text{and} \quad R(t) = e^{-\lambda t}
 \]

 `exp (lambda)` meaning the exponential distribution

 `cdf (component-name{,state}{;arg-list})`

 which has been defined before

 or `gen triple 1, triple 2, ...

 in the form of \((a_j, k_j, b_j)\)

 See p. 352

2) `parallel name name-1 name-2 {name3 name4 ...}`

 The parallel system is assigned to the first name.

3) `series name name-1 name-2 {name3 name4 ...}`

 The series system is assigned to the first name.

4) `kofn name expression-1, expression-2, component-name`

 \[
 F(t) = \sum_{j} a_j \cdot t^{k_j} \cdot e^{b_j t}
 \]
5) \textbf{kofn} \textbf{name k-expression, n-expression, name1 name2 \{name3…\}}

representing a k-out-of-n system
having possibly different components

Components do not have identical failure-time dist.

Ex:

\begin{itemize}
 \item \begin{tikzpicture}
 \node[draw] (cpu1) {CPU1};
 \node[draw] (cpu2) [below of=cpu1] {CPU2};
 \node[draw] (m1) [right of=cpu1] {m1};
 \node[draw] (m2) [below of=m1] {m2};
 \node[draw] (m3) [below of=m2] {m3};
 \draw[->] (cpu1) -- (cpu2);
 \draw[->] (cpu1) -- (m1);
 \draw[->] (cpu2) -- (m2);
 \draw[->] (m1) -- (m2);
 \draw[->] (m1) -- (m3);
 \draw[->] (m2) -- (m3);
 \end{tikzpicture}
 \end{itemize}

Sharing memory: a k-out-of-n device

\begin{itemize}
 \item block system (k, n, pfrate, mfrate)
 \item comp CPU exp (pfrate)
 \item comp mem exp (mfrate)
 \item parallel CPUs CPU CPU
 \item kofn mems k, n, mem
 \item series subsystem CPUs mems
 \item end
\end{itemize}

\textbf{Output}

\begin{itemize}
 \item in semi symbolic form
 \item CDF for system
 \begin{equation}
 1-6e^{-0.00903t}+3e^{-0.0104t}+\ldots
 \end{equation}
 \item (1-out-of-3)
 \item k=1.00
 \begin{itemize}
 \item mean(system;k,3,\ldots) = 2.26*10^2
 \item rel (10,k,3\ldots) = 9.9981*10^{-1}
 \item rel (365,k,3\ldots) = 8.33*10^{-1}
 \end{itemize}
 \item k=2.00
\end{itemize}
Comments: any line starting with the symbol “*”

* printing output.
* printing \(F(t) \) in symbolic form
 \[\text{cdf} \ (\text{system}; 1, 3, 0.00139, 0.00764) \]
* define reliability function at time \(t \)
 \[\text{func} \ \text{rel}(t, k, n, \text{pf}, \text{mf}) \]
 \[1 - \text{value} \ (t; \text{system}; k, n, \text{pf}, \text{mf}) \]

Returning \(F(t) \) at time \(t \) numerically

\[\text{loop} \ k, 1, 3, 1 \]
 \[\text{expr} \ \text{mean} \ (\text{system}; k, 3, 0.00139, 0.00764) \]
 \[\text{expr} \ \text{rel} \ (10, k, 3, 0.00139, 0.00764) \]
 \[\text{expr} \ \text{rel} \ (365, k, 3, 0.00139, 0.00764) \]
\[\text{end} \]
\[\text{end} \]
Fig. 9.1 p. 156

\[
\begin{array}{c}
\lambda=0.05 \\
A \rightarrow B \\
\lambda=0.01 \\
\lambda=0.3 \\
C \rightarrow C \rightarrow C \\
\lambda=0.25 \\
D \rightarrow D \\
\lambda=0.1 \\
E
\end{array}
\]

\begin{verbatim}
block block1a
 comp A exp(0.05)
 comp B exp(0.01)
 comp C exp(0.3)
 comp D exp(0.25)
 comp E exp(0.1)
 parallel threeC C C C
 parallel twoD D D
 series sys1 A B threeC twoD E
end

* printing: 5 decimal places
format 5
* cdf
 cdf (block1a)
 expr 1-value(10; block1a)
end
\end{verbatim}

Print 1-F(t)=R(t) at t=10
Availability Modeling

\[A_i(t) = \frac{\mu_i}{\lambda_i + \mu_i} + \frac{\lambda_i}{\lambda_i + \mu_i} e^{-(\lambda_i + \mu_i)t} \]

To define \(1 - A_i(t)\)

\[F(t) = \sum_{j} a_j \cdot t^{k_j} \cdot e^{b_j t} \]

See p.354 text on a user-defined distribution syntax:

poly name(param-list) dist. of the form triple

\((a_j, k_j, b_j)\)

* print steady state
* availability \(A(\infty)\)
expr pinf(block1a)

* print instantaneous
* availability at \(t=100\)
expr 1-value(100; block1a)
end
Fault Trees

* A pictorial representation of events that can cause the occurrence of an undesirable event.
* An event at a high level is reduced to a combination of lower level events by means of logic gates

 AND: when all fail, the failure event occurs.
 OR: when one fails, the failure event occurs.
 K out of n: when at least k out of n components fail, the failure event occurs.

E.g.

\[
\begin{align*}
\text{failure} & \quad \leftarrow \quad \text{or} \\
\quad \text{AND} & \quad \leftarrow \quad P_1 \quad \text{AND} \quad P_2 \\
\quad \text{AND} & \quad \leftarrow \quad M_1 \quad \text{AND} \quad M_2 \quad \text{AND} \quad M_3
\end{align*}
\]

\[
\begin{align*}
P_1 & \quad \leftarrow \quad \text{AND} \\
P_2 & \quad \leftarrow \quad \text{AND} \\
M_1 & \quad \leftarrow \quad \text{AND} \\
M_2 & \quad \leftarrow \quad \text{AND} \\
M_3 & \quad \leftarrow \quad \text{AND}
\end{align*}
\]
For a fault tree without repeated components:

\[
Q_{\text{ftree}}(t) = \begin{cases}
\prod_{i=1}^{n} Q_i(t) & \text{AND gate} \\
1 - \prod_{i=1}^{n} (1 - Q_i(t)) & \text{OR gate} \\
\sum_{i=k}^{n} \binom{n}{i} (Q(t))^i (1 - Q(t))^{n-i} & \text{k-out-of-n gate: for } n \text{ identically distributed components} \\
\sum_{|J| \geq k} \left(\prod_{j \in |J|} Q_j(t) \right) \left(\prod_{j \notin |J|} (1 - Q_j(t)) \right) & \text{k-out-of-n gate: for } n \text{ non-identically distributed components}
\end{cases}
\]

Unreliability or failure probability

A set that contains at least \(k \) failed components
The above equation cannot be used when there is a repeated component.

Example:

- 2 processors: P₁ & P₂
- 3 memory modules: M₁, M₂ & M₃

- M₃ is shared by P₁ & P₂
- M₁ is private to P₁
- M₂ is private to P₂

the system will operate as long as there is at least one operational processor with access to either a private or shared memory.
i.e. \(\overline{P_i} = 1 \) if Processor i fails at time t and \(\overline{P_i} = 0 \) otherwise.

\[
F_{P_i} = E[\overline{P_i}] \\
(\therefore F_{P_i} = 1 \cdot F_{P_i} + 0 \cdot R_{P_i})
\]

Let \(\overline{P_i} \) represent the failure of processor i, \(\overline{M_i} \) represent the failure of memory i \& \(\phi \) be a boolean variable indicating system failure

\[
\phi = \overline{X_{S1}} \overline{X_{S2}} = \left[1 - \left(1 - \overline{P_1}\right) \left(1 - \overline{M_1M_3}\right)\right] \left[1 - \left(1 - \overline{P_2}\right) \left(1 - \overline{M_2M_3}\right)\right]
\]

The subsystem fails when either P_1 fails or both (M_1M_3) fail

\[
= \left(\overline{P_1} + \overline{P_1M_1M_3}\right) \ast \left(\overline{P_2} + \overline{P_2M_2M_3}\right) \\
= \overline{P_1P_2} + \overline{P_1P_2M_2M_3} + \overline{P_1P_2M_1M_3} + \overline{P_1P_2M_1M_2M_3}
\]

\[
E[\phi] = Q_{system} = Q_{P_1}Q_{P_2} + Q_{P_1}R_{P_2}Q_{M_2}Q_{M_3} + R_{P_1}Q_{P_2}Q_{M_1}Q_{M_3} \\
+ R_{P_1}R_{P_2}Q_{M_1}Q_{M_2}Q_{M_3}
\]
Fault Tree using Sharpe

e.g.

\[\begin{align*}
Q(t) &= 1 - Pe^{-a_1t} - (1-P)e^{-a_2t} \\
\text{hyperexponential} & \quad \text{or} \\
\end{align*} \]

\[Q(t) = 1 - e^{-\lambda t} \]

exponential failure law

```
bind
  a1  0.028
  a2  0.25
  P   0.5
end
ftrace  series (lambda) Failure rate
  basic B  exp (lambda)
  basic A  gen \n  1, 0, 0 \  * for 1
  -P, 0, -a1 \  * for -Pe^{-a_1t}
  -(1-P), 0, -a2 \  * for -(1-P)e^{-a_2t}
or
  top A B
end
* print
cdf'(series; 0.05)
eval (series; 0.05) 0.5 1.5 0.5
end
```

P.172, chapter 9
e.g. Aircraft flight control system

![Diagram of aircraft flight control system]

bind

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mIRS</td>
<td>0.000015</td>
</tr>
<tr>
<td>mPRS</td>
<td>0.00099</td>
</tr>
<tr>
<td>mSA</td>
<td>0.000037</td>
</tr>
<tr>
<td>mCS</td>
<td>0.00048</td>
</tr>
</tbody>
</table>

* most susceptible to failure

* : use 4 CS components

end

* print
 * format 8
 * expr mean(aircraft)
 * eval (aircraft) 1000 10000 1000
 * expr value(10; aircraft) * unreliability

end

This means if 3 out of 4 fail then the subsystem fails
Fault Trees using SHARPE with repeated components
Ex: also see the example in Fig. 9.22
Ex:

\[
\text{ftree system}
\]

\[
\text{basic P}_1 \exp (\lambda P_1)
\]

\[
\text{basic P}_2 \exp (\lambda P_2)
\]

\[
\text{basic M}_1 \exp (\lambda M_1)
\]

\[
\text{basic M}_2 \exp (\lambda M_2)
\]

\[
\text{repeat M}_3 \exp (\lambda M_3)
\]

\[
\text{AND M}_1 M_3 \quad M_1 \quad M_3
\]

\[
\text{AND M}_2 M_3 \quad M_2 \quad M_3
\]

\[
\text{OR system}_1 \quad P_1 \quad M_1 M_3
\]

\[
\text{OR system}_2 \quad P_2 \quad M_2 M_3
\]

\[
\text{AND top system}_1 \quad \text{system}_2 \equiv \text{kofn system}_1 1, 2, P_1 M_1 M_3
\]

\[
\text{AND top system}_1 \quad \text{system}_2 \equiv \text{kofn top 2, 2, system}_1 \text{ system}_2
\]

* print reliability at time t

\[
\text{expr 1-value (t; system)}
\]
2.6 **Series-Parallel Block Diagrams with Components in common**
(Also called Network Reliability Models)

e.g.

```
  1 3 4
  
  2 3 5
```

Can be arranged as

- A parallel connection of series structures
- A series connection of parallel structures

Definition: a minimal path is a minimal set of components whose functioning ensures the functioning of the system.

Definition: a minimal cut is a minimal set of components whose failure ensures the failure of the system.
Q: how many minimal paths?
A: 4: \{1,3,5\}, \{1,4\}, \{2,5\}, \{2,3,4\}

Q: how many minimal cuts?
A: 4: \{1,2\}, \{4,5\}, \{1,3,5\}, \{2,3,4\}

Use parallel connection

There are series-parallel diagrams with common components
Another example: TMR is a 2-out-of-3 system

3 minimal paths:
\{1,2\} \{2,3\} \& \{1,3\}

Let $\phi(t)$ be a boolean variable indicating if the system is alive at time t, i.e.,
\[
\begin{align*}
\phi(t) &= 1 \text{ if alive} \\
\phi(t) &= 0 \text{ if dead}
\end{align*}
\]

Let $X_i(t)$ be a boolean variable indicating if component i is alive at time t, i.e.,
\[
\begin{align*}
X_i(t) &= 1 \text{ if alive} \\
X_i(t) &= 0 \text{ if dead}
\end{align*}
\]

\[
\phi(t) = 1 - \left[\left(1 - X_1X_2 \right) \left(1 - X_2X_3 \right) \left(1 - X_1X_3 \right) \right]
\]
\[
= 1 - \left(1 - X_1X_2 - X_2X_3 - X_1X_3 + X_1X_2X_3 + X_1X_2X_3^2 + X_1^2X_2X_3 - X_1^2X_2^2X_3^2 \right)
\]
\[
= 1 - \left(1 - X_1X_2 - X_2X_3 - X_1X_3 + 2X_1X_2X_3 \right)
\]

Due to $X_i^2 = X_i$ from X_i’s definition
Now

\[E[\phi(t)] = R(t) \]

\[\therefore E[\phi(t)] = 1 \cdot \{ \text{prob. it is alive at } t \} + 0 \cdot \{ \text{prob. it fails at } t \} = R(t) \]

\[\Rightarrow E[\phi(t)] = E\left[X_1X_2 + X_2X_3 + X_1X_3 - 2X_1X_2X_3 \right] \]

Terms each contain only independent components

\[= E[X_1X_2] + E[X_2X_3] + E[X_1X_3] - 2E[X_1X_2X_3] \]

\[\therefore R_{\text{system}} = R_1R_2 + R_2R_3 + R_1R_3 - 2R_1R_2R_3 \]

For identical components, \(R_1 = R_2 = R_3 \), \(R_{\text{system}} = 3R^2 - 2R^3 \)
Modeling with a Reliability Graph

* A reliability graph consists of nodes & directed arcs.
 - source node — no arcs enter it
 - target (sink) node — no arcs leave it

* A system represented by a reliability graph fails when there is no path from the source to the sink.

* arcs are associated with failure distribution (in cdf)
e.g.,

\[
\begin{array}{cccccc}
1 & & 2 & & \text{source} & \lambda_1 \\
& 3 & & & b & \lambda_2 \\
4 & & 5 & & c & \lambda_3 \\
& & & & & d & \lambda_4 \\
& & & & & \text{sink} & \lambda_5
\end{array}
\]

Arcs are associated with exponential distributions with rates λ_i’s.

```
relgraph bridge(v1, v2, v3, v4, v5)
  a  b  exp(v1)
  a  c  exp(v4)
  b  d  exp(v2)
  c  d  exp(v5)
end
```

```
output for pqcdf (bridge; \(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5\)):

\[
1 - (P(0:a,b)*P(1:b,d) + P(2:a,c)*P(3:c,d)*(1-P(0:a,b)*P(1:b,d)) + P(0:a,b)*Q(1:b,d)*Q(2:a,c)*P(3:c,d)*P(4:b,c) + Q(0:a,b)*P(1:b,d)*P(2:a,c)*Q(3:c,d)*P(4:b,c))
\]

meaning

\[
(1 - e^{-\lambda_1 t})
\]

```

The underlying technique for solving the model is minimal path set & minimal cut set.
What is the reliability graph corresponding to the fault tree model on the left?

Ans:

```
relgraph P 2M3shared
src 1 exp(lambda_P 1)
src 2 exp(lambda_P 2)
1         sink    exp(lambda_M1)
2         sink exp(lambda_M2)
share   sink    exp(lambda_M3)
1        share    inf
2        share    inf
end
* print reliability at time t
expr 1-value(t; P_2M_3shared)
end
```

This means
1 → share &
2 → share
links never fail

See p.353 Appendix B
specifying a component having all its mass
at ∞, i.e., F(t)=0
except at F(∞)=1