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Non-State-Space Models
1) Reliability block diagrams
2) Fault trees
3) Reliability graphs

Can be analyzed based on the individual 
components & info. about the system 
structure; the assumption is that the 
failure or repair of a component is not 
affected by other components.

State-Space Models
1) Markov — the “sojourn” time, i.e., the amount of time in a state, 

is exponentially distributed.
2) Semi-Markov — the “sojourn” time, i.e., the amount of time in a 

state can be any distribution.
When we associate “rewards” with states of Markov or Semi-Markov models, 
we have so called Markov reward models.

Chap. 4

Chap. 8

Chap. 6

3) Stochastic Petri Net Models — a concise & more intuitive 
representation for the Markov model.

When we associate “rewards” to the markings of the net, we have 
stochastic reward nets.

Chap. 7
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Markov Models (continuous-time)
Two main concepts in the Markov model are “system state” and

“state transition”.
Used to describe the system at any time. 
For reliability models, we frequently use 
faulty & non-faulty modules in the system.

Representing the change of state 
due to the occurrence of an event,
e.g., failures, repairs, etc.

Ex: TMR
System state representation:

where Si =     1  if module i is fault free
0  if module i is faulty

(S1, S2, S3)

(1,1,1) (0,0,0)
(1,1,0) (0,0,1)
(0,1,1) (0,1,0)
(1,0,1) (1,0,0)

States in
which the system

is operational

States in 
which the system 

has failed

How many of these?
2n n is # of components in the 

state representation
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State transition
)1,1,0()1,1,1( fails 1 modulewhen  

Assume that each module obeys 
the exponential failure law and has a 
constant failure rate . The prob. of 
module 1 being failed at time t+t, given 
that it was operational at time t, is given 
by  

The prob. that a transition will occur 
is determined by the prob. of failure,
fault coverage, prob. of repair, etc.

t...))t(1(1e1 !2
)t(t 2

 

Assume only one failure at a time. Then the state diagram of  TMR is as follows:

1,0,1

1,1,0

0,0,1

1,0,0

0,0,01,1,1

1.0

1-t

1-t

1-t1-2t

1-2t

1-2t

1-3t
t

t

t

t

t

0,1,1 0,1,0
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The Markov model can be simplified by combining states having the 
same # of non-failed modules, i.e.,

The aggregate transition rate is from the perspective of source state; 
there is only a single component in the state representation.


i

  at t} i statein   wasmprob{systet}at t j statein  mprob{syste
* prob{a single transition from 

i to j occurs within t}

)t(P)t(tP2)tt(P
)t(P)t21()t(tP3)tt(P

F2F

232




e.g. )t(P)t31()tt(P 33 
System is in 

state 3
at time t+t

Prob. of 
33 occurs

within time t

System was
at state 3
at time t

3 2 F 01

1-3t

3t

1-2t

2t
1-t

t

1.0

1.0



92

Rewriting the above three expressions, we have:




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
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
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
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
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
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

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)t(P2
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)t(dP

)t(P2)t(P3
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)t(dP

)t(P3
t

)t(P)tt(Plim
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)t(dP
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FF

0t

3
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0t

2

3
33

0t

3
























1

2

3

Or in matrix form as

or P’(t) = AP(t)
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* this can be derived directly from the following state-transition-rate
diagram

3 F23 2

negative: out
positive: in )(2)('

)(2)(3)('
)(3)('

2

232

33

tPtP
tPtPtP

tPtP

F 









The set of differential equations can be solved numerically or 
analytically. To solve it analytically, one approach is to use 
Laplace Transform.

Laplace transform of derivatives:
if L(F(t)) = f(s), then L(F’(t)) = sf(s)-F(0)

e.g., if L(P3(t))=P3(s), then L(P3’(t)) = sP3(s)-P3(0)

F(t) LT
inverse LT

L(F(t)) = f(s)

1
t
tn

eat

s
1

2
1
s

1
!
ns

n

as
1

Time
domain

Laplace
domain



94

Applying LT, we have sP3(s)-P3(0) = -3P3(s)
sP2(s)-P2(0) = 3P3(s)-2P2(s)
sPF(s)-PF(0) = 2PF(s)

3 F23 2

t3t2
F

t3t2
2

t3
3

e2e31)t(P
e3e3)t(P

e)t(P













Where P3(s) is the LF of P3(t)




























3s
2

2s
3

s
1

)3s)(2s(s
6)s(P &

3s
3

2s
3

)3s)(2s(
3)s(P   

3s
1)s(P

2

F

2

3

Apply the inverse LT
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For the TMR system, the system reliability is the sum of 

P3(t) + P2(t), i.e., 1 - PF(t)

tt

ttt
system

ee
eeeR





32

323

23         
33







 Same expression as we obtained earlier
using a reliability block diagram
or a fault tree model.

In sharpe:
markov main(lambda)

3     2    3*lambda
2     F    2*lambda

end
3     1.0

end
* print cdf=F(t) in symbolic form

cdf(main;0.000001) * same as cdf(main,F;0.000001)
* print F(t) at t = 0.2, 0.4, 0.6, 0.8, 1.0

eval(main,F;0.000001)  0.2   1.0   0.2
end
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Example: the 2P3m system

P1

P2
m3

m2

m1

)t(P)t(P)t(P)t(P)t(P)t(P)t(R 111221223132system 

Modeling 1-out-of-3 memory & 1-out-of-2 CPU:
the system is alive when at least one
memory and one CPU are alive

3, 2

3, 1

3, 0 2, 0

2, 1

2, 2

1, 0

1, 1

1, 2

0, 1

0, 2
2p 2p 2p

p p p

3m 2m m

3m 2m m

Fp Fp Fp

Fm

Fm

# of alive memory units

# of alive processors
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bind
lambdap 1/720 * MTTF of a processor
lambdam 1/(2*720)      * is 720 hrs
end * MTTF of a memory

* unit is 2*720 hrs
markov 2P3m
* memory failure

32    22    3*lambdam
22    12    2* lambdam
12    02    lambdam value(t; 2P3m) is the
31    21    3* lambdam prob. of being in an
21    11    2* lambdam absorbing state
11    01    lambdam at time t; 

* processor failure           value(t; 2P3m, 32) is
32    31    2*lambdap the prob. of being in
31    30    lambdap state 32 at time t.
22    21    2 * lambdap
21    20    lambdap
12    11    2 * lambdap
11    10     lambdap

end

* Q(t)
echo Q(t) is as follows:
cdf (2P3m)
* R(t) can be found by  
* “expr 1-value(t;2P3m)”;
* it can also be found by 
* defining my own function 
* called gp(t) below
func gp(t) value(t;2P3m,32)\

+value(t;2P3m,22)\
+…..\
+value(t;2P3m,11)

* R(1 hr)
* print reliability(t=1 hr)
expr 1-value(1;2P3m)
* use loop to print R(t) at 
* different values
loop t, 0.5, 1, 0.1
expr gp(t)
end
end

32    1.0
end
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Availability Modeling

P1

P2 m3

m2

m1

p
m

p
m

k-out-of-n 
memory 
subsystem

Case 1: Independent repairman model, i.e., all components 
have own repair facility and can be repaired independently

t)(

mm

m

mm

m
m

t)(

pp

p

pp

p
p

mm

pp

e)t(U

e)t(U
























unavailability
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See p.354 text on a user-defined
distribution      syntax:

poly  name(param-list) dist.

tbk

j
j

jj eta)t(F 

When defining a component, 
use unreliability F(t) for 
reliability modeling, and use
unavailability U(t) or         
for availability modeling. 

)(tA

gen\
triple\
triple

of the form
aj, kj, bj

bind
lambdap 1/720
lambdam 1/(2*720)
mup 1/4 MTTR = 4 hrs
mum           1/2
end
poly U(lambda,mu)  gen\

lambda/(lambda+mu), 0, 0\
-lambda/(lambda+mu), 0, -(lambda+mu)

block case1 (k,n)
comp          proc  U(lambdap, mup)
comp          mem U(lambdam, mum)
parallel procs     proc     proc
kofn mems    k, n, mem
series top         procs      mems
end
loop k, 1,3,1
* availability at the steady state (when t = )

expr pinf(case1; k, 3)
* instantaneous availability at t=100

expr 1-value(100;case1;k, 3)
end
end
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Case 2: There is only 1 repair facility capable of repairing one 
component at a time, with processor repair having a higher 
priority over memory repair.

Assume that the system 
is up when at least 1 
processor & 1 memory 
are up. 

When the system is in a 
failure state, it halts until 
it is repaired to become 
operational again, so no 
further component 
failure will occur in a 
failure state

No, because processor repair 
takes priority over memory repair

3, 2

3, 1

3, 0 2, 0

2, 1

2, 2

1, 0

1, 1

1, 2

0, 1

0, 2
2p 2p 2p

p p p

3m 2m m

3m 2m m

memory
processor

mmm

ppp

ppp

? 


m

p
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bind
lambdap 1/720
lambdam 1/(2*720)
mup 1/4
mum             1/2

end
markov M
* memory failure
32   22   3*lambdam



* processor failure


* processor repair
30   31   mup
31   32   mup
20   21   mup
21   22   mup
10   11   mup
11   12   mup
01   02   mup
* memory repair
22   32   mum
12   22   mum
02   12  mum
end

Same as  
before in 
the 2P3m
Markov 
model

for 
reliability
modeling

* steady state unavailability
expr prob(M,30)+prob(M,20)+\

prob(M,10)+prob(M,01)+prob(M,02)
* for unavailability at time t = 1 hr

expr tvalue(1; M, 30)\
+tvalue(1; M, 20)\
+tvalue(1; M, 10)\
+tvalue(1; M, 02)\
+tvalue(1; M, 01) 

end

Sharpe code for 
availability modeling of 

Case 2
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Modeling Near-Coincident  Fault using a Markov Model
(Section 9.4.1)System Description:

1. 4 CPUs & 3 memories (p & m are failure rates). The system 
must  have at least 2 CPUs & 2 memories working.

2. When a CPU or memory fails, the system can reconfigure to 
remove the failed component.

3. Reconfiguration fails iff a second failure of the same 
component type (as the failed component) occurs during the      
reconfiguration period. The system cannot cope with such a
near-coincident fault, i.e., the system fails if such a near-

coincident fault occurs during the reconfiguration period.
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4. Reconfiguration rate is 
F

3,3

3,2

2,3

2,2

4,3

4,2

F

4Pc(4,P)

4Pc(4,P)

3Pc(3,P)

3Pc(3,P)

3mc(3,m) 3mc(3,m) 3mc(3,m)

3P*(1-c(3,P))
+ 3m*(1-c(3,m))

3P*(1-c(3,P))+2m

Here c(n,) means the coverage factor when 1 out of n components 
(with failure rate ) fails: it is the probability that the system can 
successful perform a reconfiguration using the remaining 
n-1 components.




)1(
),(




n
nc
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fault recovered

Time to occur: 
(T2)

F

(n-1)(T1)
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)1n(

 when t = 
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In general (even for non-exponential distribution)

Laplace Tranform for F(t) is

as
1                
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pdf of T2

prob. {t <T1}

pdf for T2

fault recovered
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Sharpe code: func c(n, )\
alpha/(alpha+(n-1)*)

bind
alpha   360

end
markov sift(p,m)

43          33 4*p*c(4,p)
33          23 3*p*c(3,p)
42          32 4*p*c(4,p)
32          22 3*p*c(3,p)
43          42 3*m*c(3,m)
33          32 3*m*c(3,m)
23          22 3*m*c(3,m)

* to failure state
43          F 4*p*(1-c(4,p))+3* m*(1-c(3,m))
33          F 3*p*(1-c(3,p))+3* m*(1-c(3,m))
23          F 2*p+3* m*(1-c(3,m))
42          F 4*p*(1-c(4,p))+2* m
32          F 3*p*(1-c(3,p))+2* m 
22          F 2*p+2* m

end
43         1.0

end
expr mean(sift, F; 0.0001, 0.00001)
expr 1-value(10;sift;0.0001,0.00001)
end


