Non-State-Space Models
1) Reliability block diagrams
2) Fault trees
3) Reliability graphs

Can be analyzed based on the individual components & info. about the system structure; the assumption is that the failure or repair of a component is not affected by other components.

State-Space Models
1) Markov — the “sojourn” time, i.e., the amount of time in a state, is exponentially distributed.

 Chap. 4

2) Semi-Markov — the “sojourn” time, i.e., the amount of time in a state can be any distribution.

 Chap. 8

When we associate “rewards” with states of Markov or Semi-Markov models, we have so called Markov reward models.

 Chap. 6

3) Stochastic Petri Net Models — a concise & more intuitive representation for the Markov model.

 Chap. 7

When we associate “rewards” to the markings of the net, we have stochastic reward nets.
Markov Models (continuous-time)

Two main concepts in the Markov model are “system state” and “state transition”.

- Representing the change of state due to the occurrence of an event, e.g., failures, repairs, etc.
- Used to describe the system at any time.

For reliability models, we frequently use faulty & non-faulty modules in the system.

Ex: TMR

System state representation:

\[(S_1, S_2, S_3) \text{ where } S_i = \begin{cases}
1 & \text{if module } i \text{ is fault free} \\
0 & \text{if module } i \text{ is faulty}
\end{cases}\]

- \((1,1,1)\)
- \((1,1,0)\)
- \((0,1,1)\)
- \((1,0,1)\)

States in which the system is operational

- \((0,0,0)\)
- \((0,0,1)\)
- \((0,1,0)\)
- \((1,0,0)\)

States in which the system has failed

How many of these?

\[2^n\]

\(n\) is # of components in the state representation
State transition

\[(1,1,1) \xrightarrow{\text{when module 1 fails}} (0,1,1)\]

Assume that each module obeys the exponential failure law and has a constant failure rate \(\lambda \). The prob. of module 1 being failed at time \(t+\Delta t \), given that it was operational at time \(t \), is given by

\[1 - e^{-\lambda \Delta t} \approx 1 - (1 + (-\lambda \Delta t) + \frac{(-\lambda \Delta t)^2}{2!} + ...) \approx \lambda \Delta t\]

:. Assume only one failure at a time. Then the state diagram of TMR is as follows:
The Markov model can be simplified by combining states having the same # of non-failed modules, i.e.,

\[\sum \text{prob}\{\text{system in state } j \text{ at } t + \Delta t\} = \sum \text{prob}\{\text{system was in state } i \text{ at } t\} \]

\[\times \text{prob}\{\text{a single transition from } i \text{ to } j \text{ occurs within } \Delta t\} \]

e.g. \[P_3(t + \Delta t) = (1 - 3\lambda \Delta t)P_3(t) \]

System is in state 3 \[\text{Prob. of } 3 \rightarrow 3 \text{ occurs at state 3} \]
System was at time \(t+\Delta t \) \[\text{within time } \Delta t \text{ at time } t \]

\[P_2(t + \Delta t) = 3\lambda \Delta t P_3(t) + (1 - 2\lambda \Delta t)P_2(t) \]

\[P_F(t + \Delta t) = 2\lambda \Delta t P_2(t) + P_F(t) \]
Rewriting the above three expressions, we have:

\[
\frac{dP_3(t)}{dt} = \lim_{\Delta t \to 0} \frac{P_3(t + \Delta t) - P_3(t)}{\Delta t} = -3\lambda P_3(t) \quad (1)
\]

\[
\frac{dP_2(t)}{dt} = \lim_{\Delta t \to 0} \frac{P_2(t + \Delta t) - P_2(t)}{\Delta t} = 3\lambda P_3(t) - 2\lambda P_2(t) \quad (2)
\]

\[
\frac{dP_3(t)}{dt} = \lim_{\Delta t \to 0} \frac{P_F(t + \Delta t) - P_F(t)}{\Delta t} = 2\lambda P_2(t) \quad (3)
\]

Or in matrix form as

\[
\begin{bmatrix}
P'_3(t) \\
P'_2(t) \\
P'_F(t)
\end{bmatrix} =
\begin{bmatrix}
-3\lambda & 0 & 0 \\
3\lambda & -2\lambda & 0 \\
0 & 2\lambda & 0
\end{bmatrix}
\begin{bmatrix}
P_3(t) \\
P_2(t) \\
P_F(t)
\end{bmatrix}
\]

or

\[P'(t) = AP(t)\]
* this can be derived directly from the following state-transition-rate diagram

```
3  3λ → 2  2λ → F

negative: out  positive: in
```

\[\begin{align*}
P_3'(t) &= -3\lambda P_3(t) \\
P_2'(t) &= 3\lambda P_3(t) - 2\lambda P_2(t) \\
P_F'(t) &= 2\lambda P_2(t)
\end{align*} \]

The set of differential equations can be solved numerically or analytically. To solve it analytically, one approach is to use

Laplace Transform.

\[F(t) \overset{LT}{\rightarrow} L(F(t)) = f(s) \]

\[
\begin{array}{c|c|c}
\text{Time domain} & \text{1} & \text{Laplace domain} \\
\hline
\text{1} & \frac{1}{t} & \frac{1}{s} \\
\text{t} & \frac{1}{t^2} & \frac{1}{s^2} \\
\text{t}^n & \frac{1}{n!} & \frac{1}{s^n} \\
e^{at} & \frac{1}{s-a} & \\
\end{array}
\]

Laplace transform of derivatives:

if \(L(F(t)) = f(s) \), then \(L(F'(t)) = sf(s) - F(0) \)

e.g., if \(L(P_3(t)) = P_3(s) \), then \(L(P_3'(t)) = sP_3(s) - P_3(0) \)
Applying LT, we have

\[sP_3(s) - P_3(0) = -3\lambda P_3(s) \]
\[sP_2(s) - P_2(0) = 3\lambda P_3(s) - 2\lambda P_2(s) \]
\[sP_F(s) - P_F(0) = 2\lambda P_F(s) \]

Where \(P_3(s) \) is the LF of \(P_3(t) \)

\[\therefore P_3(s) = \frac{1}{s + 3\lambda} \]

\[P_2(s) = \frac{3\lambda}{(s + 2\lambda)(s + 3\lambda)} = \frac{3}{s + 2\lambda} + \frac{-3}{s + 3\lambda} \]

\[& P_F(s) = \frac{6\lambda^2}{s(s + 2\lambda)(s + 3\lambda)} = \frac{1}{s} + \frac{-3}{s + 2\lambda} + \frac{2}{s + 3\lambda} \]

Apply the inverse LT

\[\therefore P_3(t) = e^{-3\lambda t} \]

\[P_2(t) = 3e^{-2\lambda t} - 3e^{-3\lambda t} \]

\[P_F(t) = 1 - 3e^{-2\lambda t} + 2e^{-3\lambda t} \]
For the TMR system, the system reliability is the sum of

\(P_3(t) + P_2(t) \), i.e., \(1 - P_F(t) \)

\[
R_{system} = e^{-3\lambda t} + 3e^{-2\lambda t} - 3e^{-3\lambda t} = \frac{3e^{-2\lambda t} - 2e^{-3\lambda t}}{e^{\lambda t} - 2}
\]

Same expression as we obtained earlier using a reliability block diagram or a fault tree model.

In sharpe:

```sharpe
markov main(lambda)
  3  2  3*lambda
  2  F  2*lambda
end
3  1.0
end
* print cdf=F(t) in symbolic form
  cdf(main;0.000001) * same as cdf(main,F;0.000001)
* print F(t) at t = 0.2, 0.4, 0.6, 0.8, 1.0
  eval(main,F;0.000001) 0.2  1.0  0.2
end
```
Example: the 2P3m system

Modeling 1-out-of-3 memory & 1-out-of-2 CPU: the system is alive when at least one memory and one CPU are alive

\[R_{\text{system}}(t) = P_{32}(t) + P_{31}(t) + P_{22}(t) + P_{21}(t) + P_{12}(t) + P_{11}(t) \]
bind
lambdap 1/720 * MTTF of a processor
lambdam 1/(2*720) * is 720 hrs
* MTTF of a memory
end

markov 2P3m
* memory failure
 32 22 3* lambdam
 22 12 2* lambdam
 12 02 lambdam
 31 21 3* lambdam
 21 11 2* lambdam
 11 01 lambdam
* processor failure
 32 31 2* lambdap
 31 30 lambdap
 22 21 2* lambdap
 21 20 lambdap
 12 11 2* lambdap
 11 10 lambdap
end

* Q(t)
echo Q(t) is as follows:
cdf (2P3m)
* R(t) can be found by
* “expr 1-value(t;2P3m)”;
* it can also be found by
* defining my own function
* called gp(t) below
func gp(t) value(t;2P3m,32)\
 +value(t;2P3m,22)\
 +.....\
 +value(t;2P3m,11)
* R(1 hr)
* print reliability(t=1 hr)
expr 1-value(1;2P3m)
* use loop to print R(t) at
* different values
loop t, 0.5, 1, 0.1
expr gp(t)
end
end
Availability Modeling

Case 1: Independent repairman model, i.e., all components have own repair facility and can be repaired independently

unavailability

\[U_p(t) = \frac{\lambda_p}{\lambda_p + \mu_p} - \frac{\lambda_p}{\lambda_p + \mu_p} e^{-(\lambda_p+\mu_p)t} \]

\[U_m(t) = \frac{\lambda_m}{\lambda_m + \mu_m} - \frac{\lambda_m}{\lambda_m + \mu_m} e^{-(\lambda_m+\mu_m)t} \]
See p.354 text on a user-defined distribution syntax:
```
poly name(param-list) dist.
```

- \(\text{gen}\) of the form triple \(a_j, k_j, b_j\)

\[
F(t) = \sum_{j} a_j \cdot t^{k_j} \cdot e^{b_j t}
\]

When defining a component, use unreliability \(F(t)\) for reliability modeling, and use unavailability \(U(t)\) or \(\overline{A(t)}\) for availability modeling.
Case 2: There is only 1 repair facility capable of repairing one component at a time, with processor repair having a higher priority over memory repair.

Assume that the system is up when at least 1 processor & 1 memory are up.

When the system is in a failure state, it halts until it is repaired to become operational again, so no further component failure will occur in a failure state.

No, because processor repair takes priority over memory repair.
Same as before in the 2P3m Markov model for reliability modeling

```sharpe
bind
  lambdap 1/720
  lambdam 1/(2*720)
  mup 1/4
  mum 1/2
end
markov M
  * memory failure
    32 22 3*lambdam
    :
  * processor failure
    : :
  * processor repair
    30 31 mup
    31 32 mup
    20 21 mup
    21 22 mup
    10 11 mum
    11 12 mum
    01 02 mum
  * memory repair
    22 32 mum
    12 22 mum
    02 12 mum
end
```

* steady state unavailability
 expr prob(M,30)+prob(M,20)+\prob(M,10)+prob(M,01)+prob(M,02)
* for unavailability at time t = 1 hr
 expr tvalue(1; M, 30)\+tvalue(1; M, 20)\+tvalue(1; M, 10)\+tvalue(1; M, 02)\+tvalue(1; M, 01)
end

Sharpe code for availability modeling of Case 2
Modeling Near-Coincident Fault using a Markov Model

System Description: (Section 9.4.1)

1. 4 CPUs & 3 memories (λ_p & λ_m are failure rates). The system must have at least 2 CPUs & 2 memories working.

2. When a CPU or memory fails, the system can reconfigure to remove the failed component.

3. Reconfiguration fails iff a second failure of the same component type (as the failed component) occurs during the reconfiguration period. The system cannot cope with such a near-coincident fault, i.e., the system fails if such a near-coincident fault occurs during the reconfiguration period.
4. Reconfiguration rate is \(\alpha \)

Here \(c(n, \lambda) \) means the coverage factor when 1 out of \(n \) components (with failure rate \(\lambda \)) fails: it is the probability that the system can successful perform a reconfiguration using the remaining \(n-1 \) components.

\[
c(n, \lambda) = \frac{\alpha}{\alpha + (n - 1) \lambda}
\]
Time to occur:

\[(T_1) \quad (n-1)\lambda \]

\[F \]

\[\alpha \]

\[(T_2) \]

Fault \xrightarrow{\alpha} \text{recovered}

Probability of

Fault \xrightarrow{} \text{recovered}

\[
\text{Probability of fault recovered} = \frac{\alpha}{(n-1)\lambda + \alpha} \\
\text{when } t = \infty
\]

\[
P_{\text{fault}}(t) = e^{-((n-1)\lambda+\alpha)t} \\
P_{\text{recovered}}(t) = \frac{\alpha}{(n-1)\lambda + \alpha} (1 - e^{-((n-1)\lambda+\alpha)t}) \\
R_F(t) = \frac{(n-1)\lambda}{(n-1)\lambda + \alpha} (1 - e^{-((n-1)\lambda+\alpha)t})
\]
In general (even for non-exponential distribution)

\[
\text{prob of fault} \rightarrow \text{recovered}
\]

\[
= \text{prob} \ \{T_2 < T_1\} \ \text{pdf of } T_2
\]

\[
= \int_0^\infty \text{prob} \ \{t < T_1\} f_{T_2}(t) \, dt
\]

\[
= \int_0^\infty e^{-(n-1)\lambda t} \cdot \alpha e^{-\alpha t} \, dt
\]

\[
= \frac{\text{prob. } \{t < T_1\}}{\alpha}
\]

\[
= \frac{1}{(n - 1) \lambda + \alpha}
\]

Laplace Transform for \(F(t) \) is

\[
f(s) = \int_0^\infty e^{-st} F(t) \, dt
\]

if \(F(t) = e^{-at} \)

then \(f(s) = \int_0^\infty e^{-st} \cdot e^{-at} \, dt \)

\[
= \frac{1}{s + a}
\]
Sharpe code:

```sharpe
func c(n, \lambda)\n    alpha/(alpha+(n-1)*\lambda)
bind
    alpha 360
end
markov sift(\lambda.p,\lambda.m)
    43 33 4*\lambda.p*c(4,\lambda.p)
    33 23 3*\lambda.p*c(3,\lambda.p)
    42 32 4*\lambda.p*c(4,\lambda.p)
    32 22 3*\lambda.p*c(3,\lambda.p)
    43 42 3*\lambda.m*c(3,\lambda.m)
    33 32 3*\lambda.m*c(3,\lambda.m)
    23 22 3*\lambda.m*c(3,\lambda.m)
end

* to failure state
    43 F 4*\lambda.p*(1-c(4,\lambda.p))+3* \lambda.m*(1-c(3,\lambda.m))
    33 F 3*\lambda.p*(1-c(3,\lambda.p))+3* \lambda.m*(1-c(3,\lambda.m))
    23 F 2*\lambda.p+3* \lambda.m*(1-c(3,\lambda.m))
    42 F 4*\lambda.p*(1-c(4,\lambda.p))+2* \lambda.m
    32 F 3*\lambda.p*(1-c(3,\lambda.p))+2* \lambda.m
    22 F 2*\lambda.p+2* \lambda.m
end

43 1.0
end
expr mean(sift, F; 0.0001, 0.00001)
expr 1-value(10;sift;0.0001,0.00001)
end
```