Non-Sta@-Sp ace MOdGlS Can be analyzed based on the individual
1) Reliability block diagrams components & info. about the system
2) Fault trees structure; the assumption is that the

3) Reliability graphs failure or repair of a component 1s not
affected by other components.

State-Space Models
{ 1) Markov — the “sojourn” time, 1.e., the amount of time 1n a state,

Chap. 4 is exponentially distributed.
2) Semi-Markov — the “sojourn” time, 1.e., the amount of time in a

Chap.8 state can be any distribution.

When we associate “rewards’” with states of Markov or Semi-Markov models,

we have so called Markov reward models.
Chap. 6

3) Stochastic Petr1 Net Models — a concise & more intuitive
Chap. 7 .
representation for the Markov model.

When we associate “rewards” to the markings of the net, we have
stochastic reward nets.
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Markov Models (continuous-time)

Two main concepts in the Markov model are “system state” and

“state transition”.
— Used to describe the system at any time.
Representing the change of state For reliability models, we frequently use

due to Fhe occurrence of an event, faulty & non-faulty modules in the system.
e.g., failures, repairs, etc.

Ex: TMR
System state representation:

(S;, S,, S;) where S, = { 1 1f module 1 1s fault free
0 if module 1 is faulty

(1,1,1) (0,0,0) ™~

E(l)i(g Eg’(l)’(lg How many of these?

(1:0:1) (1:020) 22— nis#of compongnts in the
States in | D state representation
P States 1n

which the system

: : which the system
1S operational

has failed
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State transition

(1,1,1) when module 1 fails )(O,l,l)

Assume that each module obeys

the exponential failure law and has a The prob. that a transition will occur
constant failure rate A. The prob. of is determined by the prob. of failure,
module 1 being failed at time t+At, given fault coverage, prob. of repair, etc.

that it was operational at time t, 1s given
BY]— e 51— (14 (=AAL) + T2 4 ) ~ AAL

2!

.. Assume only one failure at a time. Then the state diagram of TMR 1is as follows:

1-3AAt

1,1,1
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The Markov model can be simplified by combining states having the
same # of non-failed modules, 1.e., 1.0
1-3%At 1-2)At W

3MAL sz t
% “2) 1 At

The aggregate transition rate 1s from the perspective of source state;
there 1s only a single component in the state representation.

.

prob{system in state jat t + At} = Z prob{system was in state1at t}
i * prob{a single transition from

e.g. Pi(t+At) = (1-31At)P3(t) 1to J occurs within At}
~~ ~ \ﬁ(_/
System 1s in Prob. of  System was
state 3 3—3 occurs  at state 3

at time t+At  within time At  at time t

Pa(t + At) = 3AAtP3(1) + (1 — 2AAL)P2(t)
Pr(t + At) = 2AAtP2(t) + Pr(t)
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Rewriting the above three expressions, we have:

dPs(t) P3(t + At) —Ps(t)

il it At =P O
dP;t(t) - im Pa(t + AAt: PO 356y AP )
dP(;t(t) i PP AAtz PO b ©
Or in matrix formas  [py(t)] =34 0 O Ps(t)]

P2'(t) [=| 34 —=2A O] Pz(t)
| Pr'(t) | 0 20 0] Pr(t)

or P’(t)=AP(t)




* this can be derived directly from the following state-transition-rate
diagram

3%, 2 T P3'(1) = =34Ps(t)
negative: out P2'(t) = 3APs3(t) — 2AP2(t)
positive: 1n PE'(t) = 2AP2(t)
The set of differential equations can be solved numerically or

analytically. To solve 1t analytically, one approach is to use
Laplace Transform. LT | _
F(1) < i L(F(t)) = f(s)

IMverse

: 1 L
Time | s Laplace

domain o domain
Sn-¢-1

eat 1

Laplace transform of derivatives:
if L(F(t)) = f(s), then L(F’(t)) = sf(s)-F(0)
e.g., if L(P5(t))=P5(s), then L(P;’(t)) = sP5(s)-P5(0)
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. Applying LT, we have sP;(s)-P;(0) = -3AP;(s)
sP,(s)-P,(0) = 3AP;(s)-2AP,(s)
SP(s)-P£(0) = 2AP(s)
Where P;(s) 1s the LF of P4(t)
1

S Pa(s) = Yy
Pa(s) = 3A _ 3 L= 3
(s+2A)(s+3LX) s+2A s+ 3A
& Pr(s) = 61" _r, -3 2
Cs(s+2A)s+3A) s s+ 2A s+ 3A
Apply the inverse LT
. Py(t)=e™"

)Z(t) — 36_2}Lt . 36—37\.'[ @ 37& ;@ 27& =@
Pr(t) =1-3e™*" 4+ 2
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For the TMR system, the system reliability is the sum of

P,(t) + Py(), i.e., 1 - Px(t)

Rsystem = e_Mt + 39_2M — 39_3M

— 3e—2/1'[ _2e—3/7.'[

In sharpe:

3 2 3*lambda
2 F 2*lambda
end
3 1.0
- end

~ markov main(lambda)

Same expression as we obtained earlier
using a reliability block diagram
or a fault tree model.

* print cdf=F(t) in symbolic form

cdf(main;0.000001)

* same as cdf(main,F;0.000001)

* print F(t) att=0.2, 0.4, 0.6, 0.8, 1.0
eval(main,F;0.000001) 0.2 1.0 0.2

end
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# of alive memory units

# of alive processors

Example: the 2P3m system
2%,

3km ZKm Am
—>
//P —» ‘
4 g 3Am ZKm Km
R Ho
[ \ —p

Modeling 1-out-of-3 memory & 1-out-of-2 CPU:
the system 1s alive when at least one
memory and one CPU are alive

Rsystem(t) = P, (t)+ Py, (t)+ P,, (t)+ P,, (t)+ P, (t)+ P, (t)
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bind

lambdap
lambdam

end

1/720
1/(2%720)

markov

2P3m

* memory failure

32
22
12
31
21
11

22
12
02
21
11
01

3*lambdam
2* lambdam
lambdam

3* Jambdam

2* Jambdam
lambdam

* processor failure

32
31
22
21
12
11
end

32

end

31
30
21
20
11
10

1.0

2*lambdap
lambdap

2 * lambdap
lambdap

2 * lambdap
lambdap

* MTTF of a processor
*1s 720 hrs

* MTTF of a memory
*unit 1s 2*720 hrs

value(t; 2P3m) is the
prob. of being in an
absorbing state

at time t;

value(t; 2P3m, 32) is
the prob. of being in
state 32 at time t.

*Q(t)

echo Q(t) is as follows:

cdf (2P3m)

* R(t) can be found by

* “expr 1-value(t;2P3m)”;

* 1t can also be found by

* defining my own function

* called gp(t) below

func gp(t) value(t;2P3m,32)\
+value(t;2P3m,22)\
+...000\
+value(t;2P3m,11)

* R(1 hr)

* print reliability(t=1 hr)

expr 1-value(1;2P3m)

* use loop to print R(t) at

* different values

loop t,0.5,1,0.1

expr  gp(t)

end

end
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Availability Modeling

A, A

P, m k-out-of-n
m, memory

P, subsystem
M,

Hyp
Hm

Case 1: Independent repairman model, 1.e., all components
have own repair facility and can be repaired independently

unavailability ) = 7bp kp e—(xpwp)t
i _ _
Ap FHy Ay
A A
Um (t) — m m e—(XmeHm)t

%m+um_%m+um
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bind
lambdap 1/720
lambdam 1/(2*720)

mup 1/4 <MTTR =4 hrs
mum 1/2
end

poly U(lambda,mu) gen\
lambda/(lambda+mu), 0, O\
-lambda/(lambda+mu), 0, -(lambda+mu)
block casel (k,n)
comp proc U(lambdap, mup)

comp mem U(lambdam, mum)
parallel  procs proc proc
kofn mems Kk, n, mem
series top procs  mems
end

loop k, 1,3,1

* availability at the steady state (when t = o)
expr pinf(casel; k, 3)

* Iinstantaneous availability at t=100
expr 1-value(100;casel;k, 3)

end

end

See p.354 text on a user-defined
distribution  syntax:
poly name(param-list) dist.

——
gen\

of the form, — triple\
a. k.b. triple

P orT)

bt

F(t)=2>a, 49"
]

When defining a component,
use unreliability F(t) for
reliability modeling, and use
unavailability U(t) or A(t)
for availability modeling.
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Case 2: There 1s only 1 repair facility capable of repairing one
component at a time, with processor repair having a higher

priority over memory repair.

memory

processor

No, because processor repair

Assume that the system
1s up when at least 1
processor & 1 memory
are up.

When the system 1s in a
failure state, 1t halts until
it 1s repaired to become
operational again, so no
further component
failure will occur in a
failure state

takes priority over memory repair 100



Same as

before i
the 2P3m N {

Markov
model
for
reliability
modeling

end

bind
lambdap
lambdam
mup
mum

/ markov M

30
31
20
21
10
11
01

31
32
21
22
11
12
02

mup
mup
mup
mup
mup
mup
mup

1/720
1/(2%720)
1/4

1/2

* memory failure
{ 32 22 3*lambdam

* processor failure

* processor repair

* memory repair
22 32 mum
12 22 mum

\\ 02 12 mum
end

* steady state unavailability
expr prob(M,30)+prob(M,20)+\

prob(M,10)+prob(M,01)+prob(M,02)

* for unavailability at time t =1 hr
expr tvalue(1l; M, 30)\

end

+tvalue(1; M, 20)\
+tvalue(1; M, 10)\
+tvalue(1; M, 02)\
+tvalue(1; M, 01)

Sharpe code for
availability modeling of
Case 2
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Modeling Near-Coincident Fault using a Markov Model
System Description:  (Section 9.4.1)

1. 4 CPUs & 3 memories (A, & A, are failure rates). The system
must have at least 2 CPUs & 2 memories working.

2. When a CPU or memory fails, the system can reconfigure to
remove the failed component.

3. Reconfiguration fails 1ff a second failure of the same
component type (as the failed component) occurs during the
reconfiguration period. The system cannot cope with such a
near-coincident fault, 1.e., the system fails if such a near-
coincident fault occurs during the reconfiguration period.
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4. Reconfiguration rate 1s o,
@J@)

- 2
AN?% % 0_0(5 ,'MN Y 3)522 *(
LY I *(1-c(3.4p)) o3,
/ + 30, *(1-c(3,1,)) )

»
L

3hpc(@ ) 3.3 7 3h,eG0)
3G,k

470 hp) ’@ 3703 hp)

4, % 3hp*(1-¢(3,hp)) 20
72 P P m
(1 4, L
’ P))$24 ”LM
n

Here c(n,A) means the coverage factor when 1 out of n components
(with failure rate A) fails: 1t is the probability that the system can

successful perform a reconfiguration using the remaining
n-1 components.

o
a+(nh-1HA

c(n,A) =
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Time to occur:

(T,) Probability of

Cault % wreeovered gy - recovered
0

(Tl)<l>(n—1)k
C(n-DA+

P (1) =& |
. whent= o
P ocovereq (1) = ——o—— (1—g D&ty
(N-DA+«a

(n—1H)A
(n-DA+a

RF (t) = (1— e—((n—l)/1+a)t)

104



In general (even for non-exponential distribution)

prob of

= prob {T, < T,}

pdf of T,
= Jprob {t < T, }f; (t)dt
’ pdf for T,

_ J'e—(n—l)kt Coe %tdt
0

prob. {t <T,}
04

m -1\ + a

Laplace Tranform for F(t) 1s
f(s) = [e “F(t)dt

0
if F(t)=¢ ™

then f(s)= [e ™ e “dt

S — 8

1
s+ a
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Sharpe code:

func c(n, )\

alpha/(alpha+(n-1)*))

bind
alpha 360

end

markov sift(Ap,Am)
43 33
33 23
42 32
32 22
43 42
33 32
23 22

* to failure state
43 F
33 F
23 F
42 F
32 F
22 F

end
43 1.0

end

expr

expr

end

4*Ap*c(4,\p)
3*Ap*c(3,Ap)
4*Ap*c(4,\p)
3*Ap*c(3,Ap)
3*Am*c(3,Am)
3*Am*c(3,Am)
3*Am*c(3,Am)

4* p*(1-c(4,Ap))+3* Am*(1-c(3,Am))
3*Ap*(1-¢(3,Ap))+3* Am*(1-c(3,Am))
2*¥Ap+3* Am*(1-c(3,Am))

4% p*(1-c(4,Ap))+2* Am
3*Ap*(1-c(3,Ap))+2* Am

2¥Ap+2* Am

mean(sift, F; 0.0001, 0.00001)
1-value(10;s1ft;0.0001,0.00001)
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