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Abstract—The integration of social networking concepts into
the Internet of Things has led to the Social Internet of Things
paradigm, according to which objects are capable of establishing
social relationships in an autonomous way with respect to their
owners with the benefits of improving the network scalability in
information/service discovery.

Within this scenario, we focus on the problem of under-
standing how the information provided by members of the social
IoT has to be processed so as to build a reliable system on the
basis of the behavior of the objects. We define two models for
trustworthiness management starting from the solutions proposed
for P2P and social networks. In the subjective model each node
computes the trustworthiness of its friends on the basis of its
own experience and on the opinion of the friends in common
with the potential service providers. In the objective model, the
information about each node is distributed and stored making use
of a Distributed Hash Table structure so that any node can make
use of the same information. Simulations show how the proposed
models can effectively isolate almost any malicious nodes in the
network at the expenses of an increase in the network traffic for
feedback exchange.

Index Terms—Internet of Things, social networks, trustwor-
thiness management

I. INTRODUCTION

The Internet of the Future (IoF) is expected to be dom-

inated by huge content-oriented traffic, intensive interactions

between billions of persons often on the move, heterogeneous

communications among hosts and smart objects, and provi-

sioning of millions of (new) services, with strict real-time

requirements and striking flexibility in connecting everyone

and everything. Key component of the IoF is then the Internet

of Service (IoS), which is aimed at making every possible

service (from the management of the own house pantry to

the management of the whole company production process)

widely and easily available through the Internet yielding to

higher productivity. Strictly linked to the IoS is the Internet of

Things (IoT), which is aimed at embodying into the Internet a

large number of objects that through standard communication

protocols and unique addressing schemes provide services to

the final users. IoT is then somehow a part of the IoS when

the information provided by the objects are seen as services,

which are specifically aimed at making information about the

physical world available on the Internet [1].

A big value of the IoF resides on its ability to create

powerful network of resources, i.e. in making resources social.

Such social relationships would great facilitate the discovery

of resources that have the capabilities required to solve a

particular task. To achieve this goal the IoF should be endowed

with the ability to define, build, manage, and access social

relationships between resources. Whereas this is currently

a reality for the relationships among humans through the

technologies for the social Web, still great efforts are needed

for an effective management of the social relationships for

the other types of resources with only high-level solutions

appeared on the literature.

In the IoT world, there are interesting papers that proposed

the introduction of social relationships among objects. For

instance, in [2] the authors introduce the idea of objects able to

participate in conversations that were previously only available

to humans. Analogously, the research activities reported in [3]

consider that, being things involved into the network together

with people, social networks can be built based on the Internet

of Things and are meaningful to investigate the relations and

evolution of objects in IoT. This has also brought to the

convergence of IoT and social network paradigms, as analyzed

in [4], which depicts the scenarios where an individual can

share the services offered by her smart objects with her friends

or their things through widespread social networks. In [5] and

[6], explicitly, the Social IoT (SIoT) concept is formalized,

which is intended as a social network where every node is

an object capable of establishing social relationships with

other things in an autonomous way according to rules set

by the owner. This new paradigm is also stimulated by the

concept that the many are smarter than the few [7], so that

objects should interact intensely to converge to opinions and

information supported by the crowd.

Until now, in these proposals the focus has been directed

to the definition of the relationships and interactions among

objects and to the definition of reference architectures and

protocols. But the paradigm still lacks in some basics aspects

such as understanding how the information provided by the

other members have to be processed so as to build a reliable

system on the basis of the behavior of the objects. Indeed,

without effective trust management foundations, attacks and

malfunctions in the IoT will outweigh any of its benefits [8].

On the basis of these observations, the purpose of this

work is to address this uncertainty and to suggest strategies

to establish trustworthiness among nodes. The challenge is of

building a reputation-based trust mechanism for the IoT that

can deal effectively with certain types of malicious behavior

that intend to mislead other nodes. The major contributions of

the paper are the followings:

• Definition of the problem of trustworthiness management
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in the social IoT, where the objects autonomously es-

tablish social relationships and use the resulting network

to find the trusted peer(s) that can provided the desired

service when needed.

• Definition of two models for trustworthiness management

starting from the solutions proposed for P2P and social

networks. In the subjective model, more similar to the

social scenario, each node computes the trustworthiness

of its friends on the basis of its own experience and on

the opinion of the friends in common with the potential

service provider. In the objective model, obtained starting

from the P2P scenario, the information about each node is

distributed and stored making use of a DHT (Distributed

Hash Table) structure so that any node can make use of

the same information.

• Evaluation of the benefits of the trustworthiness man-

agement in the IoT, which shows how it can effectively

isolate almost any malicious nodes in the network at the

expenses of an increase in the network traffic caused by

the exchange of feedback information.

In Section II we present the scenario of the social IoT and

provide a survey of the research on trustworthiness manage-

ment in P2P and social networks. In Section III we define the

problem and introduce the used notations, whereas in Section

IV we illustrate the two models proposed. Section V presents

the system performance and Section VI draws final remarks.

II. BACKGROUND

In the first subsection we summarize the main features of

the Social IoT we refer to. In the second subsection we review

the techniques that have been proposed for trustworthiness

management in P2P networks. This scenario is similar to ours,

as in both cases there are services or objects that provide and

request information from other peers and then in both cases the

evaluation of the reliability of the members of the community

is vital. However, it is not beneficial to apply directly, as they

are, the solutions seen for P2P systems to the Social IoT, since

all the information about the social aspects would be lost.

Indeed, works dealing with trust evaluation in human social

networks, which we review in the third subsection, provide us

with important contributions on how to exploit the concepts of

centrality, credibility and link characteristics in trust evaluation

in the Social IoT.

A. The Social Internet of Things

The idea to use social networking elements in the Internet

of Things to allow objects to autonomously establish social

relationships is gaining popularity in the last years. The driving

motivation is that a social-oriented approach is expect to put

forward the discovery, selection and composition of services

and information provided by distributed objects and networks

that have access to the physical world [2], [5], [6] and [9].

In this paper, without losing of generality, we refer to the

social IoT model proposed in [10] (we use the acronym SIoT

to refer to it). According to this model, a set of forms of

socialization among objects are foreseen. The parental object

relationship is defined among similar objects, built in the same

period by the same manufacturer (the role of family is played

by the production batch). Moreover, objects can establish co-

location object relationship and co-work object relationship,

like humans do when they share personal (e.g., cohabitation) or

public (e.g., work) experiences. A further type of relationship

is defined for objects owned by the same user (mobile phones,

game consoles, etc.) that is named ownership object relation-

ship. The last relationship is established when objects come

into contact, sporadically or continuously, for reasons purely

related to relations among their owners (e.g., devices/sensors

belonging to friends); it is named social object relationship.

These relationships are created and updated on the basis of

the objects features (such as: object type, computational power,

mobility capabilities, brand) and activity (frequency in meeting

the other objects, mainly).

To manage the resulting network and relationships, the

foreseen SIoT architecture is made of four major components

among others [6] and [10]. The Relationship management

introduces into the SIoT the intelligence that allows objects to

start, update, and terminate relationships. Service discovery is

finalized to find which objects can provide the required service

in the same way humans seek for friendships and information.

Service composition enables the interaction among objects.

Trustworthiness management is aimed at understanding how

the information provided by other members has to be pro-

cessed. Indeed, this is the core issue of this paper that will be

extensively addressed in the following.

B. State of the Art in P2P Networks Trust Management

There are only few works about the trust management

in IoT. In [11], the authors propose a model based on fuzzy

reputation for trust evaluation to enforce things cooperation

in a WSN of IoT/CPS based on their behaviors. In [12],

by the use of social trust and QoS trust, a hierarchical

trust management protocol is proposed. In [13], the authors

use a service classification estimation table to evaluate the

user’s trustworthiness. In [14] users’ trustworthiness in social

networks is used to assist the service composition between

objects.

Instead, problem of interacting with unknown peers and

isolating malicious peers has been deeply investigated in P2P

networks. To calculate a peer trustworthiness, a system has to

store the reputation information, encourage the sharing of this

information among the peers, and define the rules that from

the reputation bring to the peer trust level (see Table I).

There are different approaches that can be used to store

trustworthiness information. As described in [15], all infor-

mation can be stored in a centralized storage to foster sharing

and make easy the processing; however, it easily leads to a

single point of failure. In [16] , the information is distributed

in storage peers. Other approaches are the rater-based storage

[17], where each peer stores trustworthiness information about

the peers it has observed, and the ratee-based storage [18],

where each peer stores its own reputation information recorded

during the past transactions.

For a reputation system is important to incentive the peers

to cooperate and solve some well-known problems, such as
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TABLE I
APPROACHES USED FOR THE STORAGE, SHARING, AND PROCESSING OF

THE REPUTATION INFORMATION

Storage Sharing Processing

Centralized Local Average

Distributed Part Weighted Average

Rater-Based Global Probabilistic Estimation

Ratee-Based

Free-riders [19] and Tragedy of Commons [20]. A solution

is the one proposed in [21], where a peer can buy and sell

reputation information from/to other peers and loses credit

if it behaves maliciously. When a peer decides to share its

information, the system has to cope with how effectively share

them. This problem can be handled in different ways: local

share, part share, and global share. In local share, each peer

manages only the information it is involved with [22]. In part

share, each peer shares the information with a set of specific

peers. In [17], the authors propose to share the data through

a reputation chain of acquaintances and neighbors, since it

is more reliable than using random peers [17] [18], and in

[23] peers have the possibility to periodically exchange their

information. In global share, a mechanism is adopted to collect

the information of all peers. This can be done both with a

centralized storage [15] and with a distributed storage [16] .

Once the information is collected, it is important to use a

computation system that is able to extract a reliable value of

the trustworthiness. A simple mechanism relies on the use

of an arithmetic average [24] of all the reputation values

a node has received. Other models apply a weight to the

reputation values in different ways: in [25], the authors use

different weights for acquaintance and stranger peers; in [26]

the weights are chosen on the basis of the last reputation

value a node has received; [27] considers the similarities

between two peers in terms of released feedback to weight the

reputation value. In [16] , the authors assume the existence of a

digraph of social links between peers, where reputation values

are assigned to the link based on the transactions between the

peers connected through a link. Finally, some algorithms make

use of probabilistic estimation techniques [28], [29]. and the

maximum likelihood estimation [29] to match the reputation

value into the probability that a peer will cooperate.

C. State of the Art in Social Networks Trust Management

In the past few years, online social networks have become

more and more popular and consequently several methods to

calculate trust, and sometimes distrust between two person

[30] have been proposed, together with key applications to

allow users to secure their data [31]. In these scenarios, it is

considered a person (say Alice) to trust another person (say

Bob) if her actions are based on the belief that Bob’s behavior

will lead to a good outcome. However, some works (e.g., [32]),

add another dimension to the traditional probability model of

belief and disbelief, considering ignorance as an essential part

of human behavior.

In [33], the authors classify online social networks in three

generations based on the level of sociality they present and

present trust relation mechanisms for each generation. The

first generation is characterized by weak sociality where the

relationship between partecipants is implicit and the parte-

cipants can not make a new friend with a friend’s friend;

the second generation has medium sociality and relationship

between partecipants is only binary (friend or not friend), but

partecipants have the possibility to extend their relationship list

by adding friends of friends even if only inside the same social

network platform. In the third generation of social network,

different types of relationship exist and partecipants can estab-

lish new relationships and conduct activities across different

social networks. Furthermore, multiple types of relationship

between users have lead to the development of relationship-

based techniques for trust management in Social Networks

[34] [35]. According to this definition, it is possible to consider

the SIoT belonging to the third generation with explicit non

binary relationship between participants.

The main properties of trust are well defined and many

works contribute to describe them ( [36], [37], [38], [39]

and [40]). One of the most important and controversial is

the transitivity, based on the concept of recommendation of

someone that is not directly known, i.e., if Alice trusts Bob

and Bob trusts Eric then Alice trusts Eric. Indeed, it has

been demonstrated in [40] that in real life trust is not always

transitive but depends on the particular service requested. In

[39], constraints are given so that trust can be considered

transitive if the trust edges have the same purpose and only

in this case the trust system can exploit this property. These

constraints imply that different trust matrixes have to be stored

for every service, since if Alice trusts Bob for fixing her car,

she could not trust Bob for advising her a good restaurant.

Another important property is called composability. It is

the ability to compose the recommendations from different

friends into a unique value and then decide whether to trust or

not someone. With different trust values from different friends,

a composition function is needed in order to obtain accurate

results.

Since trust is related to a person’s past experience, another

important property in social network is the personalization.

Accordingly, it’s not unusual that two people have different

opinions about the same person. For the same reason, trust is

also asymmetric, i.e., two people tied by a relationship may

have different levels of trustworthiness each other.

III. INTRODUCTION TO THE PROPOSED SOLUTION

The SIoT provides the objects with some capabilities of

the humans when looking for and providing information in

their social communities, i.e., the objects mimic the human

social behavior [6]. The type of relationships that have been

devised for the SIoT have been taken from some sociology and

anthropology studies (e.g., [41] and [42]). [10] provides some

experimental analyses when implementing this behavioral

model on the IoT. As in most of the IoT architectures, in SIoT

the owner has the control on the object functions and social

interactions. Among the supervision functionalities, the system

(the object) asks the owner to authorize the provisioning

of a particular service/piece of information to other objects’
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requests. The owner then empowers the object to allows for

providing the service or not depending on the specific request

(requesting object owner identity and interaction context). This

is done at the first occurrences whereas the system learn and

behave accordingly for the next transactions. The owner be-

havior indeed depends on the (direct and indirect) relationships

with the requester and on his personality (collaborative, selfish,

greedy, malicious and other).

Within this scenario, we aim at designing and experiment-

ing a dynamic trust model for assessing the trustworthiness

level of nodes. The next subsection describes the used notation,

the second subsection illustrates the trust models, and the third

one described the main elements used in the adopted models.

A. Notation and Problem Definition

The main focus of this paper is the design of a dynamic

trust model for assessing the trustworthiness level of nodes

in a Social Internet of Things. In our modelling, the set of

nodes in the SIoT is P = {p1, ..., pi, ...pM} with cardinality

M , where pi represents a generic node. In our problem

setting, let the network be described by an undirected graph

G = {P , E}, where E ⊆ {P × P} is the set of edges, each

representing a social relation between a couple of nodes.

Let Ni = {pj ∈ P : pi, pj ∈ E} be the neighbourhoods of

node pi, namely the nodes that share a relation with pi, and

Kij = {pk ∈ P : pk ∈ Ni ∩ Nj} be the set of common friends

between pi and pj .

Let Sj be the set of services that can be provided by

pj . The reference scenario is represented by pi requesting a

particular service Sh. We assume that the Service discovery

component, which has been described in Section II-A, receives

the request of this service from pi and returns to it a set of

nodes Zh = {pj ∈ P : Sh ∈ Sj} that are able to provide the

service Sh. For each of this potential service providers pj ∈
Zh, the Service discovery component returns a set of edges

Rij =
{
paijp

b
ij

}
, which represents the sequence of social links

that constitute the selected path from pi to pj in the SIoT.

At this point, the Trustworthiness management component is

expected to provide the important function of listing the trust

level of any node in Zh. This is the objective of our work.

Fig. 1 provides a simple example of a generic graph G
where: P = {p1, · · · p10}, with each node capable of providing

one or two services, as highlighted in the grey cloud; p1 is the

node that is requesting the service S10, as highlighted in the

white cloud; Z10 = {p5} is the set of nodes that can provide

the requested service; R1,5 = {p1p4, p4p8, p8p5} is the set of

edges that constitute the path returned by the Service discovery

process for p1 to reach p5. In this figure, we also highlight

the set N1 = {p2, p3, p4} of nodes that are friends of p1 (in

blue color). Within note that the set K1,4 = {p2, p3} of nodes

represents the common friends between p1 and p4.

B. Trust Models

In such a scenario, we envision two possible models

for the implementation of the Trustworthiness management

component, based on the dimension of trust semantics [43]:

Fig. 1. Representation of the network nodes

1) Subjective trustworthiness, derived from a social point of

view, where each node pi computes the trustworthiness

of its Ni friends on the basis of its own experience

and on the basis of that of its friends; we refer to this

trustworthiness with Tij , i.e., the trustworthiness of node

pj seen by node pi. If pi and pj are not friends, then the

trustworthiness is calculated by word of mouth through

a chain of friendships.

2) Objective trustworthiness, obtained from P2P scenarios,

where the information about each node is distributed and

stored making use of a DHT (Distributed Hash Table)

structure. This information is visible to every node but is

only managed by special nodes that we call Pre-Trusted

Objects (PTOs). We refer to this trustworthiness with Tj ,

i.e., the trustworthiness of pj seen by the entire network.

Table II shows how the proposed models match the

approaches described in Section II-B in terms of storage,

sharing, and processing of the reputation information while

Table III summarizes the properties taken from the social

networks studies.

The proposed subjective approach shows all the properties

typical of trust in online social networks, as described in

Section II-C. Indeed, the SIoT can be seen as an application

where the objects establish relations and cooperate to provide

new services to the users; according to this vision, trust is not

related anymore to a particular service, since all the objects

in the SIoT try to achieve the same goal and then it can be

considered transitive in this scenario. Then, when pi and pj
are not friends, the transitivity property is exploited. Still, a

node uses a composability function to combine the recommen-

dations from the Kij friends. Moreover, trust is both personal

and asymmetric since every object has its own opinion about

the other nodes based on its personal experiences, which are

different from node to node. These properties have been taken

from the past works, whereas other new concepts have been

introduced. When building the direct objects opinions, not only

are the friendship links taken into account but also the type

of relationship. When combining the indirect opinions about

a node received from friends, we introduce weights that are
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TABLE II
APPROACHES TAKEN FROM THE P2P STUDIES FOR THE MANAGEMENT OF

THE REPUTATION INFORMATION ACCORDING TO TABLE I

Storage Sharing Processing

Subjective Rater-Based Part Weighted Average

Objective Distributed Global Weighted Average

TABLE III
PROPERTIES TAKEN FROM THE SOCIAL NETWORKS STUDIES

Subjective Objective

Transitivity X

Composability X X

Personalization X

Asymmetry X

built on the basis of the node credibility.

In the proposed objective approach, with the use of the

Pre-Trusted Objects, the experiences of each node are shared

with the entire network, so that there is not transitivity,

personalization, and asymmetry. Nevertheless, a composability

function is still exploited in order to build a unique trust-

worthiness value. Similarly to the subjective case, we take

the mentioned property of composability from past works as

well as the concepts of weighted feedback and credibility

to estimate trust values. However, the relationship factor is

introduced to estimate the credibility of a released feedback

and the centrality is exploited to estimate the total trust value.

According to this analysis, we can say that the proposed

subjective model derives directly from the approaches adopted

for trust management in social networks scenario, whereas

the objective model takes the basis from the P2P-related

approaches and exploits some properties of the social network

area.

C. Basic Trust Elements

Regardless of the particular model implemented, to esti-

mate such reputation we identify seven major factors.

A feedback system allows a node pi to provide an evalua-

tion of the service it has received by the provider pj . Feedback

is represented by f l
ij , which refers to each transaction l and

can be expressed either in a binary way (f l
ij ∈ {0, 1}, i.e.,

pi rates 1 if it is satisfied by the service and 0 otherwise), or

using values in a continuous range (f l
ij ∈ [0, 1]) to evaluate

different levels of satisfaction.

The total number of transactions between two nodes,

indicated by Nij , enables the model to detect if two nodes pi
and pj have an abnormally high number of transactions.

The credibility of node pi, referred to with Cji (in a

subjective way with respect to pj) or Ci (objective) depending

on the model used, represents a key factor in evaluating the

information (feedback and trust level) provided by the nodes.

This feature can assume values in the range [0, 1], with value

1 assigned to nodes with the highest credibility.

The transaction factor ωl
ij indicates the relevance of

transaction l between pi and pj . It is used to discriminate

important transactions, ωl
ij = 1, from irrelevant ones, ωl

ij = 0,

and can be used as a weight for the feedback. This parameter

avoids nodes to build up their trustworthiness with small

transactions and then become malicious for an important one.

For example, a node builds up its reputation by being honest

when providing information about temperature or humidity

and then starts to act malicious when asked for a banking

transaction. In addition, it can be used to discriminate the

functionality of the transactions, so that a node can be trusted

only for certain types of service.

To these, we add other two key factors that exploit the

main features of the social network among the objects.

One is the relationship factor Fij that is related to the

type of relation that connects pi to pj and represents a unique

characteristic of the SIoT. It is useful to either mitigate or

enhance the information provide by a friend. Until now, a SIoT

implementation does not exist yet, so there are not practical

evidences about the weight to assign to each relationship

to evaluate the trust. However, the forms of socialization

among objects, fully presented in [10], have been devised

to represent the human relationships and there are important

studies about the connection between relationships and trust.

It is a matter of fact that a close friend is more reliable than

and acquaintance or a complete stranger [44]. Additionally,

many works demonstrate how the relationship and the support

from family members are stronger than those received from

friends an acquaintances [45], [46]. Moreover, it has been

proved from several independent activities that strong ties lead

to stronger trust relationship; e.g., in [47] Krackhardt shows

how the strong ties imply strong interaction ties for trust and

trustworthiness, whereas in [48] Ruef suggests that trust and

emotional support are the basic requirements for the creation

of strong groups. Based on these considerations, we have

assigned different values to Fij on the basis of the relation

that connects pi to pj (see Table IV). As it will be clear in the

following higher values have higher impact on the computed

trust. This is a possible setting that we use in this paper on

the basis of the following reasoning (but other values can be

used as well if justified by different principles). Between two

objects that belong to the same owner and then are linked by

an OOR, the relationship factor has been assigned with the

highest value. According to the mentioned studies, CLOR and

the CWOR have been set with only a slightly lower value

since are established between domestic objects and objects

of the same workplace, respectively. SORs are relationships

established between objects that are encountered occasionally

(then owned by acquaintances) and for this reason a smaller

value is given. Finally, the PORs are the most risky, since they

are created between objects of the same brand but that never

met and depend only on the model object. If two nodes are

tied by two or more relationships, the strongest relation with

the highest factor is considered.

The other one is the notion of centrality of pi that is

refereed to with Rij (with respect to pj) in the subjective

approach and with Ri in the objective approach. It provides a

peculiar information of the social network since if a node has

many relationships or is involved in many transactions, it is

expected to assume a central role in the network. As described

in [49], centrality is “related to group efficiency in problem-

solving, perception of leadership and the personal satisfaction
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of participants”.

TABLE IV
PARAMETERS FOR RELATIONSHIP FACTOR AND COMPUTATION

CAPABILITIES

Relationship Factor

Ownership Object Relationship OOR 1

Co-Location Object Relationship CLOR 0.8

Co-Work Object Relationship CWOR 0.8

Social Object Relationship SOR 0.6

Parental Object Relationship POR 0.5

Computation Capabilities

Class 1 Smartphone, tablet, Set top box 0.8

Class 2 Sensor, RFID 0.2

Another important characteristics of the members of IoT

is also considered. The computation capability of an object,

namely its intelligence Ij . It is a static characteristic of the

objects and does not vary over the time. The rational is that we

expect a smart object to have more capabilities to cheat with

respect to a “dummy” object, leading to riskier transactions.

As a reference example, we can consider the case of an air

conditioner that request information about the temperature

value in a room. Then, the Service discovery process proposes

two possible providers: a smartphone and a sensor. Obviously

a smartphone is more powerful than a sensor, increasing the

chances to act maliciously; accordingly, trusting the sensor

instead of the smartphone leads to a safer choice. However

the final decision also depends on the other factors used to

compute the trustworthiness. To this, we divide the objects

into two different classes, and assign to each class a different

value, as shown in Table IV: Class1 is assigned to objects

with great computational and communication capabilities; to

this class belong objects such as smartphones, tablets, vehicle

control units, displays, set top boxes, smart video cameras;

Class2 is assigned to objects with only sensing capabilities,

that is, any object just capable of providing a measure of the

environment status and to the RFID-tagged objects.

IV. SUBJECTIVE AND OBJECTIVE MODELS

A. Subjective Trustworthiness

According to the subjective model, each node stores and

manages the feedback needed to calculate the trustworthiness

level locally. This is intended to avoid a single point of failure

and infringement of the values of trustworthiness. We first

describe the scenario where pi and pj are adjacent nodes,

i.e., where they are linked by a social relationship. Then,

we considered the other scenarios where they are farer each

other in the social network. As already introduced, Tij is the

trustworthiness of pj seen by pi and is computed as follows

Tij = (1− α− β)Rij + αOdir
ij + βOind

ij (1)

Accordingly, pi computes the trustworthiness of its friends

on the basis of their centrality Rij , of its own direct experience

Odir
ij , and of the opinion Oind

ij of the friends in common with

node pj (Kij ). All these addends are in the range [0, 1] and

the weights are selected so that their sum is equal to 1 to have

Tij is in the range [0, 1] as well.

The centrality of pj with respect to pi is defined as follows

Rij = |Kij |
/(

|Ni| − 1
)

(2)

and represents how much pj is central in the “life” of pi and

not how much it is considered central for the entire network.

This aspect helps with preventing malicious nodes that build

up many relationships to have high values of centrality for the

entire network. Indeed, if two nodes have a lot of friends in

common, this means they have similar evaluation parameters

about building relationships. This is even more true if the

SIoT considers the possibility to terminate a relationship when

a very low value of trustworthiness is reached (which is

not implemented now in the SIoT). In this way, only the

trustworthy relationships are considered in the computation of

the centrality and then it can better highlight nodes similarity.

When pi needs the trustworthiness of pj , it checks the last

direct transactions and determines its own opinion as described

in the following

Odir
ij =

(
log(Nij + 1)

1 + log(Nij + 1)

)
(γOlon

ij + (1 − γ)Orec
ij )+

+

(
1

1 + log(Nij + 1)

)
(δFij + (1 − δ)(1− Ij))

(3)

This equation tells us that even if no transactional history

is available between the two nodes (Nij = 0), pi can judge pj
on the basis of the type of relation that links each other and

on the computation capabilities. If some interactions already

occurred between them, a long-term opinion Olon and a

short-term opinion Orec are considered with different weights.

Also when Nij is not null the relationship factor and the

computation capabilities are considered again, with a weight

that decreases as Nij increases.

The long and short-term opinions are computed as follows

Olon
ij =

Llon∑
l=1

ωl
ijf

l
ij

/
Llon∑
l=1

ωl
ij (4)

Orec
ij =

Lrec∑
l=1

ωl
ijf

l
ij

/
Lrec∑
l=1

ωl
ij (5)

Llon and Lrec represent the lengths of the long-term and short-

term opinion temporal windows, respectively (Llon > Lrec),

and l indexes from the latest transactions (l = 1) to the

oldest one (l = Llon). Moreover, the transaction factor ωij is

used to weight the feedback messages. The short-term opinion

is useful when evaluating the risk associated with a node,

i.e., the possibility for a node to start acting in a malicious

way or oscillating around a regime value after building up

its reputation. In fact, the long-term opinion is not sensitive

enough to suddenly detect this scenario, since it needs a long

time to change the accumulated score.

The indirect opinion is expressed as

Oind
ij =

|Kij |∑
k=1

(
CikO

dir
kj

)/ |Kij|∑
k=1

Cik (6)
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where each of the common friends in Kij gives its own opinion

of pj . In this expression, the credibility values are used to

weight the different indirect opinions so that those provided

by friends with low credibility impact less than those provided

by “good” friends:

Cik = ηOdir
ik + (1− η)Rik (7)

From (7) we see that Cik depends on the direct opinion

and on the centrality. Note that the computation of the indirect

opinion requires adjacent nodes to exchange information on

their direct opinions and list of friends. To reduce the traffic

load, it is possible for pi to request the indirect opinion only

to those nodes with a high credibility value.

(2) - (7) allow us to finally compute the subjective

trustworthiness in (1). Indeed, for the idea itself of subjective

trustworthiness, all the formulas we have shown in this section

are not symmetric so that in general Tij �= Tji.

If pi, that requests the service, and pj , that provides it, are

not adjacent, i.e., are not linked by a direct social relationship,

the computation of all the trustworthiness values is carried out

by considering the sequence of friends that link indirectly pi
to pj . The trustworthiness values between no-adjacent nodes

T ′
ij is computed as follows

T ′
ij =

∏
a,b:pa

ij
pb
ij
∈Rij

Tab (8)

The requester asks for the trust value of the provider

through the route discovered by the Service discovery process

(bold route in Fig. 2(a)) and the values are obtained through

word of mouth from requester to provider making use of

the social relationship described above (green route in Fig.

2(b)). Note that in (8) we are not considering the direct

experiences of pi with pj . The reason is that in the subjective

model, each node stores and manages the feedback and all

the information needed to calculate the trustworthiness level

of only adjacent nodes. If nodes used (1) to compute the

trustworthiness of nodes that are not adjacent, they would need

to store a huge amount of data, resulting in a burden on their

memory, computation capabilities and battery.

At the end of each transaction, pi assigns a feedback f l
ij

to the service received; in the case pi and pj are adjacent,

pi directly assigns this feedback to pj . Moreover, pi com-

putes the feedback to be assigned to the friends in Kij that

have contributed to the computation of the trustworthiness

by providing Odir
ik , so as to reward/penalize them for their

advice. According to (9), if a node gave a positive opinion, it

receives the same feedback as the provider, namely a positive

feedback if the transaction was satisfactory, f l
ij ≥ 0.5, and

a negative one otherwise, f l
ij < 0.5; instead, if pk gave a

negative opinion, then it receives a negative feedback if the

transaction was satisfactory and a positive one otherwise. Note

that the feedback generated by pi are stored locally and used

for future trust evaluations.

f l
ik =

{
f l
ij if Odir

kj ≥ 0.5

1− f l
ij if Odir

kj < 0.5
(9)

In the case there is more than one degree of separation, the

node pi assigns a feedback to the adjacent node along the path

to the provider. The same assignment is then performed by all

the nodes along the path to the provider, unless a node with a

low credibility is found (in this case the process is interrupted).

With reference to Fig. 2(c), p1 stores the feedback about p4
and nodes in K1,4 (i.e., p2 and p3) locally. Then it propagates

the feedback to p4, which accepts it only if the credibility of

p1 is high (greater than a predefined threshold). p4 utilizes it

to rate p8, its last intermediate, and their common friends, in

this case only p3. Then p4 propagates the feedback to p8 and

so on up to the provider of the service.

According to this approach, negative feedback is given

not only to malicious nodes performing maliciously, but also

to malicious nodes that give false references and even to nodes

that do not act maliciously but are connected to portions of

the network wich are not reliable.

B. Objective Trustworthiness

According to this approach, the values needed to compute

the trustworthiness of a node are stored in a distributed system

making use of a DHT structure on the network. Several DHT

systems are available for this purpose, such as CAN [50],

Chord [51], Pastry [52]. In the following, we refer to the Chord

system since we have statistics to estimate the performance and

open-source tools are commonly available for implementation

and simulation.

A DHT system is based on an abstract keyspace, where

each node is responsible for a set of keys. An overlay network

then connects the nodes, allowing them to find the owner of

any given key in the keyspace. To store a file, with a given

filename and data, a key for the filename is generated through

a hash function (SHA-1 with Chord) and the data and the key

are sent to the node responsible for that key. If a node wants

to retrieve the data, it first generates the key from the filename

and then sends to the DHT a request for the node that holds

the data with that key. Chord is a DHT structure that provides

good scalability with respect to the network size, since the

overhead for information retrieval scales as O(logM) [53],

where M are the nodes in the network. It is also very robust

to the phenomenon of high churn-rate, i.e., to those nodes

moving in and out of the network frequently. This feature is

even more important in the IoT settings where the nodes are

usually characterized by a more ephemeral connectivity with

respect to the scenario of file-sharing.

In our scenario every node can query the DHT to retrieve

the trustworthiness value of every other node in the network.

In Fig. 3, p1 queries the DHT to retrieve information about

the route discovered by the Service discovery process, namely

p4, p8, and p5. To avoid the problem of distributed storage

approach where malicious nodes are selected as storage nodes,

only special nodes, that we call Pre-Trusted Objects (PTOs),

are able to store the data about feedback or trustworthiness

values. PTOs do not provide any service and are integrated in

the architecture; their number is decided based on the number

of nodes in the SIoT, so that there is always a PTO available

to manage the data. In Fig. 3, p1 sends the feedback about

the transaction to the PTO, that has the role to calculate the

new trustworthiness values of the nodes involved in the last
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(a) (b) (c)

Fig. 2. Trustworthiness evaluation process for the no-adjacent nodes p1 and p5: request of the trust value for a distant node (a), computation of the trust
level by multiplying the trust level among adjacent nodes (b) and releasing feedback to the nodes involved in the transaction (c)

Fig. 3. Objective case: request and store of the trust value

transaction, taking into account the source of the feedback

to avoid fake feedback. Then, through the DHT, it generates

the key associated with the data and stores it in the node

responsible for that key, that is p7 in this case.

When pi needs to know the latest trustworthiness value of

pj , it queries the DHT to retrieve it. In this case, there are no

direct and indirect opinions since all the nodes can read the

trustworthiness value of all other nodes in the DHT, and the

trustworthiness is expressed as

Tj = (1− α− β)Rj + αOlon
j + βOrec

j (10)

Centrality is now based on the idea that a node is central in

the network if it is involved in many transactions, as expressed

in the following

Rj = (Aj +Hj)
/
(Qj +Aj +Hj) (11)

where Qj is the number of times pj requested a service, Aj

is the number of times it acted as an intermediate node in a

transaction, and Hj counts how many times it is the provider of

a service. A node is considered central if it takes part actively

to the SIoT, as either intermediate or provider of the service,

in many transactions with respect to all its transactions.

Furthermore, in this approach, the short and long-term

opinions are computed considering the feedback received from

all the nodes that interacted with pj

Olon
j =

M∑
i=1

Llon∑
l=1

Cijω
l
ijf

l
ij

/
M∑
i=1

Llon∑
l=1

Cijω
l
ij (12)

Orec
j =

M∑
i=1

Lrec∑
l=1

Cijω
l
ijf

l
ij

/
M∑
i=1

Lrec∑
l=1

Cijω
l
ij (13)

To limit the possibility of malicious nodes giving false

feedback to subvert the reputation system, every feedback is

weighted with the credibility of the node that provides it in

addition to the transaction factor. The credibility is defined as

follows

Cij =
(1− γ − δ)Ti + γ(1− Fij) + δ(1− Ij)

1 + log (Nij + 1)
(14)

In this way, nodes with strong relations (i.e., with a

small value of the relationship factor), with high computation

capabilities or nodes that have a high number of transactions

between them, receive a lower credibility. Indeed, this is moti-

vated by the opinion that nodes that fall in this situation (strong

relationship links, high intelligence and many interactions) are

potential candidates to collusive malicious behavior.

V. EXPERIMENTAL EVALUATION

This Section analyses the performance of the proposed

models through simulations. Due to the lack of real data

concerning some aspects of objects behavior, a complete

theoretical analysis of the models performance cannot be

achieved. For this reason in Appendix A, we provide a first

theoretical analysis for the subjective model case.

A. Simulation Setup

To conduct our performance analysis, we needed mobility

traces of a large number of objects. We resorted on the

mobility model called Small World In Motion (SWIM) [54]

to generate the synthetic data and on the real dataset of the
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location-based online social network Brightkite obtained from

the Stanford Large Network Dataset Collection [55].

The outputs of the SWIM model and the Brightkite dataset

are traces of the position of humans. In this paper, instead,

we are interested in the mobility of things. Accordingly, we

have extended them as follows. We assume that each user

owns a set of things that are connected to the SIoT and that

during any movement the user carries half of these objects and

leaves the others at home. We decided to run the experiments

with about 800 nodes, considering that each person owns an

average of 7 objects. Objects that stay at home create co-

location relationships. Every node is produced by a specific

company and is characterized by a model ID; this information

is used to build the parental object relationships. The other

relationships are created on the basis of the objects (and then

owners) movements, mainly taking into account how often

objects meet and for how long and where. All the details about

the establishment of these social relationships are provided in

[6] and [10]. Two different behaviors can be considered in

a social network: one is always benevolent and cooperative

so that we call the relevant node social nodes. The other

one is a strategic behavior corresponding to an opportunistic

participant who cheats whenever it is advantageous for it to do

so. We call it malicious node and it gives bad services, false

references, and false feedback. Its behavior is described by

Algorithm 1. Accordingly, it only acts maliciously with objects

that it meets occasionally or it has never met, in the same way

a person behaves benevolent with close friends and family

members and acts maliciously with everyone else (if she/he is

malicious). Note that this object behavior is inherited from

the owner that authorizes the object interactions according

to her/his profile. However, this is true only if the object

has enough computational compatibilities to distinguish one

relationships from another; otherwise it acts maliciously with

everyone. The percentage of malicious nodes is denoted by

mp and it is set by default to 25%; we denote with mr the

percentage of time in which these nodes behave maliciously

(by default mr = 100%).

Algorithm 1 Malicious node behavior

if malicious node belongs to Class 1 then

switch (relationship factor)

case OOR, CLOR, CWOR:

act benevolent

case SOR:

act benevolent only with close friends

case POR:

act maliciously

default:

act maliciously

end switch

end if

if malicious node belongs to Class 2 then

act malicious with everyone

end if

At the start of each transaction, the simulator chooses

randomly the node requesting the service and randomly select

TABLE V
SIMULATION PARAMETERS

General parameters

Parameter Description Default

Community
setting

M # of nodes in the SIoT 800

mp % of malicious nodes 25 %
mr % of transactions a malicious

nodes acts malicious
100 %

res % of nodes who respond to a
transaction request

5 %

Trust
computation

Llon # of transaction in the long-term
opinion

50

Lrec # of transaction in the short-
term opinion

5

n # of run for each experiment 4

Subjective model parameters

Parameter Description Value

α weight of the direct opinion 0.4

β weight of the indirect opinion 0.3

γ weight of the long-term opinion 0.5

δ weight of the relationship factor 0.5

η weight of the direct opinion in the credibility 0.7

Objective model parameters

Parameter Description Value

α weight of the long-term opinion 0.4

β weight of the short-term opinion 0.4

γ weight of the relationship factor in the credibility 0.3

δ weight of the intelligence in the credibility 0.3

the nodes that can provide the service, corresponding to

a percentage res of the total number of SIoT nodes (by

default res = 5%). The malicious node can then be the one

requesting the service, the one providing the service or, only

in the subjective approach, the one providing its opinion about

another node. In the first case, it provides negative feedback to

every node involved in the transaction; in the second case, it

provides the wrong service and should then received a negative

feedback; finally, in the third case, it provides a negative

opinion about the other nodes.

Table V shows the simulation parameters of the system,

and the different weights used with the two approaches. For

simplicity, we decided to use a binary feedback system to

rate the other nodes according to whether the transaction

was satisfactory. For the same reason, we considered all the

transactions equally important and we set the transaction factor

to 1; finally, each object randomly belongs to one of the

computation capabilities classes. To find the optimal system

setting we analyzed the models response at varying parameter

values. The optimal configuration is provided in Table V.

To show the system response at different settings, Table VI

displays the transaction success rate when the system has

reached the steady-state using the SWIM data. Each row refers

to the change of only one parameter while the others keep the

optimal setting. As expected, in the subjective approach, the

direct opinion has a more impact than the indirect opinion

because it is affected by a node own experience, whereas in

the objective approach, the most important parameter is the

long-term opinion because it takes into account the story of

the node. In both the approaches the centrality is the factor

that less affects the performance, since it is a slow time variant

factor.
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TABLE VI
PARAMETERS SETTING

Subjective model values

α = 0.1 0.88 α = 0.4 0.93 α = 0.7 0.91

β = 0.1 0.92 β = 0.3 0.94 β = 0.6 0.93

γ = 0.2 0.91 γ = 0.5 0.93 γ = 0.8 0.92

δ = 0.2 0.9 δ = 0.5 0.94 δ = 0.8 0.92

η = 0.1 0.91 η = 0.4 0.93 η = 0.7 0.94

Objective model values

α = 0.2 0.89 α = 0.4 0.95 α = 0.6 0.93

β = 0.2 0.91 β = 0.4 0.94 β = 0.6 0.93

γ = 0.1 0.92 γ = 0.3 0.95 γ = 0.7 0.93

δ = 0.1 0.93 δ = 0.3 0.94 δ = 0.7 0.91

After a node chooses the provider of the service on the

basis of the highest computed trustworthiness level, it sends

to it the service request. Depending on how the SIoT model is

implemented, the service can be delivered either through the

nodes that discovered the service, i.e., the social network is

also used to transmit the service requests and the responses

on top of the existing transport network (overlay structure)

or directly relying on the beneath communication network

(non-overlay structure). In the first case, a malicious node can

interfere with the deliver of the service even if it is in the route

from pi to pj since it is asked to forward the service request

to pj and the response back pi. In the latter case, a malicious

node can alter the service only if it is the provider.

B. Transaction Success Rate

In this section we present the results for the objective

and subjective approaches in the case overlay network is used

or not used. We compare the performance of the proposed

models with those of the Dynamic Trust Computation of the

Tust Value Measure (TVM/DTC) proposed for P2P networks,

described in [27]. It relies on a reputation system, which

defines a recursive function that uses the trust value of a peer

as its feedback credibility measure. We also selected a trust

management algorithm for social networks, named TidalTrust

[56], which infers trust relationships between people that do

not have direct connections through their indirect links. These

comparisons are aimed at analyzing the improvements we

obtain with respect to the state of the art in the specific

reference SIoT scenario. We also show the case in which a

trust model is not used.

Fig. 4(a) shows the success rate when the malicious nodes

only belong to Class2 in the SWIM scenarios. We can observe

that the objective model has a faster convergence and presents

an higher success rate. This happens since in the objective

case, the feedback about a transaction is immediately available

to the entire community bringing to a faster converge. Indeed,

this model allows for isolating the malicious nodes as fast as

4000 transactions are reached (success rate equal to 99,9%).

The subjective approach has indeed a slower transitory, since

every node has to build up its own opinion. Still, it’s important

to point out that this scenario is a very basic one. Malicious

Class2 objects are very easy to be identified since they don’t

behave differently according to the service client, so we can

say that this scenario is typical of the P2P networks and

then it is favorable for the objective model. Accordingly,

the TVM/DTC algorithm presents performance comparable

to our objective approach. Differently, Tidal Trust chooses

the providers with a weak criteria since a Class2 object acts

maliciously with everyone; nevertheless, with respect to the

case where no trust algorithm is used, TidalTrust can still

achieve significant success rates. Note that since the feedback

system is not adopted, the performance don’t improve as the

number of transactions increases. Since this scenario is a very

simplicistic one, we can not observe big differences between

the overlay and non-overlay structure; they will be discussed

in further simulations.

We now consider the same scenario but with Class1

malicious objects, which can modify their behavior based on

the social relationships. Results are shown in Fig. 4(b) for

the SWIM scenarios. Still it can be noted as the objective

approach converges faster and reaches its steady-state after

around 4000 transactions. However, in this case the node

trustworthiness is global and mixes the opinions of both the

nodes with which it behaved maliciously and the nodes with

which it behaved benevolent. This is a drawback only partially

addressed by using the relationship factor (see (14)), so that

is more difficult to isolate the malicious nodes. With the

subjective model each node stores its own trustworthiness data

and has its own opinion about the network so that it is clearly

more robust towards Class1 malicious objects behavior. As

also discussed previously, this approach needs more time to

converge but it manages to outperform the objective model

after 7000 transactions. With respect to the scenario with

Class2 objects, the steady-state performance is slightly worse;

this is due to the indirect opinion (see (6)) a node receives

from its neighbours, since all the rest of the key data is stored

locally. This information depends on the relation between the

reference nodes and the service provider, so that can be either

positive or negative and can confuse the service requester;

however this information is weighted with the credibility of the

source node (see (7)), which depends only on the experience

of the node that is performing the trustworthiness evaluation.

Another key observation related to the Class1 scenario is

that the structure chosen to deliver the service influences the

performance. In particular, the use of the overlay structure,

where the social network is also used to transmit the service

requests and responses, leads to lower performance; indeed, a

malicious node can interfere with the delivery of the service

because it is in the route from the requester to the provider

and it is asked to forward the message. This cannot happen

in the non-overlay structure, where a malicious node can alter

the service response only when acting as final provider.

Additionally, it is important to remark that adding the

social behavior in the malicious nodes leads to an increase

in the TidalTrust performance by almost 5% and a decrease

in the TVM/DTC performance by almost 10%. However, it

is clear that in the specific SIoT scenario, the well-known

techniques for trustworthiness computation studied for either

P2P or social networks are not enough to obtain a reliable

system, and both our models, subjective and objective, using

or not the overlay structure, can outperform these approaches.

Figs. 5(a) and 5(b) show the success rate in the Brightkite
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Fig. 4. Transaction success rate in the SWIM scenario versus the total number of performed transactions with: Class 2 objects (a) and Class 1 objects (b)
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Fig. 5. Transaction success rate in the Brightkite scenario versus the total number of performed transactions with: Class 2 objects (a) and Class 1 objects (b)

scenario when malicious nodes belong to Class2 and Class1,

respectively. One of the main differences that can be noted by

comparing the results obtained with the two dataset is that in

the Brightkite scenario the subjective approach performs slight

better than in the SWIM scenario. This is due to the fact that

Brightkite is characterized by a shorter network diameter on

average with respect to the social graphs generated with SWIM

(3 hops instead of 4 hops). Accordingly, in Brightkite every

node has more relationships with respect to the SWIM case,

which are then exploited by the subjective model that strongly

relies on objects direct experience.

We now want to analyze the results at varying percentage

of the malicious nodes. Figs. 6(a) and 6(b) refer to the

Brightkite scenario with the non-overlay structure and using

the subjective and objective approaches, respectively. We note

how the subjective approach always converges even with 70%

of malicious nodes, since every node has its own vision

of the network based on its own experiences. However, the

accuracy of this approach decreases, since there is the need

for more feedback messages to be collected to cope with the

bad recommendations received. Instead, the objective approach

is much more sensible to the malicious concentration since

every node shares its opinion with the others: with 50% of

malicious nodes in the network the performance reaches 0.7;

if we further increase the number of malicious nodes, the

performance dramatically drops since the opinion of a node

is deeply influenced by malicious feedback with appropriate

compensation from benevolent ones.

C. Dynamic Behavior

The focus of this set of experiments is to analyze how

the proposed approaches work with three different dynamic

behaviors of the nodes. In a first scenario, a node builds its

reputation and then starts milking it; in a second scenario, a

node tries to improve its reputation after having milked it;

in a third scenario, the node oscillates between milking and

building its reputation. Since we have already analyzed how

our algorithms responds to false feedback, we now consider

only the malicious behaviors without taking into account nodes

providing dishonest feedback. The considered behaviors are

independent from the particular networking structure adopted

(whether it is overlay or not) or the scenario implemented

(whether it is the SWIM or Brightkite scenario) so we only

consider the differences between the two subjective and ob-

jective models. Fig. 7(a) shows the computed trust value of

a node that is milking its reputation; we can observe that,

thanks to the short-term window, both algorithms are able to

fast adapt to the change in the node behavior. The subjective
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Fig. 6. Transaction success rate in the Brightkite scenario with a non-overlay structure at increasing values of mp: subjective approach (a) and objective
approach (b)
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Fig. 7. Dynamic behavior: milking reputation (a), building reputation (b) and oscillating reputation (c)

approach is slightly slower since it has to mediate its opinion

with that of its friends, that eventually still trust the malicious

node. Similar considerations can be done for a node who is

building its reputation as shown in Fig. 7(b), and for a node

with an oscillating behavior in Fig. 7(c). These results clearly

show how our approaches can cope with dynamic behaviors.

VI. CONCLUSIONS

In this paper we have focused on the trustworthiness

management in the social IoT by proposing subjective and

objective approaches. The major difference between the two

methods is that the subjective approach has a slower transitory

response, which is particularly evident when dealing with

nodes with dynamic behaviors. However, it is practically

immune to behaviors typical of social networks, where a ma-

licious person modifies her actions based on the relationships.

On the contrary, the objective approach suffers from this kind

of behavior, since a node’s trustworthiness is global for the

entire network and this include both the opinion from the

nodes with which it behaved maliciously and the opinion from

the nodes with which it behaved benevolent.

As future work, we plan to analyze how the trustworthi-

ness management may also be used to promote social relations,

rewarding nodes with a high value of trustworthiness.

APPENDIX A

Herein we provide an analysis of the performance of the

subjective model, whose objective is to discriminate benev-

olent nodes from malicious ones with the minim error. The

resulting trustworthiness formula is made of three additive

elements (1), namely the centrality, the direct opinion, and the

indirect opinion, each one contributing to isolating malicious

nodes.

The subjective centrality measures how much a node is

central in another node “life”. If we calculate the average

centrality of node pi over all its friendships Ni, we obtain

Ri =

∑|Ni|
j=1

|Kij |(
|Ni|−1

)
|Ni|

=

∑|Ni|
j=1 |Kij |(

|Ni| − 1
)
|Ni|

(15)

that corresponds to the local clustering coefficient for

node pi, and then gives an indication of how close node pi’s
neighbors are to being a clique, i.e. a complete graph.

As there are no models to represent the behavior of the

nodes in creating and updating the clusters of friends, we do

not have the basis to compute the efficiency of this parameter,

but evidences of its capacity to isolate malicious nodes can be

found in literature. In [57] the authors state that “trust is to be

built based not only on how well you know a person, but also

on how well that person is known to the other people in your

network” and then they show that, using local clustering for

email filtering, it is possible to classify correctly up to 50% of

the messages. Moreover, in [58], the authors show how trust

networks are highly related to the creation of cluster.

When the nodes start to exchange services, they still do
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TABLE VII
PROBABILITY TO MISJUDGE A NODE

Direct opinion

e
μ

σ2 error
benevolent malicious

0.1 0.9 0.1 0.045 3.15 ∗ 10
−17

0.15 0.85 0.15 0.064 9.63 ∗ 10−7

0.2 0.8 0.2 0.08 1.016 ∗ 10−5

Indirect opinion

e
μ

σ2 error
benevolent malicious

0.1 0.7 0.3 0.024 6.56 ∗ 10−15

0.15 0.675 0.325 0.034 1.084 ∗ 10
−5

0.2 0.65 0.35 0.043 1.14 ∗ 10
−2

Direct + Indirect opinion (α = 0.6 and β = 0.4)

e
μ

σ2 error
benevolent malicious

0.1 0.82 0.18 0.017 8.72 ∗ 10−77

0.15 0.78 0.22 0.024 2.04 ∗ 10−29

0.2 0.74 0.26 0.03 8.31 ∗ 10
−14

not have any information about how much they can trust each

other. However, they can rely on the centrality and, for what

concerns direct and indirect opinion, on the relationship factor

and on the computation capabilities. When Nij becomes high,

the dependence of the direct opinion on the relationship factor

and the computation capabilities decreases whereas that related

to the past transactions increases. The feedback generated for

each received service is provided by (9). To simplify the

analysis, as done in the simulations, we assume a binary

feedback system is used. When analyzing the received service,

the client may introduce some errors due to several reasons

and mostly because of the intrinsic difficulty in evaluating the

quality of the received service. We then introduce probability

e that a node gives the wrong feedback, so that the probability

to give the correct feedback is h = 1− e. The probability that

pi generates k correct feedback (fij = 1 when pj is benevolent

and fij = 0 when pj is malicious) over n transactions with

pj , follows a binomial distribution

P (k) =

(
n

k

)
hk(1− h)(n−k) (16)

Note that if we consider feedback having the same

weights, the long term and short term opinions O
lon/rec
ij = k

if pj is benevolent and O
lon/rec
ij = 1 − k if pj is malicious.

Accordingly, these follow a binomial distribution as well,

where the expected value is h if node pj is benevolent, and

1 − h if it is malicious, and the variance is h(1 − h). This

distribution can be approximated with a gaussian one (when

n > 30) with the same variance and average values. When

adding the two contributions from the short and long term

opinions, considering γ = 0.5 as in the simulations, we obtain

that the direct opinion is still a gaussian distribution with the

same mean value (μb = p and μm = 1 − p based on the

behavior of node pj) and a variance equals to h(1− h)/2.

To calculate the distribution of the indirect opinion, we

assume for simplicity that the credibility for all the nodes is

the same; in this case, it is the sum of gaussian-distributed

variables, so it follows a gaussian distribution as well. Con-

sidering that x% of the nodes are malicious, the average value

for the indirect opinion is (1 − 0.x)μb,m + 0.xμm,b while its

variance is σ2/ |Kij |.
Using the erfc function to calculate the error when

estimating the trustworthiness of a node, we obtain the results

shown in Table VII for different values of the error probability

and x = 25%. Both the parameters can achieve low error

probability. Indeed, the direct opinion is the parameter that

most affects the trustworthiness calculation, and that leads to

the smallest errors. However, when services start to circulate

in the network, the first parameter that varies and gives actual

information about the trustworthiness of a node is the indirect

opinion. This happens because, if node pi wants to evaluate the

trustworthiness of node pj , it is simply more probable that it

can obtain information from one of the common friends Kij

than from a direct transition between pi and pj . Moreover,

with the combination of these two parameters, it is possible

to achieve more reliable results than using only one of them.
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