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Abstract—Key management has two important aspects: key distribution, which describes how to disseminate secret information to the

principals so that secure communications can be initiated, and key revocation, which describes how to remove secrets that may have

been compromised. Key management in sensor networks face constraints of large scale, lack of a priori information about deployment

topology, and limitations of sensor node hardware. While key distribution has been studied extensively in recent work [1], [2], [3], [4],

[5], the problem of key and node revocation in sensor networks has received relatively little attention. Yet, revocation protocols that

function correctly in the presence of active adversaries pretending to be legitimate protocol participants via compromised sensor nodes

are essential. In their absence, an adversary could take control of the sensor network’s operation by using compromised nodes which

retain their network connectivity for extended periods of time. In this paper, we present an overview of key-distribution methods in

sensor networks and their salient features to provide context for understanding key and node revocation. Then, we define basic

properties that distributed sensor-node revocation protocols must satisfy and present a protocol for distributed node revocation that

satisfies these properties under general assumptions and a standard attacker model.

Index Terms—Sensor networks, security, revocation, key distribution, key management, distributed algorithms.
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1 INTRODUCTION

AS with all networks comprising geographically dis-
tributed nodes, communication security in sensor

networks requires effective management of cryptographic
keys. In contrast to traditional networks, key management
in sensor networks is particularly complex due to the large
numbers of sensor nodes, the lack of a priori information
about the deployment topology of the network, the limited
hardware capabilities of the nodes, and the constant
exposure of nodes to capture by an active adversary who
could obtain key material. Two important aspects of key
management are key distribution and key revocation. Key
distribution refers to the task of distributing secret keys
between sensor nodes to provide communication secrecy
and authenticity. Key revocation refers to the task of
securely removing keys that are known to be compromised.
If the cryptographic primitives themselves do not expose
the secret keys, a reasonable and common assumption, then
secret keys can only be exposed by compromising sensor
nodes. The problem of sensor node revocation can thus be
reduced to that of key revocation. By revoking all of the
keys belonging to a known compromised sensor node, we
can effectively remove the node’s presence in the network.

In contrast to key distribution, which has been studied
extensively in recent work [1], [2], [3], [4], [5], key
revocation received relatively little attention. With the

exception of the centralized revocation scheme proposed
by Eschenauer and Gligor [3] and the distributed revocation
scheme proposed by Chan et al. [1], no other schemes have
been reported to date. Yet, key revocation is as important as
key distribution in sensor network key management. A
sensor network is generally designed for deployment in
open, unmonitored environments exposing nodes to phy-
sical attacks. This requires that, in the event of node capture
by an adversary, the sensor network have the ability to
revoke the cryptographic keys of captured nodes. Other-
wise, the entire network’s operation may be compromised
by an adversary that surreptitiously controls both the
operation and communication of these nodes.

In this paper, we first review, in brief, several known
methods for key distribution in sensor networks. This forms
the background for our main discussion of the problem of
distributed key revocation. Distributed node revocation is
useful due to its ability to eliminate compromised nodes
without requiring a central authority that might become an
attractive attack target. Thus, distributed revocation im-
proves reaction time after node capture and overall system
resilience. However, distributed revocation protocols are
more complex than centralized ones due to the fact that any
of the nodes executing the protocol may be malicious and
attempt to block or subvert the protocol. Thus, even if a
distributed revocation protocol is correctly designed,
specified, and formally verified in the absence of an active
adversary, assurance of correct behavior would still be
lacking. For example, captured nodes could circumvent or
block protocol operation, or collude among themselves to
execute the revocation protocol correctly against legitimate
nodes to disconnect them from the network. So far, research
in sensor net key management has been missing the
following tools: 1) a rigorous specification of distributed-
revocation properties that must hold in a sensor network
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even in the presence of an active adversary, 2) a precise
definition of the adversary model, and 3) a distributed key
revocation protocol that satisfies those properties in a
general sensor-network setting.

The main contributions of this paper are a rigorous
definition of distributed revocation properties for sensor
networks, a general active-adversary model, and a protocol
for distributed key revocation that satisfies the specified
properties under the defined adversary model. However,
distributed key revocation cannot be defined independently
of the specific key distribution scheme used in a particular
sensor network. This is the case because some key
distribution methods are more suitable for specific key
revocation methods (e.g., centralized or distributed), while
others may prevent key revocation altogether. A secondary
contribution of this paper is a succinct overview of key
predistribution methods and their salient features that
affect key revocation and overall sensor-network operation
and resiliency.

2 OVERVIEW OF KEY DISTRIBUTION SCHEMES FOR

SENSOR NETWORKS

The problem of key distribution in sensor networks is as
follows:1 We wish to preload sensor nodes with crypto-
graphic information such that, after deployment, the nodes
are able to perform secure communications with each other
and initiate a secure network. The scheme must be able to
work without prior knowledge of the network deployment
topology and also allow new nodes to be added to the
network after deployment. A further constraint is that the
protocol must be implementable on the nodes’ limited
hardware and thus it must have low computational and
storage requirements; thus, in this paper, we only consider
schemes that do not use asymmetric cryptography. We
review several classes of known symmetric key distribution
protocols suitable for sensor networks in this section.

2.1 Fully Pairwise-Shared Keys

In this approach, every node in the sensor network shares a
unique symmetric key with every other node in the
network. Hence, in a network of n nodes, there are a total
of n

2

� �
unique keys. Every node stores n� 1 keys, one for

each of the other nodes in the network.
This class of protocols achieves similar security proper-

ties to the class of asymmetric key-establishment schemes:
nodes captured do not reveal information in the rest of the
network, and central revocation is simple (just broadcast the
revoked node’s set of keys). However, these protocols
require a large amount of memory storage space for all the
keys, most of which are not actually used since nodes only
communicate with their immediate neighbors and do not
need to establish keys with every other node in the network.

2.2 Use of a Trusted Base Station as a KDC

This method of key distribution uses a secure base station as
a trusted third party (or Key Distribution Center, KDC) to
provide link keys to sensor nodes, e.g., similar to Kerberos
[7], [8]. The sensor nodes authenticate themselves to the

base station, after which the base station generates a link
key and sends it securely to both parties.

An example of a base-station-mediated protocol is
SPINS, which includes a protocol where two nodes A and
B can establish a session key SKAB by communicating with
the base station [9]. The properties of this method of key
establishment are that each node only requires preloaded
storage of one single key, nodes captured do not reveal
information in the rest of the network, and centralized
revocation is simple via authenticated unicasts from the
trusted base station. The main drawback of this scheme is
that the trusted base station represents a single point of
compromise for security information, and may also induce
a focused communication load centered on the base station
which may lead to early battery exhaustion for the nodes
closest to the base station. Another concern is that certain
networks do not have a suitable highly functional, tamper-
proof device that can be used as a secure KDC.

2.3 �-Secure n� n Key Establishment Schemes

Blom [10] and Blundo et al. [11] addressed the problem of
key distribution and key establishment between all pairs of
n principals. While these schemes were originally intended
for group keying in traditional networks, and not for sensor
networks, we include them here because of their relevance
to the development of subsequent key distribution schemes
for sensor networks. Both the Blom and the Blundo et al.
schemes have an important resiliency property, called the
the �-secure property; i.e., the coalition of no more than �
compromised sensor nodes reveals nothing about the
pairwise key between any two noncompromised nodes.

The main advantage of this class of schemes are that they
allow a parameterizable trade-off between security and
memory overhead. Whereas the full pairwise scheme
involves the storage of OðnÞ keys at each node and is
n-secure, this class of schemes allows the storage of Oð�Þ
keys in return for a �-secure property: It is perfectly resilient
to node compromise until exactly �þ 1 nodes have been
compromised, at which point the entire network’s commu-
nications are compromised.

2.4 The Basic Random Key Predistribution Scheme

Eschenauer and Gligor proposed the basic random key
predistribution scheme [3]. In this scheme, let m denote the
number of distinct cryptographic keys that can be stored on
the key ring of a sensor node. The basic scheme works as
follows: Before sensor nodes are deployed, an initialization
phase is performed. In the initialization phase, the basic
scheme picks a random pool (set) of keys Q out of the total
possible key space. For each node, m keys are randomly
selected from the key pool Q and stored into the node’s
memory. This set of m keys is called the node’s key ring. The
number of keys in the key pool, jQj, is chosen such that two
random subsets of size m in Q will share at least one key
with some probability p. After deployment, neighboring
sensor nodes then perform a challenge-response key
discovery to find out if they happen to share keys with
each other; if they do, then they establish a secure link. If
the probability p were chosen correctly for the network’s
neighbor density (see the paper for details of how this
calculation is made), then the resultant graph of secure
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links will be connected with some high probability. The
remaining links in the graph are then filled in by routing
key-establishment messages along this connected network
of initial secure links.

In the basic random key scheme, all nodes use the same
key pool Q. This implies that the security of the network is
gradually eroded as keys from Q are compromised by an
adversary that captures more and more nodes. In this
scheme, the number of exposed keys is roughly linear to the
number of nodes compromised. This characteristic of the
basic scheme motivated development of key predistribution
schemes that have better resiliency to node capture. The
basic scheme was extended by the q-composite scheme Chan
et al. [1], and generalized by the more advanced probabil-
istic schemes discussed in Section 2.6.

In the q-composite keys scheme, instead of designing for
a given probability p of sharing a single key, the parameters
are altered such that any two nodes have a given
probability p of sharing at least q different keys from the
key pool. All q keys are used in the generation of the key
which encrypts communications between sensor nodes;
hence, in order to eavesdrop on the secured link, the
adversary now has to compromise all q keys instead of just
one. As q increases, the likelihood of the adversary having
compromised all the keys necessary decreases geometri-
cally. However, increasing the probability of overlap in this
fashion naturally involves reducing the size of the key
pool Q. The smaller key pool size thus makes the scheme
more vulnerable to an adversary which is capable of
compromising larger numbers of sensor nodes. This trade-
off improves the initial resilience of the scheme toward low
levels of node compromise, for a subsequent weakness in
security once a larger number of sensor nodes have been
compromised.

In general, random key predistribution presents a
desirable trade-off between the insecurity of using a single
network-wide key and the impractical high memory over-
head of using unique pairwise keys. Its main advantage is
that it provides much lower memory overhead than the full
pairwise keys scheme, while being more resilient to node
compromise than the single-network-wide-key scheme.
Furthermore, it is fully distributed and does not require a
trusted base station.

The main disadvantages of the approach are the
probabilistic nature of the scheme, which makes it difficult
to provide the guarantee of the initial graph of secure links
being connected under nonuniform conditions or sparse
deployments. Furthermore, since keys can be shared
between a large number of nodes, this class of schemes
does not provide very high resilience against node
compromise and subsequent exposure of node keys.

2.5 Random Pairwise Keys Scheme

The Random Pairwise Keys scheme is a scheme proposed
by Chan et al. which is a hybrid of the random key
predistribution scheme and the full pairwise keys scheme
[1]. Recall that, in the analysis for random key predistribu-
tion, it was deduced that as long as any two nodes can form
a secure link with at least probability p, then the entire
network will be connected with secure links with high
probability. Based on this observation, Chan et al. note that

it is not necessary to perform full pairwise key distribution
in order to achieve a network where any two nodes can find
a secure pathway to each other. Instead of preloading n� 1
unique pairwise keys in each node, the Random Pairwise
Keys Scheme preloads m << n unique pairwise keys from
each node. The m keys of a key ring are a small, random
subset of the n� 1 possible unique keys that this node could
share with the other n nodes in the network. By the same
reasoning as the random key predistribution scheme, as
long as these m keys provide some sufficient probability p
of enabling any two neighboring nodes to be able to
establish a secure link, the resultant graph of initial secure
links will have a high probability of being connected. The
remaining links are then established using this initial graph
exactly as in the random key predistribution scheme.

In their paper, Chan et al. present a preliminary initial
distributed node revocation scheme that makes use of the
fact that possessing unique pairwise keys allows nodes to
perform node to node identity authentication. In their
scheme, each of the m nodes which share a unique pairwise
key with the target node (i.e., the node’s participants) carries
a preloaded vote which it can use to denote a message that
the target is compromised. These m votes form a Merkle
hash tree [12] with m leaves. To vote against the target
node, a node performs a network-wide broadcast of its vote
(i.e., its leaf in the Merkle hash tree) along with the logm
internal hash values that will allow the other participants of
the target to verify that this leaf value is part of the Merkle
hash tree. Once at least t participants of a given target have
voted and the votes have been verified by the other m
participants using the Merkle hash tree, all m nodes will
erase any pairwise keys shared with the target, thus
revoking it from the network.

The Random Pairwise Keys scheme inherits both
strengths and weaknesses from the full pairwise keys
scheme (see Section 2.1) and the random key distribution
scheme (see Section 2.4). Under the random pairwise keys
scheme, nodes captured do not reveal information in the
rest of the network, and central revocation can be accom-
plished by just unicasting to each of the nodes that share
keys with the revoked node. It also involves a much lower
memory overhead than the full pairwise keys scheme.
Unfortunately, like the random key predistribution
schemes, it is probabilistic and cannot be guaranteed to
work in nonuniform or sparse deployments.

2.6 Multispace Key Schemes

This class of schemes is a hybrid between random key
predistribution and the �-secure n� n key establishment
schemes. These schemes were first proposed by Du et al. [2]
and by Liu and Ning [4].

Recall that in random key predistribution, a key pool is
first selected from the universe of possible keys. Each sensor
node is then given a set of keys from the key pool such that
any two nodes possess some chosen probability p of sharing
enough keys to form a secure link. Multispace key schemes
use the same basic notion of random key predistribution,
but use key spaceswhere individual keys are used in random
key predistribution. Hence, the key pool is replaced by a
pool of key spaces, and each node randomly selects a subset
of key spaces from the pool of key spaces such that any two
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nodes will have some common key space with probability p.
Each key space represents a unique instance of a different
�-secure n� n key establishment scheme (for example,
Blom’s scheme [10], see Section 2.3). If two nodes possess
the same key space, they can then perform the relevant
�-secure n� n key establishment scheme to generate a
secure session key.

The main advantage of of multispace schemes are that
node compromise under these schemes reveals much less
information to the adversary than for the random key
predistribution schemes. However, they retain the dis-
advantage of being probabilistic in nature (no guarantee of
success in nonuniform or sparse deployments) and
furthermore they experience the threshold-based sudden
security failure mode that is a characteristic of the �-secure
schemes (see Section 2.3). Other schemes have combined
�-secure schemes with other constructions than random
key-space selection; Liu and Ning [4] in particular
describe a deterministic grid-based construction where
key-spaces are used to preform intermediary-based key
establishment between nodes.

2.7 Deterministic Key Predistribution Schemes

One drawback of the random key distribution approach is
that it does not guarantee success; Lee and Stinson [13], as
well as Camtepe and Yener [14], both propose using
combinatorial design techniques to allocate keys to nodes
in such a way as to always ensure key sharing between any
two nodes. The amount of memory required per node is
typically some fractional power of the overall supported
network size (e.g., Oð ffiffiffi

n
p Þ). The main drawback of these

schemes is that the same keys are shared between many
nodes leading to weaker resilience to node compromise.
Chan and Perrig have proposed a deterministic scheme
using peer nodes as intermediaries in key-establishment
with similar memory overheads [15]; compared with the
combinatorial design approach, this scheme trades off
increased communication cost for greater resilience against
node compromise.

3 THE NODE REVOCATION PROBLEM

Key revocation for captured sensor nodes poses new design
challenges that do not arise in key predistribution. Key
revocation protocols are carried out in the presence of active
adversaries. These adversaries can both monitor and modify
network messages and, more importantly, can pretend to be
legitimate participants in the protocols themselves. Cap-
tured (and, hence, compromised) nodes may act as an
adversary’s surrogates within a revocation protocol and
may collude to subvert its execution (e.g., they could block
the operation of the protocol by exhausting resources of
legitimate nodes, or refuse to carry out key protocol steps).
Thus, a specific challenge in the design of revocation
protocols is to achieve revocation of sensor nodes that are
compromised by an adversary despite the active participa-
tion of that adversary in the protocol. An additional
challenge, which is shared with key predistribution proto-
cols, is that of using only limited computation and
communication resources in the protocol design; i.e.,
revocation protocols must rely on very simple cryptographic

primitives and achieve their goal with a limited number of
messages. For example, effective primitives include hash
functions such as SHA-1 [16] and hash trees [12], authenti-
cated encryption of protocol messages in one pass over the
message data using only the block cipher [17], [18], [19], and
evaluations of low-degree polynomials. In contrast, energy
or memory intensive primitives such as public-key based
primitives or consensus protocols that reach agreements in
the presence of malicious adversaries and require multiple
network-wide broadcasts are much less desirable.

Recent research on key revocation in sensor networks
illustrates two different approaches with orthogonal prop-
erties; i.e., a centralized approach (e.g., for the basic random
keys scheme [3]) and distributed approach (e.g., for the
random pairwise scheme [1]). In the centralized approach,
upon detection of a compromised node, a base station
broadcasts a revocation message to all sensor nodes that
need to remove the copies of keys to be revoked from the
compromised node.

In distributed revocation for random pairwise predis-
tributed keys [1] (see Section 2.5), revocation decisions are
made by the neighbors of a compromised node. These
neighbors vote to decide whether to revoke a given node
and, if the vote tally exceeds a specified threshold,
revocation takes effect. In contrast with centralized revoca-
tion, distributed revocation should be faster, as it requires
predominantly local broadcast messages that are inexpen-
sive, and avoids a single point of failure. These features are
important since compromised nodes must be sealed off and
effectively disconnected from the rest of the network
expeditiously. However, the distributed revocation protocol
proposed for the random pairwise scheme solely uses
network-wide broadcasts of long messages, which is slow,
consumes communication energy, and makes the network
prone to denial-of-service attacks. Furthermore, its opera-
tion requires each node to keep a record of which votes
have been heard since the beginning of the network’s
lifetime. Not only is this memory-intensive, but it also can
lead to stale state and incorrect results. For example,
suppose that on average, once a month each legitimate
sensor node may mistakenly detect a neighbor as having
malicious characteristics, causing a revocation vote to be
released against it. Further suppose that the threshold
number of votes for revocation is three. Since each vote,
once cast, can never be retracted, this means that on average
any given legitimate node will be revoked from the network
in less than three months. These serious flaws make the
current scheme impractical.

In general, distributed revocation is inherently more
complex than centralized revocation. Such protocols are
inherently prone to design error, and the verification of their
correctness becomes essential. Correctness verification
requires precise definition of both revocation properties
and adversary attack model. Both have been lacking to date.
In this article, we present the first precise definition of
desired properties for the design of distributed revocation
protocols. Furthermore, we present the first distributed
revocation protocol that can be shown to fulfill the list of
desired properties. It is hoped that this new protocol can
demonstrate the usefulness and viability of the provided
framework, thus facilitating further research into distribu-
ted node revocation schemes.
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4 ATTACKER AND COMMUNICATIONS MODEL

In this section, we list the assumptions that are general to

the node revocation problem. This defines the standard

attacker and communications model described by in the

literature for key distribution in sensor networks [1], [2], [3],

[4]. These assumptions are independent of the details of our

proposed protocol (for protocol-specific assumptions,

please see Section 6.2).

1. Adversary has universal communication presence.
We assume that the adversary can simultaneously
send and receive an arbitrary number of messages in
any part of the network at any time.

2. Adversary can perform chosen node compromise.
The adversary can selectively compromise a small
fraction of the nodes in the sensor network. All data
on a compromised node becomes known to the
adversary. Furthermore, compromised nodes are
controlled by the adversary and can perform active
network functions as part of the network until they
are revoked. In particular, compromised nodes can
launch revocation attacks (see Definition 1 in
Section 5.2).

3. Compromised nodes collaborate. We assume a
single adversary performs all the node compromise
in the network; hence, all leaked information in the
compromised nodes is collectively known to the
adversary and compromised nodes can coordinate
to perform collaborative attacks on the sensor
network.

4. Adversary cannot block or significantly delay
communications. We assume that compromised
nodes can selectively drop packets which they have
received, but the adversary is unable to jam or
delay local (single hop) communications in the
network whose source and destinations are both
uncompromised nodes. The adversary cannot block
or delay multihop broadcast messages, either
neighborhood-wide or network-wide (i.e., compro-
mised nodes can refuse to forward broadcasts but
we assume that there are sufficient legitimate
nodes performing the forwarding to ensure com-
plete coverage). The adversary is also unable to
partition the network via node compromise. Note
that implicit in this assumption is that since an
adversary is unable to perform these disruptions,
random failures also do not affect the assumed
connectivity and communication properties of the
network. Under these assumptions, we can assume
a bound on the time for broadcasts to propagate
over the network. Neighborhood-wide broadcasts
take at most time �c to fully propagate over a
neighborhood. Network-wide broadcasts or node-
to-base-station communications take at most time
�d to propagate to every node, where �d > �c. It
may seem that this is a strong assumption since
providing efficient reliable broadcast in the pre-
sence of active adversaries is a challenging techni-
cal problem in itself. However, we note that
without this assumption, no revocation protocol

(distributed or centralized) could be feasible since
the adversary would always be able to interrupt
the revocation messages to some part of the
network and remain active there. Hence, this is a
required assumption if we are to discuss the
revocation problem at all. Note that, even in the
absence of an efficient solution, simple flooding
still provides an inefficient but adequate solution to
the reliable broadcast problem. Given that revoca-
tion events are rare, it may be possible that the
costs associated with simple flooding are accepta-
ble compared with the security benefits of node
revocation.

5 BASIC PROPERTIES OF DISTRIBUTED

REVOCATION

To date, there has not been a succinct definition of
distributed revocation properties. It is clear that a
distributed revocation protocol should enable a set of
nodes to make a decision to exclude another node from
the network. However, the problem contains many
complicating factors, such as the need to be resistant to
attempts by an adversary to block or subvert the protocol.
In this section, we describe a set of desired properties,
thus providing a precise definition of the problem. Fig. 1
is available as a reference which summarizes the notation
used in this part of the paper.

5.1 Correct Operation

The following properties ensure the correct operation of the
distributed sensor node revocation protocol:

Property 1 (Completeness). If a compromised node is detected
by t or more uncompromised neighboring nodes, then it is
revoked from the entire network permanently (i.e., its
subsequent reinsertion into another part of the network is
not possible).

Property 1 ensures that if compromise is detected by
sufficient nodes, then the protocol always operates correctly
in permanently removing the compromised node, and the
adversary is unable to prevent such a revocation from
taking place, or circumvent it by reinserting the compro-
mised node elsewhere.

Property 2 (Soundness). If a node is revoked from the network
using this scheme, then at least t nodes must have agreed on its
revocation.

Property 2 ensures that the protocol always requires
the agreement of at least t nodes to perform the
distributed revocation of any single node. The threshold
t provides a mechanism for verifying that the compro-
mise was detected by at least t nodes before a revocation
commitment can be made. Note that the property does
not state that the revoked node must be actually
compromised, nor that all the collaborating revoking
nodes must be legitimate. In particular, this property
allows an uncompromised node to be revoked by a set of
t malicious compromised nodes. This is allowed because
it is not realistic to assume that node compromise is
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always detected with 100 percent effectiveness; hence, if t
undetected compromised nodes in the network collude to
revoke an uncompromised node, this action is necessarily
indistinguishable from having t uncompromised nodes
agree to revoke a compromised node.

Property 3 (Bounded Time Revocation Completion).

Revocation decision and execution occur within a bounded
time period (let this bound be �t) from the time of sending of
the first revocation vote.

Property 3 ensures that the revocation decision is

completed in a timely fashion. This means that an adversary

cannot prolong the lifetime of a detected compromised

node by delaying the outcome of the revocation decision

and, thus, slowing down the revocation process; in order to

circumvent the revocation, the adversary has to force the

revocation decision to return a negative result (i.e., a

decision not to revoke). This property also means that

sensor nodes do not have to carry revocation state

information for long periods of time, which is attractive

since sensor nodes generally have limited memory. This

condition also implies that, within the time period �t, if

there is an insufficient quorum of sensor nodes that agree

that a node is to be revoked, then the revocation decision

correctly returns a negative result, instead of waiting

indefinitely for the threshold number of votes to be reached.

This property resolves the problem of stale state in the

original random pairwise revocation scheme, where erro-

neous votes can accumulate over the network’s lifetime and

result in the revocation of a legitimate node.

Property 4 (Unitary Revocation). Revocations of nodes are
unitary (all-or-nothing) in the network. Specifically, if a node
is revoked in one part of the network, then it will be revoked in

the whole network within time �d, where �d is the time taken
for any message to propagate across the entire network. If it is
not revoked in one part of the network, then it was not revoked
in any part of the network in the time prior to the last �d time
period.

Property 4 ensures that revocation is universal within the
given limits of communication delay. In particular, the
adversary cannot block or delay part of the revocation such
that when a compromised node is revoked in one part of the
network, it can still operate in a different part of the
network for a substantial length of time.

5.2 Resistance to Active Abuse

The properties in Section 5.1 ensure that the protocol
operates correctly. However, correctness is insufficient.
Since compromised sensor nodes can actively participate
in the distributed revocation of other nodes, an adversary
could abuse the distributed revocation protocol to further
its own agenda without actually interfering in the correct
operation of the protocol. In particular, the adversary could
use the compromised nodes under its control to launch a
revocation attack:

Definition 1 (Revocation Attack). An attack where an
adversary uses the distributed node revocation protocol to
selectively revoke uncompromised nodes from the network.

Hence, we require an additional property:

Property 5 (Revocation Attack Resistance). If c nodes are
compromised, then they can only revoke at most �c other nodes
where � is a constant and � � m

t .

A distributed revocation scheme that satisfies Property 5
restricts the adversary’s ability to perform a revocation
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attack. Based on the property, when an adversary has
compromised some number of nodes, it is only able to
successfully revoke a number of nodes that is much less
than the total number of nodes it would have been able to
revoke if every compromised node had cast a vote against
each of the nodes which share a key with it.

6 OUR PROTOCOL FOR DISTRIBUTED SENSOR

NODE REVOCATION

In this section, we describe our protocol for distributed
node revocation. Although for simplicity we present our
protocol in the context of the Random Pairwise Key
Distribution scheme, our protocol can be extended for
implemention with other key distribution protocols, for
example with the generalized random key predistribution
mechanisms proposed by Du et al. [2] and Liu and Ning [4].

Our distributed revocation protocol is a significant

improvement of the distributed revocation scheme pre-

sented by Chan et al. [1]. First, we add the idea of revocation

sessions, which is a mechanism by which a revocation

decision can be completed in bounded time, thus resolving

the issue of stale votes causing eventual erroneous revoca-

tion of legitimate nodes. Second, we improve the efficiency

of the scheme by performing the voting and revocation

decision process only using hop-limited local broadcast

messages that cover only the target’s local neighborhood,

thus eliminating the extremely high communication over-

head of the original scheme. After the voting process is

complete, a single short cryptographic message is then

broadcast into the entire network to finalize the revocation

outcome. This is in contrast to the original scheme where all

voting and communications are full network-wide broad-

casts involving large amounts of cryptographic information,

which can be very expensive in a large sensor network.

Finally, the protocol that we describe is the first distributed

node revocation protocol that provides rigorous proofs of

high-level desired properties.
The addition of sessions is necesary to facilitate the

bounded-time completion of the revocation process. With-
out sessions, each note could only cast a revocation vote at
most once against any other node, and, once cast, it would
be unable to withdraw the vote. Given that intrusion
detection may yield some level of inaccuracy, this implies
that each node can only estimate that one of its neighbors is
malicious with some level of certainty. If we set the nodes to
trigger their votes at a low certainty level, then inaccurate
false-positive votes could accumulate and cause the revoca-
tion of legitimate nodes. If we set the nodes to trigger only
at a high level of certainty, then we lose the advantage the
distributed revocation is fast reacting. The use of sessions
avoids this dilemma by allowing nodes to react immedi-
ately with high sensitivity to intrusion events and, yet, not
have to worry about accumulated votes from false positives
being a factor. Note that votes, once cast, become public and
cannot be withdrawn. Hence, session information cannot be
reused for a subsequent voting process—once voting is
complete for each session, the session must be closed
regardless of the outcome of the vote.

In the description of the protocol, we will assume that
the Random Pairwise Key Distribution is the underlying
key establishment protocol, and we perform node revoca-
tion actions only among the m nodes which share
pairwise keys with the target (i.e., the m participants of
the target). The set of m participants does not include the
target itself. We note that our scheme is general in the
sense that it can be directly adapted for other key
distribution mechanisms and not just the Random Pair-
wise protocol. For example, if SPINS [9] was used for key
establishment, the set of a participants could be defined as
the set of neighbors of a node, and the required revocation
data could be downloaded from the base station during
the key-establishment process. In the general case, we
could set m ¼ n and allow the set of participants of a
node to be the entire sensor network. Hence, any other
key distribution scheme such as the generalized random
key predistribution schemes proposed by Du et al. [2] or
Liu and Ning [4] could also be used with our protocol.
We further assume that each sensor node has a unique
symmetric key that it shares with only the base station.
This key is used for authenticated, confidential commu-
nications between sensor nodes and the base-station.

6.1 Definitions of Terms Used

In this section, we will define the terms we will use in the
description of the distributed revocation protocol. As
mentioned, Fig. 1 summarizes the notation we will be
using in this paper.

Definition 2 (Neighborhood). The neighborhood of a node is
the set of nodes that are within communication range of it.

Definition 3 (Target, Participants). A node to be revoked is
called a target node and any of the m nodes that has a shared
pairwise key with a target node is called a participant. A
participant is a local participant if it has established a direct
(1-hop) communication link with the target (hence, it is must
be located within the neighborhood of a target); otherwise, it is
a nonlocal participant. All other nodes are called the
nonparticipant nodes. The target node is a nonparticipant of
itself, since it cannot participate in key-agreement or node-
revocation activities with respect to itself.

Definition 4 (Local Neighborhood Broadcast). A local-
neighborhood broadcast is a multihop broadcast that
originates within a given neighborhood and reaches all the
nodes inside that neighborhood. Generally, this refers to
broadcasts limited to the neighborhood of a revocation target.
Local-neighborhood broadcasts take at most �c time to
propagate over the entire neighborhood (based on Attacker
Model Property 4).

6.2 Assumptions of Our Protocol

Before we describe our protocol, we list the assumptions
under which our protocol operates. Each of these assump-
tions was necessary to facilitate the proofs that our protocol
fulfils the set of properties we described in our problem
framework in Section 5. Hence, the strength of these
assumptions is closely tied to the strictness of the require-
ments in our problem framework: A weaker set of proper-
ties would require fewer assumptions. Instead of opting for
proving weaker properties with few assumptions in our
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initial protocol, we chose instead to show that with some

number of reasonable assumptions, we are able to describe

the first protocol that fulfills all the stringent properties we

described in our problem statement. It is hoped that future

research will be able to pick up on this direction, and

provide new protocols that require fewer assumptions

while fulfilling the same set of stringent requirements.

1. Deployment Atomicity. Deployment of new nodes
is atomic (i.e., it appears to happen instantaneously
from the point of view of the network). Deployments
do not occur while there are active revocation
sessions in the network. All communications in the
network are received at their final destinations
before deployment begins. In practice, this can be
achieved by shutting down the network in an
orderly fashion prior to physical deployment of
new nodes; after the new nodes have been physically
deployed, then the network is turned on again.

2. Locality Restriction of Compromised Nodes. The

problem of controlling replication of a single node

identity or the generation of multiple Sybil node

identities across the network is an important

technical challenge that is independent of distribu-

ted node revocation—examples of techniques to

provide such functionality has been described by

Newsome et al. [20] and Parno et al. [21]. Since this
problem is not the focus of our protocol, we assume

the functionality for addressing this problem is

already present. More specifically, we assume that

node replication, Sybil node identities, or node

movement can be detected and the offending node

centrally revoked; hence, each malicious node is

confined to a single neighborhood. However, all

malicious nodes can share information arbitrarily.
We assume that all sensor nodes are immobile.

Immobile sensor networks constitute a majority of

known sensor network applications to date. We

design our protocol only for this subset of applica-

tions since mobility creates complications that this

initial protocol is not meant to address.
3. Node Degrees. Each node i has di � t local

participants with which it has successfully per-
formed key-establishment, where m � di (hence,
m � dmax, where dmax is the maximum number of
local participants for any node). We assume that this
is enforced by some degree-counting mechanism,
where nodes with low degrees are centrally revoked
(i.e., it is enforced that di > dmin for some dmin). An
example is described by Chan et al. [1]. An
adversary could attempt to exploit the degree-
counting mechanism by reducing the degrees of
legitimate nodes (e.g., by causing malicious nodes to
refuse to complete key exchange with legitimate
nodes). This is a very inefficient attack since, in order
to disable a single node in this manner, an adversary
has to capture or disable a large number of the nodes
in its neighborhood. For example, typical values for
dmin should not exclude legitimate nodes that simply

happen to be deployed in a sparse area. Since t is
typically also not large compared with deployment
density, the typical degree of any node is usually
much greater than dmin þ t. Hence, if an adversary
wishes to cause the removal of a node, for the vast
majority of the nodes it would be more efficient to
simply capture t local participants and perform a
coordinated revocation attack than to attempt to
drive the target node’s degree below dmin in order to
cause automatic central revocation.

4. Events that can cause a node to start a revocation

against another node are visible to the node’s

entire neighborhood. If we allow nodes to trigger

revocation sessions based on events that are only

observable to themselves, then it is difficult to

ascertain if this is a legitimate response to misbe-

havior, or if a malicious node is performing
spurious revocations, or if a malicious node is

deliberately inducing a legitimate node to perform

legitimate revocation actions that are guaranteed to

fail. Hence, we only trigger revocation based on

events that are visible to all the target node’s

neighbors. By the previous Assumption 3, this also

means that such events are always observed by

some di � t legitimate nodes. Hence, nodes only
react to events which they know can also be

observed by many other nodes and, thus, there is

assurance of reaching the threshold t whenever a

voting session is started legitimately. In practice, the

legitimate nodes observing the event may encounter

false positives or false negatives, which may cause

the initiation of failed revocation sessions. We

assume that the rate of false positives and false
negatives is small. In fact, the development of

distributed intrusion detection mechanisms is a

challenging research problem. As a current working

example, we can suppose that our detection

mechanism only reacts to highly visible, egregious

misbehaviors such as repeatedly performing spur-

ious transmissions, or complete absence of commu-

nication over a long period of time. As intrusion
detection mechanisms become more advanced and

more accurate, the range of detectable behaviors

supported by this scheme will also increase.

5. Revocation Sessions Are Always Available. We
assume that revocation attempts by legitimate nodes
are infrequent enough that only s sessions need to be
stored on the sensor nodes such that no node ever
runs out of revocation sessions during its lifetime.
We assume that s > t but it is small (e.g., less than
10). If all the available sessions against a given target
node B are exhausted, all of B’s participants will be
able to detect this since each of them is aware of how
many sessions are remaining for B. Hence, each
participant simply suspends communications with
B until new sessions arrive, thus temporarily
excluding B from the network as long as it cannot
be revoked. An adversary may attempt to exhaust all
available revocation sessions against a given node
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such that this behavior occurs, but such an attack is
easily detectable and counteracted. For example, if a
node A repeatedly initiates revocation sessions
against node B that subsequently fail, then this
behavior is reported by its fellow participants to a
central base station. By assumption 4 above, we
know that such behavior is not typical of a legitimate
node because a legitimate node should only react to
events visible to the entire node neighborhood. If
this happens repeatedly, the base station may then
detect if this is an attempt to perform a session
exhaustion attack, and the offending node A will be
centrally revoked. An adversary may attempt to
circumvent this mechanism by using s nodes in turn
to attempt the session exhaustion attack. However,
since we required that s > t, in this case, the
adversary could simply revoke the target node
permanently instead of performing such an attack.
Hence, we can assume that revocation sessions are
always available for the revocation of any target
node. Node sessions may be slowly expended as
false positives and random events accrue over time.
However, new sessions can be refreshed via en-
crypted transmissions from the base station to each
relevant participant. While such a refresh is very
costly in terms of communication overhead, we note
that since revocation attempts are infrequent, a node
would probably only experience a very small
number of such refresh events in its lifetime.

We further note the following nonassumptions of our
protocol:

1. We do not assume time synchronization between
sensor nodes. We do not make use of any internal
clock information in sensor nodes. We also do not
expect sensor nodes or the network to react
instantaneously to any event.

2. We do not assume any asymmetric-key cryptogra-
phy capabilities on the sensor nodes. We present
our protocol using only symmetric-key primitives,
thus trading off an increased memory requirement
for lower energy and computational requirements.
We note that it is simple to convert our symmetric-
key scheme to one based on asymmetric cryptogra-
phy. In particular, note that such a conversion would
assure that revocation sessions are always available
since each node would be able to generate more
revocation sessions for any number of neighbors
indefinitely.

6.3 Protocol Overview

A high-level overview of our revocation protocol is as
follows: Local participant nodes perform voting in sessions
to agree to revoke a neighbor. In each voting session, we use
a secret-sharing scheme to tally revocation votes from each
participant. Each vote is a secret share, and voting is
performed by broadcasting the secret share to all the
participant nodes in the target node’s neighborhood. Once a
certain time has elapsed since the first vote of the session
was broadcast, each local participant tallies the votes that it
heard; if sufficient votes were heard, then it can prove this

fact by broadcasting the secret of the secret-sharing scheme.
Such a broadcast indicates that the target was successfully
revoked and causes all nodes in the network to erase the
keys associated with the target, thus eliminating it from the
network. In the subsequent sections, we describe the
protocol in detail.

6.4 Cryptographic Primitives

In the revocation protocol, we make use of random poly-
nomials. Polynomial qðxÞ ¼ a0 þ a1xþ a2x

2 þ . . .þ at�1x
t�1

is random if all its coefficients a0; a1 . . . at�1 are random
uniformly distributed values in a certain range ½0; l� 1� (e.g.,
l ¼ 264). We define the cryptographic hash of a random
polynomial qðxÞ to beHqðxÞ¼Ha0jja1jja2jj . . . jjat�1, whereH
is a hash function and a0; a1 . . . at�1 are the coefficients of qðxÞ.

The protocol also uses Authenticated-encryption (AE)
modes. AE modes detect 1) ciphertext forgeries (e.g.,
ciphertext messages produced by manipulation of en-
crypted-message blocks or simply by arbitrary message
strings that are not obtained by encryption) and 2) false (or
inauthentic) decryption keys (i.e., decryption keys not used
by the corresponding encryption operation), during cipher-
text decryption. AE modes specially designed to save
power and energy are particularly well-suited for sensor
networks (e.g., AE modes that use a single pass over the
data using a single cryptographic primitive, namely, the
block cipher [17], [18], [19]).

6.5 Offline Node Initialization

For node initialization, we first compute stotal random
polynomials of degree t for each of the n nodes in the
network, where stotal is the number of revocation sessions
(attempts) against any target node in the network. For
example, if the size of the sensor network is n ¼ 10; 000 and
the number of revocation sessions is stotal ¼ 6, this would
require 60,000 polynomials of degree t. This is not a very
large number considering that they are generated offline,
efficiently. For the purposes of discussion, we number each
session against a given target from 1 . . . stotal, with session 1
starting first and proceeding sequentially until the last
session stotal. The voting sessions are necessary to fulfil
Property 3 (bounded-time revocation decision completion).

Second, on each node A, for each node B of A’s
m participants, and for each revocation session s against
target B, based on our random polynomial qBs, we load the
revocation vote from A against B. This revocation vote
consists of the secret share ðqBsðxABsÞ; xABsÞ, AE encrypted
with the activation mask MaskABs that B gives to A. The
points at which the secret-sharing polynomial are evaluated
(e.g., xABs) are generated such that no two participants have
the same revocation secret share. The preloaded data is
represented as (EMaskABsðqBsðxABsÞ; xABsÞ). The purpose of
the masks is to ensure that each node is only able to revoke
nodes within its immediate neighborhood. Since we assume
nodes are unable to move or replicate (see Assumption 2),
each malicious node can only collect masks from one
neighborhood, thus limiting their revocation power. For
each vote, we also load the logm authenticating hash values
for the Merkle tree with leaves ðqBsðxiBsÞ; xiBsÞ for each
node i in B’s participants (a total of m leaves). The root RB

of this Merkle tree is also stored. When the revocation vote
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is cast, these logm authenticating values are also attached to
the message. This allows fellow participants of B to verify
the authenticity of the vote by computing the hashes up the
tree and comparing it to the known root value RB. Finally,
we load H2qBs, which is the hash of the hash of the
revocation polynomial of B. This will allow nonlocal
participants to verify the authenticity of a revocation
decision against B.

Third, on each target node A, for each node B in A’s m

participants, for each revocation session s against target
node A, we load the value MaskBAs that A will give to B to
allow B to decrypt votes against A.

The information that is preloaded on each sensor node is
summarized in Fig. 2. The total storage overhead per node
is Oðstotalm logmÞ. Note that the overhead of the random
pairwise keys scheme itself is already OðmÞ, hence this
revocation scheme is only a small factor larger than the
basic overhead necessary for key-establishment.

6.6 Connection Establishment

The masks for the current revocation sessions are ex-
changed at connection time. Masks are verified if votes can
be decrypted—due to the authenticated encryption prop-
erty, an incorrect mask would cause decryption of the vote
to fail. If the mask exchange protocol is not completed (e.g.,
by a malicious node refusing to reveal its mask, or revealing
an incorrect mask), and still does not succeed after some
number of retries, then the link is dropped. Malicious nodes
which repeatedly refuse to perform mask exchange will
have a low degree and this will be detected and centrally
revoked by the degree-counting scheme assumed in
Assumption 3. Note that, by Definition 3, if the unmasking
protocol fails and the link is dropped between two
neighboring nodes, we consider them to be nonlocal
participants even though they are in physical communica-
tion range of each other.

A malicious node M1 may attempt to circumvent the
unmasking process by having another malicious node M2

act as its proxy in a distant location to obtain extra masks.
However, since all communications are authenticated

(node-to-node identity authentication is a prerequisite for
any distributed revocation protocol), this is exactly equiva-
lent to M1 producing a Sybil replication at M2’s location. By
Assumption 2, functionality to address this kind of
replication is already present; hence, such an attack is not
feasible.

Once the masks are exchanged, they are used to decrypt
the relevant votes.

6.7 Stages of a Revocation Session

We now describe the process of an entire revocation session
s for some given participant A. Each node keeps a state
variable for each session. Before any voting occurs in a
current session, node A’s state for session s is the pending
state. In this state, A is awaiting the first vote in the session
s. When the first vote of the session is cast or received by A,
A starts its timer for the new revocation session and
changes its state for the current revocation session to active.
Only when A is in the active state does it record and verify
other votes cast in this session by fellow participants. When
A enters the active state, if A believes that B is compro-
mised, it will cast its vote if it has not already done so. The
active state lasts for exactly �s time for each node, after
which the node transitions to the completed state for this
session, and starts the pending state for the next session. �s

is a precomputed time duration based on the time that a
revocation decision is expected to take. In order to ensure
full dissemination of all messages within a session, we
require that �s > 2�c where �c is the maximum time that a
message needs to completely propagate in a local neighbor-
hood broadcast.

Definition 5 (Current Session). The current session of a node
for the revocation of a target is the session with the smallest
session number that has not yet completed (i.e., it is either
active or pending).

Any session that comes after the current session is
considered to be in the not-current state. Any votes
received for a session that is not-current is buffered and
only acted upon after the current session is completed.
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6.8 Voting in a Revocation Session

When a node A detects compromise of a node B, it votes
both in the current session and on the next session. Voting in
the next session occurs immediately upon completion of the
current session. This voting process is to ensure that A’s
vote is actually counted because a vote in an already-active
session cannot be guaranteed to disseminate in time for all
nodes to receive it. For example, suppose both nodeA and C
are currently near the end of an active revocation session s
against B (i.e., both of them have been in the active state for
session s for nearly �s time). Suppose that both of them
have recorded t� 2 votes against B. Simultaneously, both A
and C detect that B is compromised. If they vote only in the
current session, since the session is almost over, it is possible
that neither of their votes reach each other within the
remaining time for the session, so both A and C tally t� 1
votes and fail to reach the threshold needed to revoke B,
even though t votes were cast in session s. Hence, it is
necessary that the nodes also vote in the next session sþ 1.
Voting only in the next session (and not the current session)
is insufficient since in the interest of speed, we would like
the current revocation session to succeed if at all possible.

When A votes against B, it performs an unencrypted
hop-limited broadcast of A’s against node B in the current
revocation session s, ðqBsðxABsÞ; xABsÞ along with the logm
Merkle authentication values that verify that this vote is a
valid vote. This is a local neighborhood broadcast, i.e., the
broadcast only needs to go far enough to ensure complete
dissemination in the neighborhood of B (four-six hops can
cover the area with high probability [3]). Only nodes that
can verify the authenticity of the vote using the Merkle
authentication values (i.e., the participants of B) will
disseminate the broadcast. This ensures complete coverage
with high probability [1].

6.9 Completing the Revocation Process

When A’s state for the session has transitioned to complete, it
counts the number of votes it has received while it was in
the active state.

If A has at least t revocation votes (including its own if it
detected the compromise, otherwise not), then it computes
the revocation polynomial of B for this session, qBs. From
this, A computes the hash of the polynomial, HðqBsÞ. This
value is then broadcast through the entire network. Note
that we broadcast only the hash of the polynomial qBs
instead of the polynomial itself; thus, we only need to
transmit a single cryptographic value instead of a lengthy
set of large polynomial coefficients. All participants of B
verify this preimage against the value stored in their
memory, H2ðqBsÞ. If the verification is successful, then all
shared keys with B are deleted and B is marked as revoked.
The broadcast is then disseminated to the other participants
of B until the entire network is covered.

If A does not have at least t verified revocation votes,
then the revocation session has failed. Each local participant
privately notifies the base station of the failed revocation
session, thus ensuring that future deployed nodes will be
deployed with the most current revocation session in the
correct state (i.e., in the pending state since deployments
should not occur if there are any active revocation sessions
in the network). Local participants of B then proceed to

request the masks for the new session sþ 1, i.e.,
MaskABðsþ1Þ (if B does not respond correctly then its degree
is reduced and it may be centrally revoked due to
insufficient degree (Assumption 3). To save memory, any
state regarding the old revocation session s is cleared.

6.10 Proofs of Properties

In this section, we shall prove that Distributed Sensor Node
Revocation satisfies the properties outlined in Section 5.

Lemma 1. Every node is deployed with the correct current

revocation session for its participants.

Proof. Immediate from Deployment Atomicity (Assump-
tion 1). We assume that the base station keeps track of the
current revocation session of each node and updates
newly deployed nodes with the correct session informa-
tion; since deployment is atomic, the base station always
has a correct notion of the current session of every node
in the network. tu

Definition 6 (Session Agreement). Two nodes are in session

agreement with respect to a target node at some instant in

time if, for some session s, either

1. session s is pending for both nodes,
2. session s is active for both nodes,
3. session s is active for one node B and session s is

completed for another node A, but session s is
completing within time �c for node B, or

4. session s is active for one node A and pending for the
other node B, but node B is activating session s within
�c time.

Lemma 2. At any given point in time, any two uncompromised

local participants are in session agreement for any target node.

Proof. Let the initial session of node that was deployed later
be r. By Correct Deployment (Lemma 1), when the later
node was deployed, the earlier node also had session r

pending since 1) deployment only occurs when there is
no active revocation session and 2) the deployed nodes
are always deployed with the correct current session.
Hence, the two nodes are session agreement on session r

when the later node was deployed.
We now show the inductive step that if the two nodes

are in session agreement in all time instants T 0 � T (after
both nodes have been deployed), then they are still in
agreement in time T þ � where � < �s. If the states of the
nodes are unchanged between the two times, or if both
nodes changed states into the same states at time T þ �,
then we are done. Otherwise, we have five nondegene-
rate cases. Recall that �s was chosen at design time such
that �s > 2�c.

Case 1: Session s is pending for both nodes at time T ,
and at time T þ �, node A activated session s. Since A is
uncompromised, it will perform a local broadcast of the
first vote of session s. By Attacker Model Property 4,
local communications cross the local neighborhood in
time �c. Since node B is in pending mode for session s, it
will receive the first vote of session s in time �c and
activate the session. Hence, the nodes are in agreement
by option 4 of the definition of agreement.
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Case 2: Session s is active for both nodes at time T . At
time T þ �, node A completed session s, but node B still
has the session active. By the induction hypothesis, the
nodes are in agreement when the first one of them
started session s; hence, they must have both started
session s within �c of each other. Since each session
takes a fixed amount of time to complete (�s), and A
completed session s at time T þ �, we know that B will
complete session s by T þ �þ�c; hence, they are in
agreement by option 3 of the definition of agreement.

Case 3: Session s is active for node B and session s is

complete for nodeA at time T . At time T þ �, session s has

completed for nodeB. Hence, session sþ 1must be either

active or pending for node B. If session sþ 1 is active or

pending for both nodes, then by options 1 or 2 of the

definition, we have agreement. Otherwise, one node has

session sþ 1 active and the other has session sþ 1

pending. By Attacker Model Property 4, local commu-
nications cross the local neighborhood in time�c. Hence,

the node with session sþ 1 pending will receive the first

vote for session sþ 1within time�c and start the session.

Hence, we have agreement by option 4 of the definition.

Case 4: At time t, session s is active for A and pending

for B. Two subcases: Subcase 4a: At time T þ �, session s

is completed for A and session s is still pending for B.

This subcase is impossible. By the induction hypothesis,
the nodes are in agreement when A started session s;

hence, B must be starting session s within �c of that

time. In order for B to be still pending session s at time

T þ �, it must be that A started session s after time

T þ ���c. However, we know that A needs at least �s

time to complete session s, so the earliest time it can

complete the session is at T þ ���c þ�s, but since

�s > �c, this time is after T þ � (contradiction). Hence,
this subcase is impossible.

Subcase 4b: At time T þ �, session s has completed for
A and session s is active for B. By the induction
hypothesis, the nodes are in agreement when A started
session s; hence, they must have both started the session
within �c of each other. Since each session takes a fixed
amount of time to complete (�s), and A completed
session s at time T þ �, we know that B will complete
session s by T þ �þ�c; hence, we have agreement by
option 3 of the definition.

Hence, we have shown by induction that A and B are
in session agreement for all times T . tu

Property 1 (Completeness). If a compromised node is detected

by t or more uncompromised neighboring nodes, then it is

revoked from the entire network permanently (i.e., its

subsequent reinsertion into another part of the network is

not possible).

Proof. Suppose a compromised node B is detected by a set

S of t or more uncompromised neighboring nodes. By

Lemma 2, all t nodes are in mutual session agreement on

some session for the target B. We proceed by two

possible cases. Let node C be the node with the lowest

current session in the set S. Recall that �s was chosen

such that �s > 2�c.

Case 1: The current session s is pending for node C.
Consider an arbitrary node A in S. By the definition of
session agreement (Definition 6), A either (1a) has
session s pending, or (1b) has session s active. A cannot
have session s0 > s pending or active since in that case it
could not be in session agreement with C. For Case 1a,
we have that A will vote in session s and change its state
to session s active. Since session s is starting at this
instant for A, it has at least time �s > �c to receive all t
votes in session s. For Case 1b, node A will vote in
session s. We know by that session s could not have been
active for node A for more than �c time, otherwise
within that time the first vote would have reached node
C and activated session s. This is due to Attacker Model
Property 4 which states that local broadcasts take at most
�c time. Hence, since session s has not been active for
more than �c time, so there is at least �s ��c > �c time
remaining for it to receive all the t votes in session s. In
both Cases 1a and 1b, we have that all nodes in S will
vote in session s and every node has at least �c time to
receive all the votes from the other nodes. Since the votes
are local broadcasts and, so, need at most �c time to
propagate and always reach their destinations (Attacker
Model Property 4), we know that all jSj � t votes in
session s will be received by all members of S.

Case 2: The current session s� 1 is active in node C.

Consider an arbitrary node A in S. By the definition of

session agreement (Definition 6), A either 2a has session

s� 1 pending 2b has session s� 1 active, 2c has session s

pending, or 2d has session s active. It cannot be that

session s is completed for A since that would mean that

session swould also complete forCwithin time�c, which
cannot be true since C will take at least �s > 2�c time to

complete session swhich has started at this point. Case 2a

is covered by Case 1 above. Hence, we only have three

cases (2b, 2c, and 2d). For Case 2b, both nodes A and C

have detected compromise while a session is active, so

theywill vote in both session s� 1 and session s.We know

byLemma2 thatA andCwere in agreementwhen the first

one of the started session s� 1; hence, they must have
started session s� 1 within �c of each other. Since they

will both start session s immediately after they complete

session s� 1, they will also start session s within �c of

each other. Hence, each node has at least �s ��c > �c

time to receive the votes in session s. For Case 2c, A will

vote in session s (as will C). Since session s has not started

for nodeA, it will have�s > �c time to receive all jSj votes
in session s. For Case 2d, nodeAwill vote in both session s

and session sþ 1. Since node C still has session s� 1

active, it could not be that nodeA completed session s� 1

and, then, started session smore than�c time ago. This is

because by Definition 6, node C must be completing

session s� 1 within time �c of the time when node A

completed session s� 1. Since this has not happened yet,

node A must have completed session s� 1 (and started

session s)within the last�c. Hence, nodeA still has at least
�s ��c > �c time to receive the votes in session s. Hence,

in all cases (2b, 2c, 2d), we have that all the nodes in S will

vote in session s, and every node has at least �c time to

receive the votes of the other nodes in S. Attacker Model
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Property 4 states that local broadcasts always cover the
local neighborhood and take at most �c time. Hence, we

know that all the nodes in S will have received all the

jSj � t votes in session s by the end of the session.
Hence, all jSj � t nodes will receive and correctly

verify (via the Merkle hash tree mechanism) all unique
votes in session s against B. By the preimage resistance
of the Merkle hash tree, the adversary cannot fabricate
and inject invalid votes, and it has no way of
reconstructing a valid vote without first being able to
produce a preimage for the cryptographic hash function.
Replayed votes have no effect since only unique votes
are recorded by the nodes. Hence, each node in S is able
to record at least t valid votes and, thus, generate the
revocation secret qBs for session s. The verifying
revocation value HðqBsÞ is the broadcast throughout the
network. By Attacker Model Property 4, this broadcast
reaches every participant of B and, thus, induces a
permanent network-wide revocation of node B. tu

Property 2 (Soundness). If a node is revoked from the network

using this scheme, then at least t nodes must have agreed on its

revocation.

Proof. Suppose a node B is revoked in the network using

this scheme. Then, the correct verifying revocation value

HðqBsÞ must have been broadcast for some session s.

Since the cryptographic hash is preimage resistant, this

means that some party must have computed the

revocation secret qBs. Since qBs is not stored in its

entirety on any node in the network, by the threshold

property of the random polynomial, the only way to

reconstruct qBs is to obtain at least t secret shares of qBs.

Hence, at least t nodes must have colluded to perform

this computation. tu
Property 3 (Bounded Time Revocation Completion).

Revocation decision and execution occur within a bounded

time period (let this bound be �t) from the time of sending of

the first revocation vote.

Proof. Let the time when the first vote is cast against some

target node B be time T . By Attacker Model Property 4,

all local participants will have received this vote by time

T þ�c. By the protocol, each node makes its revocation

decision within time �s of receiving the first vote. If the

outcome is positive, the verifying revocation value is

then broadcast to the rest of the network. Otherwise, the

base station is notified of the failure of the session. By

Attacker Model Property 4, the broadcast takes at most

time �d to reach the rest of the network (as does the base

station notification). The total time taken is thus at most

�t ¼ �c þ�s þ�d. tu
Property 4 (Unitary Revocation). Revocations of nodes are

unitary (all-or-nothing) in the network. Specifically, if a node

is revoked in one part of the network, then it will be revoked in

the whole network within time �d, where �d is the time taken

for any message to propagate across the entire network. If it is

not revoked in one part of the network, then it was not revoked

in any part of the network in the time prior to the last �d time

period.

Proof. Case 1 (If a node is revoked in one part of the
network, it will be revoked in the entire network in
time �d): If a node is revoked in one part of the network,
then it must be that the correct verifying revocation value
HðqBsÞ must have been received in that part of the
network. The nodes that receive HðqBsÞ will rebroadcast
it to the rest of the network; by By Attacker Model
Property 4, the entire network will receive this broadcast
in time �d and, thus, the node will be completely
revoked in time �d.

Case 2 (If a node is not revoked in some part of the
network, then it was not revoked in any part of the
network in the time prior to the last �d): We proceed to
prove the contrapositive, i.e., if the node was revoked in
any part of the network in the time prior to the last �d,
then it must be revoked in this part of the network. From
Case 1, we can see that if the node was revoked in any
part of the network in the time prior to the last�d, then it
must be revoked in the entire network by now. Hence, it
must be revoked in this particular part of the network.tu

Property 5 (Revocation Attack Resistance). If c nodes are
compromised, then they can only revoke at most �c other nodes
where � is a constant and � � m

t .

Proof. Suppose c nodes are compromised. By Assumption 2,
each of these nodes identities are fixed in one location
and the adversary is unable to create other points of
presence elsewhere in the network. Hence, by Assump-
tion 3, each compromised node i can only establish
connections with di � m other nodes. Thus, each
compromised node can unmask at most di votes each.
The total number of unmasked votes is thus

Pc
i¼1 di.

Hence, the maximum possible number of nodes revoc-
able by these votes is

Pc
i¼1

di
t <

cdmax

t � cm
t . tu

7 CONCLUSIONS

In this article, we provide an overview of the key manage-

ment problem for sensor networks. In the first part of our

paper, we provide a brief summary of existing key

distribution techniques for sensor networks. These techni-

ques address only the key-establishment part of our key-

management problem. A comprehensive key-management

protocol suite must also possess the ability to revoke the

secret keys that have been compromised by an adversary.

To date, this important research problem has been

insufficiently pursued. To address this, we have presented

a precise formulation of the distributed revocation problem

as well as an initial protocol that has been shown to satisfy

the requirements of this problem formulation.

Distributed revocation protocols have several advan-

tages over centralized revocation that come into play when

compromised nodes must be disconnected from the net-

work. The first advantage is speed, due to the fact that they

require only broadcast messages of a few hops that reach

their local destinations reliably. The second advantage is the

avoidance of single points of failure. However, distributed

revocation protocols are inherently more complex than

centralized protocols and, hence, more prone to design

error since compromised sensor nodes can participate in the
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revocation protocol and attempt to block or circumvent it.

Thus, the precise specification and verification of the

revocation-protocol properties and of the attack model are

essential to the secure operation of sensor networks

deployed in hostile environments.
In this paper, we defined a set of high-level properties

for distributed sensor-node revocation and presented a
protocol that satisfies these properties under general
assumptions and a standard attacker model. In particular,
we showed that, unlike most other cryptographic protocols,
distributed-revocation protocols can be executed while the
adversary exercises complete control of compromised nodes
which take the role of active participants in the protocol, but
which have malicious objectives such as attempting to block
revocation, or selectively revoke noncompromised nodes
and disrupt network operation. Hence, due to the complex
nature of distributed sensor node revocation, it is important
to obtain rigorous proofs of our set of high-level properties
in order to show that the revocation protocols cannot be
subverted or abused by compromised nodes. We have also
described a distributed node revocation protocol that we
have proven to have the essential set of high-level proper-
ties that ensure correct functioning and resistance to abuse
by a malicious attacker. Our scheme has stronger properties
and is also more efficient and faster than the previous
distributed revocation scheme described by Chan et al. [1].

Several research problems are opened by our work in
distributed revocation. First, our distributed revocation
protocol is described for networks in which keys are
predistributed in a random pairwise manner. While the
protocol can be extended to other types of key predistribu-
tion, straightforward extension (e.g., by setting the number
of participants to n, the size of the network) may not be the
most ideal method of distributed revocation for all key
predistribution protocols such as probabilistic predistribu-
tion of random keys [3], or hybrid probabilistic and random
pairwise predistribution [2], [4]. Hence, distributed revoca-
tion schemes that are specially designed for other key
distribution protocols are needed. Second, we present a
specific metric of protocol resistance to active attacks, i.e.,
the ratio of the number of uncompromised nodes that can be
revoked by a group of colluding compromised nodes under
the control of an active adversary, versus the number of
colluding nodes. Other distributed revocation protocols
may be more resilient under our metric, or may suggest
other useful metrics for resiliency. Third, design space of
policies for distributed revocation is substantial: We only
explored a policy based on local neighborhood decisions.
Other policies may be equally useful, for example, those that
involve all key-connected neighbors of a revocation target,
and not just the local neighbors. Finally, we note that we
established the proof of our revocation properties only
under some strong assumptions; future research to develop
protocols that operate under fewer, weaker assumptions
(such as allowing sensor nodes to be mobile) may be fruitful.
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