
Random Walk for Self-Stabilizing Group
Communication in Ad Hoc Networks

Shlomi Dolev, Senior Member, IEEE, Elad Schiller, and Jennifer L. Welch

Abstract—We introduce a self-stabilizing group communication system for ad hoc networks. The system design is based on a mobile

agent, collecting and distributing information, during a random walk. Three possible settings for modeling the location of the mobile

nodes (processors) in the ad hoc network are presented: slow location change, complete random change, and neighbors with

probability. The group membership algorithm is based on a mobile agent collecting and distributing information. The new techniques

support group membership and multicast, and also support resource allocation.

Index Terms—Ad hoc networks, group communication, self-stabilization, random walk.

�

1 INTRODUCTION

ONE of the exciting and fast-moving trends in computing
is ad hoc communication networks. Recent develop-

ments in wireless networking are making mobile comput-
ing a viable technology [11]. Ad hoc networks [22], [24] do not
use preexisting infrastructure (such as base stations or
telephone lines), but instead rely solely on wireless links
between mobile computers, resulting in “ad hoc” network
connectivity topologies.

With the spread of wireless distributed systems, it is
imperative to find ways to simplify their programming.
One approach, which has already been applied successfully
already to “traditional” wired distributed systems, is to
provide communication primitives that hide lower-level
complications that arise due to (partial) failures and
asynchrony of distributed systems. Higher-level applica-
tions can then be built on top of these communication
primitives. Supporting higher-level applications is the goal

of group communication services.
The key features of a group communication facility are

1) indicating to each node of the distributed system which
“group” it belongs to—that is, with which other nodes it can
currently communicate,1 and 2) letting nodes within a group
communicate with each other in an ordered and reliable
manner. The first feature is called a group membership facility,
while the second feature consists of various kinds of
broadcasts and multicasts.

To gain some intuition, one may imagine a user entering
a highly populated area and receiving information on his/
her computing device through an ad hoc connection. This
may be carried out, say, by a single virtual token that is
randomly transferred from one user to the other, where
users may add information to the token, and old informa-
tion is eventually erased from the token.

Fault tolerance is very important in distributed systems
that may experience crashes of processors (mobile nodes),
failure of communication links, and unexpected noise in
message transmission. One kind of processor failure
considered in previous work is when the processor crashes
and later recovers in a state indicating that it has just
recovered from a crash; usually, it is assumed that the
processor has access to stable storage which survived the
crash. Most previous work on group communication has
assumed processor crashes.

Many fault-tolerant algorithms do not consider the case
of faults that cause a temporary violation of the failure
assumptions made by the algorithm designer. For example,
most of the algorithms that are designed to cope with
Byzantine faults do not recover if more than one-third of the
processors temporarily experience a fault and then continue
to execute their program starting from the state following
the fault. Self-stabilizing [12], [13] algorithms cope with the
occurrence of temporary faults in an elegant way. A self-
stabilizing algorithm can be started in any global state,
which might occur due to the occurrence of an arbitrary
combination of failures. From that arbitrary starting point, it
must ensure that the task of the algorithm is accomplished,
provided that the system obeys the designer’s assumptions
for a sufficiently long period. An algorithm is shown to be
self-stabilizing by showing that, starting in an arbitrary
state and assuming no further failures occur, eventually the
algorithm will eventually solve the problem of interest.

Since a group communication layer is “middleware” for
a distributed system, it is designed to execute forever, like
an operating system. Thus, it is highly unlikely that it will
never experience a transient failure, especially in highly
dynamic, wireless, mobile networks.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006 893

. S. Dolev and E. Schiller are with the Department of Computer Science,
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
E-mail: {dolev, schiller}@cs.bgu.ac.il.

. J.L. Welch is with the Department of Computer Science, Texas A&M
University, College Station, TX 77843-3112. E-mail: welch@cs.tamu.edu.

Manuscript received 23 June 2004; revised 25 Mar. 2005; accepted 25 Mar.
2005; published online 16 May. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0204-0604.

1. The group can either consist of all or a subset of the nodes that are
physically reachable, thus determined by the network topology. The group
may be also defined by a common specific application in which the set of
nodes that are members in the group, are interested. In the latter case, the
group members may not be within the same connected component all the
time.

1536-1233/06/$20.00 � 2006 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

Unlike prior work on self-stabilizing group communica-
tion [14], we focus here on algorithms that fit the special
characteristics of ad hoc networks. Mobile communication
networks, by definition, experience movement of some (or
all) of the computing entities. In such a dynamic environ-
ment, group communication services must continuously
follow the changing locations of the computers in the group;
thus, geographic location is a new parameter for problem
solutions. As nodes change location relative to each other,
connections between nodes can go up and down at a much
higher rate than that experienced in so-called “dynamic”
(wired) networks subject to link failures and repairs.

Several algorithms for ad hoc networks use flooding in
order to reach every mobile node (note that we use the
terms mobile node and processor to denote the mobile
hardware communicating computing devices that jointly
form the ad hoc network). This approach results in heavy
traffic that may use up the limited energy of the mobile
processors. In particular, in order to support self-stabilizing
group communication services, a large number of flooding
multicast messages may arrive simultaneously at a single
mobile processor. The receiving mobile processor may not
be able to process these arriving messages. Here, we take a
totally different approach, where one mobile agent becomes
responsible for broadcasting. We note that the suggested
mobile agent serves all the processors (mobile nodes) in the
group, as opposed to the common used mobile agent that
serves a particular processor (the processor that created the
mobile agent).

Another approach used for coordinating the operation of
ad hoc networks is to construct and maintain a distributed
structure such as a spanning directed acyclic graph (e.g.,
TORA [30]). This approach can be too optimistic when
changes are very frequent; for example, the TORA spanning
directed acyclic graph might never be up to date.

In our work, we do not assume that processors need to
change their location according to some specific pattern, as
suggested in [20], or that there is a set of support hosts [6]
that assist in transferring information using random walks.
In [6], it is assumed that the support hosts move faster than
other hosts and perform a random walk on a regular
spanning tree (a tree with a fixed degree for nodes), whose
vertices represent partitions of the space in which the hosts
move. The ideas of snakes and runners are presented; both
are based on forcing the processors in the support set to
move in a specific way. In contrast, we analyze particular
cases in which the communication graph of the system
changes dynamically. We do not rely on the movements of
the processors; instead, processors send an agent that
traverses the (dynamic) graph in a random walk fashion.

Finally, we note that mobile agents in the context of self-
stabilization were first studied in [23], [19] and then in [4],
[21]. To the best of our knowledge, previous works have
considered fixed communication graphs and have not
addressed group communication services.

Our Contribution. We present a new approach for
achieving a self-stabilizing group communication service in
ad hoc networks. Our approach is based on a random walk
of an agent. Therefore, we do not have to maintain a

distributed structure, such as a directed acyclic graph, in a
self-stabilizing manner.

We consider the following new analytical approaches for
ad hoc networks to be as an important contribution of our
work. Three possible settings for modeling the location of
the processors in the ad hoc network are presented: slow
location change, complete random change, and neighbors
with probability. The group membership algorithm is based
on collecting and distributing information by a mobile
agent. We detail the way the new techniques support group
membership and multicast, and offer an example applica-
tion—resource allocation.

The rest of the paper is organized as follows: The system
settings appear in Section 2. In Section 3, we discuss and
analyze random walks under different assumptions about
the mobility pattern exhibited by an ad hoc network. The
group membership algorithm is presented in Section 4 and
the group multicast algorithm in Section 5. The resource
allocation algorithm is presented in Section 6. Concluding
remarks are in Section 7.

2 THE SYSTEM SETTINGS

In this section, we detail the settings of the ad hoc
communication system. An ad hoc communication system
does not assume the existence of a fixed communication
infrastructure.

The system consists of communicating entities, which we
call processors. We denote the set of processors by P, where
jPj ¼ n � N . N is an upper bound on n, the actual number
of processors in the system, and (unlike n) is known to the
processors. We assume that n is fixed during the period of
interest. In addition, we assume that every processor has a
unique identifier.

Every processor pi executes a program that is a sequence
of steps. For ease of description, we assume the interleaving
model, where steps are executed atomically, a single step at
any given time. A step of pi includes the execution of a
sequence of statements. In addition, pi may receive and send
(from/to a neighboring processor) a special message, called
an agent, as the first and the last operation of a step,
respectively. Note that it is possible that two (or more)
consecutive steps of a certain processor may involve
receiving agents. An agent is a program coupled with a
program state (the program state is also called briefcase).
The description in terms of mobile agents is more
convenient than a description in terms of tokens (although
the underlying implementation of both agents and tokens
using message-passing is alike.) A token does not carry a
program to be executed. The use of agents allows us to
change the algorithm on-the-fly without reprogramming all
the ad hoc units. The agent program may be repeatedly
copied from a reliable and updated source, such as a fixed
base station. Whenever the agent arrives at such a station,
the new program is replaced with the agent’s current
program. In the sequel, for example, we present several
schemes for achieving group communication in an ad hoc
network. It is possible that an outside observer will assist in
choosing the current scheme (from a set of possible
schemes, or even impose a new scheme fitting his particular
system settings) by changing the program carried by the

894 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

agent. The infrastructure used by the agent is relatively
simple; in fact, one may set it up using existing primitives
that support weak mobility, such as Ajanta (see [34]).

Processors use the agents to communicate with each
other. The program of the agent may have permission to
read and write variables of the processors. In this way,
processors and agents change one another’s state. Agents
that arrive at a processor pi are stored in a set Ai. We
assume that jAij � ð�þ 1Þ, where � is the maximal
possible degree of a node in the graph. Thus, the amount
of space required for Ai is bounded.

Whenever aj is in Ai, we say that aj visits pi and pi hosts
aj. pi executes steps in its own program and steps of an
agent from Ai. During the execution of a step of the
program of pi, pi may receive new agents and then access
and modify Ai. For example, pi may recognize that two
agents should “collide” and merge these agents into a single
agent in Ai.

When pi executes a step of aj it changes the state of aj to
be the state of the program of aj following this step
execution. Then, pi sends aj to a neighboring processor
pnext. The atomic step between two configurations that
changes the hosting processor of agent a is called a move of
agent a. We note that the terms “agent move” and “agent
(atomic) step” are different. In the sequel, we choose pnext
randomly among the neighbors of pi and, hence, perform a
random walk.

The state si of a processor pi consists of the value of all the
variables of the processor, including the value of its program
counter. Every execution of a step in the algorithm changes
the state of a processor (in particular it may change the value
of Ai). A full description of the state of an ad hoc system at a
particular time is a vector c ¼ ðs1; s2; � � � ; sn; GðV; EÞÞ of the
states of the processors and the topology of the current
communication graph GðV; EÞ, where V is the set of
processors with their coordinates in the plane, and E is the
set of edges implied by the location of the processors and the
common (or individual) communication radius rd of the
processors. In other words, a node pi 2 V represents a
processor with its coordinates in the plane, and an edge
ðpi; pjÞ 2 E represents the fact that pi and pj can communicate
with each other. Note that we do not assume that processors
are aware of their location. We assume that pi executes an
algorithm that discovers the neighbor si set, such that the
geographical distance between pi and pj 2 neighbor si is no
more than some fixed value rd. neighbor si is symmetric; that
is, pj 2 neighbor si implies pi 2 neighbor sj. The term system
configuration is used for c ¼ ðs1; s2; � � � ; sn; GðV; EÞÞ. Note that
we assume that messages (agents) in transit are part of the
state (input buffers) of the receiving processors and, there-
fore, the vector of processor states and the current commu-
nication graph fully describes the system state.

We define an execution R ¼ c0; r0; c1; r1; . . . as an alter-
nating sequence of system configurations ci and steps ri,
such that each configuration ciþ1 (except the initial
configuration c0) is obtained from the previous configura-
tion ci by the execution of the step ri. Note that ri is either a
step of the program of a processor p or an agent activation
by p. In the latter case, an agent may be sent to a processor
that is a neighbor of p (where neighbors are defined by the

communication graph in ci). In addition, ri may be a change
in the communication graph due to a movement of pi. Thus,
the only components that can be changed due to the
execution of ri are the state of p, the state of a neighbor of p
(pnext), and the communication graph GðV; EÞ. An execution
is fair if every processor executes a step infinitely often.

In this work, we use random walks for broadcasting
information. Thus, we consider (fair) executions in which
the random walk succeeds in arriving at all nodes in the
system. We define a nice execution to be a fair execution in
which: 1) there exists a single agent and 2) the single agent
arrives at every processor in, at most, every M consecutive
agent moves, where M is a constant that depends on n.

In the sequel (in Section 3), we compute the probability
of eventually having a nice execution in several common
cases. The probability is calculated by assuming that we
start with an arbitrary configuration and with an arbitrary
number of agents. Then, we prove that every nice execution
must eventually solve the task, as explained below.

One key issue that supports nice executions is the radius
of the transmission. Note that a large radius essentially
results in a complete graph (in which we will show there is
high probability for nice executions). Another mechanism,
described in the sequel, is the time-out mechanism, which
enables the creation of an agent when no agent exists.

The task of an ad hoc system is defined by a set of
executions LE, called legal executions. A configuration c is
safe with regard to a task and the ad hoc system if every nice
execution that starts from c belongs to LE. We say that the
algorithm satisfies its task when its execution is in LE.

We require that a self-stabilizing ad hoc system will
satisfy the following conditions: 1) Starting from any
arbitrary configuration, eventually the execution becomes
nice (for a long enough period) with some positive
probability. 2) Then, we require absolutely that every nice
execution eventually reaches a safe configuration and, thus,
satisfies the task.

A self-stabilizing ad hoc system recovers from transient
faults that disturb its behavior for a limited period of time.
The correctness of a self-stabilizing ad hoc system is
demonstrated by considering every nice execution that
follows the last transient fault (note that topology changes
are not considered transient faults). The system should
exhibit the desired behavior for an infinitely long period
after a finite convergence period.

The time complexity of an asynchronous, self-stabilizing,
distributed algorithm is measured by asynchronous cycles
in a nice execution. Note that every processor executes a
step infinitely often in every (infinite) nice execution. The
first asynchronous cycle of a nice execution R is the shortest
prefix, R0, of R in which every processor executes at least
one step. The second asynchronous cycle of R is the first
asynchronous cycle of R00 where R ¼ R0R00. The following
asynchronous cycles are defined analogously.

3 RANDOM WALKS OF AGENTS

The dynamic nature of ad hoc networks makes it difficult to
collect information concerning the current topology of the
system. An attempt to collect such information will often
result in out-of-date information. Thus, we propose to use

DOLEV ET AL.: RANDOM WALK FOR SELF-STABILIZING GROUP COMMUNICATION IN AD HOC NETWORKS 895

random walks (see, e.g., [1], [27]) as the main tool for
transferring information.

We now describe a random walk of an agent over a
dynamic graph. A processor, p, that is about to send an
agent randomly chooses a processor, pnext, from among the
processors with which it can directly communicate. Then, p
sends the agent to pnext.

The above simple random walk procedure is used for
covering the graph (broadcasting). We define the expected
cover time of a graph to be the expected number of moves
required in order for a single agent to visit every processor at
least once. For calculating the expected cover time, we
choose a starting point that results in the maximal value for
the cover time.2 We assume that a processor p that holds an
agent sends the agent to pnext within a constant number of its
own steps. Thus, the expected cover time can be described in
terms of asynchronous cycles instead of agent moves.

Some of our algorithms assume the existence of a single
agent in the system. A self-stabilizing system can be started
in an arbitrary configuration where no agent exists, or
several agents exist. We use a time-out mechanism in order
to address the first situation. When a processor pi does not
receive an agent for a predefined period of time, pi produces
an agent. Agent collisions are used to make sure that a single
agent survives. We assume that all the agents move from
one processor to a neighboring processor in a single
asynchronous cycle. The expected meeting time is an upper
bound on the expected number of asynchronous cycles until
a single agent exists. Note that the expected meeting time is
a function of the number of agents in the first configuration
of the execution. In the sequel, we show that the complexity
of the expected meeting time and the expected cover time in
the graphs that we consider is the same.

We next show that it is impossible to ensure that the
agent visits every processor in the system when the changes
in the communication graph are arbitrary (and controlled
by an adversary). We then present common cases in which
the random walk succeeds in visiting all the processors. In
the latter cases, the resulting executions are nice executions.
(Note that Sections 4 through 6 build group communication
services for the set of nice executions.)

3.1 Impossibility Result

In this section, we present a simple impossibility result that
formally demonstrates that, even when the system is always
connected (i.e., there is no permanent cut in the system), the
ad hoc nature of the system can prevent an agent from
visiting a particular processor.

Suppose that processors p1, p2, and p3 are connected in a
ring topology. Assume that p2 frequently moves toward p1,
loses connection with p3, and then moves back to p3,
reestablishing the connection with p3 and losing the
connection with p1. Note that the communication graph is
always connected and forms a chain of processors—either
p3, p1, p2 (when the connection between p3 and p2 is not
active), or p2, p3, p1 (when the connection between p1 and p2

is not active). Assuming the above topology changes, there
is an execution in which the agent never visits p2. In

particular, the agent visits p1 whenever p2 is not connected
to p1 and visits p3 whenever p2 is not connected to p3.

3.2 Viable Communication Graph

Here, we consider the case where an agent infinitely often
covers the system. We say that the link from a processor pi
to pj is viable in an execution R if, and only if, an agent
traverses the link from pi to pj infinitely often. We define
T ¼ pi1 ; � � � ; pil to be a viable path from pi1 to pil if the links
between pij and pijþ1

are viable (where 1 � j � l� 1).
We note that, unless there are two viable paths—one

from pi to pj, and one from pj to pi—there is eventually a
permanent cut in the communication graph, such that pi is
in one portion of the graph and pj is in another portion of
the graph. Note that, in the example used for the
impossibility result in Section 3.1, there is no viable path
between p1 and p2.

In order to implement a group communication service, it
is not sufficient to have a viable path between every pair of
processors. Processors need to make sure that the agent has
covered the graph before concluding that the membership
has changed. Thus, we restrict our discussion to cases in
which there is an expected upper bound for the number of
agent moves that are required for covering the graph. Note
that the expected upper bound for the number of agent
moves can be either given or estimated during the execution.

We now turn to describe several cases in which the agent
does visit all the processors in the system. First, we consider
the case in which the location changes of the mobile hosts
are slow.

3.3 Fixed Communication Graph

The value of the communication radius rd can influence the
frequency of changes in the communication graph GðV; EÞ.
At one extreme, rd is big enough to always reach every
other processor. In this case, the communication graph is
always a fully connected graph. If the communication
radius is close enough to the value that is required to reach
every processor, however, then only very few changes in
the communication graph occur.

Another consideration is the speed of processors with
relation to the speed of an agent. We may assume a fixed
communication graph when the agent is much faster than
the processors. This is the case when the time between two
changes in the communication graph is larger than the
expected time required for the agent to perform a random
walk that covers the graph. The above motivates us to also
consider the case of a fixed communication graph.

We also note that the graph is fixed for an agent when
the agent’s traversal does not visit a node more than once
during a certain traversal that covers the graph. In other
words, changes in the unvisited portions of the graph do
not influence the assumption that the graph is fixed.
Similarly, changes in portions of the graph that were visited
and are not visited again are also allowed.

For completeness, we point out that the expected
meeting time and the expected cover time of a fixed graph
have been well studied.

In [9], it is shown that, within Oðn3Þ agent moves, there is
a single agent a. In [15], it is shown that the expected cover
time is Oðn3Þ agent moves.

896 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

2. There exist graphs for which the expected cover time differs for
different starting points.

3.4 Random Changes in the Graph

Here, we assume the other extreme, where the graph is

always connected, but can be totally changed between two

successive moves of the agent. We explain that a random

walk on a very dynamic communication graph is essentially

a random walk on a complete graph. The choice of

movement to a neighbor can be viewed as a random choice

of the current neighbors and then a random choice of a

neighbor from the neighbors set.
The expected cover time for a complete graph is

Oðn lognÞ [16]. In the following lemma, we show that,

within expected Oðn lognÞ agent moves, there is a single

agent a. Thus, the expected meeting time of n agents is

Oðn lognÞ agent moves.

Lemma 1. Let R be a fair execution, such that there are k > 1

agents in the first configuration of R, and no other agent is

produced in R. Then, within expected Oðn lognÞ agent moves,

there is a single agent in the system.

Proof. Without loss of generality, we may assume that

k � n, because agents in the same processor collide to

become a single agent.
Suppose that a is the first agent to move in R. Then,

the probability that a chooses to move to a processor pi
that hosts another agent is ðk� 1Þ=ðn� 1Þ. Therefore,
ðn� 1Þ=ðk� 1Þ is the expected number of agent moves in
R before we have a configuration with k� 1 agents. Since
for every 1 < k � n we have ðk� 1Þ=ðn� 1Þ > 0, the
expected number of agent moves it takes for k agents to
collide to become one agent is �i¼1

i¼k�1ðn� 1Þ=i, which is
Oðn lognÞ. tu

3.5 Neighborhood Probability

Here, we consider the case in which, for each i, there is a

fixed set N i of processors, such that each processor in N i

has a probability 1=jN ij of being a neighbor of pi when pi
chooses pnext. This case corresponds to situations where

processors are always close to their “home location” and,

therefore, have a fixed set of neighbors. For example,

perhaps two of the ad hoc mobile nodes, a and b, are usually

active in one neighborhood and are hardly ever active in

another neighborhood where c and d are usually present.

Therefore, a and b are more likely than, say, a and c to

become neighbors.

An argument similar to the one used in the previous case

can be used to prove a reduction to a fixed graph in which
pi is a neighbor of the processors in N i.

Note that it is possible that the probability for each
processor to be in N i when pi chooses pnext may not be the

same. For instance, these probabilities can be q1; q2; . . . ; ql
(qj > 0) for the processors p1; p2; � � � ; pl, respectively. In this

case, the agent can choose pj to be pnext with probability
ð1=qjÞ=ð�l

k¼1ð1=qlÞÞ. Moreover, pi may repeatedly collect

data concerning the neighborhood relation in order to

estimate qj online. In particular, pi may count during a
certain time period the number of times each neighbor has

been connected to it and use these numbers to estimate qj.
The above is in fact a reduction to the case of an

arbitrary fixed graph in which pi is a neighbor of the nodes

in Ni. Thus, the expected meeting and expected cover times

are Oðn3Þ.

3.6 Network Simulator

We have used the ns-2 [29] network simulator to estimate

empirically the expected meeting time and the expected

cover time in a situation that is difficult to model analytically;
namely, when the nodes move randomly. The results for this

case were quite good with observed average times that are
even smaller than in the case of a complete graph.

In our simulation, we use normalized units for 1) geo-

graphic distances and broadcast distances, 2) density of

processors in a geographic area, and 3) time units. Processor
movement is simulated by allowing every processor to

perform a random walk. In every time unit, every processor
executes a step moving, at most, one distance unit. A

processor that holds an agent may send the agent to another

processor that is, at most, two distance units away. The
(average) density of the processors per geographic area of

one square distance unit is one.
We simulated agent movement with different numbers

of processors n ¼ 10; 20; . . . ; 100. The geographic dimen-

sions of the area were set to preserve the processors’

density. Fig. 1 depicts the number of agent moves it takes to
visit every mobile ad hoc processor in the simulated system.

On the horizontal axis, we have the number of processors
(i.e., n), and on the vertical axis, we have the number of

agent moves. The solid line depicts the average number of
moves it takes the agent to cover the system. The dotted line

depicts a linear approximation of the moves.

DOLEV ET AL.: RANDOM WALK FOR SELF-STABILIZING GROUP COMMUNICATION IN AD HOC NETWORKS 897

Fig. 1. Average cover time. The number of processors is presented on the horizontal axis. The number of agent moves is presented on the vertical

axis. The solid line depicts the average number of moves it takes the agent to cover the system.

The results show that the average cover time under our
choice of settings is approximately a linear function of the
number of processors (see [2] for more details).

4 MEMBERSHIP SERVICE BY RANDOM WALKS

To state the requirements for the self-stabilizing group
membership service, we first define the view identifier vid
of a group. Every processor pi in the system has a Boolean
flag gi that indicates whether it wishes to be a member of
group g. Group membership can change during the
execution, as processors may join and leave a group.
Changes in the set of members cause the establishment of
a new view for the group. A view of a group g is a list of the
members of g, denoted member sg, which never exceeds N
in size, and a view identifier vid. We assume that the agent
has a variable in which the vid is stored. We note that a new
vid is chosen by incrementing the previous vid modulo a
bounded number of identifiers, I , that ensures an ordering
between the existing views in the system. The bound on I is
a system parameter (which can be set by the system
administrator) that depends on the expected time in
between two instances in which all the processors are
connected and covered by an agent; such an instance may
be used to resolve view identifier conflicts, and record a
uniform vid value for all the processors. Once the view
identifiers are the same, the ordering of the next vids is well-
defined as long as the next instance in which all processors
are connected takes place before the vid reaches the
recorded value once more.

4.1 Group Membership Requirements

Requirement 1. For every nice execution, R, and every pi 2 P,
if gi has a fixed value during R, then R has a suffix such that
pi appears in membersg if, and only if, gi ¼ true.

Requirement 2. Every nice execution in which all the gi
variables have fixed values has a suffix in which vid is not
changed.

Since there is no interaction between groups, we consider
a specific group g and describe the membership service for g.

We use an idea that is similar to the time-to-live
technique (see, e.g., [33]). The agent carries a list,
member sg, of members in the group g and a list of
corresponding counters lvs—a counter value, lvi, for each
pi 2 member sg. Whenever an agent visits pi, pi assigns a
predefined value ttli to lvi. The value of ttli is a function of
the (expected) number of agent moves required to cover the
communication graph; this value can be changed by pi
when the estimated number of nodes is adjusted (see
below). The value of each lvi 2 lvs is decremented by 1
whenever the agent is received by a processor. We say that
pi is an active member in g when the value of lvi > 0.

In the sequel, we describe our method for the cases in
which the expected cover time is OðN3Þ. This expected
cover time fits the fixed graph case and is also the maximal
value among the mobility pattern we have described. Thus,
this value should be used if the system administrator does
not have a better estimate for the system mobility pattern.
Cases in which a better estimate exists for the expected
cover time are handled analogously. We use kN3, for some
k > 1, as an upper bound for both ttli and lvi, where k is a

security parameter on the expected cover time. The bigger k
is, the more likely that a node will not be falsely assumed to
have dropped out because of an unfortunately long random
walk; on the other hand, new views may not be established
in a timely fashion when processors are disconnected. In the
context of a self-stabilizing algorithm, we have to bound the
value of the variables. We note that the values of ttli and lvi
cannot exceed kN3.

In the previous section, we assumed the existence of at least
one agent. Since we are interested in a self-stabilizing mem-
bership algorithm, we now present techniques that ensure the
existence of a single agent. There are two cases to consider:

No agent exists in the system. Here, we use timers
rather than an asynchronous distributed algorithm for
detecting the fact that no agent exists. The reason is that
our approach can be applied to ad hoc networks with
changes that are too frequent for performing an asynchro-
nous distributed algorithm to detect the above situation.

The first simple approach uses an upper bound on the
expected cover time of the agent (which is a function of N).
A processor creates an agent if it does not receive an agent
for a time that is proportional to executing OðCT Þ agent
moves, where CT is the expected cover time for the system.

It is possible that, due to a partition, the system will
consist of n << N processors. We would like to avoid a
waiting time of OðN3Þ agent moves, before detecting that
an agent does not exist in the system. We describe a
technique that enables the processors to create a new agent
after a waiting time that is proportional to Oðn3Þ agent
moves. We note that the stabilization time of a self-
stabilizing algorithm that has to ensure the existence of an
agent and in which processor pi may wait for T moves, is
at least T moves. The reason is that the system can be
started in a configuration in which no agent is in the
system, and all processors are in a state in which they start
to wait for T moves.

In the sequel, we show how the processors can learn the
estimated number of processors. We propose that a
processor pi will send a special agent, called scouter,
following a predefined (relatively short) time period in
which no scouter visited pi. A scouter will update the
processors regarding the estimated number of processors
once it discovers (with high probability) that it has covered
the entire system. A scouter is a “light weight” agent that
does not execute the group communication algorithms. The
briefcase of a scouter contains a list of the processors it
visited. A collision of scouters at a processor eliminates all
scouters except one. More details are given in Section 4.1.

Several agents in the system. We use the fact that agents
collide during their random walks to ensure the reduction
of the number of agents. A collision occurs when the agents
are listed together in the set Ai of a processor pi. For
simplicity, we set the value of member sg of the new agent
to include only the identifier of the processor, pi, that
created the agent and the value of lvi.

Whenever a processor pi that holds an agent discovers
that the set of members in the group has changed, it chooses
a new view identifier. A change in the set of members can
be due to the fact that a processor voluntarily changes its
membership status in group g, or an identification of a
connection loss with a processor pk (when lvk � 0).

The formal description of the algorithm appears in Fig. 2.
Upon agent a’s arrival, we decrement every lv counter by

898 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

one (line 1.1) and add a to Ai (line 1.2). Then, we reset the
clock that measures tpi time period (line 1.3). When tpi
expires, we create a new agent (line 2). We use the function
create an agent for this task. A new agent is created when
agents collide (line 3.1.1). The newly created agent replaces
all the agents in Ai. Line 3.2.2 stores the current list of
members (later used in line 3.2.6). Lines 3.2.3 to 3.2.3.2
remove any node that has been flagged as disconnected.
Lines 3.2.4 to 3.2.4.2 add i to the membership upon a
request, while lines 3.2.5 to 3.2.5.1 remove i. Line 3.2.6
creates a new view if the list of members has changed. Lines
3.2.11 to 3.2.12 forward the agent to a randomly chosen
neighbor. Lines f.1 to f.3 create a new agent.

Next, we prove that our algorithm satisfies the member-
ship service requirements. Recall that we define a nice
execution to be an execution in which 1) there exists a single
agent and 2) the single agent visits every processor in the
system within, at most, every M consecutive agent moves,
where M is a constant (that depends on n).

Lemma 2. Every nice execution of our algorithm satisfies
Requirement 1 and Requirement 2.

Proof. Let R be a nice execution, and a be the agent.

We first prove that Requirement 1 holds. Within M

agent moves, a visits pi.

Suppose that gi ¼ true throughout. Then, in every

visit of a to pi, lines 3.2.4.1 and 3.2.4.2 are executed, and

line 3.2.5.1 is not executed. Therefore, immediately after

the first visit of the agent at pi, it holds that pi appears in

membersg. The fact that ttli �M implies that a visits pi
again before a:lvi � 0. Therefore, after the first visit of a

in pi, lines 3.2.3.1 and 3.2.3.2 are not executed in R.

Suppose that gi ¼ false throughout. Then, in every

visit of a to pi, lines 3.2.4.1 and 3.2.4.2 are not executed,

and line 3.2.5.1 is executed.

Therefore, after the first visit of the agent to pi, pi does

not appear in membersg.

The proof is completed since lines 3.2.3.1, 3.2.4.1, and

3.2.5.1 are the only lines in the algorithm that remove or

add to members.
We now turn to prove that Requirement 2 holds as

well. Suppose all gi variables have fixed values. Since
Requirement 1 holds, we can conclude that after M agent
moves pi appears in membersg if, and only if, gi ¼ true.

DOLEV ET AL.: RANDOM WALK FOR SELF-STABILIZING GROUP COMMUNICATION IN AD HOC NETWORKS 899

Fig. 2. Self-stabilizing membership service, code for pi.

Therefore, a:membersg is fixed after M agent moves, and
line 3.2.6.1 is not executed. Hence, both a:vid and
a:membersg are fixed after M agent moves. tu

Note that pi appears in (respectively,, is removed from)
a:membersg following ttli agent moves, in which the value
of gi is true (respectively, false). Thus, the time it takes to
reach a legal execution in which the values in a:membersg
and a:vid reflects a traversal of the agent in an initialized
execution(an execution in which a single group exists and
this group does not include any processor).

4.2 Accelerating Stabilization by Estimating n

We now show that it is possible to quickly estimate the
actual number of nodes n in the connected component (see,
e.g., [17] for a similar approach in the nondistributed case).
This estimate can be used in place of the upper bound N
when calculating the values of tpi, lvs, and ttli. Having a
more accurate upper bound on n will ensure that the system
will react faster to changes such as addition/removal of a
processor. Roughly speaking, the estimation algorithm is
used to ensure the existence of a single agent faster, but at
the same time requires more (short) messages to traverse
the system simultaneously. There is a trade-off between the
time it takes for estimating n and the frequency of sending
scouters, which in turn influences the number of messages
present in the system. Fast stabilization to a correct estimate
requires frequent scouter creation, and conversely, less
frequent scouter creation implies a longer stabilization
period. We note that there are situations in which the
number of scouters in the system can be dramatically
reduced while the stabilization time is not changed much,
i.e., if the frequency of scouter creation is reduced from
every single time unit to every other time unit, then the
number of scouters is approximately halved while the
expected stabilization time is still of the same order.

As mentioned earlier, a processor pi will send a special
type of agent, called scouter, following a predefined
(relatively short) time period in which no scouter visited
pi. A scouter can be viewed as a “light weight” agent that
collects indications concerning the alive processors in the
system. The briefcase of a scouter contains a set of
identifiers of the processors that the scouter visits—this
set is called alive. The briefcase of a scouter also includes,
for each processor pj in alive, a counter lvj which counts the
number of scouter moves since the last visit of the scouter to
the processor pj. The set of the lv counters of the processors
in alive is called lvs. Whenever a scouter moves from pi to
pj, all the lvs counters are incremented by 1 except lvj,
which is set to zero.

The number of identifiers in the alive set serves for
estimating the number of processors in the system. The
estimated number of processors in the system is distributed
to the processors in the course of the scouters’ random walks.

Roughly speaking, the lvs counters are kept small for
existing processors and become large for nonexistent
processors. The random walk ensures with high probability
that existing processors will be visited often (every so many
scouter steps, which is a function of the actual number of
processors) and, therefore, will be assigned zero every so
often. On the other hand, counters of nonexistent processors

in lvs will be incremented up to ‘ðscÞ � CT ðN þ 1Þ. We

define ‘ to be a safety function that uses the current scouter

data to define the number of cover times required before

removing processors from the alive set of the scouter and

before deciding that the scouter is mature (the maturity of a

scouter is defined in the sequel). We define CT ðnÞ to be the

expected cover time for a system with n processors.
The idea for estimating the number of active processors

quickly is to sort the counters in lvs according to their

values and then find a “too large” gap between two

successive counter values; namely, a gap between the

ðjk�1Þth and the ðjkÞth smallest counters in the sorted lvs

counters, such that lvjk�1
� lvjk is (much) larger than the

expected cover time of a system with k processors.
The code of the estimation algorithm is presented in

Fig. 3, and the code in Fig. 3 is similar to the code presented

in Fig. 2; the changed code lines (1.1, 3.1.1 3.2.2 to 3.2.6, and

f) are marked in bold. In line 1.1, the scouter increments by

one the moves counter of every node with index in alive.

Note that the counter value is bounded by the maximal

number of moves that a scouter may take (without visiting

pj) before considering pj to be not connected. This upper

bound depends on the expected cover time, CT , and the

safety function, ‘. We note that the larger the value of ‘, the

more reliable the estimate for the number of active

processors, but the longer it takes to stabilize.
Processor pi resets the clock that measures the time

period in between successive scouter visits in pi (lines 1.3

and 2.3). The timeout clock reset command sets the clock by

a predefined (constant) time period, which is defined by the

system administrator.
In line 3.1.1, pi chooses a single scouter among the

scouters hosted by pi. The function First returns a scouter

sc 2 Ai, such that sc:sm is maximal. If there are several such

scouters, then pi chooses one of them arbitrarily.
In lines 3.2.2 to 3.2.3, pi adds its identifier to alive and

sets its corresponding moves counter to zero. In line 3.2.4,

the ConPrefix function is executed. The function removes k

from the alive set using the following criteria: Let

lvj1
; � � � ; lvjm be the increasingly ordered sequence of the

counters in lvs. The scouter removes any jm from alive,

such that there exists a k � m, for which lvjk � lvjk�1
is

greater than ‘ � CT ðkÞ. This means we choose a gap in the

lvs of the kth and ðk� 1Þth elements, such that this gap is

larger than the number of scouter moves required to

explore (in a random walk fashion) a connected component

of k processors. In line 3.2.5, the scouter moves counter, sm,

is incremented by one. The moves counter value is

bounded by the (expected) maximal cover time (in terms

of number of moves) of a system with N processors. Newly

created scouters visit only a portion of the system and,

therefore, cannot have the estimated number of processors

until they perform a large enough number of moves in

which the set of processors visited is fixed. That is, a

processor updates its estimate number of processors, only

when the scouter has already taken ‘ðscÞ � CT ðjalivejÞ
moves (line 3.2.6). The size of alive is assigned to the

estimated n variable of the visited processor.

900 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

Lines f.1 to f.3 create a new scouter. In line f.1, pi empties

the alive set. Line f.2 sets the scouter moves counter to zero.

Line f.3 returns the newly created scouter.
We now turn to demonstrate the correctness of the

algorithm presented in Fig. 3. We consider fair executions in

which there exists a scouter sc in every configuration. Note

that every fair execution has a suffix in which in every

configuration there is a scouter; this suffix is reached

(following a constant/short time period) at most after the

first creation of a new scouter in the execution.
We consider a fair execution R in which the random

walks of existing scouters behave as if the communication

graph is fixed as discussed in Section 3 (other cases are

analyzed analogously).
Lemma 3 shows that the value of sc:lvk is eventually the

number of scouter moves that the scouter sc took since the

last visit of sc to pk.

Lemma 3. Let R be a fair execution that starts in configuration

c0, and let c1 be a later configuration of R. Let sc be a scouter

in c0 and in c1. Suppose that k 2 sc:alive in c0 and c1. Let x be

the value of sc:lvk in c0, and y be the value of sc:lvk in c1.

Then, y ¼ minðxþ z; ‘ðN þ 1Þ � CT ðN þ 1ÞÞ, where z is the

number of moves sc takes between c0 and c1.

Proof. By the algorithm presented in Fig. 3, only line 1.1

modifies sc:lvk, increasing its value by one in every

scouter move. Hence, the lemma. tu

Lemma 4 is demonstrated by arguments similar to

Lemma 3, this time considering the moves counter of a

scouter.

Lemma 4. Let R be a fair execution that starts in configuration c0

and let c1 be a later configuration of R. Let sc be a scouter in c0

and c1. Let x be the value of sc:mc in c0 and y be the value of
sc:mc in c1. Then, y ¼ minðxþ z; ‘ðN þ 1Þ � CT ðN þ 1ÞÞ,
where z is the number of moves sc takes between c0 and c1.

Lemma 4 implies that a newly created scouter sc cannot
distribute an estimate (i.e., execute line 3.2.6.1), before
taking ‘ðjsc:alivej þ 1Þ � CT ðjsc:alivej þ 1Þ scouter moves.

In the next two lemmas, we assume the existence of a
single scouter. Later, we extend the results to the case in
which there are at most n � N scouters in the system.

Lemma 5 shows that the scouter does not remove
identifiers of processors that it does visit.

Lemma 5. Let R be a fair execution that starts in configuration c,
and let sc be a scouter in R. For every (positive integers) n and
x > 1, there exists ‘ such that in a suffix R0 of R, that
immediately follows the first ‘ � CT ðnÞ scouter moves of sc in
R, the probability for every pj 2 V that j will not be in sc:alive
is less than 2�x.

Proof. We compute the probability of the existence of a
configuration c0 in R0 in which j does not exist in
sc:alive. The expected cover time of the system is CT ðnÞ;
thus, the probability that a processor in the system is not
visited in the ‘ � CT ðnÞ scouter moves that immediately
precede c0 is 2�‘.

In case pj is visited during these moves, pj may be
removed later due to the execution of ConPrefix.
Consider the configuration c1 in which the scouter visits
pj for the last time prior to c0. pj may be removed from sc
only if there is a (large) gap in the lv values of the
processors that are visited in the execution that starts in

DOLEV ET AL.: RANDOM WALK FOR SELF-STABILIZING GROUP COMMUNICATION IN AD HOC NETWORKS 901

Fig. 3. Algorithm for estimating n, code for pi.

c1 and ends in c0. Let m be the number of distinct
processors visited following c1 and before c0. We now
analyze the probability for such a gap to occur.

We now choose ‘ to be a function of k as follows:
‘ðkÞ ¼ 2 log k.

Let Prðk; ‘ðkÞÞ, 1 � k � m, be the probability that sc
takes more than ‘ðkÞ � CT ðkÞ scouter moves, while
visiting a set of k� 1 processors and not visiting any
(of the n� kþ 1 � m) other processors. This is in fact the
probability that ConPrefix will remove existing proces-
sors due to a gap between the k� 1th and the kth lv in
lvs. We will now accumulate the probabilities of such
events for each 1 � k � m.

Note that sc adds its current host to alive (in lines 3.2.2
and 3.2.3), thus it is obvious that Prð1; ‘ð1ÞÞ ¼ 0. Also,
recall that the expected cover time of k processors is
CT ðkÞ; hence, the probability of covering k processors in
CT ðkÞ scouter moves implies that Prðk; 1Þ < 2�1, and
Prðk; ‘ðkÞÞ < 2�‘ðkÞ. Since we choose ‘ðkÞ ¼ 2 log k, we
have Prðk; 2 log kÞ � 1=2log k2 ¼ 1=k2, for any 1 < k � m.
We now compute the probability that for some
1 � k � m, ConPrefix will remove existing processors
from alive. Since we choose ‘ðkÞ ¼ 2 log k, we have
�m
k¼1Prðk; 2 log kÞ ¼ �m

k¼21=k2 < 1=2. To have a probabil-
ity smaller than 2�y for the removal of pj, we may choose
‘ðkÞ ¼ 2y log k, which implies

�m
k¼1Prðk; 2y log kÞ ¼ �m

k¼2ð1=k2Þy < 1=2y:

The value of x is a function of y that can be
determined in a straight-forward manner. tu

Lemma 6 completes the proof of the algorithm presented
in Fig. 3 by showing that identifiers of nonexistent
processors are quickly removed from the alive set of
scouters.

Lemma 6. Let R be a fair execution that starts in configuration c,
and let sc be a scouter in R. For every (positive integers) n and
x > 1 there exists ‘, such that, in a suffix R0 of R that
immediately follows the first 2‘ � CT ðnÞ scouter moves of sc in
R, the probability for every j 2 sc:alive that pj will not be in V
is less than 2�x.

Proof. For every configuration c0 in R0, the set aliveðc0Þ is
the set of identifiers that are in both the sets sc:alive
and V of configuration c0. Define max aliveðc0Þ to be
maxm2aliveðc0Þ sc:lvm.

Let floatingðc0Þ be the set of identifiers of processors
that are not in V that appear in the sc:alive set of
configuration c0. Define min floatingðc0Þ to be

min
m2floatingðc0Þ

sc:lvm:

We now analyze the probability for floatingðc0Þ to be
nonempty.

Note that the set floatingðcÞ of the first configuration c
of R is a superset of any floatingðc00Þ where c00 is a
configuration in R. sc does not visit any member of
floatingðc0Þ during R; thus, in every scouter move from c
to c0, the lv of every floatingðc0Þ is incremented by 1.

By Lemma 3, the fact that floatingðc0Þ 6¼ ; implies that
min floatingðc0Þ equals

minðmin floatingðcÞ þ z; ‘ðN þ 1Þ � CT ðN þ 1ÞÞ;

where z is the number of moves sc takes between c and c0.
In particular, min floatingðc0Þ is greater than 2‘ � CT ðnÞ.
By Lemma 5, the probability that max aliveðc0Þ is smaller
than ‘ � CT ðnÞ is no more than 1=2x. Therefore, the
probability that line 3.2.4 does not remove all the
members of floatingðc0Þ from sc:alive is less than 1=2x. tu

Corollary. For every x > 1, there exists a logarithmic function ‘
of the maximum number of scouters (one scouter for each
existing processor) in the system, such that the probability that
every scouter sc notifies each processor with the number of
processors in the system within Oðl � CT Þ moves of sc is
1� 2�x.

Proof. Lemma 3 and Lemma 6 assumed a single scouter. In
case we have k scouters, the probability that sc:alive is not
identical toV is increased. We have to choose the ‘ function
in both lemmas such that the probability for failure of a
single scouter is 2�y. Thus, the probability that at least one
of the k scouters fails is no greater than k2�y, and when
y ¼ x log k, then k2�y ¼ k2�x log k ¼ k2�x=k ¼ 2�x, which
completes the proof. tu

5 GROUP MULTICAST

In this section, we show how the membership service
described in Section 4 can be used to support multicast
services.

Past work on total ordering has yielded several ap-
proaches that use a token that traverses a (virtual) ring, to
implement the total order. A popular approach is to
continually circulate a token through all the nodes of the
network in a virtual ring (e.g., [31], [3]). The token circulates
around the virtual ring carrying a sequence number. When
a node receives the token, it assigns sequence numbers
(carried with the token) to its messages, and then multicasts
the messages to the group members. The sequence number
carried in the token is incremented once for each message
sent by the node holding the token. Since the messages are
assigned globally unique sequence numbers, total order can
be achieved. (Additional mechanisms are needed, depend-
ing on the desired level of reliability.) An alternative
approach (e.g., [18], [10]) is to store the messages in the
token itself—since the token visits all nodes in a virtual ring,
the messages will eventually reach all the nodes, the order
in which messages are added to the token determining the
order in which they are delivered to the nodes.

Here, we use a scheme in which the agent carries the
messages. Any processor pi that wishes to multicast a
message m, waits for the membership agent and augments
it with the multicast message.

5.1 Group Multicast Requirements

Let R be a nice execution of the membership algorithm
presented in Fig. 2.

Requirement 3. Suppose that two processors pi and pj are
members of every view in R. If m is a message sent by pj
during R, then m is delivered to pi.

Requirement 4. Suppose that the messages m0 and m1 are
delivered to processors pi and pj during R. If m0 is delivered to

902 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

pi before m1 is delivered, then m0 is delivered to pj before m1 is
delivered.

Since we have a single agent, we can accumulate the
history of the membership views and the multicast
messages within each view in the agent. The views and
messages are stored in the order that they were sent, and
delivered in a first-in first-out manner. Note that the group
membership service notifies the members of the group with
the view history as part of the service. The view history is
important for the application, for example, to assist the
application to know whether there is a view of which it is
not a member. In this case, the messages sent in the
immediately preceding view in which it was a member may
not have reached it.

Whenever an agent arrives at a processor, the processor
can receive all the multicast messages that are related to
views of which it is a member. Moreover, the processor can
deliver these messages in order and with the appropriate
view identifier.

A view of a group becomes old when a new view is
established (by one of the processors) for the same group.
An old view viewo and the multicast messages (within this
view) are removed from the agent a, when, for every
processor pi that is a member of viewo, the multicast
messages of this view have been delivered to pi, or when
there is an indication that pi is not in the same connected
component as the agent a.

We call the above multicast service best effort multicast.
We note that the multicast service is optimal if old views are
not eliminated from the agent before all the members
receive the multicast messages, except the ones that are not
present in the system (and we do not know whether they
will be reconnected).

The history length is bounded; the bound is a function of
the maximal activity in the system in terms of multicast and
view establishments during kN3 agent moves. Note that an
old view is eliminated when there are kN3 agent moves
following the establishment of a new view. The reason is
that either every processor in the old view is visited or is
considered not connected. In addition, the current view
may accumulate, at most, kN3 multicast messages (a
message in every agent move) when all the processors in
the view are considered connected and active.

The formal description of the multicast algorithm
appears in Fig. 4. This description extends the code of
Fig. 2. A new view is added to the history of an agent a,
upon the history creation (line 3.2.6.2). If processor pi

wishes to send a multicast message m, then m is added to
the messages of a (line 3.2.7.1). Every view (respectively,
message) that processor pi has not yet received is delivered
to the application layer in line 3.2.8 (respectively, 3.2.9).

It is possible to extend the multicast service to support
indication of the delivery to all the processors in the group
(in the spirit of safe delivery [7]) and an indication of the fact
that all the processors are aware of the current view (in the
spirit of view agreement [7]). The idea is to add an indication
for each delivery of a message or a view to a processor, and
use these indications to conclude safe delivery or view
agreement.

Next, we prove that our multicast service algorithm
satisfies Requirements 3 and 4.

Lemma 7. Every nice execution of our algorithm satisfies
Requirement 3 and Requirement 4.

Proof. We first prove that Requirement 3 holds. A message
m sent by pj is not removed from the agent for kN3 agent
moves. Clearly, if a visits pi during these kN3 agent
moves, then m is delivered to pi. Since pi must choose
ttli � kN3, and pi is not removed from v during R, then
the agent must arrive at pi following the delivery of m
and before it is removed.

We now show that Requirement 4 holds. Send
operations are executed during the visit of the (single)
agent and therefore can be (totally) ordered. Assume that
m0 is sent in R before m1 is sent and let pi and pj be two
processors that deliver m0. Every processor pi that
receives an agent and delivers m0, either finds m1 in
the agent as well (in this case, m1 has been sent before m0

is delivered by pi) and delivers m0 and then m1, or pi
does not find m1 in the agent (in this case, m1 has not yet
been sent) and delivers m1 only in a subsequent visit of
the agent—a visit that follows the delivery of m0. Thus,
the order of delivery of the messages m0 and m1 by every
processor p is identical to the order of the send
operations of m0 and m1. tu

Up to this point, we always assumed that there exists a
single agent in the system and used an “empty” agent to
replace colliding agents. Let us remark that a technique
similar to the one presented in [14] can be used to resolve
history conflicts upon agent collisions and decide on a
single nonempty history.

6 RESOURCE ALLOCATION

The random walk of the agent and the membership service
can support not only a multicast service, but also another
application—a resource allocation service. For the sake of
simplicity, we assume that there is no interaction between
different resources. In other words, we handle a single
resource in the system.

The problem of resource allocation has been extensively
studied (e.g., [25], [8], [13]). In [32], the task of resource
allocation is considered in the context of group communica-
tion: three different group membership protocols are used to
solve a resource allocation problem named Bancomat. The
different solutions vary in communication characterizations
and their ability to decide independently. The design of [32]

DOLEV ET AL.: RANDOM WALK FOR SELF-STABILIZING GROUP COMMUNICATION IN AD HOC NETWORKS 903

Fig. 4. Self-stabilizing multicast service by random walk.

is for a complicated resource allocation task, but is not self-
stabilizing. Here, in contrast, we present a self-stabilizing
solution for a basic resource allocation task.

6.1 Resource Allocation Requirement

Requirement 5. Let R be a nice execution, such that every
processor that possesses the resource releases it after B asynch-
ronous cycles, for some finite constant B. Then, 1) every
processor pi that wishes to possess the resource infinitely often
possesses the resource infinitely often and 2) in any configura-
tion at most one processor possesses the resource.

The communication graph of an ad hoc system may be
partitioned into multiple mutually disconnected connected
components. Here, we describe an algorithm for resource
allocation, despite such dynamic communication graph
partition.

Group membership services have two approaches for
coping with partition scenarios. Partitionable membership
services allow multiple disjoint views of the same group to
exist concurrently, each view for a different component [7].

In contrast, primary component membership services
allow only one component, called the primary component,
to have group views and the full set of allowed operations,
while other components are considered to be nonprimary
and are limited to executing a reduced set of operations [7].

We note that the self-stabilization property imposes the
requirement that the number of processors of any primary
view must include the majority of processors in the system
(bN=2c þ 1). Suppose that we do not require primary views
to include the majority of processors and that, for every set
of processors, there is an execution in which this set of
processors (perhaps the only active processors) forms a
primary view. Consider an execution R1 in which A is a
primary view that consists of a set of processors, and
consider a different execution R2 in which A0 is a primary
view that consists of a totally disjoint set of processors. Note
that, by our assumption, any set of processors can form a
primary view. Consider an execution R3 with two disjoint
“primary” connected components A and A0 in the first
configuration of an execution R3. Since there is no
communication between the two components, the system
may never detect the fact that both components are
considered primary.

We define a group, gall, that includes all the processors.
This group will be used to indicate whether the connected
component is a primary component. The agent has a
Boolean flag a:primary that is true if, and only if, the
number of members in gall is greater than bN=2c. The agent
decides on the list of processors in the connected compo-
nent by the membership procedure described above.

Processors that request the resource join the group
gresource. The agent can order the processors in the gresource
members set by the order in which they join the set; in this
case, the set is essentially a request queue.

The agent a of the primary component allocates the
resource to the processor pr that is at the head of the request
queue. The resource is released when pr leaves gresource, pr
leaves gall, or a:primary is false.

The next lemma proves that our algorithm satisfies the
resource allocation requirement.

Lemma 8. Every nice execution of our algorithm satisfies

Requirement 5.

Proof. Let pi be a processor that wishes to possess the

resource in R. Then, by the algorithm it joins gresource.

Since 1) gresource is a queue with, at most, N requests,

2) the agent cover time is bounded by M, and 3) the time

that a processor possesses the resource is bounded by B,

then within OðMNBÞ asynchronous cycles, the agent

allocates the resource to pi. tu

7 CONCLUDING REMARKS

We suggest using a random walk of an agent to cope with

the uncertainty and the dynamic nature of ad hoc networks.

The random walk of the agent is used to implement a

probabilistic group communication service. The membership

service, multicast service, and resource allocation service

that we present meet their requirements with high prob-

ability. We emphasize that the communication, time and

space resources for operations can be tuned by varying the

probability. The requirements will hold with higher prob-

ability if we increase the value of the transmission radius rd,

enlarge the parameter k for ensuring cover time, and use

longer histories in the agents.
We argue that our new approach for a best effort service

matches the nature of the ad hoc system and the limitations

(e.g., [5], [28]) of the group communication service. The

traversal of the system by a single agent limits the number

of simultaneous messages that are needed to support the

group communication service at any given time. Thus, it

limits the resources (processing capabilities) of the mobile

agent needed to support these services.

ACKNOWLEDGMENTS

The authors would like to thank Uriel Feige for helpful

discussions, Lyn Pierce for improving the presentation, and

Nir Alfasi for performing the simulations. This work was

partially supported by US National Science Foundation

Award CCR-0098305, Texas Advanced Research Program

Award 00512-0091-2001, and Rita Altura Trust Chair. An

extended abstract of this work was presented at the 21st

IEEE Symposium on Reliable Distributed Systems, Japan,

2002.

REFERENCES

[1] D. Aldous and J.A. Fill, Reversible Markov Chains and Random Walks
on Graphs, Oct. 1999, http://www.stat.berkeley.edu/~aldous/
book.html.

[2] N. Alfasi, “Cover Time Random Walk in Ad Hoc Networks,”
Technical Report #03-02, Dept. of Computer Science, Ben-Gurion
Univ. of the Negev, 2002.

[3] Y. Amir, L. Moser, P.M. Melliar-Smith, D. Agrawal, and P.
Ciarfella, “Fast Message Ordering and Membership Using a
Logical Token-Passing Ring,” Proc. 13th IEEE Int’l Conf. Distributed
Computing Systems, pp. 551-560, 1993.

[4] J. Beauquier, T. Herault, and E. Schiller, “Easy Self-Stabilization
with an Agent” Proc. Fifth Workshop Self-Stabilizing Systems, pp. 35-
50, 2001.

[5] T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost, “On the
Impossibility of Group Membership,” Proc. ACM Symp. Principles
of Distributed Computing, pp. 322-330, 1996.

904 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

[6] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis, “An Efficient
Communication Strategy for Ad hoc Mobile Networks,” Proc. 15th
Int’l Symp. Distributed Computing, pp. 285-299, 2001.

[7] G.V. Chockler, I. Keidar, and R. Vitenberg, “Group Communica-
tion Specifications: A Comprehensive Study,” ACM Computing
Surveys, vol. 33, no. 4, pp. 1-43, Dec. 2001.

[8] M. Choy and A.K. Singh, “Efficient Fault Tolerant Algorithms for
Distributed Resource Allocation,” ACM Trans. Programming
Languages and Systems, vol. 17, no. 4, pp. 535-559, 1995.

[9] D. Coppersmith, P. Tetali, and P. Winkler, “Collisions among
Random Walks on a Graph,” SIAM J. Discrete Math, vol. 6, no. 3,
pp. 363-374, Aug. 1993.

[10] F. Cristian and F. Schmuck, “Agreeing on Processor Group
Membership in Asynchronous Distributed Systems,” Technical
Report CSE95-428, Dept. of Computer Science, Univ. of California,
San Diego, 1995.

[11] R.A. Dayem, Mobile Data and Wireless LAN Technologies. Prentice
Hall, 1997.

[12] E.W. Dijkstra, “Self Stabilizing Systems in Spite of Distributed
Control,” Comm. ACM, vol. 17, pp. 643-644, 1974.

[13] S. Dolev, Self-Stabilization. MIT Press, 2000.
[14] S. Dolev and E. Schiller, “Communication Adaptive Self-Stabiliz-

ing Group Membership Service,” IEEE Trans. Parallel Distributed
Systems, vol. 14, no. 7, pp. 709-720, 2003.

[15] U. Feige, “A Tight Upper Bound on the Cover Time for Random
Walks on Graphs,” Random Structures and Algorithms, vol. 6, no. 4,
pp. 51-54, 1995.

[16] U. Feige, “A Tight Lower Bound on the Cover Time for Random
Walks on Graphs,” Random Structures and Algorithms, vol. 6, no. 4,
pp. 433-438, 1995.

[17] U. Feige, “A Fast Randomized LOGSPACE Algorithm for Graph
Connectivity,” Theoretical Computer Science, vol. 169, pp. 147-160,
1996.

[18] A. Fekete, N. Lynch, and A. Shvartsman, “Specifying and Using a
Partitionable Group Communication Service,” ACM Trans. Com-
puter Systems, vol. 19, no. 2, pp. 171-216, 2001.

[19] S. Ghosh, “Agents, Distributed Algorithms, and Stabilization,”
Computing and Combinatorics, pp. 242-251, 2000.

[20] K.P. Hatzis, G.P. Pentaris, P.G. Spirakis, V.T. Tampakas, and R.B.
Tan, “Fundamental Control Algorithms in Mobile Networks,”
Proc. 11th ACM Symp. Parallel Algorithms and Architectures, pp. 251-
260, 1999.

[21] T. Herman and T. Masuzawa, “Self-Stabilizing Agent Traversal,”
Proc. Fifth Workshop Self-Stabilizing Systems, pp. 152-166, 2001.

[22] IETF Mobile Ad hoc Networks (MANET) Working Group, http://
www.ietf.org/html.charters/manet-charter.html, 2005.

[23] A. Israeli and M. Jalfon, “Token Management Schemes and
Random Walks Yield Self-Stabilizing Mutual Exclusion,” Proc.
Ninth Ann. ACM Symp. Principles of Distributed Computing, pp. 119-
131, 1990.

[24] T. Imielinski and H.F. Korth, Mobile Computing. Academic
Publishers, 1996.

[25] N.A. Lynch, “Fast Allocation of Nearby Resources in a Distributed
System,” Proc. 12th ACM Symp. Theory of Computing, pp. 70-81,
1980.

[26] L. Lovasz, “Random Walks on Graphs: A Survey,” Combinatorics,
Paul Erdos is Eighty, vol. 2, pp. 353-398, Budapest: Janos Bolyai
Mathematical Society, 1996.

[27] M. Mihail and C.H. Papadimitriou, “On the Random Walk
Method for Protocol Testing,” Proc. Conf. Computer Aided Verifica-
tion, pp. 132-141, 1994.

[28] G. Neiger, “A New Look at Membership Service,” Proc. 15th ACM
Symp. Principles of Distributed Computing, pp. 331-340, 1996.

[29] NS2 Network Simulator, http://www.isi.edu/nsnam/ns/, 1989.
[30] V.D. Park and M.S. Corson, “A Highly Adaptive Distributed

Routing Algorithm for Mobile Wireless Networks,” Proc. IEEE
INFOCOM Conf., pp. 1405-1413, Apr. 1997.

[31] B. Rajagopalan and P. McKinley, “A Token-Based Protocol for
Reliable, Ordered Multicast Communication,” Proc. Eighth IEEE
Symp. Reliable Distributed Systems, pp. 84-93, Oct. 1989.

[32] J. Sussman and K. Marzullo, “The Bancomat Problem: An
Example of Resource Allocation in a Partitionable Asynchronous
System,” Proc. 12th Int’l Symp. Distributed Computing (DISC), 1998.

[33] A.S. Tanenbaum, Computer Networks. Prentice Hall, 1996.
[34] B. Lange and Y. Aridor, “Agent Transfer Protocol—ATP/0.1,”

1999, http://www.trl.ibm.com/aglets/atp/atp.htm.

Shlomi Dolev received the BSc degree in
engineering and the BA degree in computer
science in 1984 and 1985, and the MSc and DSc
degrees in computer science in 1990 and 1992
from the Technion Israel Institute of Technology.
From 1992 to 1995, he was at Texas A&M
University as a research specialist. In 1995, he
joined the Department of Mathematics and
Computer Science at Ben-Gurion University.
He is the author of the book entitled Self-

Stabilization (MIT Press, 2000). He is the founder and the first
department head of the Computer Science Department at Ben-Gurion
University. His publications, 100 conference and journal papers, are
mostly in the area of distributed computing, communication networks,
and security and cryptography; in particular, the self-stabilization
property of such systems. Several agencies and companies support
his research, including IBM (faculty awards), Intel, NSF, Deutsche
Telekom, and the Israeli Ministries of Science and Defense. During his
stay at Ben-Gurion University, he had visiting positions at several
institutions including LRI, DIMACS, and MIT. He served on 30 program
committees including a few of PODC, DISC, WSS, ICDCS, INFOCOM,
and WADS. He is an associate editor of the AIAA Journal of Aerospace
Computing, Information, and Communication. He holds the Ben-Gurion
University Rita Altura trust chair in computer sciences. He is a senior
member of the IEEE and the IEEE Computer Society.

Elad Schiller received the BSc (1998) and MSc
(2000) degrees in mathematics and computer
science from the Department of Mathematics
and Computer Science at Ben-Gurion University
of the Negev. Recently, he received the PhD
degree (2004) from the Department of Computer
Science at Ben-Gurion University of the Negev.
After his PhD, he visited MIT and CTI (Greece).

Jennifer L. Welch received the BA from the
University of Texas at Austin and the SM and
PhD degrees from the Massachusetts Institute
of Technology. She is currently holder of the
Chevron II Professorship in the Department of
Computer Science at Texas A&M University.
She has also been on the faculty at the
University of North Carolina and was a member
of Technical Staff at GTE Laboratories Incorpo-
rated. Her research interests are in the theory of

distributed computing, algorithm analysis, distributed systems, mobile
ad hoc networks, and distributed data structures.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DOLEV ET AL.: RANDOM WALK FOR SELF-STABILIZING GROUP COMMUNICATION IN AD HOC NETWORKS 905

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

