
Architecture-Based Software Reliability
Analysis: Overview and Limitations

Swapna S. Gokhale, Senior Member, IEEE

Abstract—With the growing size and complexity of software applications, research in the area of architecture-based software reliability

analysis has gained prominence. The purpose of this paper is to provide an overview of the existing research in this area, critically

examine its limitations, and suggest ways to address the identified limitations.

Index Terms—Software reliability, software architecture.

Ç

1 INTRODUCTION

RELIABILITY analysis of a software application based on its
architecture offers many advantages, namely, it enables

us to:

1. relate application reliability to its architecture and
individual component1 reliabilities,

2. analyze the sensitivity of the application reliability
to the component reliabilities and application
architecture,

3. explore architectural alternatives to optimize various
application attributes such as performance, reliabil-
ity, and cost,

4. identify reliability bottlenecks,
5. assess application reliability earlier in the life cycle

where maximum latitude exists to take corrective
action if the reliability does not meet the desired
expectations [14], and

6. assess the reliability of an operational application to
identify components that provide the highest poten-
tial for reliability improvement.

From the mid to late 1990s, architecture-based software

reliability analysis has started receiving a great deal of

attention [28], [25], [32], [49], [38], [37], [100], as software

applications have grown in size and complexity. The

objective of this paper is to provide an overview of the

state-of-the-art research in the area of architecture-based

software reliability analysis. We then describe the short-

comings and the limiting assumptions underlying the

prevalent research. These limitations arise because the

prevalent techniques:

1. cannot consider many characteristics and aspects
that are commonly present in modern software

applications (for example, existing techniques can-
not consider concurrent execution of components),

2. provide limited analysis capabilities,
3. cannot be used to analyze the reliability of real

software applications due to the lack of parameter
estimation techniques, and

4. are not validated experimentally.

We also suggest methods that offer the potential to address
the identified limitations.

The layout of the paper is organized as follows: Section 2
provides an overview of the existing techniques. Section 3
describes the limitations of the prevalent research. It also
describes briefly how the identified limitations could be
overcome. Section 4 summarizes the paper.

2 STATE-OF-THE-ART: OVERVIEW

In this section, we provide an overview of the existing
research in the area of architecture-based software relia-
bility analysis.

The primary objective of architecture-based software
reliability analysis has been to obtain an estimate of the
application reliability based on the component reliabilities
and the application architecture. Prevalent architecture-
based analysis techniques can be broadly classified into
two categories, namely, path-based [49], [64], [99], [86] and
state-based [8], [54], [57]. We explain the difference of the
techniques belonging to these two categories with the help of
an example application, which has a probabilistic control
flow graph shown in Fig. 1. This application, first reported in
[8], has been used to illustrate the recent research in
architecture-based reliability analysis [36], [20]. The applica-
tion has 10 components: it begins with the execution of
component 1 and terminates upon the execution of compo-
nent 10. pi;j is the probability that the control is transferred to
component j upon the completion of component i. The
transition probabilities in the control flow graph depend on
the operational profile of the application [72]. We let Ri

denote the reliability of component i.
In the path-based approaches, several execution paths

through the application, where each path starts at the initial
component and ends at the final component, are enumer-
ated. The enumeration of paths could be conducted

32 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 1, JANUARY-MARCH 2007

. The author is with the Department of Computer Science and Engineering,
University of Connecticut, Storrs, CT 06269. E-mail: ssg@engr.uconn,edu.

Manuscript received 14 Sept. 2005; revised 5 May 2006; accepted 19 Sept.
2006; published online 2 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0122-0905.

1. The terms component and module are used interchangeably in this
paper.

1545-5971/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

algorithmically [100], experimentally [49], or by simulation
[25], [42]. The reliability of each path is obtained as a
product of the reliabilities of the components along the
path. For the example application shown in Fig. 1, 1, 3, 5, 8,
10 is a possible execution path, and its reliability is given by
R1R3R5R8R10. An estimate of the application reliability is
obtained by averaging the path reliabilities. A notable
drawback of path-based approaches is that they provide
only an approximate estimate of application reliability
when the application architecture has infinite paths due to
the presence of loops. For example, in the path 1, 4, 6, 8,
41...�, 10, the subpath 4, 6, 8, 4 can occur infinite number of
times.

In the state-based approaches, the probabilistic control
flow graph of the application is mapped to a state space
model. The state space models used to represent application
architecture include a discrete-time Markov chain (DTMC)
[8], [82], [83], [31], a continuous time Markov chain (CTMC)
[53], or a semi-Markov process [58]. Although the path-
based approaches represent the failure behavior of the
components using the probability of failure or reliability, the
state-based approaches allow component failure behavior to
be represented using three types of failure models, namely,
probability of failure or reliability [8], [31], [82], [83], constant
failure rate [53], and time-dependent failure intensity [32].
These failure models can be viewed to form a hierarchy, as
far as the level of detail that can be incorporated and the
accuracy of the reliability estimate are produced. The
reliability estimate is obtained when the component failure
model used is the probability of failure or reliability is least
accurate since it essentially treats the component as a black
box. Representing the component failure behavior by a
constant failure rate provides an improvement over the
previous case since it can account for the time spent in a
component rather than treating every execution of a
component as being similar despite the time spent. In
general, the more the time spent in a component, the higher
is its probability of failure; and using the constant failure rate

as the failure model can account for this fact. Representing
the failure model by time-dependent failure intensity leads
to the most accurate reliability estimate since it can account
for the testing characteristics of the component either
through the measurement of test coverage [30] or observed
failure data. It can also account for dependent executions of a
component, for example, the case of a loop [29]. Several
combinations of the architectural model and the component
failure model are possible, and an overview of these
combinations is provided elsewhere [27].

Using the architectural model and component failure
models, application reliability may be obtained using two
methods in the state-based approaches. In the “composite
method,” the architectural model and the component
failure model are combined to form a single composite
model as follows. Two terminal states C and F are added,
and these states, respectively, represent the scenarios of
successful completion and application failure. For every
component i, a directed branch ði; F Þ is created with
transition probability ð1�RiÞ, representing the occurrence
of a failure in the execution of component i. The original
transition probability between components i and j is
modified to Ripi;j, which represents the transfer of control
to component j from component i, conditional to the
successful execution of component i. A directed branch is
created from the last component to state C with transition
probability equal to the reliability of the last component,
which represents the correct termination of the last
component. The composite model can be solved to obtain
the absorption probability in state C, which is the
application reliability, using standard methods available
for DTMC analysis [89]. For the given values of the
parameters of the architectural model and the component
failure model, the composite method produces an exact
estimate of the application reliability. The composite model
of the example application is shown in Fig. 2.

In the “hierarchical method,” an estimate of the applica-
tion reliability is obtained in two steps. In the first step, the

GOKHALE: ARCHITECTURE-BASED SOFTWARE RELIABILITY ANALYSIS: OVERVIEW AND LIMITATIONS 33

Fig. 1. Probabilistic control flow graph of an example application. Fig. 2. Composite model of example application in Fig. 1.

model representing the application architecture is solved to
obtain the architectural statistics of the application. The
architectural statistics include the mean and the variance of
the number of visits to each component, and in the case of
some models, the expected execution time in each compo-
nent over a single application run. In the second step, the
architectural statistics are combined with the failure
parameters of the components to obtain an analytical
reliability function.

For the example application in Fig. 1, the analytical
reliability function obtained using the hierarchical analysis
approach is given by [31]:

R ¼
Y10

i¼1

R�i
i þ

1

2
R�i
i ðlogRiÞ2�2

i

� �
: ð1Þ

In (1), �i and �i
2 denote the mean and the variance of the

number of visits to component i and are obtained by
solving the DTMC representing the application architecture
[47]. Equation (1) is based on a Taylor series expression for
the mean of a function of random variable [5]. A second-
order Taylor series expression is used because the reliability
estimate obtained is an approximation of the exact
reliability estimate obtained from the composite approach.
The higher the number of terms in the Taylor series
expression, the closer the reliability estimate obtained from
the hierarchical method to the exact one obtained from the
composite method will be.

The hierarchical method described above relies on the
assumption of intracomponent independence, which im-
plies that successive executions of the same component are
independent of one another. In general, intracomponent
independence can lead to a pessimistic reliability estimate
[49]. Gokhale and Trivedi [29] represent the failure behavior
of a component using time-dependent failure intensity to
account for intracomponent dependence. Krishnamurthy
and Mathur [49] resolve the issue of intracomponent
dependence by collapsing multiple executions of the same
component into k occurrences, where k is defined as the
degree of dependence.

Fig. 3 shows a pictorial depiction of how the different
pieces of information are used for reliability analysis using
the composite and the hierarchical methods. Although the
composite method provides an exact reliability estimate and
the hierarchical method provides only an approximate
estimate, the hierarchical method may be preferred due to
the following reasons:

. An important use of the architecture-based analysis
is in the early phases of the software life cycle,
where the sensitivity of the application reliability to
individual component reliabilities and to the
changes in the application architecture arising
due to uncertain or unknown operational profile
needs to be determined and different architectural
alternatives need to be explored. Sensitivity in-
formation can then be used to make decisions such
as how many and which components should be
developed in-house and which components can be
outsourced. To conduct sensitivity analysis using
the composite approach, the combined model has

to be reconstructed and re-solved, which may be
cumbersome and expensive, especially since a
software application of moderate size can have
thousands of states. On the other hand, the
analytical reliability function produced by the
hierarchical approach facilitates sensitivity and
predictive analysis easily. The analytical reliability
function obtained in the hierarchical approach can
also be used to propagate the uncertainty in the
parameters of the component failure and the
architecture models to the application reliability
estimate. To demonstrate the applicability of the
hierarchical analysis approach for such types of
analysis, sensitivity analysis [23] and uncertainty
quantification [20] techniques have been developed
based on the analytical reliability function in (1).

. The second problem arises due to the stiffness of the
composite model. This is due to the fact that the
probability of failure of the components may be
much lower, compared to the transition probabilities
among the components. This difference in the
transition and failure probabilities makes transitions
to the failure state unlikely. Solution techniques that
take into account model stiffness need to be
employed in such cases [71].

. Not all combinations of architectural and failure
models are tractable analytically using the composite
approach. For example, if the architecture of the
application is represented by a DTMC and the
failure behavior of the components is represented
by time-dependent failure intensities, then a compo-
site model based on these two pieces of information
cannot be solved analytically or numerically.

The state-based approaches offer several important

advantages over the path-based approaches. First, they

can consider the impact of infinite paths resulting from the

presence of loops analytically. Second, they can consider

different types of failure models depending on the level of

information that is available. As a result, the state-based

approaches can be used through the development life cycle,

34 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 1, JANUARY-MARCH 2007

Fig. 3. Analysis methods in state-based approaches.

especially in the testing phase, to determine the impact of
reliability growth of an individual component on the overall
application reliability. Further, a more accurate reliability
estimate may also be obtained by the virtue of incorporating
additional information and by considering intracomponent
independence using time-dependent failure intensity to
represent the failure behavior of the components [29].
Third, the analytical reliability function produced by the
hierarchical method in the state-based approaches can
enable sensitivity and predictive analysis easily. Of the
three types of approaches described above, the state-based
approaches have been researched to a greater extent, and
this paper is devoted to their discussion.

3 STATE-OF-THE-ART: LIMITATIONS

In this section, we critically examine the assumptions and
discuss the limitations of the prevalent state-based archi-
tecture-based analysis techniques. We classify the limita-
tions into five categories, namely, modeling, analysis,
parameter estimation, validation, and optimization. We
also provide a brief discussion of how the limitations
identified in each one of the categories can be addressed.

3.1 Modeling Limitations

In this section, we describe the limitations of the models
used for architecture-based analysis. These limitations stem
from the assumptions underlying the prevalent models.
Some of the assumptions have been made to ensure model
tractability. On the other hand, some of the assumptions
reflect the characteristics of the applications that existed
when architecture-based software reliability research origi-
nated, and these assumptions do not hold in the case of
modern software applications. Irrespective of the reasons
driving the assumptions, they may lead to unrealistic and
inaccurate reliability estimates. The limitations of the
prevalent architecture-based reliability models include:

1. Concurrent execution. State space models assume
that at any given instant of time, only one compo-
nent is executing. As a result, these models cannot
represent applications having multiple components
executing simultaneously. The assumption of se-
quential component execution was valid in the
context of applications developed using the proce-
dural programming paradigm, but it does not hold
for applications developed using the object-oriented
paradigm.

2. Non-Markov transfer of control. State space models
assume that the transfer of control among the
components follows first-order Markov property,
that is, the next component to be executed depends
only on the present component and is independent
of the past history. This assumption does not hold
for many software applications, where the execution
history determines which component is the next one
to be executed [97], [95].

3. Nonexponential sojourn times. State space models
assume that the time spent in each state is exponen-
tially distributed. However, it may be necessary to
model the time spent in each state using a general

distribution. For example, if a state represents a
single execution of a set of instructions or the delay
encountered in the transfer of control, then the time
spent in that state may be deterministic.

4. Dependent failures among components. State space
models assume statistical independence among the

failures of the components. This independence

means that a failure occurring within one compo-

nent is not the result of a failure occurring within

another component, and the failure of one compo-

nent will not cause any other component to fail.

Dependence among components may be a result of

data exchanges occurring through parameter or
message passing [46]. Popic et al. [76] consider error

propagation among the software components using

the path-based approach because their technique

suffers from the drawbacks of path-based ap-

proaches described in Section 2. Dependent compo-

nent failures may also occur if a set of components

share a resource or rely on the same services [39].

5. Fault detection and repairs during testing. During

the testing phase, it is necessary to determine how

fault detection and removal at the component level

impacts the application reliability by considering its

architecture. A few research efforts have incorpo-

rated reliability growth of the components into an
architectural model [16], [52]. However, these efforts

assume that faults are fixed instantaneously upon

detection, an assumption that is easily violated in

practice [81]. To the best of our knowledge,

presently, no existing model can analyze the impact

of reliability growth and finite and imperfect repair,

as well as different repair policies [22], at the

component level on the application reliability, taking
into consideration its architecture.

6. Alternative configurations during operation. In

order to improve the application reliability during

operation in a cost-effective manner, a subset of the

application components may be replicated [69]. This
subset may be determined based on the component

criticalities, which may depend on several factors

such as the functionality provided by a component,

the execution frequency of a component, and the

probability of fault propagation [46]. In such cases,

the application reliability needs to be determined,

taking into account the component replication and

application architecture.

7. Heterogeneous failure models. The present state
space models require the failure behavior of all the
components to be represented by a single type of
failure model. In other words, component failure
models are required to be homogeneous. However,
information at different levels of detail may be
available for different components of an application.
For example, for components that are developed in-
house, information to model their failure behavior
using a time-dependent failure intensity may be
available, whereas only component reliabilities may
be available for the ones that are picked off-the-shelf.

GOKHALE: ARCHITECTURE-BASED SOFTWARE RELIABILITY ANALYSIS: OVERVIEW AND LIMITATIONS 35

Incorporating additional information for those com-
ponents for which it is available, even if this
information is not available for all the application
components, can provide an improvement in the
application reliability estimate [29]. However, this
will require the capability to represent component
failure behaviors simultaneously using different
types of failure models or in a heterogeneous
manner.

8. Interface failures. In the case of modern software
applications, interfaces tend to be complex and error
prone, which may result in interface failures.
Further, the components may be distributed with
mechanisms such as RPC [87], Java remote method
invocation (Java RMI) [67], common object request
broker architecture (Corba) [75], and message-
oriented middleware such as Java Message Service
(JMS) [68] used to facilitate the distribution. Software
components are also distributed for applications that
are composed using dynamically discovered com-
ponents as in the case of composing Web services
[39]. For such applications, treating the interfaces as
being perfectly reliable may not provide an accurate
application reliability estimate. Except for a few
research efforts, most of the previous research
assumes perfectly reliable interfaces. Cukic [14]
considers the failures of the communication link
between the hosts in a path-based model. Littlewood
[57] uses constant failure rates to represent interface
failures in conjunction with the composite solution
approach. However, the former suffers from the
drawbacks of path-based approaches, whereas the
latter suffers from the shortcomings of the composite
solution approach.

9. Architecture styles. Over the years, recurring
patterns of structural organization of components
have been identified, and these are referred to as
architecture styles. For each style, the constraints
imposed need to be represented using a state space
model to enable reliability analysis. Adb-Allah [2]
identifies the issues involved with using reliability
block diagrams to analyze the reliability of archi-
tecture styles. Wang et al. [96] describe how some
architectural styles may be mapped to state space
models for reliability analysis. Only a few simple
well-behaved styles are considered in their study,
and these include pipeline, batch sequential, and
parallel. Models for the reliability analysis of other
complex styles, including the pipe and filter style
with general topology, event-based, and database
(blackboard and repository) styles are currently
unavailable. Also, it is unclear how the reliability
of an application that follows a heterogeneous style
may be analyzed.

We now discuss how the modeling limitations described
above can be overcome. To represent the architecture of
concurrent applications, a high-level specification mechan-
ism, such as a Stochastic Reward Net (SRN) [77], may be
used. Non-Markovian applications may be represented
using a higher order state space [55], where the level of
history retained in the model needs to be determined

empirically. Markov Regenerative Stochastic Petri Nets
(MRSPNs) [10] may be used to represent generally
distributed and deterministic transitions, whereas Fluid
Stochastic Petri Nets (FSPNs) [50] may be used to keep
track of the time spent in each component during testing to
evaluate the impact of testing and repair of each component
on application reliability. Colored Petri Nets (CPNs) [44]
may be used to represent the dependencies among
components that arise due to error propagation. Interface
failures arising due to errors in the interfaces and
component distribution may be considered by mapping
interfaces to separate states in the model. SRN-based
models could also be developed for the reliability analysis
of architecture styles. For example, Gokhale and Yacoub
[33] develop an SRN model to consider the impact of
component failures on the performance of a pipeline
software architecture.

3.2 Analysis Limitations

Architecture-based techniques offer the potential of relating
the application reliability to the parameters of the compo-
nent failure models. However, the current arsenal of
analysis techniques enables only limited types of analysis.
The analysis limitations include:

1. Reliability estimation. An important objective of
building a model based on the application architec-
ture and component failure behaviors is that the
analysis of this model will provide an estimate of the
application reliability. Some of the modeling limita-
tions described in Section 3.1 stemmed from the lack
of analysis techniques that were required to solve
the models that relaxed these assumptions. The lack
of analysis techniques was due to the lack of
sophisticated numerical methods and computational
power when architecture-based analysis research
originated.

2. Sensitivity and importance analysis. In addition to
obtaining an estimate of the application reliability,
architecture-based analysis can be used to assess the
sensitivity of the application reliability to the
component failure parameters. Also, important
measures [6] of the components based on the
application architecture need to be obtained. Pre-
valent research, however, addresses the issue of
sensitivity analysis only sporadically [59], [99]. To
the best of our knowledge, no research has focused
on techniques for importance analysis based on the
application architecture.

3. Uncertainty quantification and confidence inter-
vals. Prevalent architecture-based analysis techni-
ques accept point estimates of architectural and
component failure parameters and produce a point
estimate of application reliability. These parameters
are likely to be uncertain and inaccurate, especially
in the early phases. As a result, it is necessary to
propagate the uncertainties in these parameters to
the uncertainty in the estimate of the application
reliability. A few research efforts that address this
issue have limited applicability since they consider
only a single type of architectural and component
failure models [85], [38], [20]. In addition to

36 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 1, JANUARY-MARCH 2007

uncertainty quantification, it is also necessary to
establish a confidence interval for the reliability
estimate to determine the risk associated with the
estimate.

4. Prioritization of components. Application compo-
nents must be prioritized taking into consideration
their sensitivity or importance measures and their
contribution to the uncertainty in the application
reliability estimate. Prioritization strategies have
been developed for series-parallel system architec-
tures [11]. But, these techniques cannot be used for
software applications that exhibit complex interac-
tions among the components.

As discussed in Section 2, the hierarchical approach
generates an analytical reliability function that can form the
basis for sensitivity analysis, uncertainty quantification, and
component prioritization. In order to facilitate the hierarch-
ical approach, it is necessary to solve the architectural
model to obtain architectural statistics. Packages such as
Stochastic Petri Net Package (SPNP) [41] may be used to
solve the architectural models represented by SRNs,
MRSPNs, and FSPNs numerically. If a numerical solution
is infeasible, the architectural model may be simulated to
obtain architectural statistics. DesignCPN [45] may be used
to simulate a colored Petri net. To enable the use of the
hierarchical approach, application reliability in each state
needs to be determined and combined with the architectur-
al statistics in order to obtain the analytical reliability
function.

During the solution of the architectural models, state
space explosion may be an issue, and appropriate model
decomposition strategies need to be developed to alleviate
this problem. A candidate model decomposition strategy
may consist of dividing the application components into
groups, obtaining the analytical reliability function for each
group, and subsequently aggregating the group reliability
functions into an application reliability function. Division of
the components into groups may be based on the applica-
tion and component characteristics. For example, grouping
may be based on the functions offered by the application, or
according to the sources from which components are
obtained (in-house and off-the-shelf). Additional grouping
strategies and their relative advantages and disadvantages,
along with their impact on the accuracy of the application
reliability estimate need to be investigated.

For applications that are composed on the fly such as the
composition of Web services, the architecture changes
dynamically. The components chosen for the composition
may depend on how well they satisfy the expected
reliability target (and other nonfunctional attributes includ-
ing performance), and this needs to be determined based on
the application architecture. To facilitate such decision
making at runtime, it is necessary to develop methods to
specify the application architecture and automatically
generate the corresponding reliability model. Efficient
methods to solve the generated reliability model to guide
runtime decision making are also necessary.

3.3 Parameter Estimation Limitations

In order to enable the use of architecture-based techniques
for the reliability analysis of real software applications, it is
imperative to be able to estimate the parameters of the

architectural and component failure models from different
software artifacts. Research in the area of parameter
estimation techniques, however, is still in its infancy.
Goseva-Popstojanova et al. [38] use fault insertion experi-
ments to estimate the reliability of the components of an
application. Gokhale et al. [32] use coverage data collected
from the testing of the application to estimate the parameters
representing the DTMC model of an application.

In general, profile data generated during the execution of
an application may be used to estimate the parameters
representing the application architecture. Profile data may
include the time spent in code segments, the execution
statistics of code segments, execution frequencies of the
outcomes of a decision, and resource consumption informa-
tion. Since profiling involves instrumentation of the soft-
ware application to generate runtime data, profiling should
be sufficiently lightweight so that it does not alter the
behavior of the application. Tradeoffs among the overheads
incurred in profiling and the granularity of data collection
and subsequent analysis enabled must be investigated.

The parameters representing the failure behavior of
components may be estimated using statistical testing [38],
failure data collected during unit testing of the component
using an appropriate Software Reliability Growth Model
(SRGM) [17], fault seeding [38], a combination of fault
prediction techniques [15], [24], [56], [98] and fault exposure
ratio [73], and the testability metric [91]. Code coverage
measurements may also be used to estimate the failure
parameters of the components [7], [43], [62], [26]. To
estimate fault propagation probabilities among the compo-
nents, a fault injection technique may be used [91], [46].

The techniques described above can be applied to
different software artifacts. In the design phase, the
description of the software application in a modeling
language such as Unified Modeling Language (UML) [12]
or a specification language such as Services Description
Language (SDL) can serve as the artifact. Real-Time Object
Oriented Modeling (ROOM) architecture description lan-
guage [84] and ObjecTime tool [74] can be used to generate
profile data. Metrics-based approaches [88], [101] can be
applied to the statechart description of a component to
estimate its failure parameters. During the testing and
operational phases, the source and/or object code of the
components is available. In these phases, profile data may
be generated using tools such as gprof [18], quantify [79], Java
Virtual Machine Profiling Interface (JVMPI) [66], and coverage
analysis using tools such as Telcordia Software Visualization
and Analysis Tool Suite [9], purecov [80], and Generic Coverage
Tool (GCT) [63].

3.4 Validation Limitations

Ideally, architecture-based reliability analysis should be
used in the forward engineering of a software application
starting from the early phases of the software development
life cycle. However, in order to inspire confidence in the
results produced by these techniques in the early phases,
when not much information about an application is
available, these techniques must be applied, and their
results must be validated using software applications,
which have been implemented and are operational.
Currently, to the best of our knowledge, very little effort

GOKHALE: ARCHITECTURE-BASED SOFTWARE RELIABILITY ANALYSIS: OVERVIEW AND LIMITATIONS 37

has been devoted to the validation of architecture-based
reliability analysis techniques.

A number of applications available in the public domain,
such as the JPEG library [93], network simulators such as
Maryland Routing Simulator (MaRS) [4] and Network
Simulator-2 (NS-2) [1], and so forth, could serve as test
beds for experimental evaluation. Evaluation using indus-
trial strength applications is also necessary. The results
obtained from the evaluation process may be validated
using both conceptual and empirical validation [3]. Con-
ceptual validation is qualitative in nature and may be used
to validate the relative contribution of each component. It
could be performed by consulting with designers, archi-
tects, developers, students (in the case of student projects),
and in some cases even users. Empirical validation may be
used to quantitatively validate the application reliability
estimate and the estimates of the contribution of each
component. Based on the error logs generated during
testing, errors may be seeded into the application, and the
application can be retested based on the same operational
profile used to generate the profile data. Based on the
observed failures and successful executions during retest-
ing, measures similar to the ones in [94] may be defined to
obtain an estimate of the application reliability and the
contribution of each component. The conceptual approach
was used by Gokhale et al. [32], whereas the empirical
approach was used by Goseva-Popstojanova et al. [35] for
reliability validation of a sequential application with
architecture represented by a DTMC.

3.5 Optimization Limitations

Optimization is commonly used in many engineering
disciplines to enable the exploration of alternative config-
urations and to trade off multiple attributes against each
other. For a software application, however, optimization
based on architecture remains relatively unaddressed.
Many exact and heuristic optimization techniques have
been developed for series-parallel architectures [51]. These
techniques, however, are not useful for a software
application since the interactions among its components
are more complex than those permitted in series-parallel
architectures.

For a software application, the objective of the optimiza-
tion will depend on the phase of the software life cycle.
During the design phase, reliability constrained cost
minimization and cost constrained reliability maximization
could be the two objectives [40]. During the testing phase,
the objective of the optimization may be to determine the
allocation of testing effort so that the desired reliability
objective is achieved [61], [78]. During the operational
phase, optimization may be used to explore alternative
configurations and to determine an optimal allocation of
components to various nodes in a distributed network to
achieve the desired performance and reliability. The
existing optimization techniques for software applications
consider only a single type of architectural model and a
single type of component failure model and can, hence, be
used only in that phase of the life cycle during which it is
most appropriate to use these models. For example, if the
optimization technique is based on reliability as the failure
model, then it may be most appropriate to use the technique
in the early stages. Also, these techniques assume a

continuous relationship between the cost and testing effort
expended on a module and its reliability. However, for
some components, the cost/reliability relationship may be
discrete. For example, in the case of a component that is
picked off-the-shelf, only a few cost/reliability combina-
tions may be available for the component. Also, it may be
more feasible to predict the range over which component
reliability may lie for a given cost based on prior experience
rather than predicting the exact reliability value.

Due to the nonlinear and sometimes discrete relation-
ship between the reliability of a component and its cost, it
may not be feasible to use conventional nonlinear optimiza-
tion techniques such as basic descent, gradient projection
[60], and modified Newton method [70]. These techniques
also have the potential danger of losing the direction of
descent, especially when the initial solution is far from the
optimal solution [90], [60]. However, by taking advantage
of the monotonic relationships that will be satisfied
between component (application) reliability and cost and
component (application) reliability and performance, the
use of heuristic optimization techniques such as simulated
annealing [48] and evolutionary algorithms [34], [65] may
be explored. Preliminary research in the use of evolutionary
algorithms to perform cost/reliability tradeoffs was pro-
mising [92], [19], [21].

4 SUMMARY

This paper provided an overview of the state-of-the-art
research in the area of architecture-based software relia-
bility analysis, along with an examination of the assump-
tions and limitations of the existing research. The paper also
suggested promising avenues that could be explored to
address the identified limitations.

ACKNOWLEDGMENTS

This research was supported by the following grants:
1) Large Grant from the University of Connecticut Research
Foundation, 2) EPSCoR and Workforce Development
Grants from the Connecticut Space Grant College Con-
sortium, and 3) CAREER award from the US National
Science Foundation (#CNS-0643971).

REFERENCES

[1] http://www.isi.edu/nsnam/ns/, 2005.
[2] A. Abd-Allah, “Extending Reliability Block Diagrams to Software

Architectures,“ Technical Report USC-CSE-97-501, Dept. of
Computer Science, Univ. Southern California, 1997.

[3] G. Ahrens and A. Chandra, “Availability Modeling and Valida-
tion Methodology for RS/6000 Systems,” Proc. Ann. Reliability and
Maintainability Symp., pp. 305-309, Jan. 1999.

[4] C. Alattinoglu, A.U. Shankar, K. Dussa-Zieger, and I. Matta,
“Design and Implementation of MaRS: A Routing Testbed,”
J. Internetworking Research and Experience, vol. 5, no. 1, pp. 17-41,
1994.

[5] L.J. Bain and M. Engelhardt, Introduction to Probability and Math.
Statistics. Duxbury Press, 1980.

[6] L.W. Birnbaum, “On the Importance of Different Components in a
Multi-Component System,” Multivariate Analysis II, Krisnaiah, ed.,
Academic Press, 1969.

[7] M.H. Chen, M.R. Lyu, and W.E. Wong, “Effect of Code Coverage
on Software Reliability Measurement,” IEEE Trans. Reliability,
vol. 50, no. 2, pp. 165-170, June 2001.

[8] R.C. Cheung, “A User-Oriented Software Reliability Model,” IEEE
Trans. Software Eng., vol. 6, no. 2, pp. 118-125, Mar. 1980.

38 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 1, JANUARY-MARCH 2007

[9] The �Suds Team, “Mining System Tests to Aid Software
Maintenance,“ Computer, vol. 31, no. 7, pp. 64-73, July 1998.

[10] H. Choi, V. Kulkarni, and K.S. Trivedi, “Markov Regenerative
Stochastic Petri Net,” Performance Evaluation, vol. 20, nos. 1-3,
pp. 337-357, 1994.

[11] D.W. Coit and T. Jin, “Prioritizing System-Reliability Prediction
Improvements,” IEEE Trans. Reliability, vol. 50, no. 1, pp. 17-25,
Mar. 2001.

[12] OMG Corp., http://www.uml.org, 2005.
[13] B. Cuick, H.H. Ammar, and K. Lateef, “Identifying High-Risk

Scenarios of Complex Systems Using Input Domain Partitioning,”
Proc. Int’l Symp. Software Reliability Eng. (ISSRE ’98), pp. 164-173,
1998.

[14] B. Cukic, “The Virtues of Assessing Software Reliability Early,”
IEEE Software, pp. 50-53, May/June 2005.

[15] W.M. Evanco, “Poisson Analysis of Defects for Small Software
Components,” J. Systems Software, vol. 38, no. 1, pp. 27-35, 1997.

[16] W.W. Everett, “Software Component Reliability Analysis,” Proc.
Application Specific Software Eng. and Technology, pp. 204-211, Mar.
1999.

[17] W. Farr, “Software Reliability Modeling Survey,” Handbook of
Software Reliability Eng., M.R. Lyu, ed., pp. 71-117, McGraw-Hill,
1996.

[18] J. Fenlason and R. Stallman, “Gnu gprof,” http://www.gnu.org/
manual/gprof-2.9.1/html_mono/gprof.html, 2005.

[19] S. Gokhale, “Cost-Constrained Reliability Maximization of Soft-
ware Systems,” Proc. Ann. Reliability and Maintainability Symp.
(RAMS ’04), pp. 195-200, Jan. 2004.

[20] S. Gokhale, “Quantifying the Variance in Application Reliability,”
Proc. Pacific Rim Dependability Conf., pp. 113-121, Mar. 2004.

[21] S. Gokhale, “Software Application Design Based on Architecture,
Reliability and Cost,” Proc. Int’l Symp. Computers and Comm. (ISCC
’04), vol. 2, pp. 1098-1103, July 2004.

[22] S. Gokhale, “Software Failure Rate and Reliability Incorporating
Repair Policies,” Proc. 10th IEEE Int’l Symp. Software Metrics
(METRICS ’04), pp. 394-404, Sept. 2004.

[23] S. Gokhale, “Software Reliability Analysis Incorporating Second-
Order Architectural Statistics,” Int’l J. Reliability, Quality and Safety
Eng., vol. 12, no. 3, pp. 267-290, 2005.

[24] S. Gokhale and M.R. Lyu, “Regression Tree Modeling for the
Prediction of Software Quality,” Proc. Int’l Symp. Sustainable
Agricultural Technologies (ISSAT ’97), pp. 31-36, Mar. 1997.

[25] S. Gokhale, M.R. Lyu, and K.S. Trivedi, “Reliability Simulation of
Component-Based Software Systems,” Proc. Ninth Int’l Symp.
Software Reliability Eng. (ISSRE ’98), pp. 192-201, Nov. 1998.

[26] S. Gokhale and R. Mullen, “From Test Count to Code Coverage
Using the Lognormal Failure Rate,” Proc. Int’l Symp. Software
Reliability Eng. (ISSRE ’04), pp. 295-395, Nov. 2004.

[27] S. Gokhale and K.S. Trivedi, “Analytical Models for Architecture-
Based Software Reliability Prediction: A Unification Framework,”
IEEE Trans. Reliability, accepted for publication.

[28] S. Gokhale and K.S. Trivedi, “Structure-Based Software Reliability
Prediction,” Proc. Fifth Int’l Conf. Advanced Computing (ADCOMP
’97), pp. 447-452, Dec. 1997.

[29] S. Gokhale and K.S. Trivedi, “Dependency Characterization in
Path-Based Approaches to Architecture-Based Software Reliabil-
ity Prediction,” Proc. First Application Specific Software Eng.
Technology (ASSET ’98), pp. 86-89, Mar. 1998.

[30] S. Gokhale and K.S. Trivedi, “A Time/Structure Based Software
Reliability Model,” Annals of Software Eng., vol. 8, pp. 85-121, 1999.

[31] S. Gokhale and K.S. Trivedi, “Reliability Prediction and Sensitivity
Analysis Based on Software Architecture,” Proc. Int’l Symp.
Software Reliability Eng. (ISSRE ’02), Nov. 2002.

[32] S. Gokhale, W.E. Wong, K.S. Trivedi, and J.R. Horgan, “An
Analytic Approach to Architecture-Based Software Performance
and Reliability Prediction,” Performance Evaluation, vol. 58, no. 4,
pp. 391-412, Dec. 2004.

[33] S. Gokhale and S. Yacoub, “Performability Analysis of a Pipeline
Software Architecture,” Proc. Int’l Conf. Computer Science and
Applications, July 2005.

[34] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[35] K. Goseva-Popstojanova, M. Hamill, and R. Perugupalli, “Large
Empirical Case Study of Architecture-Based Software Reliability,”
Proc. Int’l Symp. Software Reliability Eng., pp. 43-52, Nov. 2005.

[36] K. Goseva-Popstojanova and S. Kamavaram, “Assessing Uncer-
tainty in Reliability of Component-Based Software Systems,” Proc.
Int’l Symp. Software Reliability Eng., pp. 307-320, 2003.

[37] K. Goseva-Popstojanova and S. Kamavaram, “Software Reliability
Estimation under Uncertainty: Generalization of the Method of
Moments,” Proc. Eighth IEEE Int’l Symp. High Assurance Systems
Eng., pp. 209-218, 2004.

[38] K. Goseva-Popstojanova, A.P. Mathur, and K.S. Trivedi, “Com-
parison of Architecture-Based Software Reliability Models,” Proc.
Int’l Symp. Software Reliability Eng., pp. 22-31, 2001.

[39] V. Grassi, “Architecture-Based Dependability Prediction for
Service-Oriented Computing,” Proc. Workshop Architecting Depend-
able Systems, 2004.

[40] M.E. Helander, M. Zhao, and N. Ohlsson, “Planning Models for
Software Reliability and Cost,” IEEE Trans. Software Eng., vol. 24,
no. 6, pp. 420-434, June 1998.

[41] C. Hirel, B. Tuffin, and K.S. Trivedi, “SPNP: Stochastic Petri Nets.
Version 6.0,” Proc. Int’l Conf. Technology of Object-Oriented
Languages and Systems (TOOLS ’00), 2000.

[42] R. Huang, M.R. Lyu, and K. Kanoun, “Simulation Techniques for
Component-Based Software Reliability Modeling with Project
Application,” Proc. Int’l Symp. Information Systems and Eng. (ISE
’01), pp. 283-289, 2001.

[43] R. Jacoby and K. Masuzawa, “Test Coverage Dependent Software
Reliability Estimation by the HGD Model,” Proc. Third Int’l Symp.
Software Reliability Eng., 1992.

[44] K. Jensen, Colored Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. Springer, 1997.

[45] K. Jensen, “DesignCPN, Version 4.0,” technical report, Univ.
Denmark, 1999.

[46] A. Jhumka, M. Hiller, and N. Suri, “Assessing Inter-Modular Error
Propagation in Distributed Software,” Proc. 20th IEEE Symp.
Reliable Distributed Systems, Oct. 2001.

[47] J.G. Kemeny and J.L. Snell, Finite Markov Chains. D. Van Nostrand,
1960.

[48] S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, pp. 671-680, May 1983.

[49] S. Krishnamurthy and A.P. Mathur, “On the Estimation of
Reliability of a Software System Using Reliabilities of Its
Components,” Proc. Eighth Int’l Symp. Software Reliability Eng.,
pp. 146-155, Nov. 1997.

[50] V. Kulkarni and K.S. Trivedi, “FSPNs: Fluid Stochastic Petri Nets,”
Proc. 14th Int’l Conf. Applications and Theory of Petri Nets, pp. 24-31,
1993.

[51] W. Kuo and V.R. Prasad, “An Annotated Overview of System-
Reliability Optimization,” IEEE Trans. Reliability, vol. 49, no. 2,
pp. 176-187, June 2000.

[52] J.C. Laprie, M. Kaaniche, and K. Kanoun, “Modeling Computer
Systems Evolutions: Non-Stationary Process and Stochastic Petri
Nets—Application to Dependability Growth,” Proc. Sixth Int’l
Workshop Petri Nets and Performance Models, pp. 221-230, Oct. 1995.

[53] J.C. Laprie and K. Kanoun, “X-Ware Reliability and Availability
Modeling,” IEEE Trans. Software Eng., vol. 15, pp. 130-147, 1992.

[54] J.C. Laprie and K. Kanoun, “Software Reliability and System
Reliability,” Handbook of Software Reliability Eng., M.R. Lyu, ed.,
pp. 27-69. McGraw-Hill, 1996.

[55] J. Ledoux and G. Rubino, “A Counting Model for Software
Reliability Analysis,” IASTED J. Simulation, 1997.

[56] M. Lipow, “Number of Faults per Line of Code,” IEEE Trans.
Software Eng., vol. 8, no. 4, pp. 437-439, July 1982.

[57] B. Littlewood, “A Reliability Model for Markov Structured
Software,” Proc. Int’l Conf. Reliable Software, pp. 204-207, Apr. 1975.

[58] B. Littlewood, “A Semi-Markov Model for Software Reliability
with Failure Costs,” Proc. Symp. Computer Software Eng., pp. 281-
300, Apr. 1976.

[59] J.H. Lo, C.Y. Huang, S.Y. Kuo, and M.R. Lyu, “Sensitivity Analysis
of Software Reliability for Component-Based Software Systems,”
Proc. 27th Ann. Int’l Computer Software and Applications Conf.
(COMPSAC ’03), pp. 500-505, 2003.

[60] D.G. Luenberger, Introduction to Linear and Nonlinear Programming.
Addison-Wesley, 1974.

[61] M.R. Lyu, S. Rangarajan, and A.P.A. van Moorsel, “Optimal
Resource Allocation of Test Resources for Software Reliability
Growth Modeling in Software Development,” IEEE Trans.
Reliability, vol. 51, no. 2, pp. 183-192, June 2002.

GOKHALE: ARCHITECTURE-BASED SOFTWARE RELIABILITY ANALYSIS: OVERVIEW AND LIMITATIONS 39

[62] Y.K. Malaiya, M.N. Li, J.M. Bieman, and R. Karcich, “Software
Reliability Growth with Test Coverage,” IEEE Trans. Reliability,
vol. 51, no. 4, pp. 420-426, Dec. 2002.

[63] B. Marick, “Generic Coverage Tool: User’s Guide,” technical
report, Testing Foundations, 1992.

[64] D. Mason, “Probabilistic Analysis for Component Reliability
Composition,” Proc. Fifth ICSE Workshop Component-Based Software
Eng. (CBSE ’02), May 2002.

[65] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, second extended ed. Springer, 1994.

[66] Sun Microsystems, http://java.sun.com/j2se/1.4.2/docs/guide/
jvmpi/jvmpi.html, 2005.

[67] Sun Microsystems, http://java.sun.com/products/jdk/rmi, 2005.
[68] Sun Microsystems, http://java.sun.com/products/jms, 2005.
[69] M. Casassa Mont, A. Baldwin, Y. Beres, K. Harrison, M. Sadler,

and S. Shiu, “Reducing Risks of Widespread Faults and Attacks
for Commercial Software Applications: Towards Diversity of
Software Components,” Proc. 26th Ann. Int’l Computer Software and
Applications Conf. (COMPSAC ’02), pp. 271-276, 2002.

[70] S.H. Mullins, W.W. Charlesworth, and D.C. Anderson, “A New
Method for Solving Mixed Sets of Equality and Inequality
Constraints,” J. Mechanical Design, vol. 117, pp. 322-328, June 1995.

[71] J. Muppala, M. Malhotra, and K.S. Trivedi, “Stiffness-Tolerant
Methods for Transient Analysis of Stiff Markov Chains,” Micro-
electronics and Reliability, vol. 34, no. 11, pp. 1825-1841, 1994.

[72] J.D. Musa, “Operational Profiles in Software-Reliability Engineer-
ing,” IEEE Software, vol. 10, no. 2, pp. 14-32, Mar. 1993.

[73] J.D. Musa, A. Iannino, and K. Okumoto, Software Reliability—
Measurement, Prediction, Application. McGraw-Hill, 1987.

[74] “ObjecTime User Guide,”technical report, ObjectTime, 1998.
[75] OMG, http://www.omg.org, 2005.
[76] P. Popic, D. Desovski, W. Abdelmoez, and B. Cukie, “Error

Propagation in the Reliability Analysis of Component Based
Systems,” Proc. Int’l Symp. Software Reliability Eng., pp. 53-62, 2005.

[77] A. Puliafito, M. Telek, and K.S. Trivedi, “The Evolution of
Stochastic Petri Nets,” Proc. World Congress Systems Simulation,
pp. 3-15, Sept. 1997.

[78] J. Rajgopal and M. Majumdar, “Modular Operational Test Plans
for Inferences on Software Reliability Based on a Markov Model,”
IEEE Trans. Software Eng., vol. 28, no. 4, pp. 358-363, Apr. 2002.

[79] Rational/IBM, http://www.rational.com/products/az/index.jsp,
2005.

[80] Rational/IBM, http://www.rational.com/products/az/index.jsp,
2005.

[81] N.F. Scheidewind, “Fault Correction Profiles,” Proc. Int’l Symp.
Software Reliability Eng., pp. 257-267, Nov. 2003.

[82] K. Seigrist, “Reliability of Systems with Markov Transfer of
Control,” IEEE Trans. Software Eng., vol. 14, no. 7, pp. 1049-1053,
July 1988.

[83] K. Seigrist, “Reliability of Systems with Markov Transfer of
Control, II,” IEEE Trans. Software Eng., vol. 14, no. 10, pp. 1478-
1480, Oct. 1988.

[84] B. Selic, G. Gullekson, and P. Ward, Real-Time Object Oriented
Modeling. John Wiley & Sons, 1994.

[85] H. Singh, V. Cortellessa, B. Cukic, E. Gunel, and V. Bharadwaj, “A
Bayesian Approach to Reliability Prediction and Assessment of
Component-Based Systems,” Proc. Int’l Symp. Software Reliability
Eng. (ISSRE ’01), pp. 12-21, Nov. 2001.

[86] N.D. Singpurwalla and S.P. Wilson, Statistical Methods in Software
Engineering: Reliability and Risk. Springer, 1999.

[87] R. Srinivasan, “RPC: Remote Procedure Call Protocol Specification
Version 2,” Technical Report RFC 1831, Internet Eng. Task Force,
Aug. 1995.

[88] M. Tang and M. Chen, “Measuring OO Design Metrics from
UML,” Proc. Fifth Int’l Conf. Unified Modeling Language—The
Language and Its Applications, Sept. 2002.

[89] K.S. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications. John Wiley & Sons, 2001.

[90] A.G. Tsirukis and G.V. Reklaitis, “Application of Generalized
Hopfield Networks to Discrete Nonlinear Optimization Problems,”
Computers and Chemical Eng., vol. 18, pp. 459-468, May 1994.

[91] J.M. Voas, “PIE: A Dynamic Failure-Based Technique,” IEEE
Trans. Software Eng., vol. 18, no. 8, pp. 717-727, Aug. 1992.

[92] S. Wadekar and S. Gokhale, “Exploring Cost/Reliability Tradeoffs
in Architectural Alternatives Using a Genetic Algorithm,” Proc.
Int’l Symp. Software Reliability Eng. (ISSRE ’99), pp. 104-113, Nov.
1999.

[93] G.K. Wallace, “The JPEG Still Picture Compression Standard,”
Comm. ACM, Apr. 1991.

[94] W. Wang, J. Loman, and P. Vassiliou, “Reliability Importance of
Components in a Complex System,” Proc. Ann. Reliability and
Maintainability Symp., Jan. 2004.

[95] W. Wang, D. Pan, and M. Chen, “Heterogeneous Software
Reliability Modeling,” Proc. 13th Int’l Symp. Software Reliability
Eng., pp. 41-52, Nov. 2002.

[96] W. Wang, Y. Wu, and M.H. Chen, “An Architecture-Based
Software Reliability Model,” Proc. Pacific Rim Dependability Symp.,
pp. 143-150, Dec. 1999.

[97] D.M. Woit, “Specifying Component Interactions for Modular
Reliability Estimation,” Proc. First Int’l Software Quality Week
Europe, Nov. 1997.

[98] Z. Xu, T.M. Khoshgoftaar, and E.B. Allen, “Prediction of Software
Faults Using Fuzzy Nonlinear Regression Modeling,” Proc. Fifth
Int’l Symp. High Assurance Systems Eng., pp. 281-290, Nov. 2000.

[99] S. Yacoub, B. Cukic, and H. Ammar, “Scenario-Based Analysis of
Component-Based Software,” Proc. 10th Int’l Symp. Software
Reliability Eng., Nov. 1999.

[100] S. Yacoub, B. Cukic, and H. Ammar, “A Scenario-Based Analysis
for Component-Based Software,” IEEE Trans. Reliability, vol. 53,
no. 4, pp. 465-480, 2004.

[101] W.M. Zage and D.M. Zage, “Evaluating Design Metrics on Large
Scale Software,” IEEE Software, vol. 9, no. 4, pp. 75-81, July 1993.

Swapna S. Gokhale received the BE (Hons.)
degree in electrical and electronics engineering
and computer science from the Birla Institute of
Technology and Science, Pilani, India, in 1994,
and the MS and PhD degrees in electrical and
computer engineering from Duke University in
1996 and 1998, respectively. She is an assistant
professor in the Department of Computer
Science and Engineering at the University of
Connecticut (UConn). Prior to joining UConn,

she was a postgraduate researcher at the University of California,
Riverside, and a research scientist in the Applied Research Division at
Telcordia Technologies, Morristown, New Jersey. Her research interests
lie in the areas of software reliability, software performance, quality-of-
service assurance of wireless and wireline networks, and application-
level intrusion detection. She is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

40 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 1, JANUARY-MARCH 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

