
Mobile Networks and Applications 2 (1997) 129–140 129

Per-user profile replication in mobile environments: Algorithms,
analysis, and simulation results ∗

Narayanan Shivakumar, Jan Jannink and Jennifer Widom

Department of Computer Science, Stanford University, Stanford CA 94305, USA

We consider per-user profile replication as a mechanism for faster location lookup of mobile users in a personal communications
service system. We present a minimum-cost maximum-flow based algorithm to compute the set of sites at which a user profile should be
replicated given known calling and user mobility patterns. We show the costs and benefits of our replication algorithm against previous
location lookup approaches through analysis. We also simulate our algorithm against other location lookup algorithms on a realistic
model of a geographical area to evaluate critical system performance measures. A notable aspect of our simulations is that we use
well-validated models of user calling and mobility patterns.

1. Introduction

In a Personal Communications Service (PCS) system,
users place and receive calls through a wireless medium.
Calls may deliver voice, data, text, facsimile, or video in-
formation [15]. PCS users are located in system-defined
cells, which are bounded geographical areas. When a user
places a call, the PCS infrastructure must route the call to
the base-station located in the same cell as the callee. The
base-station then transmits the data in the call to the PCS
unit through the wireless medium.

We consider the problem of locating users who move
from cell to cell while carrying PCS units. When user A
places a call to user B, the location lookup problem is
to find callee B within “reasonable” time bounds, so that
the call can be set up from A to B. In this paper we
make the following assumptions about the structure of the
system. Users are located in geographical zones, which may
be cells or groups of cells. Each zone has a database that
stores profiles of users in the form 〈PID, ZID〉, where PID
and ZID uniquely identify the PCS unit (say the telephone
number of the unit) and the current location (zone ID) of
the unit, respectively.1 Each PID maps to a home zone,
whose database always maintains an up-to-date copy of the
user’s profile.

In current cellular standards such as GSM and IS-
41 [18], the home zone is referred to as the Home Location
Register (HLR). When user A calls user B, the lookup al-
gorithm must initiate a remote lookup (query) to the HLR
of B, which may be at a remote site. We call this the pure
HLR scheme. Since performing remote lookups can be
slow due to high network latency, current systems usually
improve the HLR scheme by maintaining Visitor Location
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1 User profiles actually contain more information, but for our purposes we
are interested primarily in location information.

Registers (VLR). The VLR at a zone stores the profiles of
users currently located in that zone. The modified lookup
strategy in this HLR/VLR scheme is:

1. Query database in caller’s zone.

2. If callee’s profile is not found, query database in
callee’s home zone.

This optimization is useful when a callee receives many
calls from users in the zone he is visiting, since remote
lookups to the callee’s HLR are avoided. VLRs can be
viewed as a simple, limited replication scheme, since each
user’s profile is replicated at the zone the user is located in
when he is not in his home zone.

In this paper we propose a more general replication
scheme. We could choose to replicate each user profile at
all zones for fastest possible lookup, but the resulting stor-
age and update costs would be prohibitively high. Instead,
we propose a per-user profile replication scheme based on
calling and mobility patterns. Our scheme respects storage
and update limitations while speeding up location lookups.
In our scheme, the decision of where profiles should be
replicated is based on a minimum-cost maximum-flow [1]
algorithm.

In our approach, we still maintain an up-to-date copy
of a user profile at the user’s HLR. Our algorithm com-
putes additional sites at which the user’s profile is repli-
cated (see section 2 for details on our notion of replication
consistency). Consequently, the lookup algorithm in our
replication scheme is the same as in HLR/VLR: look in the
local database before querying the HLR. While our scheme
does not guarantee that a user’s profile will be stored in his
current zone (as VLR does), a trivial modification of our
replication scheme can also guarantee VLR behavior. We
assume that the home location of each user keeps track of
which sites contain replicas of the user’s profile. When a
user crosses zones, the user’s home location will initiate
the updating of the profile replicas.
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In section 2, we present our replication algorithm given
fixed calling and mobility (traffic) patterns. In section 3,
we compare the advantages and associated costs of repli-
cation against caching [12,15] and against the traditional
HLR schemes. We see that replication has significantly
better response times and generates less network traffic. In
section 4, we consider some issues in implementing our
replication strategy in a large-scale wireless network. In
section 5, we report on large-scale simulation results we
have obtained that compare system performance for our
replication scheme against several other location lookup
algorithms. In section 6, we show how our replication
scheme can be used to enhance non-HLR lookup schemes.
We also propose service information replication, an addi-
tional application of our replication framework. We con-
clude in section 7 with directions for future research.

1.1. Related work

Several previous approaches have considered enhance-
ments or alternates to the HLR/VLR lookup algorithm.
Awerbuch and Peleg [3] propose a formal model for on-
line tracking of users by decomposing the PCS network
into regions and using a hierarchy of regional directories.
This elegant framework shows how to trade off search and
update costs while tracking users. Badrinath et al. [4] con-
sider per-user placement, which uses partitions (cells com-
monly visited by a user) to control network traffic generated
by frequent updates. Jain and Lin [14] propose using for-
warding pointers to reduce the number of database updates,
while keeping lookup costs low. Ho and Akyildiz [13] pro-
pose a local anchoring scheme for highly mobile users to
reduce the number of remote HLR updates. Our replication
approach is orthogonal to most of these schemes, and could
be used to complement one or more of them.

Jain et al. [12,15] propose per-user caching where zones
cache the last known location of certain users for faster
lookup. Replication is different from caching in that repli-
cation always keeps all copies up-to-date, and there is no
invalidation problem. An additional difference is that we
consider storage constraints in our databases, while [12,15]
do not. We see in later sections (through analysis and sim-
ulations) that our scheme generally performs better than
caching in terms of lookup time and network cost.

Anantharaman et al. [2] use dynamic programming to
optimize mapping a database hierarchy to the network con-
figuration, based on fixed calling and mobility patterns.
Their architecture does not consider communication costs,
and it does not adapt to changes in patterns.

In our approach, we choose the “best” zones for repli-
cation of user profiles based on calling and mobility pat-
terns. In that sense, our problem is similar to the clas-
sical database allocation [20], distributed directory man-
agement [20], and file allocation [10] problems, in which
databases, directories or files are replicated at sites based on
lookup-update or read-write access patterns. Some popular
formulations used in these problems have been based on

the knapsack problem [7], branch-and-bound [11], and net-
work flow algorithms [8]. While our approach is based on
network flow algorithms similar to [8], our flow model is
specific to the location lookup problem: Chang and Liu pro-
pose a different flow based model in [8] for allocating files
in a distributed database. Also we evaluate our approach
using extensive simulations based on real user calling and
mobility patterns. Wolfson and Jajodia propose an on-line
algorithm for dynamic data replication in distributed data-
bases using a “no-knowledge” approach [25]. While this
algorithm converges to the optimal replication plan when
traffic traces are regular, unlike our scheme theirs does not
exploit the relative stability of calling and mobility patterns
of users (see section 2) for fast convergence. Their scheme
also does not consider storage constraints.

For readers familiar with the transportation problem [5],
the difference in our work is that we do not specify which
sites are the destinations of user replicas. Rather, we choose
replication sites based on capacity and cost versus benefit
considerations.

A preliminary version of this paper appeared in [21].
That paper included only algorithms and analysis. Here,
we also report on our recent and fairly extensive simula-
tion results, which corroborate our analytical claims in [21]
that per-user profile replication is a promising and feasible
approach.

2. The replication strategy

In section 2.1, we use collected data to motivate why
replication-based location lookup algorithms may lead to
significant performance improvements. In section 2.2, we
address some practicality concerns that must be resolved
before replication can be used in a real system. In sec-
tion 2.3, we define parameters used in subsequent sections.
We present the minimum-cost maximum-flow based algo-
rithm to compute the replication plan for user profiles in
section 2.4. In section 2.5, we show how to compute the
parameters defined in section 2.3.

2.1. Motivation for replication

We have obtained actual calling traces from the Stan-
ford University Communication Services for a six-month
period from March to September 1995 to study user call-
ing patterns. These traces correspond to 19,592 distinct
callers in our campus (university offices, student housing,
and residential homes). The data set contains caller num-
ber (encrypted for privacy reasons), callee number (again
encrypted), time of call, and call duration, for all calls des-
tined to locations outside our local exchange. In figure 1,
we rank the callees by the number of calls they receive from
a certain caller and report the cumulative distribution of the
calls made by callers to those callees on a daily, weekly,
and monthly basis. For instance, we see from figure 1 that
more than 70% of the calls made by callers in a week are
to their top 5 callees.
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Figure 1. Locality in calling patterns.

Replication attempts to exploit this observed locality in
user calling patterns. For example, if we choose to replicate
the top five callee profiles at the caller’s site, then nearly
70% of the calls made in a week are serviced by lookups on
local databases, reducing the latency of location lookup and
the bandwidth requirement for remote lookups. Of course,
the decision for replication is not quite so simple since we
have not factored in how the callees move, and how system
resource constraints (outlined below) affect the decision of
which profiles to replicate; this replication decision is the
subject of sections 2.2–2.5 below.

From figure 1 we also see that locality in user calling di-
minishes with time. For instance, we see that over 90% of
calls made by a user in a day are to his top 5 callees. This
percentage drops to about 70% and 55% when the user’s
calling locality is estimated over a week or month respec-
tively. In sections 2.2 and 5 we consider how we should
adapt to changes in user calling and mobility patterns.

2.2. Issues in replication

Replicating user profiles can reduce lookup time signif-
icantly, since the location of the callee is more likely to
be obtained by a single lookup on the local database rather
than a high latency remote lookup. However, the associated
cost of replication is the update cost incurred in maintaining
consistent replicas every time a user moves. In traditional
distributed databases, replica consistency is maintained by
using distributed locking protocols, which can be very ex-
pensive [20]. By contrast, we may use a “looser” form
of replica consistency, which does not rely on locking and
provides fast propagation of updates to replicas. Similar
to HLR/VLR handoff, forwarding pointers are maintained
briefly at the old location of a user to handle incoming calls
from remote sites that have not yet received the update [14].

Every time a user moves, the user’s HLR must initiate
updates to all the replicas of the user’s profile, and the
network must carry the packets generated by the updates.
Hence, the larger the number of replicas, the more work
performed by the HLR and the network. Consequently, we

expect the system may impose a limit on the number of
zones at which a user’s profile can be replicated, in order
to limit the network activity and work performed by the
user’s home database.

An additional consideration is the higher storage require-
ment of databases in zones to store the replicated profiles.
We expect that zones may impose a limit on the number
of replicas maintained in their database, in order to bound
storage requirements and guarantee fast lookup and update
response times.

In section 2.1 we observed that we may need to mod-
ify our replication plan to react to changes in user calling
and mobility patterns. To do so, we initially proposed a
dynamic framework that evolves incrementally to adapt to
these changes [21]. In this paper, we take a simpler and
more practical approach, where we recompute the replica-
tion plan a few times each day based on existing calling
and mobility patterns. In section 5 we consider in detail
how often we should recompute the replication plan so as
to maximize benefits of replication, while keeping low the
cost of recomputing the replication plan.

A classical problem with any replication-based distrib-
uted system is one of reliability. Since nodes in a distrib-
uted system and the inter-connecting network may fail at
any point, it is important that the system does not fail due
to local node failures or to network partitions. Also it is
important to define failure restoration procedures for failed
nodes to rejoin the distributed system. Since we are propos-
ing a location lookup framework that strictly augments the
HLR/VLR scheme, we are able to leverage off the failure
restoration procedures defined in the IS-41 and GSM proto-
cols: even if a replica database at a given site fails, location
lookup from that site can still be executed using standard
HLR/VLR. The failed database can rejoin the set of replica
databases the next time replication patterns are recomputed
(section 5).

2.3. Preliminaries

We will develop our replication algorithm first with the
following parameters; we will show how to compute the
more complex of these parameters in section 2.5.

• Let M be the number of zones and Zj be the jth zone
for j = 1, 2, . . . ,M .

• Let pj be the maximum number of profiles serviceable
by the database associated with zone Zj .

• Let N be the number of PCS users and Pi be the ith
PCS user for i = 1, 2, . . . ,N .

• Let Ci,j be the expected number of calls made from
zone Zj to user Pi over a set time period T .

• Let Ui be the number of moves made by Pi over time
period T .

• Let ri be the maximum number of sites at which Pi’s
profile can be replicated.
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• Let α represent the cost savings achieved when a local
lookup succeeds as opposed to a remote lookup.

• Let β be the cost of updating a profile replica.

We say that replicating a profile at a zone is judicious
if the cost savings due to replication exceeds the cost inc-
cured. Hence, using the parameters above, it is judicious
to replicate Pi at Zj if

α ∗ Ci,j > β ∗ Ui.

Let R(Pi) denote the replication set of user Pi, that is the
zones at which Pi’s profile is replicated according to the
algorithm we now present.

2.4. Computing the replication plan

Construct the following flow network [9] F = (V ,E),
where V and E are the vertices and edges in the flow
network. In general, the edges in a flow network have two
associated attributes: (cost, capacity).

1. V ← φ, E ← φ.

2. Add source s and sink t to V .

3. Add all Pi and Zj to V for i = 1, 2, . . . ,N and j =
1, 2, . . . ,M .

4. Add to E directed edges from source s to all Pi with
(cost, capacity) = (0, ri), and from all Zj to sink t
with (cost, capacity) = (0, pj).

5. For every 〈Pi, Zj〉 pair, if α ∗Ci,j > β ∗Ui (that is, it
is judicious to replicate Pi at Zj) then add an edge to
E from Pi to Zj with (cost, capacity) = (β ∗Ui − α ∗
Ci,j , 1).

In figure 2, we present as an example a small system with
three zones and five users. We first discuss the capacity at-
tributes of edges, and subsequently the cost attributes. The
capacity attribute 3 on edge (s,P5) denotes that P5’s profile
can be replicated at no more than three zones. The capac-
ity attribute 1 on edge (P4,Z3) indicates that P4 should be
replicated at most once in Z3. The capacity attribute 4 on
edge (Z3, t) indicates that the database associated with Z3

can store at most four profile replicas. The cost is captured
on edge (P4,Z3), where −5 indicates that replicating P4

in zone Z3 will yield a net cost savings of five over not
replicating. The cost attributes on edges (s,P5) and (Z3, t)
are set to zero since they have no bearing on the system
cost.

Computing the minimum-cost maximum-flow (hence-
forth called min-cost max-flow) [9] on flow network F finds
an assignment of user profiles to databases in zones such
that the number of useful replicas is maximized while the
system cost is minimized. (Recall that in addition, each
profile is guaranteed to be stored at the user’s HLR.) We
present a sketch of the classical min-cost max-flow algo-
rithm [9].

Figure 2. Example of a flow network.

Conceptually, an edge from u to v with capacity k cor-
responds to k virtual edges from u to v, each of capacity 1.
An edge reversal on the edge from u to v means that one
virtual edge from u to v is reversed to be directed from v
to u. An augmenting path is a directed path along virtual
edges from source s to sink t. The cost of a path is the sum
of costs along its edges. One popular min-cost max-flow
algorithm [9] is:

• Repeat until no more augmenting paths can be found:

1. Find the augmenting path from s to t with least
cost.

2. Do an edge reversal on each virtual edge in this
path.

When the above procedure terminates on our flow network
(due to no more augmenting paths), we determine that Pi’s
profile is replicated at Zj if there is a directed virtual edge
from Zj to Pi. That is

R(Pi) =
{
Zj | (Zj ,Pi) ∈ E

}
.

The min-cost max-flow algorithm guarantees the following.

1. The number of replicated profiles at zones does not ex-
ceed the maximum serviceable capacity of their data-
bases.
If pj profiles have already been assigned to Zj , then
by the flow algorithm there must have been pj edge re-
versals from Zj to sink t. Since there were exactly pj
virtual edges from Zj to t in the original flow network,
no further augmenting paths that will assign more pro-
files to Zj will be found from source s to sink t.

2. The profile of a user is not replicated at more than the
specified maximum number of sites of replication.
This is guaranteed by the structure of F with reasoning
similar to the first case: not more than ri augmenting
paths can be found from s to Pi.

3. The “system savings” is maximized.



N. Shivakumar et al. / Per-user profile replication 133

Recall that only the edges from Pj to Zi have costs.
The final replication plan will have a cumulative cost
of

N∑
i=1

M∑
j=1,Zj∈R(Pi)

β ∗ Ui − α ∗ Ci,j .

The min-cost max-flow algorithm minimizes this cost
by making it as negative as possible. This means that
the system maximizes its savings by replicating the
profiles at the indicated sites.

2.5. Computing parameters

We now consider how to estimate the parameters used
in our algorithm in a practical implementation of the ap-
proach. Jain et al. [15] present two efficient strategies for
estimating the local call to mobility ratio (LCMR) of mo-
bile users, used for making caching decisions. We propose
a somewhat different model, more appropriate for replica-
tion.

Let σi,k be the expected number of calls user Pi makes
to user Pk in a given time period. We expect such infor-
mation to be relatively stable [15]. Let λi,j be the expected
percentage of time user Pi spends in zone Zj . Again we
expect such information to be relatively stable [4]. Loca-
tional distributions λi,j can be maintained by keeping track
of the time elapsed in a zone between registration (when
the user enters the zone) and a deregistration (when the
user leaves the zone). Assuming that σi,k and λi,j are in-
dependent, we estimate the number of calls originating for
a user Pi from zone Zj to be

Ci,j =
N∑
k=1

σk,i ∗ λk,j .

The number of updates Ui for a user Pi can be estimated
by the average number of registrations (or deregistrations)
performed by Pi in the given time period.

3. Analysis of replication and caching

In this section, we provide an analytical comparison of
the caching schemes described in [12,15], our replication
scheme, and a simple HLR scheme (recall section 1) in
terms of the number of bytes generated on the network
and the location lookup time. This analysis gives us some
insights that we shall use in the subsequent experimental
section. The lookup algorithm in [12,15] is:

1. If Pi’s profile is not cached in Zj , lookup at HLR of
Pi.

2. If Pi’s profile is cached in Zj , forward call to location
Zk specified in profile.

(a) If Pi is located in Zk (valid cache entry), then
complete call.

(b) If Pi is not located in Zk (invalid cache entry),
lookup at HLR of Pi, forward call to new location,
and update cache entry in Zj to new location of
Pi.

To ensure a fair comparison of replication and caching,
we assume an abstract boolean-valued function store(Pi,
Zj). This function determines whether it is worthwhile to
store Pi’s profile at Zj , for both the caching and replication
schemes. We expect store(Pi,Zj) to be some function of
the traffic patterns and storage constraints. This function
could use LCMR [15], our notion of judiciousness defined
in section 2.1, or some other model.

We compare the network cost in number of bytes due
to lookups and updates, and the time required for location
lookup. We assume for the analysis that the database in a
zone is partitioned: the HLR component stores profiles of
users who have that zone as their home location, and the
excess capacity is used to store profiles of users who have a
different home-location. We use the following parameters.

1. Let L be the time to service a lookup locally, and let N
(N � L) be the network latency for a remote lookup.

2. Let ε be the increase in response delay for a lookup
submitted to a database that stores replicas as opposed
to cache entries (since caches do not need to process
updates).

3. Let q be the size (in bytes) of a remote lookup request
and a be the size (in bytes) of the lookup result.

4. Let u be the size (in bytes) of a remote update request
(specifying the new location of a user in the replication
scheme).

The number of remote updates in caching is always zero,
since in the caching scheme the entry is merely invalid if
a user has moved, as described above.

In the following analysis of caching and replication, we
consider the number of bytes generated and the response
time from the view of a single database in time period T .
Let a user in zone Zj place a call to user Pi. The cases to
consider are:

1. The profile of Pi is not stored at zone Zj .
In this case the number of bytes generated by both
schemes is (q + a). The response time for the caching
scheme is (L+ (N +L)) while the replication scheme
requires (L + ε + (N + L)). Both schemes have to
lookup the local database before executing the remote
lookup.

2. The profile of Pi is stored at site Zj and Pi has not
moved in time period T .
In the caching scheme, this means that the cache entry
for the user is valid. The number of remote lookups is
zero, and the time to answer the lookup is L. In the
replication scheme, the number of bytes due to updates
is zero since the callee did not move. The number of
remote lookups is also zero, and the time to satisfy the
lookup is (L+ ε).
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Table 1
Comparison of different schemes.

Case Scheme Lookups (bytes) Updates (bytes) Time (secs)

1 HLR Ci,j ∗ (q + a) 0 N
Caching Ci,j ∗ (q + a) 0 L+N

Replication Ci,j ∗ (q + a) 0 L+ ε+N
2 HLR Ci,j ∗ (q + a) 0 N

Caching 0 0 L
Replication 0 0 L+ ε

3 HLR Ci,j ∗ (q + a) 0 N
Caching (1− ρ) ∗ Ci,j ∗ 2 ∗ (q + a) 0 L+ (1− ρ) ∗ 2 ∗ (L+N )

Replication 0 u ∗ Ui L+ ε

3. The profile of Pi is stored at site Zj , and Pi has moved
Ui times in a given time-period since the last call for
Pi from Zj .
In general, the cache entry will be invalid. However,
there could be some “lucky hits”, where the call goes
through to the current location of Pi because Pi came
back to the zone indicated in his profile (even though
he may have visited several other zones meanwhile).
Let ρ be the probability of such a “lucky hit”. If Ci,j
is the number of calls from Zj to Pi in time period T ,
the number of remote lookup bytes is (1− ρ) ∗ Ci,j ∗
((q+ a) + (q+ a)) (to reach the last known location of
Pi, then to reach the HLR of Pi). The expected time
for lookup is

ρ ∗ L+ (1− ρ) ∗
(
L+ (L+N ) + (L+N )

)
.

In replication, the number of remote lookups is zero
since we always maintain up-to-date copies. The total
bytes due to remote update packets is Ui ∗ u, and the
time to lookup the local database is L+ ε.

From the above case-by-case analysis, summarized in
table 1 along with values of traditional HLR for compar-
ison, we see that our replication scheme has comparable
response time to caching in the first two cases, and signif-
icantly lower response time in the third case. Caching and
replication schemes generate the same number of bytes in
the first two cases and differ only in the third case. In the
third case, when we divide the total bytes due to caching by
the total bytes due to replication, we see that the replication
scheme has a lower number of packets when

Ci,j
Ui
> u

2 ∗ (1− ρ) ∗ (q + a)
.

If we assume maximal packing of data (that is, the mini-
mum number of bits are used to represent data) we can as-
sume that q = dlog2 Ne and u = a = dlog2 Ne+dlog2 Me.
(The remote lookup has to specify the unique ID of the
callee, and the answer and update should contain the ID of
the callee and his location.) The above equation reduces to

Ci,j
Ui
> dlog2 Me+ dlog2 Ne

2 ∗ (1− ρ) ∗ (2 ∗ dlog2 Ne+ dlog2 Me)
.

We expect the number of users (N ) to far exceed the num-
ber of zones (M ) in any practical system (dlog2 Ne �

dlog2 Me). Also, a “lucky hit” in the caching scheme re-
quires that there had been no previous call to Pi from Zj
when Pi was in a different zone. For this to hold, the num-
ber of calls made to Pi must be very small compared to
the rate at which Pi moves. In such a case, metrics such
as LCMR would not have stored the profile at Zj in the
first place. Hence, in practice we expect ρ to be negligible.
Under these conditions, we see that our replication scheme
generates fewer network bytes compared to caching when
the LCMR (Ci,j/Ui) of Zj is > 0.25. Jain et al. [15] sug-
gest a minimum value of 4 to 5 for their LCMR threshold
for caching. For such thresholds, we see that our replication
scheme not only has lower lookup time, but also generates
fewer bytes in the network. In section 5 we will quantify
through simulation experiments the actual savings of repli-
cation over other location lookup strategies with respect to
several database and network performance measures.

4. Computing and maintaining replicas

In this section, we propose one way that our replica-
tion strategy could be implemented in a PCS system at,
say, a nationwide level. We consider three critical issues:
(1) what the granularity of replication should be; (2) who
should compute the replication plan; (3) who should man-
age the replicas. We use the United States telephone sys-
tem as a reference point. Telephone numbers are divided
into about 200 geographical zones identified by unique area
codes. We suppose that each area code is serviced by a
database, where that database may be at the root of a local
hierarchy of databases, each servicing a smaller zone [24].

We propose that profile replication should occur at the
granularity of area codes. Thus, an area code level data-
base, in addition to storing profiles of users in that area
code, stores profile replicas of users frequently called from
users in that area code. If the area code database is at the
root of a hierarchy, databases in the lower levels of the hi-
erarchy service “sub-zones” of the area code zone. When a
call is initiated from a sub-zone, if the profile for the callee
is not found in the associated lower-level database, the re-
quest propagates up the hierarchy. If the request reaches the
root and the callee’s profile is replicated at that database,
the location information is found. Otherwise, the profile
request is sent to the HLR of the callee.
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This replication granularity has two advantages:

1. Area code regions are large enough that the number of
area code crossings is expected to be low when com-
pared with the number of calls generated. Hence, the
number of updates generated due to the callee’s mobil-
ity is small, and the benefit of replication is high since
a caller is likely to make multiple calls before leaving
his current zone.

2. Area code regions are small enough that lookups posed
within a single database hierarchy (such as requests
that propagate to the root before finding the profile
replica) are still relatively inexpensive. For example,
if a caller C1 in Los Angeles makes several calls to
a callee C2 in New York, the replication strategy will
most likely guarantee that C2’s profile is found in the
database hierarchy associated with C1, avoiding the
cross-country lookups generated by, say, the traditional
HLR/VLR strategy.

In our current algorithm, we assume a centralized site
that periodically executes the min-cost max-flow algorithm,
then propagates the replication plan to the area code level
databases. The cost of executing the min-cost max-flow
algorithm at a centralized site is:

1. the network cost of sending the calling and mobility
information from each of the replica databases to the
centralized site,

2. the processor cost of executing the min-cost max-flow
algorithm at the centralized site, and

3. the network cost of propogating the replication plan to
the replica databases.

Since our replication granularity is relatively coarse, we
expect that replica reallocation will need to be performed
only every few hours at most (as we shall see empirically
in section 5). Consequently, the cost of executing the min-
cost max-flow algorithm at a centralized site is low, and
the centralized site should not become a bottleneck: the
reallocations are infrequent, and the number of replication
sites is relatively small.

Finally, as discussed earlier, we suggest that each user’s
HLR database should keep track of the user’s profile repli-
cas. When the user crosses area codes, the HLR is notified,
so it can propagate the change in location to all profile repli-
cas.

5. Experiments

In our simulations, we consider how the performance
of our replication approach compares with other location
lookup algorithms when used in a wireless infrastructure
for a relatively large geographical area. We performed our
simulations on a geography that accurately models the San
Francisco Bay Area. The Bay Area consists of nine coun-
ties and is serviced by four area codes. A map of the Bay

Figure 3. San Francisco Bay Area.

Area is provided in figure 3 for the reader’s reference. (For
a more detailed description see [17].) Figure 4 is an over-
lap map depicting the relationship between our simulation
model and the physical geography. Ninety registration areas
are represented as polygons in this figure, with higher-level
regions corresponding to the four area codes. Dots repre-
sent databases and lines connecting dots represent network
links.

In our simulation, we populated registration areas with
100,000 users based on 1990 census information from [23].
We divided our user population into 41% commuters and
59% non-commuters (derived from Bay Area vehicular
traces and published statistics from Europe and the United
States [19]). We built a powerful movement model that can
handle a large class of user movement patterns. The key
aspects of our model are:

1. We represent several classes of movements commonly
observed in humans. For example, we consider users
who make “random walks”, repetitive roundtrip move-
ments, and return back to home. Each of these move-
ment patterns is coupled to varying movement veloci-
ties and probabilities of occurence.

2. We simulated temporal changes in the above user
movement patterns as a function of our simulation time,
for example, to simulate highly variant movement mod-
els during rush hour as opposed to during non-peak
traffic hours during the day.

Using traffic volume statistics from [19], we estimated
movement between area codes and fine-tuned our simu-
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Figure 4. Simulation and network topologies.

lation parameters to produce similar large-scale movement
behaviour (see [16,17] for further details).

We implemented our replication algorithm as well as the
caching algorithm of Jain et al. [12,15] as extensions on the
pure HLR (rather than HLR/VLR which, as mentioned ear-
lier, is a limited form of caching) location lookup scheme.
For both algorithms, we allowed a maximum of four repli-
cas for each user in addition to the profile at the user’s
HLR. (This limit allowed our simulations to run primarily
in main memory and did not affect our findings.) As noted
earlier, the caching algorithm does not cleanly incorporate
storage constraints in its decision process. Hence, for a fair
comparison of the caching and replication algorithms, we
assumed no restrictions on the database capacities. We used
the LCMR measure as the decision function for choosing
sites that are judicious for profile caching or replication.2

For caching, the LCMR threshold was set to 5 as recom-
mended in [12]. For replication, the LCMR threshold was
set to 0.25, since that is the lower bound for replication
to outperform caching in network bandwidth requirement
(recall section 3). We chose the granularity of replication
and caching to be at the level of the 90 registration areas,
rather than the four area codes, since we believe this to be
an appropriate granularity of replication for a geographical
area of the scale of the Bay Area (while area codes may
be more appropriate for a nation wide infrastructure; re-
call section 7). We also implemented pure HLR and the

2 As noted earlier, there are a variety of possible measures for judicious-
ness. We have chosen the LCMR measure since it appears to be the
most popular in current literature.

HLR/VLR lookup strategies for comparison.
We chose to focus our simulations to answer the follow-

ing questions, which we believe are the most important.

1. What is the latency involved when a caller makes a
call?

2. How do the various lookup strategies compare for crit-
ical performance measures such as database and net-
work loads?

3. How sensitive are replication and caching to the accu-
racy of expected calling and mobility patterns?

4. How often should we change the caching or replication
plan, and what is the corresponding impact on system
performance?

Other important questions that we have not considered
in this paper, but intend to consider as future work, in-
clude: (1) How much information should be used to main-
tain LCMR estimates? (2) How does the performance of
replication vary when the number of maximum profile repli-
cas is varied? (3) Should all users have the same maximum
number of profiles, or should the maximum be chosen on
a per-user basis? (4) How does varying capacity of the
databases affect the performance of replication?

To answer the questions we posed, we simulated
the replication scheme against caching, pure HLR, and
HLR/VLR schemes for a 5-days period; we used the first
24 hours as a “warm-up” period to stabilize the calling and
mobility patterns in our simulations. In our experiments,
the replication and caching schemes had perfect LCMR in-
formation for the first day (after the warm-up period), and
produced replication and caching plans that were “optimal”
for that day. The same replication plan was then used for
the three subsequent days, even though the calling and mo-
bility patterns changed significantly. This was done to eval-
uate the performance of caching and replication for both
accurate and inaccurate LCMR estimates. Each 24-hours
simulation for the different lookup strategies outlined above
generated 370,616 move and 2,357,000 call events, and av-
eraged about eighty minutes to simulate 120 hours of traffic
on an HP 9000/755/99 workstation with 512 MB RAM.

We chose to compare the latency incurred during
lookups in various algorithms by comparing the percentage
of calls serviced by queries on local databases for location
lookup. We report this key measure for the different al-
gorithms for the 4-days simulation in figure 5. Notice that
“optimal” replication (the first 24 hours) services about 90–
98% of calls in a day using profiles in local databases. In
other words, with the replication scheme less than 10% of
calls lead to remote location lookup queries, as opposed
to the pure HLR and HLR/VLR schemes in which up to
53% of queries need to access remote databases. This cor-
responds to up to a five-fold reduction in the number of
remote queries. Also notice that replication and caching
are stable across the 2nd, 3rd, and 4th days, in spite of
inaccurate LCMR estimates. Here replication still services
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Figure 5. Percentage of calls serviced by local lookups [4-days simula-
tion].

Figure 6. Percentage of calls serviced by local lookups [1-day simulation].

66–96% of calls using local databases. This corresponds to
up to a two-fold reduction in the number of remote queries,
still a significant performance savings over pure HLR and
HLR/VLR. We will consider how performance degrades
as LCMR estimates become progressively more inaccurate
in greater detail below. One surprising observation is that
HLR/VLR performs very closely to pure HLR.

Henceforth, we report various performance measures by
combining the 4-days simulation into a representative one-
day plot by choosing the plots for the stable replication and
caching from the second day, and for the rest from the first
day. Replication and caching algorithms that have perfect
LCMR estimates (plots from the 1st day) are termed “opti-
mal”, while those that have inaccurate estimates (from the
2nd, 3rd and 4th days) are termed “stable”. For example,
we see in figure 6 the representative one day version of
figure 5.

Figures 7 and 8 show the database requirements in num-
ber of lookups and updates, respectively, that need to be
serviced per second cumulatively by all databases in the
system during the 24-hour day. These counts include both

Figure 7. System-wide database lookups.

Figure 8. System-wide database updates.

local and remote database accesses. As expected, the repli-
cation scheme has one of the highest update rates. Some-
what surprising is that HLR/VLR has about the same num-
ber of updates as replication. This is because in HLR/VLR
up to 3 updates are initiated when a user moves: one to
the user’s HLR, and one each to the database servicing the
previous and new locations if they do not correspond to the
HLR. In replication between one and (k+1) updates are ini-
tiated when a user moves: one to the user’s HLR, and one
each to the k potential profile replicas. Since the LCMR
has a threshold to determine the judiciousness of potential
profile replicas, most users have relatively few profile repli-
cas. Hence the update performance of HLR/VLR is close
to that of replication. In all cases the performance require-
ments (for lookups plus updates) are well within current
database technology [22].

In figures 9 and 10 we show the number of network mes-
sages sent per second between databases (for both lookups
and updates), and the actual number of network hops for
these messages according to our topology in figure 4. To
be fair to the HLR schemes, we included the messages re-
quired for the replication and caching schemes to check if
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Figure 9. Average number of network messages.

Figure 10. Average number of network message hops.

the callee is busy or not [18]. Here we see that optimal
replication performs very well and requires less bandwidth
than that required by HLR/VLR, even at peak times dur-
ing the day when the movement patterns are high. If the
messages to check if a callee is busy are not required (in
the case of call forwarding and call waiting, say), repli-
cation requires only about 25% of the bandwidth required
by HLR/VLR. A similar behavior holds for the number of
network hops.

In figure 11 we report the maximum storage require-
ments of the databases associated with the registration ar-
eas. For instance in HLR/VLR, 100% of databases store no
more than 5000 profiles. We see that the maximum data-
base storage required for replication is nearly twice that
for HLR/VLR due to the additional profile replicas in data-
bases. However, we believe that with decreasing disk and
memory prices this is not a significant problem.

For the final experiment, we studied how often repli-
cation and caching schemes should be recomputed. One
would expect that the more frequently the replication plan
is updated, the higher the expected performance of replica-
tion, and the higher the cost of computing and performing

Figure 11. Cumulative distribution of maximum required storage for pro-
files.

the reallocation. To study the rate of change in performance
with more frequent reallocations, independent of the cost
of performing reallocations, we set the cost of performing
reallocations to zero. In figure 12 we show the percent-
age (averaged for 24 hours) of locally serviced calls for
the various algorithms as the number of reallocations per-
formed per day is varied. For instance, performing six
reallocations each day corresponds to performing a new re-
allocation every four hours. For the stable replication and
caching, estimates for the new day are made based on the
LCMR estimates from the previous day. Surprisingly, we
see that the performance of the offline caching and repli-
cation peaks when the number of reallocations is twice a
day, and then deteriorates if the number of reallocations is
increased. We observed this to be the result of two factors:

1. When the time window between two reallocations is
too small, the LCMR values are relatively small and
hence very few sites are judicious for replication and
caching.

2. In a typical day, there is large scale movement of users
once in the morning, and once in the evening. By com-
puting two replication plans for a day, we manage to
capture the right LCMR estimates for both movements.

From the above graphs, we see that replication provides
significant potential savings in terms of:

1. Low lookup latency: Optimal replication “converts” up
to 81% of (slow) remote queries in HLR and HLR/VLR
into (fast) lookups on local databases. Stable repli-
cation, in spite of its inaccurate LCMR estimates,
converts up to 38% of remote queries in HLR and
HLR/VLR into local lookups.

2. Reduced bandwidth requirements: When additional
messages need to be sent to determine if the callee
is busy, replication requires 15% less bandwidth com-
pared to HLR/VLR. When the additional messages are
not required, replication requires only about 25% of
the bandwidth of HLR/VLR and pure HLR.
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Figure 12. Change in performance with number of reallocations per day.

These significant savings come at the price of additional
storage requirements for replication (up to 100% more).
Surprisingly the database requirements in the number of
lookups and updates are comparable for the replication and
the HLR/VLR schemes. We also see that replication and
caching appear stable even with inacccurate LCMR esti-
mates. We observed that computing one or two realloca-
tions per day is sufficient to handle 90–95% of the calls
through local lookups.

6. Other applications

6.1. Non-HLR lookup schemes

Recently, there has been some consideration of location-
independent numbering schemes [16,24]. In such schemes,
users no longer have a fixed home location (HLR) identi-
fied by their number. Location-independent schemes have
the advantage that numbers can be kept “for life", with-
out needing to be changed or incurring lookup overhead if
the user moves permanently to a new home location. The
disadvantage of location-independent numbers is that the
second step of the lookup algorithm (recall section 1) must
search for the appropriate database rather than go directly
to the HLR. Our replication scheme can be used in such
environments to increase the probability of finding a profile
locally. In fact, we expect that our replication framework
will be particularly useful here, since searching for the data-
base to find the user’s profile may be quite expensive.

6.2. Service information replication

We have established a framework for replicating loca-
tion information of users for fast lookup. In this section,
we outline a second application of our dynamic replication
framework that can also be useful in a PCS environment.

In addition to location information, associated with every
user is service information such as call blocking, call for-
warding, favorite e-mail address etc., and quality of service

(QOS) requirements such as minimum channel quality, ac-
ceptable bandwidth for mobile computers etc. As the num-
ber of services increase in PCS systems, we expect the ser-
vice information in profiles to grow fairly large. Currently
in the IS-41 and the GSM standards [18], service informa-
tion may be replicated in the VLR, or it may always be
fetched from the user’s HLR.

Generally, QOS and service information is required in
the zone at which a call is received, not where it is initiated
(unlike location information). We can use a very similar
dynamic replication framework and algorithms to that pre-
sented here for replicating QOS and service information in
zones frequently visited by the user. Replication here will
reduce the number of packets transmitted from the HLR,
or will make the call handoff less expensive, since the new
zone no longer necessarily needs to obtain QOS and ser-
vice information from the previous zone. We expect this
information to change infrequently, thereby making the case
even stronger for replication.

7. Conclusion and future work

In this paper we proposed enhancing current HLR and
HLR/VLR schemes with more general replication of user
profiles for faster location lookup. We considered how to
replicate user profiles given capacity constraints in the data-
bases and network and fixed calling and mobility patterns
of users. In [21] we have extended our framework to handle
dynamic changes in user calling and mobility patterns. We
have simulated our replication scheme along with several
other location lookup strategies on a real model of the San
Francisco Bay Area with realistic user calling and mobil-
ity patterns, and reported on important performance mea-
sures. We noted that our replication algorithm has a signif-
icant reduction in call latency and network bandwidth over
HLR/VLR assuming both accurate and inaccurate LCMR
estimates, at the cost of increased database storage require-
ments. We also observed that our replication algorithm is
stable even while using inaccurate LCMR estimates. We
also showed that computing one or two replications per day
is sufficient to service 90–95% of the calls locally.

Since the performance improvements due to replication
and caching are somewhat dependent on accurate LCMR
estimates, we are working on efficient and stable schemes
to estimate LCMRs accurately. Our replication framework
can be made distributed for certain special cases such as
infinite capacity of databases, or if there are no limits on
the maximum number of sites for profile replication. We
are, however working on a distributed version of our gen-
eral profile replication algorithm based on the Auctioning
algorithm [6]. We are also considering expanding the scope
of our simulations for larger user populations, different net-
work topologies, and to study the impact of varying maxi-
mum number of user profile replicas and capacity of data-
bases. Another promising area we are looking at is how to
choose when to perform the profile reallocations in a given
day.
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