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AbstractÐAs a result of the increased popularity of group-oriented applications and protocols, group communication occurs in many

different settings: from network multicasting to application layer tele- and videoconferencing. Regardless of the application

environment, security services are necessary to provide communication privacy and integrity. This paper considers the problem of key

agreement in dynamic peer groups. (Key agreement, especially in a group setting, is the stepping stone for all other security services.)

Dynamic peer groups require not only initial key agreement (IKA) but also auxiliary key agreement (AKA) operations, such as member

addition, member deletion, and group fusion. We discuss all group key agreement operations and present a concrete protocol suite,

CLIQUES, which offers complete key agreement services. CLIQUES is based on multiparty extensions of the well-known Diffie-

Hellman key exchange method. The protocols are efficient and provably secure against passive adversaries.

Index TermsÐCollaborative work, communication system security, cryptography, decision Diffie-Hellman problem, dynamic peer

groups, key establishment/agreement protocols, multiparty computation.
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1 INTRODUCTION

AS a result of the increased popularity of group-oriented
applications and protocols, group communication

occurs in many different settings: from network layer
multicasting to application layer tele- and videoconferen-
cing. Regardless of the underlying environment, security
services are necessary to provide communication privacy
and integrity.

While peer-to-peer security is a mature and well-
developed field, secure group communication remains
relatively unexplored. Contrary to a common initial im-
pression, secure group communication is not a simple
extension of secure two-party communication. There are
two important differences. First, protocol efficiency is of
greater concern due to the number of participants and
distances among them. The second difference is due to
group dynamics. Two-party communication can be viewed
as a discrete phenomenon: it starts, lasts for a while, and
ends. Group communication is more complicated: it starts,
the group mutates (members leave and join) and there
might not be a well-defined end. This complicates attendant
security services among which key agreement is the most
important. In the following, we specifically focus on the
requirements of Dynamic Peer Groups (DPGs). DPGs are
common in many layers of the network protocol stack and
many application areas of modern computing. Examples of
DPGs include replicated servers (such as database, web,
time), audio and video conferencing, and more generally,

collaborative applications of all kinds. In contrast to large

multicast groups, DPGs tend to be relatively small in size,

on the order of a hundred members. (Larger groups are

harder to control on a peer basis and are typically organized

in a hierarchy of some sort.) DPGs typically assume a

many-to-many communication pattern rather than one-to-

many commonly found in larger, hierarchical groups.
In this paper, we concentrate on secure and efficient

group key agreement. We start in Section 2 by discussing

contributory key agreement and requirements in support-

ing the dynamics of groups. In Section 3, we define a class

of protocols that we call ªnaturalº extensions of the

two-party Diffie-Hellman key exchange [1] and prove the

security of all protocols in this class against passive

adversaries, provided the two-party Decisional Diffie-

Hellman (DDH) problem is hard. This result allows us to

craft a number of efficient protocols without having to be

concerned about their individual security. In particular in

Section 4, we present two new protocols, each optimal with

respect to certain aspects of protocol efficiency. Subse-

quently in Section 5, we consider a number of different

scenarios of group membership changes and introduce

protocols which enable addition and exclusion of group

members as well as refreshing of the keys. Altogether, the

protocols described below form a complete key manage-

ment suite suited specifically for DPGs. However, it should

be noted from the outset, that many other group security

properties and services are not treated in this paper. These

include: key authentication/integrity, entity authentication,

key confirmation, group signatures and nonrepudiation of

group membership. Protocols and mechanisms in support

of these are treated in another paper [2]. In Section 6, we

compare our work with related work and conclude in

Section 7.
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2 DIMENSIONS OF KEY AGREEMENT

All of our protocols are based on contributory key
agreement. This means that a group key K is generated
as f�N1; . . . ; Nn�, where f�� is some one-way function and
Ni is an input (or key share) randomly chosen by the ith
party. The method of computing group keys must
guarantee that:

. each party contributing one Ni can calculate K;

. no information about K can be extracted from a
protocol run without knowledge of at least one of
the Ni;

. all inputs Ni are kept secret, i.e., if party i is honest
then even a collusion of all other parties cannot
extract any information about Ni from their com-
bined view of the protocol.

The first two requirements are obviously needed. The
last property ensures that the inputs Ni can be reused for
subsequent key agreements. This is essential for DPGs, as
will be seen below.

Several contributory schemes key agreement have been
proposed in the literature [3], [4], [5], [6], [7], [8], [9];
however, none have been widely used. In practice, group
key agreement is typically done in a centralized manner [10],
[11], [12]: one dedicated party (typically, a group leader)
chooses the group key and distributes it to all group
members. This actually translates into key transport or key
distribution, not key agreement. While the centralized
approach works reasonably well for static groups or very
large groups, it turns out that contributory key agreement is
superior for DPGs, i.e., flat (nonhierarchical) groups with
dynamically changing membership.

A permanently fixed group leader is a potential
performance bottleneck and a single point of failure. Some
DPG environments (such as ad hoc wireless networks) are
highly dynamic and no group member can be assumed to
be present all the time. This is also the case in wired
networks when high availability is required. Therefore, our
view is that fault tolerance (such as handling network
partitions and other events) is best achieved by treating all
parties as peers. This is supported by the state-of-the-art in
reliable group communication (see, for example, [13].)

To achieve fault tolerance of our protocols, we use
reliable group communication means. In the following, we
assume an underlying group communication system
resistant to fail-stop failures. This system should provide
a consistent membership view to all group members and
reliable and causally ordered multicasts. However, note
that secure group key agreement protocols such as
CLIQUES depend on such group communication systems
only to guarantee liveness (e.g., to prevent trivial denial of
service) but not to ensure safety. Nevertheless, the integration
of group key agreement and reliable group communication
to form a secure group communication system raises a
number of issues such as efficient handling of various
cascading failures. Owing to the built-in flexibility of
CLIQUES protocols, these issues can be resolved in an
efficient and modular manner without interfering with the
security properties discussed in this paper. For further
information we refer the reader to some recent work [14]

which reports on the integration of CLIQUES with the
SPREAD [15] reliable group communication system.

There is no inherent reason to require a single group
leader to make the decisions as to whom to add to, or
exclude from, a group.1 Ideally, decisions regarding who can
add a new member or delete an old one should be taken
according to some local group policy. For instance, in some
applications, each peer must be allowed to add new
members and delete members that it previously added.
This policy independence cannot be easily implemented in
centralized schemes, while our approach supports it quite
elegantly and efficiently: any party can initiate all member-
ship change protocols.

Although we argue in favor of distributed, contributory
key agreement for DPGs, we also recognize the need for a
central point of control for group membership operations,
such as adding and deleting members. This type of a role
(group controller) serves only to synchronize the member-
ship operations and prevent chaos. However, the existence
and assignment of this role is orthogonal to key establish-
ment, can be changed at any time, and is largely a matter of
policy.

A further advantage of contributory schemes is that they
automatically provide freshness and assure randomness of
new keys: each party i can check whether Ni was included
in K, hence, whether K is fresh and random. Furthermore,
our protocols can be easily extended to authenticated group
key agreement providing perfect forward secrecy (PFS)
[16], [17] and resistance to active known-key attacks (KKA)
[18], [19], [17], as shown in [2]. This is necessary for robust
protocols withstanding strong active attacks. We note that
most key transport protocols fail to provide at least one of
PFS and KKA resistance.

In the following, we distinguish between Initial Key
Agreement (IKA), a kind of group genesis, and Auxiliary
Key Agreement (AKA). AKA encompasses all operations
that modify group membership, such as member addition
and deletion. The central security requirement on AKA is
key independence, i.e., each AKA operation should result in a
new group key that is independent of all previous keys.

2.1 Initial Key Agreement (IKA)

IKA takes place at the time of group genesis. This is the time
when protocol overhead should be minimized, since key
agreement is a prerequisite for secure group communica-
tion. On the other hand, for highly dynamic groups, certain
allowances can be made: for example, extra IKA overhead
can be tolerated in exchange for lower AKA (subsequent
key agreement operations) costs.

Note that it is the security of the IKA, not its overhead
costs, that is the overriding concern. In this context, security
Ðas in the original two-party Diffie-Hellman key agree-
mentÐmeans resistance to passive attacks. Equivalently,
this means the inability to recover any information of the
group key by mere eavesdropping.

Naturally, IKA requires contacting every prospective
group member. Contributory key agreement also calls for a
key share to be obtained from each member. Hence, it may
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be possible to coincide (or interleave) with the IKA other
security services such as authentication, access control and
nonrepudiation. This is something to keep in mind for the
follow-on work.

2.2 Auxiliary Key Agreement (AKA) Operations

As mentioned above, initial group key agreement is only a
part, albeit a major one, of the protocol suite needed to
support secure communication in dynamic groups (see
Fig. 1). In this section, we discuss other auxiliary group key
operations and the attendant security issues (see also Fig. 2).

The security property crucial to all AKA operations is
key independence. Informally, it encompasses the follow-
ing two requirements:

. Old, previously used group keys must not be
discovered by new group member(s). In other
words, a group member must not have knowledge
of keys used before it joined the group.

. New keys must remain out of reach of former group
members.

A related term found in the security literature is
resistance to KKA. A protocol is said to be KKA-resistant if
knowledge of one or more past session (short-term) keys
cannot be used to compute a current session key or a long-
term secret. Generally, a known-key attack can be passive or
active. The latter is addressed in detail by Burmester [19].
Since this paper (and our protocol model) is concerned with
unauthenticated key agreement, we only consider passive
known-key attacks on short-term session keys.

Along the same lines, we are not considering PFS, since
no long-term keys are assumed in this context. (Recall that
PFS is premised on the possibility of compromise of

long-term secrets.) However, note that our protocols
provide an ideal basis to achieve PFS in authenticated
group key agreement protocols [2].

More precisely, our communication model assumes that
all communication is authentic but not private. An adversary
is assumed to be strictly passive, i.e., it may eavesdrop on
arbitrary communication, but may not in any way interfere
with it. Furthermore, an adversary in the IKA/AKA
protocols can be an outsider or a quasi-insider. An outsider
is a passive adversary not participating in the protocols. A
quasi-insider is a one-time group member who wants to
(passively) discover group session keys used outside of its
membership interval. While the requirement for key inde-
pendence is fairly intuitive, we need to keep in mind that, in
practice, it may be undesirable under certain circumstances.
For example, a group conference can commence despite
some of the intended participants running late. Upon their
arrival, it might be best not to change the current group key
so as to allow the tardy participants to catch up.2 Although
the new member has not contributed to the group key, it
can do so later by initiating a key refresh. In any case, this
decision should be determined by local policy.

2.2.1 Single Member Operations

The AKA operations involving single group members are
member addition and member exclusion. The former is a
seemingly simple procedure of admitting a new member to
an existing group. We can assume that member addition is
always multilateral or, at least, bilateral (i.e., it takes at least
the group leader's and the new member's consent to take
place.) Member exclusion is also relatively simple with the
exception that it can be performed either unilaterally (by
expulsion) or by mutual consent. In either case, the security
implications of member exclusion are the same.

2.2.2 Subgroup Operations

Subgroup operations are group addition and group exclu-
sion. Group addition, in turn, has two variants:

. Mass join. The case of multiple new members who
have to be brought into an existing group and,
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Fig. 2. Group key agreement: IKA.1.

2. Adding a new member without changing a key is trivial: the controller
sends the new member the current key (using, for example, El Gamal
encryption with a one-time key chosen by the new member).



moreover, these new members do not already form a
group of their own.

. Group fusion. The case of two groups merging to
form a super-group; perhaps only temporarily.

Similarly, subgroup exclusion can also be thought of as
having multiple flavors:

. Mass leave. Multiple new members must be
excluded at the same time.

. Group division. Monolithic group needs to be
broken up in smaller groups.

. Group fission. Previously merged group must be
split apart.3

Although the actual protocols for handling all subgroup
operations may differ from those on single members, the
salient security requirements (key independence) remain
the same.

2.2.3 Group Key Refresh

For a variety of reasons, it is often necessary to perform a
routine key change operation. This may include, for
example, local policy that restricts the usage of a single
key by time or by the amount of data that this key is used to
encrypt or sign. To distinguish it from key updates due to
membership changes, we will refer to this operation as key
refresh.

3 GENERIC n-PARTY DIFFIE-HELLMAN KEY

AGREEMENT

The following notation is used throughout the remainder of
this paper:

3.1 Security Proof Outline

All our key agreement protocols belong to a family of
protocols that we refer to as ªnaturalº extensions of the two-
party Diffie-Hellman key exchange: Like in the two-party
case, all participants M1; . . . ;Mn agree a priori on a cyclic
group G. Let � be a generator of G. For each key exchange,
each member, Mi, chooses randomly a value Ni 2 ZZq. The
group key will be K � �N1���Nn .

In the two-party case, K is computed by exchanging �N1

and �N2 , and computing K � ��N1�N2 � ��N2�N1 .

To solve the n-party case, a certain subset of f���S�j S �
fN1; . . . ; Nngg is exchanged between the players. This set
includes all values �N1���Niÿ1Ni�1���Nn for all i. Obviously, if Mi

gets �N1���Niÿ1Ni�1���Nn it can easily compute K.
The security of the two-party case is directly based on the

two-party DDH problem: Given ��; �N1 ; �N2 ; �X�, decide
whether X � N1N2 (i.e., the secret key K) or some
randomly chosen exponent.

This can be easily generalized to what we call the n-party
DDH problem4: Given f���S�j S � fN1; . . . ; Nngg and �X,
decide whether X � �N1 � � � Nn� or some random value.

In the following section, we prove that if the two-party
DDH problem is hard, then the n-party DDH problem is
hard, as well. This proves the security of the all natural
Diffie-Hellman extension at once.

3.2 Security of All Natural Extensions

Let k be a security parameter. All algorithms run in
probabilistic polynomial time with k and n as inputs.

For concreteness, we consider a specific class of groups

G: On input k, algorithm gen chooses at random a pair �q; ��
where q is a k-bit value, q and q0 � tq � 1 are both prime,

and � is a generator of the unique subgroup G of ZZq0� of

order q. Groups of this type are used, e.g., in Schnorr

signatures [22] and DSS [23]. It is commonly assumed that

the two-party DDH problem is hard for these groups, i.e.,

for all polynomial time attackers A, for all polynomials

Q�k�, for X0 :� N1N2 and X1 :� N3 with N1; N2; N3 2R ZZq

uniformly chosen, and for a random bit b, the probability

that A�1k; G; �; �N1 ; �N2 ; �Xb� � b is smaller than �12� 1
Q�k��.

For �q; ��  gen�k�, n 2 NN, and X � �N1; . . . ; Nn� for
Ni 2 ZZq, let:

. view�q; �; n;X� :� the ordered set of all �Ni1
���Nim for

all proper subsets fi1; . . . ; img of f1; . . . ; ng,
. K�q; �; n;X� :� �N1���Nn .

If �q; �� are obvious from the context, we omit them in
view�� and K��. Note that view�n;X� is exactly the view of
an adversary in the generic n-party DH-protocol, where the
final secret key is K�n;X�. Let the following two random
variables be defined by generating �q; ��  gen�k� and
choosing X randomly from �ZZq�n:

. An :� �view�n;X�; y�, for a randomly chosen y 2 G,

. Dn :� �view�n;X�; K�n;X��.
Let the operator º �poly º denote polynomial indistin-

guishability.

Remark. Polynomial indistinguishability of the two-party
Diffie-Hellman key is considered, e.g., in [24]. The notion
of polynomial indistinguishability is related to polyno-
mial time statistical test as defined in [25], [17]. In this
context, it means that no polynomial-time algorithm can
distinguish between a Diffie-Hellman key and a random
value with probability significantly greater than 1

2. More
specifically, let K and R be l-bit strings such that R is
random and K is a Diffie-Hellman key. We say that K
and R are polynomially indistinguishable if, for all
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polynomial time distinguishers, A, the probability of

distinguishing K and R is smaller than �12� 1
Q�l�� for all

polynomials Q�l�.
Theorem 1. For any n > 2, A2 �poly D2 implies An �poly Dn.

Proof (by induction on n). Assume that A2 �poly D2 and

Anÿ1 �poly Dnÿ1. Thus, we have to show An �poly Dn.

We do this by defining random variables Bn;Cn, and

showing An �poly Bn �poly Cn �poly Dn, which immedi-

ately yields: An �poly Dn.
We can rewrite view�n; �N1; N2; X�� with X �

�N3; . . . ; Nn� as a permutation of:�
view�nÿ 1; �N1; X��; K�nÿ 1; �N1; X��;
view�nÿ 1; �N2; X��; K�nÿ 1; �N2; X��;
view�nÿ 1; �N1N2; X��

�
and K�n; �N1; N2; X�� as K�nÿ 1; �N1N2; X��.

We use this to redefine An and Dn. We consider the
following four distributions. All of them are defined by
�q; ��  gen�k�, choosing c;N1; N2 2 ZZq and X 2 �ZZq�nÿ2

and y 2 G at random.

.

An :��view�nÿ 1; �N1; X��; K�nÿ 1; �N1; X��;
view�nÿ 1; �N2; X��; K�nÿ 1; �N2; X��;
view�nÿ 1; �N1N2; X��; y�

.

Bn :��view�nÿ 1; �N1; X��; K�nÿ 1; �N1; X��;
view�nÿ 1; �N2; X��; K�nÿ 1; �N2; X��;
view�nÿ 1; �c;X��; y�

.

Cn :��view�nÿ 1; �N1; X��; K�nÿ 1; �N1; X��;
view�nÿ 1; �N2; X��; K�nÿ 1; �N2; X��;
view�nÿ 1; �c;X��; K�nÿ 1; �c;X���

.

Dn :��view�nÿ 1; �N1; X��; K�nÿ 1; �N1; X��;
view�nÿ 1; �N2; X��; K�nÿ 1; �N2; X��;
view�nÿ 1; �N1N2; X��; K�nÿ 1; �N1N2; X���:

Note that only the last two components vary.
An �poly Bn follows from A2 �poly D2: Assume that

adv distinguishes An and Bn, and let �u; v; w� be an
instance of A2 �poly D2. We produce an instance for adv
by using u for �N1 , v for �N2 , and w for �N1N2 (or �c), and
choosing X and y randomly. If �u; v; w� belongs to A2

(D2), this new distribution belongs to Bn (An).
Bn �poly Cn follows from Anÿ1 �poly Dnÿ1: Assume

that adv distinguishes Bn and Cn, and (ignoring a
necessary permutation in order) let: �view�nÿ
1; �c;X��; y� be an instance for Anÿ1 �poly Dnÿ1 (i.e.,

the problem is to decide whether y � K�nÿ 1; �c;X���:
We produce an instance for adv by choosing N1; N2

randomly, and computing �view�nÿ 1; �Ni;X��; K�nÿ
1; �Ni;X��� based on those values in view�nÿ 1; �c;X��
that do not contain c as an exponent. The rest follows as
in the last case. Cn �poly Dn follows from A2 �poly D2,
almost exactly like the first statement. The only differ-
ence is that we do not choose y randomly, but as
K�nÿ 1; �w;X��. tu

Hereafter, the above result allows us to construct a
number of specific protocols belonging to the natural DH
extensions family without worrying about their individual
security.

4 CLIQUES: INITIAL KEY AGREEMENT

The cornerstone of the CLIQUES protocol suite is formed by
two IKA protocols called IKA.1 and IKA.2. (They were
referred to as GDH.2 and GDH3, respectively, in [7].)

4.1 IKA.1

The first IKA protocol (IKA.1), depicted in Fig. 2 is simple
and straightforward. It consists of upflow and downflow
stages.

The purpose of the upflow stage is to collect contribu-
tions from all group members, one per round. In round i

�i 2 �1; nÿ 1��, Mi unicasts Mi�1 a collection of i values. Of
these, iÿ 1 are intermediate, and one is cardinal. The
cardinal value CRDi is simply the generator raised to all
secret exponents generated so far:

CRDi :� ���Npjp2�1;i��:

Let INTi;j denote the jth intermediate value in round i. It
is always of the following form (i.e., CRDi with the jth
exponent missing):

INTi;j :� ���Npjp2�1;i� ^ p6� j� for j 2 �1; i�:
Mi's computations can now be described as follows:

1. generate private exponent Ni

2. set INTi;j � �INTiÿ1;j�Ni for all j 2 �1; iÿ 1�
3. set INTi;i � CRDiÿ1

4. set CRDi � �CRDiÿ1�Ni .

In total, Mi composes i intermediate values (each with
�iÿ 1� exponents) and a cardinal value containing i

exponents. For example, M4 receives a set

f�N1N2N3 ; �N1N2 ; �N1N3 ; �N3N2g
and outputs a set

f�N1N2N3N4 ; �N1N2N3 ; �N1N2N4 ; �N1N3N4 ; �N3N2N4g:
In round �nÿ 1�, when the upflow reaches Mn, the

cardinal value becomes �N1���Nnÿ1 . Mn is thus the first group
member to compute the key Kn. Also, as the final part of the
upflow stage, Mn computes the last batch of intermediate
values. In the second stage Mn broadcasts the intermediate
values to all group members. IKA.1 has the following
characteristics:
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The highest-indexed group member Mn plays a special
role by having to broadcast the last round of intermediate
values. However, this special role does not afford Mn any
added rights or privileges. You might also wonder why we
broadcast the last flow and don't unicast the nÿ 1 shares
individually to save some bandwidth. The reason for this
will become apparent later in Section 5, when we talk about
AKA operations: This allows us to achieve policy indepen-
dence on group controllership.

4.2 IKA.2

In certain environments, it is desirable to minimize the
amount of computation performed by each group member.
This is particularly the case in large groups or groups
involving low-power entities, such as smartcards or PDAs.
Since IKA.1 requires a total of �i� 1� exponentiations of
every Mi, the computational burden increases as the group
size grows. The same is true for message sizes.

In order to address these concerns we construct a very
different protocol, IKA.2 (see Fig. 3). IKA.2 consists of four
stages. In the first stage, we collect contributions from all

group members similar to the upflow stage in IKA.1. After
processing the upflow message Mnÿ1 obtains ��fNpjp2�1;nÿ1�g

and broadcasts this value in the second stage to all other
participants. At this time, every Mi (i 6� n) factors out
(divides by) its own exponent and forwards the result to
Mn. (Note that factoring out Ni requires computing its
inverseÐNÿ1

i . This is always possible if we choose the
group q as a group of prime order). In the final stage, Mn

collects all inputs from the previous stage, raises every one
of them to the power of Nn and broadcasts the resulting
nÿ 1 values to the rest of the group. Every Mi now has a
value of the form ��fNpjp2�1;n�^p6�ig and can easily generate
the intended group key Kn.

IKA.2 has two appealing features:

. Constant message sizes

. Constant (and small) number of exponentiations for
each Mi(except for Mn with n exponentiations
required).

Its properties are summarized in the following table:

One notable drawback of IKA.2 is that, in Stage 3 (nth
round), nÿ 1 unicast messages are sent to Mn. This might
lead to congestion at Mn.

5 CLIQUES: AUXILIARY KEY AGREEMENT

Both IKA protocols operate in two phases: a gathering

phase whereby Mn collects contributions from all partici-

pants to compute f�
N1 ��� Nn

Ni ji 2 �1; n�g and a final broadcast

phase. Our AKA operations take advantage of the keying

information (i.e., partial keys) collected in the gathering

phase of the most recent IKA protocol run. This information

is incrementally updated and redistributed to the new

incarnation of the group. In particular, any member

who caches the most recent message of the final broadcast

round can initiate an AKA operation. Any member can take

over the role of group controller at no cost and whenever

the situation requires it, e.g., when the former group

controller abruptly disappears due to a crash or network

partition. This way, our protocols achieve complete policy

independence.
Since the final broadcast phase is exactly the same for

both IKA.1 and IKA.2, we also note that the AKA
operations described below work with both IKA protocols.
This results in flexibility to choose an IKA protocol that
suits a particular DPG setting.

5.1 Member Addition

The member addition protocol is shown in Fig. 4. As
mentioned above, we assumed that the current group
controller Mc (c 2 �1; n�� remembers the contents of the
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broadcast message that was sent in the last round in the
IKA protocol of Fig. 2.5

In effect, Mc extends Stage 1 of the IKA protocol by one
round: it generates a new exponent cNc and creates a new
upflow message. cNcNc is used in place of Nc to prevent the
new member and outsiders from learning the old group
key. Additionally, it replaces Nc by cNcNc as its own
contribution for further AKA operations.

5.2 Mass Join

Distinct from both member and group addition is the issue

of mass join. When is mass join necessary? In cases when

multiple new members need to be brought into an existing

group. In most cases, new members are disparate (i.e., have

no prior common association) and need to be added in a

hurry. Alternatively, new members may already form a

subgroup but policy might dictate that they should be

admitted individually.
It is, of course, always possible to add multiple members

by consecutive runs of a single-member addition protocol.

However, this would be inefficient since, for each new

member, every existing member would have to compute a

new group key only to throw it away thereafter. To be more

specific, if m new members were to be added in this

fashion, the cost would be:

. 2m rounds.

. Included in the above are m rounds of broadcast

. m exponentiations by every ªoldº group member.

The overhead is clearly very high.
A better approach is to chain the member addition

protocol, as shown in Fig. 5. The idea is to capitalize on the

fact that multiple, but disparate, new members need to join

the group and chain a sequence of Upflow messages to

traverse all new members in a certain order. This allows us

to incur only one broadcast round and postpone it until the

very last step, i.e., the last new member being mass-joined

performs the broadcast. The savings, compared with the

naive approach, amount to mÿ 1 broadcast rounds.

5.3 Group Fusion

Group fusion, as defined above, occurs whenever two

groups merge to form a super-group. The only real

difference with respect to mass join is that group fusion

assumes preexisting relationships within both groups.

Thus, it is important to recognize from the outset that the

most expedient way to address group fusion is to treat it as

either:

1 Special case of mass join, as in Fig. 5, or
2 Creation of a new super-group via IKA of Fig. 2.

It is certainly possible to end the discussion of group

fusion at this point. The outcome would be a heuristic- or

policy-driven decision to use (1) or (2) on a case-by-case

basis. However, if only for purely academic reasons, it

might be worthwhile to investigate more efficient, or at least

more elegant, solutions geared specifically toward group

fusion. Although this remains a subject for future work, we

briefly sketch one possible solution below.
One promising approach to group fusion is a technique

fashioned after the one developed by Becker et al. in [9]. In

brief, suppose that two groups G1 and G2 currently using

group keys K1 and K2, respectively, would like to form a

super-group. To do so, the two groups exchange their

respective key residues: �K1 and �K2 and compute a new

super-group key K12 � �K1K2 . The actual exchange can be

undertaken by the group controllers. Note that this type of

fusion is very fast, since in principle it can be accomplished

in one round of broadcast. Furthermore, reverting to the

original group structure is easy since each group can simply

fall back to using K1 and K2 at any time, thus effectively

reversing the fusion but any other group split seems to

require two complete and inefficient IKA operations. So

unless one only has groups which only grow or only split

into previously existing groups, it seems easier to use the

Mass Join protocol in Fig. 5.
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Fig. 4. Member addition.

5. This is only the case for the very first member addition; subsequent
member additions as well as other AKA operations require the current
controller to save the most recent broadcast message from the preceding
AKA operation.

Fig. 5. Mass join.



5.4 Member Exclusion

The member exclusion protocol is illustrated in Fig. 6. In it,
Mc effectively ªrerunsº the last round of the IKA: as in
member addition, it generates a new exponent cNc and
constructs a new broadcast messageÐbut with cNcNc

instead of NcÐusing the most recently received broadcast
message. (Note that the last broadcast message can be from
an IKA or any AKA, depending on which was the latest to
take place.) Mc then broadcasts the message to the rest of
the group. The private exponents of the other group
members remain unchanged.

Let Md be the member to be excluded from the group.
We assume, for the moment, that d 6� c. Since the following
subkey:

�
bNc��Npjp2�1;n�^p6�d�

is conspicuously absent from the set of broadcasted subkeys,
the newly excluded Md is unable to compute the new group
key:

Knew � �bNc��Npjp2�1;n��:

A notable side-effect is that the excluded member's
contribution Nd is still factored into the new key. None-
theless, this in no way undermines the new key's secrecy.

In the event that the current group controller Mc has to
be excluded, any other Mi can assume its role, assuming it
stored the last broadcast message.

5.5 Subgroup Exclusion

In most cases, subgroup exclusion is even simpler than
single member exclusion. The protocol for mass leave is
almost identical to that in Fig. 6. The only difference is that
the group controller computes and broadcasts fewer
subkeys; only those which correspond to the remaining
members.

A slightly different scenario is that of group division
when a monolithic group needs to be split into two or more
smaller groups. The obvious way of addressing this is to
select for each of the subgroups a subgroup controller
which runs the group exclusion protocol within its
subgroup by broadcasting only those subkeys correspond-
ing to subgroup members.

5.6 Key Refresh

There are two main reasons for the group key refresh
operation:

. limit exposure due to loss of group session keys

. limit the amount of ciphertext available to crypt±
analysis for a given group session key.

This makes it important for the key refresh protocol not
to violate key independence. (For example, this rules out
using a straight-forward method of generating a new key as
a result of applying a one-way hash function to the old key.)
Additionally, we note that loss of a member's key share (Ni)
can result in the disclosure of all the session keys to which
the member has contributed with this share. Therefore, not
only session keys, but also the individual key shares must
be refreshed periodically.

This leads to the following key refresh protocol: The
member Mh, which is the least recent to have refreshed its
key share6, generates a new share (exponent) cNh and
ªrerunsº the broadcast round, as shown in Fig. 7.

This procedure guarantees key independence between
session keys and limits the damage of leaked key share to at
most n epochs. We also note that this one-round protocol
can be piggy-backed easily and at almost no cost on a group
broadcast, which is a likely operation, assuming that the
established group key is used to protect intragroup
communication.

5.7 Security Considerations for AKA Operations

In order to demonstrate security of the AKA protocols, we
need to consider a snapshot in a life of a group, i.e., the
lifespan and security of a particular short-term key.

The following sets are defined:

. C � fM1; . . . ;Mcg denotes al l current group
members.

. P � fMc�1; . . . ;Mpg denotes all past (excluded be-
fore) group members.

. F � fMp�1; . . . ;Mfg denotes all future (subsequently
added) group members.

Note that the term future is used relative to the specific
session key. The issue at hand is the ability of all past and
future members to compute the current key

K � �N1���NcNc�1���Np :

To simplify our discussion, we collapse all members P and
F into a single powerful adversary (Eve). (This is
especially fitting, since P and F are not necessarily
disjoint.) The result is that Eve � P [ F and she possesses
fNj jMj 2 Eveg. Further on and without loss of generality,
we assume that Mc was group controller for both the
operation leading to the current and to the following state.

We can thus rewrite the key as:

K � �B���E��;
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6. Other policies, e.g., taking into account the vulnerability of individual
members to subversion attacks, are also possible.

Fig. 6. Member exclusion. Fig. 7. Key refresh.



where B is a constant known to Eve, E � fN1; . . . ; Ncÿ1; Ncg
are the secret exponents (contributions) of current group
members. Note that the group controller's current exponent
Nc is independent from both its past exponent N 0c � Nc=cNc

0

and its future exponent N 00c � Nc�cNc
00 as the blinding factorscNc

0 and cNc
00 were both chosen randomly.

In Eve's view, the only expressions containing Nc are in
the last broadcast round of either member addition or
member exclusion protocols:

f�
N1 ���Ncÿ1Nc

Ni jMi 2 Cg:
We can further assume that Eve also knows all:

f���S�j S � Eg:
However, Eve's knowledge is a subset of what we

previously referred to as view�c; E�. Recall that in Section 3.2
we have shown that for any n.

A2 �poly D2 implies An �poly Dn;

where:

. º �poly º denotes polynomial indistinguishability

. An :� �view�n;X�; y�, for a randomly chosen y 2 G,

. Dn :� �view�n;X�; K�n;X��.

. view�n;X� :� ordered set of all �Ni1
��� Nim for all

proper subsets fi1; . . . ; img of f1; . . . ; ng,
. K�n;X� :� �N1��� Nn .
. X � fN1; . . . ; Nng:

If we substitute n with c, X with E, and K�n;X� with K, it
follows that K is polynomially indistinguishable from a
random value.

Consequently, all AKA protocols presented above fall
into the class of ªnaturalº DH extensions defined in Section
3.2 and benefit from the same security properties.

6 RELATED WORK

6.1 Contributory Key Agreement

The earliest attempt to provide contributory key agreement

and to extend DH to groups is due to Ingemarsson et al. [3]

The protocol in Fig. 8 (called ING) requires synchronous

startup and executes in �nÿ 1� rounds. The members must

be arranged in a logical ring. In a given round, every

participant raises the previously-received intermediate key

value to the power of its own exponent and forwards the

result to the next participant. After �nÿ 1� rounds, every-

one computes the same key Kn.
We note that this protocol falls into the class of natural

DH extensions as defined in [7]. It is, thus, suitable for use

as an IKA protocol. However, because of its symmetry,7 (no

natural group leader) it is difficult to use it as a foundation

for auxiliary key agreement protocols.
Another DH extension geared towards teleconferencing

was proposed by Steer et al. in [4]. This protocol (referred to

as STR) requires all members to have broadcasting facilities

and takes n rounds to complete. In some ways, STR is

similar to IKA.1. Both take the same number of rounds and

involve asymmetric operation. Also, both accumulate key-

ing material by traversing group members one per round.

However, the group key in STR has a very different

structure:

Kn � �Nn�
Nnÿ1� ...N3�

N1N2

:

Interestingly, STR is well-suited for adding new members;

see Fig. 9. As in IKA.1, it takes only two rounds to add a

new member. Moreover, this protocol is computationally

more efficient than IKA.1 member addition, since fewer

exponentiations take place.8 Member exclusion, on the other

hand, is difficult in STR since there is no natural group

controller. For example, excluding M1 or M2 is problematic,

since their exponents are used in the innermost key

computation. In general, recomputing a common key (when

Mi leaves) is straightforward for all Mj, j < i. Meanwhile,

all Mj, j > i need to receive input from lower-numbered

members.
One notable result is due to Burmester and Desmedt [5].

They construct a very efficient protocol (BD) which executes

in only three rounds:

1. Each Mi generates its random exponent Ni and
broadcasts zi � �Ni .

2. Each Mi computes an d broadcas t s Xi �
�zi�1=ziÿ1�Ni :
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Fig. 8. ING Protocol.

Fig. 9. Member Addition in STR.

7. It is also not very efficient.
8. Note that, for a reasonable degree of security, STR requires a bijective

mapping f from ZZp� to ZZq�. However, f�x� :� xq, as implicitly defined by
STR, is not bijective. While there is an efficient mapping for safe primes [26]
it is not clear if such efficient mappings exist also for other prime order
groups such as the ones proposed in Section 3.2. Hence, the exponentiations
in the CLIQUES protocols would be considerably faster than in a secure
version of STR.



3. Each Mi can now compute9 the key Kn � znNi

iÿ1 �
Xnÿ1
i �Xnÿ2

i�1 � � �Xiÿ2 mod p:

The key defined by BD is different from all protocols

discussed thus far, namely Kn � �N1N2�N2N3�����NnN1 . None-

theless, the protocol is proven secure provided the DH

problem is intractable.
Some important assumptions underlying the BD

protocol:

1. the ability of each Mi to broadcast to the rest of the
group,

2. the ability of each Mi to receive nÿ 1 messages in a
single round, and

3. the ability of the system to handle n simultaneous
broadcasts.

While the BD (IKA) protocol is efficient and secure, we

claim that it is not well-suited for dynamic groups. While

addition looks trivial at first sight, closer inspection reveals

that all group members have to refresh their share to

prevent leaking too much information or serve as a

exponentiation oracles. This means that, in fact, AKA

operation gets as expensive in terms of communication

and computation as the BD IKA. So the cost savings of

BD IKA when compared to IKA.1 and IKA.2 are very

quickly amortized and exceeded by the costs of their much

less efficient (but much more frequent) AKA operations,

e.g., BD IKA/AKA cost three rounds with n simultaneous

broadcasts each, compared to two rounds and a single

broadcast for CLIQUES AKA operations. Note that in

practice, DPGs tend to start with only a very small number

of initial members (if not even a single one) and grow

mostly through AKA operations. Therefore, IKA operation

is far less relevant than AKA operations.
In the most recent work, Becker and Wille [9] system-

atically analyze the communication complexity of contrib-

utory group key agreement protocols. They prove lower

bounds for the number of messages, exchanges, simple and

synchronous rounds and, e.g., confirmed that IKA.1 is

optimal in respect to the number of messages and

exchanges. Additionally, they also describe a novel proto-

col, 2d-octopus, which reaches the lower bound for simple

rounds (d � dlog2 ne). Their main idea is to arrange the

parties on a d-dimensional hypercube, i.e., each party is

connect to d other parties. The protocol proceeds through d

rounds, 1 . . . d. In the jth round, each player performs a two-

party DH with its peer on the ith dimension, using the key

of the jÿ 1-th round as its secret exponent. The exponents

of the 0th rounds are chosen at random by each party. For

illustrative purposes, we show the resulting key for a group

of eight parties:

K8 � ���
���N1N2���N3N4�����

�N5N6���N7N8���:

While adding new members and in particular groups is

easy with 2d-octopus, it fails completely in terms of member

exclusion. Splitting the group on the dth dimension into two

halves seems the only efficient exclusion procedure.

6.2 Key Transport

The focus on our work was on contributory key agreement,
not key transport. As discussed in Section 2, contributory
key agreement has a number of advantages over (centra-
lized) key transport. However, there is one main drawback
with contributory schemes. Due to the contributory nature
and perfect key independence, the protocols inevitably
require exponentiations linear in the number of participants
for AKA operations; of course, this doesn't scale well to
very large groups. This is not a fundamental problem for
DPGs as they tend to be reasonably small (< 100). However,
in situations where the security, fault tolerance and
flexibility requirements are less stringent and scalability
and computation efficiency is the main issue, key distribu-
tion protocols might be more favorable.

Early key transport proposals [10], [27] were all based on
a fixed group controller and did not address scalability or
dynamics in group membership to a large extent. Sub-
sequent work [28], [29] addressed scalability by splitting up
the group into a hierarchy of subgroups controlled by
subgroup controllers. These protocols improve overall
efficiency, but their support for the dynamics of group is
either limited or has costly side effects (e.g., Iolus [29]
requires intermediary subgroup controllers to relay all
messages and perform key translation).

Tree-based group rekeying systems, independently
proposed by Wallner et al. [12] and Wong et al. [11],
achieve all AKA operations in two rounds and bring the
communication and storage costs down to O�log�n��.
Optimized variants [30], [31] reduce the communication
overhead by half and their security can be proven using
standard cryptographic assumptions. Due to their commu-
nication and computation efficiency, these protocols scale
very well to large groups. Their main drawback is their
reliance on a fixed group controller. Caronni et al. [32]
overcome this by distributing the role of group controller
over all members. Unfortunately, their protocols are
vulnerable to collusions by excluded members. Another
approach to increase safety of the tree-based group
rekeying schemes is described in Rodeh et al. [33].

6.3 Other

We can find further related work in the context of
distributed and fault-tolerant computing [13], [34]. Protocol
suites and toolkits, such as Rampart [35], [36], aim at
achieving high fault tolerance, even in the presence of
malicious (i.e., byzantine) faults inside a group. This level of
fault tolerance and the underlying model of virtual
synchronous process groups might be required for securely
and reliably replicating services [37] of great importance.
However, these protocols are very expensive, as they rely
on reliable and atomic multicasts secure against byzantine
faults, see [38], [39] for some protocols.

7 SUMMARY

In summary, this paper identified the requirements for IKA
and AKA operations and developed corresponding
CLIQUES protocols, based on the Diffie-Hellman key
exchange. The protocols presented above achieve secure
and efficient key agreement in the context of dynamic peer
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groups. Such groups are relatively small and nonhierarch-
ical. In large groups, it is unclear that key agreement is

appropriate since collecting contributions from all members

can become very costly. Instead, key transport mechanisms

can be used. This subject (key transport in large and
dynamic groups) is an active research area; for example,

[30], [31], [32].
Our emphasis has been on bare key agreement resistance

to passive attacks. In practice, one must contend with active

attacks and intruders; to this end, authenticated key
agreement must be employed. Related issues include key

confirmation, group integrity and member authentication.

These and other group security services are addressed in

another paper [2].
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