Lecture 1: Mobility Management in Mobile Wireless Systems

Ing-Ray Chen

CS 6204 Mobile Computing Virginia Tech Fall 2005

Registration Area (RA) and the Basic HLR-VLR Scheme

- Current Personal Communication Service (PCS) networks (i.e., cellular networks such as GSM) use RA-based basic HLR-VLR schemes:
 - The service coverage area is divided into registration areas (RAs) or location areas (LAs)
 - Each RA covers a group of cells
 - A user has a permanent home location register (HLR)
 - Base stations within the same RA broadcast their IDs
 - If ID is sensed different by the mobile terminal, then a location update is sent to the visitor location register (VLR) of the current RA.
 - When crossing a RA boundary, an update is sent to the HLR.
 - A search goes by HLR->VLR->cell->paging (by the base station)

How Big Should K be for Forwarding Pointers?

- The cost "saving" due to forwarding for a location update operation is τ where τ is the cost of accessing a remote registrar (approximately).
- The "increased" cost per search operation is $K\tau$ to follow the forwarding pointers of length K.
- Let λ be the call arrival rate (incurring search) and σ be the mobility rate (incurring location update). Then the increased cost due to search operations per unit time is $\lambda K \tau$, while the cost saving due to update operations per unit time is $\sigma \tau$
- When $\sigma\tau > \lambda K\tau$, or $\sigma/\lambda > K$, it makes sense to have forwarding pointers. In other words, K should be bounded by σ/λ , the reciprocal of λ/σ , or the reciprocal of the call to mobility ratio (CMR)

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Replicating Location Information

- A mobile user's location information may be replicated to a number of registrars for fault tolerance
- Two different organizations:
 - Flat: No structure exists among the registrars
 - Hierarchical: A multiple-level tree structure exists to organize location registrars

Replicating Location Information based on Flat Organization

- Consider using k replicas:
 - Placing k replicas at registrars i, (i+s) mod n, (i+2s) mod n,
 ..., [i+(k-1)s] mod n where n is the total number of registrars and s = n/k.
 - What is the best value of k?
 - The update cost is k location registrars per update
 - The search cost is n/k location registrars accesses per search
 - The normalized overall cost per time unit is $C=k\sigma + (n/k)\lambda$, which is minimized when $k_{out}=sqrt(n*CMR)$
 - o As CMR (i.e., λ/σ) increases, k_{opt} increases
 - o Search and update costs are proportional to sqrt(n) at k_{opt}

22

21

Replicating Location Information based on Hierarchical Organization

- A tree of location registrars:
 - A registrar that is a leaf node in the tree has information on all the mobile users in the associated RA
 - A non-leaf registrar replicates location information in all the location registrars in the subtree rooted to it.
 - The root registrar in the tree stores information on all the mobile users in the systems.

23

24

Replicating Location Information based on Hierarchical Organization

- <u>Search</u>: Let the callers be in RA_i and the callee be in RA_j. Let LCA(i,j) be the registrar that is the least common ancestor of LR_i and LR_j. The registrars along the path from the leaf registrar LR_i to LCA(i,j) will be searched until the callee information is found.
- <u>Update</u>: If a mobile user moves from RA_i to RA_j, then location information is deleted in all the registrars along the path from RA_i to LCA(i,j) (except LCA(i,j)), and the location information is updated in all the registrars along the path from root to RA_i.
- The cost of both the search and update is O(log n) where n is total number of registrars in the tree

