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On the Effectiveness of Monitoring for Intrusion
Detection in Mobile Ad Hoc Networks
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Abstract—Several intrusion detection techniques (IDTs) proposed for mobile ad hoc networks rely on each node passively monitoring
the data forwarding by its next hop. This paper presents quantitative evaluations of false positives and their impact on monitoring-
based intrusion detection for ad hoc networks. Experimental results show that, even for a simple three-node configuration, an actual ad
hoc network suffers from high false positives; these results are validated by Markov and probabilistic models. However, this false
positive problem cannot be observed by simulating the same network using popular ad hoc network simulators, such as ns-2, OPNET
or Glomosim. To remedy this, a probabilistic noise generator model is implemented in the Glomosim simulator. With this revised noise
model, the simulated network exhibits the aggregate false positive behavior similar to that of the experimental testbed. Simulations of
larger (50-node) ad hoc networks indicate that monitoring-based intrusion detection has very high false positives. These false positives
can reduce the network performance or increase the overhead. In a simple monitoring-based system where no secondary and more
accurate methods are used, the false positives impact the network performance in two ways: reduced throughput in normal networks
without attackers and inability to mitigate the effect of attacks in networks with attackers.

Index Terms—Mobile ad hoc networks, intrusion detection, passive monitoring, false positives, analytical models, noise modeling,

performance analysis.

1 INTRODUCTION

mobile ad hoc network (MANET) is a collection of

wireless devices moving in seemingly random direc-
tions and communicating with one another without the aid
of an established infrastructure. To extend the reachability
of a node, the other nodes in the network act as routers.
Thus, the communication may be via multiple intermediate
nodes between source and destination. Since MANETSs can
be set up easily and inexpensively, they have a wide range
of applications, especially in military operations and
emergency and disaster relief efforts [9]. However, MAN-
ETs are more vulnerable to security attacks than conven-
tional wired and wireless networks due to the open wireless
medium used, dynamic topology, distributed and coopera-
tive sharing of channels and other resources, and power
and computation constraints [28].

Intrusion detection systems (IDSs), which attempt to
detect and mitigate an attack after it is launched, are very
important to MANET security. Several monitoring-based
intrusion detection techniques (IDTs) have been proposed
in literature [20], [7], [21], [2]. In a monitoring-based IDT,
some or all nodes monitor transmission activities of other
nodes and/or analyze packet contents to detect and
mitigate active attackers. Intuitively, it is easy to see that
monitoring-based intrusion detection is not likely to be
accurate for ad hoc networks due to varying noise levels
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and varying signal propagation characteristics in different
directions. An IDT uses additional mechanisms such as
trust values for nodes before considering nodes to be
suspicious. Even with such additional mechanisms, mon-
itoring neighbors’ transmissions is the key technique that
triggers the detection process for many IDTs. Most
evaluations of IDTs are based on small testbed configura-
tions, or simulations which do not incorporate any realistic
environmental noise models. More significantly, there are
neither reports on the extent of the false positive problem
nor on the quantification of the effectiveness of monitoring.

In this paper, we quantify false positives and analyze
their impact on the accuracy of monitoring-based intrusion
detection. We use a combination of experimental, analytical,
and simulation analyses for this purpose. First, using a
linear chain of three off-the-shelf wireless routers, we show
that a sender of data packets falsely suspects, based on the
monitoring of transmission activities in its radio range, its
next hop of not forwarding its packets (though 98 percent of
its packets are delivered to its destination). We validate the
experimental results by deriving a Markov chain to model
monitoring and estimate the average time it takes for a
sender to suspect its next hop. However, this phenomenon
cannot be observed using the commonly used simulators
such as ns-2, Glomosim or OPNET since they do not
implement realistic models of environmental radio noise
and thus cannot simulate the false positives that are seen in
an actual network. To remedy this deficiency, we use a
previously proposed probabilistic noise model based on the
generalized extreme value (GEV) distribution to model the
noise levels seen in our experiments [23]. We incorporate
the GEV noise model in the Glomosim simulator and show
that net impact of false positives seen in the experimental
testbed can now be recreated reasonably accurately with
simulations. Finally, we use the simulator fortified with the
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noise model to simulate large MANETS to study the impact
of noise on intrusion detection. Our results indicate that
monitoring-based intrusion detection has very high false
positives, which impact its capability to mitigate the effect
of attacks in networks with attackers.

The rest of the paper is organized as follows: Section 2
describes the effect of false positives in monitoring using
experiments on a three-node testbed. Section 3 presents
analytical models to validate the experimental results.
Section 4 presents the measurement and modeling of
background noise for wireless devices. Section 5 incorpo-
rates proposed GEV noise model and evaluates monitoring-
based approaches in large networks. Section 6 presents
related work and Section 7 concludes the paper.

2 TESTBED EVALUATION OF FALSE POSITIVES

In monitoring-based intrusion detection, each node moni-
tors the forwarding behavior of its neighboring nodes. In
most cases, a node only monitors its next hop in a route.
Consider a three-node segment of a route (with at least two
hops) being used to send data packets. If the three nodes are
denoted as node 1 (source or the node closer to source),
node 2, and node 3 (destination or the node closer to
destination), then node 2 is the next hop of node 1 and
node 3 is the next hop of node 2. When node 1 transmits a
data packet to node 2, it expects to hear node 2’s
transmission of this packet to node 3 within some specified
amount of time. If the fraction of packets not overheard by
node 1 exceeds a specified threshold, then node 1 concludes
that node 2 is dropping too many data packets and suspects
it to be a malicious node.

For monitoring purposes, node 1 keeps track of a
window of packets that it sent recently to its next hop.
Two types of windows can be used to keep track of
monitoring: fixed window or sliding window. Let W be the
monitoring window size. Also, assume that each packet is
given a sequence number, starting at 1. Let j be the
sequence number of the most recent packet sent to the next
hop. With fixed window monitoring, packets numbered
|[(j—1)/W]W+1,...,j are monitored. The size of the
monitoring window varies from 1 to W. With sliding
window, packets j—W +1,...,jfor j> W or1,...,j, for
j < W, are monitored. Both types of windows are illu-
strated in Fig. 1.

Let us consider a detection scenario with a threshold of
T; so if L =[WT] packets are not overhead within the
current window, then the next hop is suspected. To
understand the similarities and differences between the
fixed and sliding windows, let us assume that noise does
not impact the overhearing of transmissions within a node’s
radio range. In such a scenario, a malicious node can drop
up to L — 1 packets out of W on the average without risking
suspicion by neighbors. However, the temporary drop rates
can be different. For example, a malicious node can drop as
many as L —1 packets at the end of one window and
another L — 1 at the beginning of the next window and still
not be suspected when fixed windows are used for
monitoring. The sliding window approach is free of this
deficiency since in any consecutive W-transmitted packets,
a malicious node may drop at most L — 1 packets without
risking suspicion by neighbors. Therefore, with the fixed
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Fig. 1. (a) Fixed window and (b) sliding window illustration. W is the
window size.

windows approach, a malicious node can afford to drop
packets at a faster rate, at times. The drawback of the sliding
windows approach is that it can lead to higher false
positives in noisy environments.

2.1 Testbed Experiments

To understand the extent of false positives in monitoring,
we used a wireless network testbed of three Linksys wrt54g
Wi-Fi routers [10]. The wrt54g routers have a built-in four-
port 100 Mbps Ethernet switch, an 801.11g access point, two
standard omnidirectional antennas, a 200 MHz MIPS
processor, and 16 MB of RAM and 4 MB of flash memory,
which serves as the disk memory. We reprogrammed the
routers using OpenWrt Linux [22], [4]. This testbed was set
up as a linear chain in a long corridor in a building with
adjacent routers 20" apart. All three routers use the same
ssid (which is different from the other Wi-Fi devices in the
building-wide 802.11b/g production network) so that they
can communicate among themselves only. To minimize the
interference, these three routers use a different (noninterfer-
ing) channel from those used by other access points. Also, to
minimize interference from moving objects and signals
from cell phones, we carried out our experiments early
mornings from 2:00 am to 5:00 am.

One end router (denoted as node 1) sends packets to the
other end router (node 3) via the intermediate router
(node 2). We use static routes in node 1 and node 2 to
ensure that the next hop for packets transmitting from
node 1 is node 2 and the next hop for packets transmitting
from node 2 is node 3. RTS/CTS handshake is used to
reduce frame collisions due to the hidden terminal problem.
Node 1 is set to promiscuous mode and monitors (over-
hears) transmissions from node 2 to node 3.

In each experiment, node 1 transmits at a rate of
200 Kbps (fifty 500 byte packets/s) for up to 80 seconds.
A single CBR over UDP connection is used. Node 2
transmits every packet it receives from node 1 to node 3.
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Fig. 2. Time to suspect next hop in monitoring-based approach in a
three-node wireless testbed. W = 150, which corresponds to a 3 second
interval for the packet rates used.

Every node records the ID of each packet it receives,
transmits, or overhears. The packet trace from each router is
sent to a desktop machine via the Ethernet connection of the
routers. After the experiment, we analyzed the packet traces
obtained from the three nodes. We removed the traces for
the first 500 packets, which were considered to be part of
the network warmup. With the MAC level ACK mechanism
in the 802.11 protocol, node 1 can determine if a packet it
transmitted is received successfully by node 2. Therefore,
we considered only the packets that were successfully
received by node 2 in our analysis of false positives.

We used these preprocessed packet traces to compute the
percentage of packets received by node 2, but not overheard
by node 1. If [ is the number of packets in the monitoring
window that is not overheard, then

l

Gu :W (1)

is the fraction of successfully transmitted packets, but not
overheard for the current window. (Though the size of the
window varies from 1 to W when fixed window monitor-
ing is used, using W rather than the current window size in
the denominator results in the correct calculation of ¢,.) If
qw > T (equivalently, | > [WT1), where T is the threshold
to suspect next hop, then node 1 suspects node 2 of
dropping data packets. An IDT uses additional mechan-
isms such as trust values to actually suspect the nodes.
Even in such cases, not overhearing is a key event that
triggers the detection process.

We ran the experiments 24 times since the noise levels
change frequently and unpredictably. For each experiment,
given a window size, W, and threshold, 7', we determined
the time node 1 takes to suspect node 2. If j is the number of
packets sent by node 1 at the point where ¢, exceeded
threshold, we can calculate the time to suspect the next node
as £, where ) is based on the f sending rate. Fig. 2 gives the
average time it takes for node 1 to suspect node 2 as
malicious sliding window monitoring. Even though the
overall packet delivery ratio is about 98 percent and node 2
transmits all the packets it receives, node 1 suspects it within
a few seconds, even with high threshold values (T > 10%).

The three-node testbed is small, nodes are stationary,
and only one connection between the end nodes with static
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routes is used to eliminate routing overhead and contention
among the test nodes. Since there is only one active
connection, there is no interference noise from other node
transmissions within the studied network. All of the noise
seen by the nodes is generated by external sources in the
environment surrounding the nodes. Though all nodes are
normal, the environmental (background) noise causes
node 1 not to overhear some of node 2’s transmissions.
Even though the overall packet delivery ratio is about
98 percent, node 1 suspects node 2 within a short period of
time. However, this phenomenon cannot be observed using
the commonly used simulators, such as ns-2, Glomosim, or
OPNET, since they use a constant background noise as the
default noise model and do not implement realistic models
of environmental radio noise. This points out the inade-
quacy of the evaluations of monitoring-based detection
techniques using simulators. Therefore, it is important to
understand the impact of noise on monitoring techniques.
To this extent, we develop analytical models to validate the
experimental results and to study the effectiveness of
monitoring.

2.2 Additional Notes and Discussion Regarding the
Experiments

We have conducted a large number experiments, though
the data and the graphs we present are based on
24 experiments. We varied transmission (Tx) power using
the wl program that came with the driver supplied by the
router manufacturer. We used three settings: 32, 64, and
128 mW. We also varied the distance between the routers
initially, but we choose the power setting of 32 mW and 20’
spacing between routers to ensure high packet delivery rate
(98 percent in our experiments). Our objective is to show
that, in a normal scenario with very few actual packet
losses, monitoring can be highly error prone.

The overheard rate may be impacted by noise as well as
multipath effects due to the long corridor we used for the
experiments. The multipath effects should be analyzed
more carefully by varying the distances between the
routers. The experiments we conducted do not separate
the multipath effects from noise. However, as we show in
Section 4.2, the simulations based on the noise modeling we
proposed and the standard open space radio signal
propagation model used by the Glomosim simulator [31]
match the experimental results closely. Though we do not
directly show, our simulations seem to indicate that
multipath effects are not a significant factor in our
experiments. Also, studies have shown that radio noise in
a typical work environment is very high [8]. Our own
measurements (Section 4) confirm this. For this reason also,
we believe that noise rather than multipath effects is the
significant factor in the experiments we reported. We
believe that the multipath effects are more significant at
higher Tx power levels. This was confirmed by our
experiments for Tx power settings of 64 and 128 mW,
which resulted in higher not-overheard rates. We did not
use this data in our analysis.

Though the our testbed is small, we believe that it is
sufficient to show (a counter example) that monitoring is
inaccurate. If monitoring is not effective in a three-node
network, it likely to be even less effective in a larger
MANET where there is interference due to transmissions by
other nodes which adds to the background noise.
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Fig. 3. A finite Markov chain with an absorbing state. ¢ denotes not-overheard probability.

3 ANALYTICAL MODELS

We now present an analytical model to validate the
experimental results. Let ¢;,7;, and o; denote, respectively,
the number of packets transmitted, received from previous
hop, and overheard retransmissions of next hop by node ¢,
for i =1,2,3. It is clear that r; = 0y =t3 = 03 =0 for the
three-node setup we used in the experiments. Also, t; > ry >
ty and o; < ty. If node 2 is not malicious and no packets are
lost due to congestion (which is the case in our experiments),
then r9 = to. We calculate the overall not-overheard rate due to
environmental noise, denoted ¢, as follows:
=0

q= ; (2)

T2

pii—1 = P|The oldest packet in current window is not
overheard N The newest packet in next
window is overheard|current state = s;]

= P[The oldest packet in current window is not
overheard|current state = s;] - P[The newest
packet in next window is overheard|current
state = s;]
i

Zw(l—%

pii+1 = P[The oldest packet in current window is

if 0<i<ln, (3)

overheard N The newest packet in next window
is not overheard| current state = s;]

= P[The oldest packet in current window is
overheard| current state = s;] - P[The newest
packet in next window is not

overheard|current state = s;]
:@—%J%if0§i<b (4)

It is noteworthy that node 1 knows r; due to MAC level
ACKs from node 2. The not-overheard rate can also be
considered as the probability that a packet received by node 2
was not overheard by node 1. The not-overheard rate ¢ is a
key parameter in the development of the analytical model.

3.1 Sliding Window Model

We model the state of sliding-window-based monitoring
using a discrete-time Markov chain. More specifically, we
use the number of not-overheard packets in the monitoring
window as the state of the monitoring by node 1. The
window slides to the right with each packet received by
node 2. Therefore, packet receptions of node 2 are the time
steps in the Markov chain.

The discrete-time Markov chain has L + 1 states, where
L < T < £, as shown in Fig. 3. The state i, denoted as s;,
indicates the case where i packets in the current window
are not overheard by node 1. State s, denotes the state
where all of the W packets in the current window are
overheard. State s; indicates the state where L of the most
recent W packets is not overheard, which means the
fraction of not-overheard packets is beyond the threshold
to suspect the monitored node. The purpose of the Markov
model is to determine analytically the expected time to
suspect its next hop by a monitoring node. Therefore, s, is
an absorbing state. Such Markov models are commonly
used to analyze the expected time to encounter a bug in a
software system [27].

Given that the Markov chain starts in state sy, the average
number of steps (packet transmissions) it takes to reach
state s;, indicates the time it takes to suspect the next node.

To complete the Markov model, we need to derive the
state transition probabilities. Let p;; denote the transition
probability from state s; to state sj, i.e., the probability that
the number of packets not overheard in next sliding
window will be j given the value i in the current sliding
window. Only transitions s; — s;41 for 0 <i < L,s; — 5,1
for 0<i< L, and s; — s; for 0 <4 < L are feasible since
with any new transmission, the number of not-overheard
packets can increase by 1, decrease by 1, or remain the
same. So p; ; = 0, if |i — j| > 2. Since s/, is an absorbing state,
prj = 0, for j # L. Assuming that the not-overheard packets
in a sliding window are uniformly distributed, p;;—1, p; i1,
and p;; are given in (3), (4), and (5).

L= pii—1 — Pii+1 ‘ ifo0<i<L
:1—#(1.—@— (1-%)a
Pii = :l—q—% (5)
1-¢ ifi=0
1 if 1 = L.

The transition probability matrix of the Markov chain is
given by

Poo Po1 O - 0 0

pio P11 pi2 O e 0 0

P=| i i ' '
0 A 0 pr-ir-2 PrL-1,L-1 PL-1L

0 e e e . 0 1

It can be partitioned so that

Q|C
(51e) o
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where @ is (L — 1) x (L — 1) substochastic matrix describ-
ing the probabilities of transition only among the transient
states. C is a column vector and 0 is a row vector of
(L — 1) zeros.

Now, the n-step transition probability matrix P" has

the form
" n C/
P" = ( % 1 > (7

where C' is a column vector whose elements will be of no
further use. The (i,j) entry of matrix Q" denotes the
probability of being in state s; after exactly n steps starting
from state s;. For the finite Markov chain with an absorbing
state, the matrix I — @ has an inverse, M = (I — Q)fl. Let ¢;
be the expected number of steps before the chain enters the
absorbing state, given that the chain starts in state s;. Let ¢
be the column vector whose (i+ 1)th entry is ¢;. Then,
t = Mwv, where v is a column vector, all of whose entries are
1. Note that t, is the expected number of steps before
entering the absorbing state when the chain starts from
state sy. Therefore, for the experimental network, ¢, denotes
the number of packets that node 1 transmits before it
suspects that node 2 as malicious node. If the average
packet sending rate by node 1 is ), the average time taken
for node 1 to suspect node 2 will be £.

For each experimental data set, we calculated the not-
overheard rate ¢ using (2) from the end of warmup to the
instant of suspecting the next hop and compared the time to
suspect value obtained from the analysis of experimental
data with the model’s estimate for the same ¢ value. Fig. 4
gives the time to suspect values from experiments and the
model as a function of ¢. Once again, we used window size
W =150. These figures show that experimental results
match the results from the Markov model, especially for
thresholds < 10%.

3.2 Fixed Window Model

Let X denote the random variable for the number of not-
overheard packets in a fixed window of size W and ¢
denote the overall not-overheard rate. Then,

PIX =i] = (VZV) ¢1-q" "

In a fixed window, the probability that less than L = [WT
packets are not overheard is given by

pix<s=3 (V)i -0

i=0

Then, the average number of fixed windows that need to be
checked before a fixed window has L or more packets not
overheard is

N—— L ! L ®)

R 0

-1
1=0

Since the monitoring node checks if ¢,, window not-
overheard rate given by (1), exceeds the threshold even
before the current window is full, the average time taken
for node 1 to suspect node 2 can be calculated as
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Fig. 4. Comparison of time to suspect values from experiments and
Markov model for sliding window monitoring.

(N —1) - W+ Rg,]/\, where Ry, is the average size of
the current fixed window when the threshold is reached.
Ry, estimated using a truncated negative binomial dis-
tribution, is given by

ik K]].j: 11)qL(1 - Q)H}
Ry, =5 .
C O a]

k=L

9)

Once again, we compare the time to suspect values
from the experiments with those given by the model for
the same g value. The results are given in Fig. 5.

A visual inspection of Figs. 4 and 5 indicates that the
analytical models and experimental results match closely.
For a more rigorous evaluation, we calculated the root-
mean-square error (RMSE), a commonly used statistical



BOPPANA AND SU: ON THE EFFECTIVENESS OF MONITORING FOR INTRUSION DETECTION IN MOBILE AD HOC NETWORKS

Fixed Window, Threshold 5%

(2]
o

Model
Testbed +
%50 1
©
c
3
D40 B
K2
ks]
230 - —
7]
3
2
220 r |
[0}
£
=10 ¢ 1
+
0 L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6
not-overheard rate(q)
Fixed Window, Threshold 10%
60 ,
Model
Testbed +
50 1

N
o
T

Time to suspect (seconds)
w
o

O L L L L L L
0 0.1 0.2 0.3 04 0.5 0.6
not-overheard rate(q)
Fixed Window, Threshold 15%
60 ,
Model
+ Testbed +

a
o
T

N
o
T

N
o
T

Time to suspect (seconds)
w
o

-
o
T

0 0.1 0.2 0.3 0.4 0.5 0.6
not-overheard rate(q)

o

Fig. 5. Comparison of time to suspect values from experiments and
model for fixed window monitoring.

measure, to compare the differences between the experi-
mental results and the corresponding model values (see
Fig. 6). Smaller RMSE values indicate that experimental
results match those from models better. When the threshold
is 10 percent and sliding window is used, there is about
3 second difference between the time to suspect obtained
from experiments and those estimated from Markov model.

Given that monitoring is imperfect and environmental
noise could increase false positives, it is surprising that
none of the published results on monitoring-based intru-
sion detection techniques analyzed the impact of noise.
Also, to the best of our knowledge, there are no extensive
evaluations of monitoring techniques using testbeds (with
10 seconds of nodes), and most large network evaluations
were done using simulations. This points out a major
inadequacy of the existing simulators for ad hoc networks:
the lack of a reasonable background noise model. In the
next section, we develop a parameterized noise model that
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Threshold 5% 10% 15%
Fixed window | 2.4653 | 4.8528 | 7.5718
Sliding window | 0.4499 | 3.0180 | 7.1270

Fig. 6. RMSE for the values obtained from experiments and the
analytical models.
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Fig. 7. Background noise changes for 16 hours (11:30 pm to 3:30 pm the
next day).

can be incorporated in the current simulators to simulate
environmental noise.

4 Noise MODEL FOR SIMULATORS

In this section, we describe a parameterized noise model
that we originally developed in an earlier work to study the
impact of noise on the performances of routing protocols
[23]. We used an expanded testbed of eight Linksys wrt54g
Wi-Fi routers to measure the background noise. We
obtained the noise levels using the wl program that came
with the driver supplied by the router manufacturer. This
noise information is sent to a specified desktop machine via
the Ethernet. Due to clock resolution, each router could
provide the noise level it sees once in every 100 ms. Fig. 7
shows the noise data sampled from one of the eight routers
in the testbed. The noise levels are much higher than the
default ambient noise levels (for example, —100.97 dBm at
290 K temperature in Glomosim) used in current simula-
tors. (The current simulators model interference from other
nodes’ transmissions, whereas the ambient noise is gener-
ated by independent external sources in the environment
surrounding the node.) Also, the noise fluctuates and at
times reaches very high values. The noise data gathered
from other routers have the same distribution and nearly
identical histogram charts.

41 GEV Noise Model

We used MATLAB to analyze and model the noise levels
captured in our measurements. MATLAB [26] has an
extensive library of distributions including Gaussian,
gamma, and lognormal. In such diverse fields as image
processing, architectural acoustics, and electronic music, it
is often assumed that noise conforms to Gaussian distribu-
tion. But, we found that neither Gaussian nor any of the
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Fig. 8. Quantile-Quantile plot between generated data and the empirical
data.

commonly used distributions, such as gamma and lognor-
mal model, the noise levels seen by wireless routers
accurately. Further investigation revealed that the GEV
distribution [14] models this background noise fairly
accurately. If X is a GEV random variable, then its
cumulative distribution function (CDF) and probability
density function (PDF) are given as follows:

Fla: ,0,6) :exp{f [1 + 5(% - u)},w}

for 1€ 5) > 0 (10)
fasp,0,€) :% [1 +§($ ; u)} ~1/e-1

{55}

or 5(%) >0, (11)

where 4 is the location parameter, the scale parameter is
o > 0, and the shape parameter is £. The shape parameter &
governs the tail behavior of the distribution.

We also drew the quantile-quantile (Q-Q) plot of the
empirical data and the corresponding GEV random
variates. If the theoretical distribution (GEV, in this case)
accurately models the empirical data (sampled noise, in our
case), then the Q-Q plot would be linear [13]. Fig. 8 shows
that the points from GEV distribution fall closer along their
reference line than the points from Gaussian distribution.
Therefore, GEV distribution models the measured noise
data better than the Gaussian distribution. The estimated
parameters of GEV distribution for the sampled data are:
w=—93.768 dBm, 0 =1.579, and £ =0.179. The sampled
data from other routers can also be modeled using GEV
distribution with slightly different parameter values. This is
to be expected since the environmental noise changes
slightly for different labs or offices even on the same floor
of a building. See [23], which introduced the noise model,
for more details.

We incorporated the GEV noise model with the default
parameters p = —93.768 dBm, ¢ =1.579, and £ =10.179,
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Fig. 9. Time to suspect comparison between testbed, model, and
Glomosim simulation with GEV noise model. Window size W = 150.

which correspond to the empirical data, in Glomosim
simulator. The GEV random variates are generated using
the inverse transform technique [13]. The default noise
model in Glomosim is a constant value —100.97 dBm,
corresponding to 290 K temperature. When GEV noise
model is used, the GEV random variate for the background
noise level for each node is determined every 1 ms. Each
node has a different random seed, which ensures that the
noise levels generated are independent.

4.2 Three-Node Network Simulations

We simulated the three-node experimental network using
the Glomosim simulator. When the default noise model is
used, node 1 never suspects node 2. However, when GEV
noise model is used, node 1 tends to suspect node 2. The
time to suspect value depends on the ¢ value, which
depends on the GEV parameters as seen in the experiments.
In GEV, ¢ only affects the tail behavior of the distribution
slightly, and ¢ has more impact on the distribution. So, we
adjusted o to simulate network environments with different
q values.

We compared the time to suspect values obtained from
simulations with those from the experiments and the
analytical model estimates. Owing to space considerations,
we show, in Fig. 9, the comparisons for the case of
10 percent threshold only.

The RMSE calculations, given in Fig. 10, for the
simulated and analytical model values indicate that there
is a close agreement between the analytical models and
the simulations.
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Threshold 5% 10% 15%
Fixed window | 0.2647 | 0.2193 | 1.8623
Sliding window | 0.0002 | 0.0279 | 2.8541

Fig. 10. RMSE for difference between simulation results and corre-
sponding values estimated from models.

GEV model is similar to the naive sampling indicated by
Lee et al. [15]. They propose the closest-fit pattern matching
(CPM) approach to generate noise from sampled noise
traces to efficiently and accurately simulate packet delivery.
Although the CPM technique captures the autocorrelation
effects better, we choose GEV model for the following
reasons: 1) GEV model is a simple parametric model which
can be easily adjusted to simulate different background
noise profiles, while CPM requires a new noise trace files in
each case; 2) CPM is computationally expensive; 3) GEV
model gives reasonably accurate results based on our
evaluation of simulation and experimental results.

Another method to verify the proposed noise model is to
collect the noise level at nodes 1 and 2 during the
experiment and use them for simulations to see if the not-
overheard rate ¢ and time to suspect values match those
from the corresponding experiment. If an experiment
duration is ¢ seconds, t < 80 seconds, the number of noise
samples collected will be 80,000 or less assuming 1 ms
sampling interval. This may be enough to develop an
accurate parametric model. However, our approach was to
develop a general noise model based on samples collected
for 16 hours, and see if the simulator fortified with the noise
model produces results that match the experimental results.

5 SIMuULATION OF MoBILE AD Hoc NETWORKS

We used the Glomosim simulator, v2.03 [31] to evaluate the
effectiveness of monitoring in larger mobile ad hoc net-
works using both GEV noise model (with parameters
w=—93.768 dBm, o= 1.579, and £=0.179 that give the
default ¢ =0.1) and the Glomosim default noise model,
which is a constant noise of —100.47 dBm (¢ = 0). The actual
not-overhead rate is higher due to interference from
competing transmissions in an ad hoc network. Each node
maintains a monitoring window for each traffic flow
(connection) though it. In each traffic flow, each data packet
sent from the source node is assigned an increasing ID.
Only when current node overhears next hop forwarding
packets j, it will consider packets with ID between ¢ and j as
not-overheard, where ¢ is ID of the last overheard packet
and ¢ < j. Therefore, it can avoid false positives due to
random back offs at the MAC layer.

We implemented the Watchdog intrusion detection
technique (denoted, WD) proposed in [20] as a representa-
tive monitoring-based IDT. Following the description given
in [20], our implementation has three components: watch-
dog, pathrater, and sending extra route request when all
routes contain one or more suspicious nodes. In the
watchdog component, each node that sends or forwards
data packets monitors its next hop. When a node suspects
its next hop, it will sends an ALARM message to the source
node (if it is not the source). When a route break occurs, the
monitoring windows in the broken route path are cleared.
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Number of Nodes 50

Node Speed [1-19] m/s

Node Mobility Modified Random Waypoint
Pause Time 0 second

Field Size 1500 m x 300 m

2200 m X 440 m
200 sec.

1800 sec.

600 sec. (if used)

Warmup time

Total simulation time
Attack start time
Radio Range 250 m

MAC 802.11

Number of Traffic Pairs | 10

Traffic Load 100 Kbps (CBR/UDP)

Routing Protocol DSR
Data Packet Payload 500 bytes
Link BW 2 Mbps

Noise Models:
Glomosim default
GEV noise model:

-100.97 dBm (constant)

m -93.768 dBm

o 1.579

13 0.179
Monitoring:

Threshold, T 10%

Window type Sliding and fixed

Window size, W 150

Fig. 11. Simulation parameters.

In the pathrater component, nodes that are not suspected
are given a small positive value, less than 1, as their initial
rating, which is increased gradually with passage of time.
When an alarm message is received by the source node of a
route, it will assign a rating of —100 to the suspected node.
The rating of a path is the average of the ratings of the
nodes on the path. The source chooses the highest rated
path if there are multiple positive paths to the same
destination. If all paths to its destination have negative
ratings, then a new route discovery is initiated (the third
component of the IDT) to find a path with positive rating.
Although WD is a simple IDT, its primary element—
monitoring—may be used as the key step to initiate the
detection process in more elaborate IDSs.

We used both sliding and fixed window monitors in our
simulations since the type of window used in [20] is not
specified. However, both produced nearly identical results
(often, the curves for both cases are superimposed on each
other when plotted). Therefore, we present the results for
the sliding window case only.

The simulation parameters are listed in Fig. 11. With
50 nodes, the node densities (p, the average number of
nodes in a radio transmission area) are about 10 for the
larger fields and 22 for the smaller fields. We chose long
corridor type fields so that routes are likely to have
multiple hops. (If one-hop paths are used most of the time
or if the network is disconnected most of the time, then the
impact of the attacks and the effectiveness of Watchdog
IDT cannot be seen clearly.)

In order to avoid packet losses due to congestion, we only
used 100 kbps traffic load. We use the following performance
metrics to evaluate the effectiveness of monitoring:

e Number of nodes suspected. The total number of nodes
suspected by one or more nodes in the network.

o Total false positives. The total number of times that
normal nodes are suspected.
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Fig. 12. Number of normal nodes to be suspected in normal ad hoc
networks.
Threshold 10%

250 T T T T

Default, 1500mx300m ——
Default, 2200mx440m —&—
200 + GEV, 1500mx300m —+—
GEV, 2200mx440m

150 -

100 |

Total false positives

50 -

1000 1200 1400 1600 1800
Time (s)

200 400 600 800

Fig. 13. Total false positives in normal ad hoc networks.

All simulations were run for 1,800 seconds with 200 seconds
first used for warmup; and the attackers, in the simulations
with attacks, start dropping packets at 600 seconds. Each
configuration was repeated 20 times and the results were
averaged; the 95 percent-level confidence intervals are
indicated for all data points.

5.1 False Positives in Normal Mobile Ad Hoc

Networks
First, we ran a set of simulations to see the extent of false
positives in MANETs. We used only monitoring of next
hops; there were no malicious nodes in these simulations.
Figs. 12 and 13 give the number of normal nodes suspected,
and total false positives, respectively, as a function of
simulation time in both high-density and low-density
networks with threshold T' = 10%. When GEV noise model
is used, nodes are suspected much faster and more false
positives occur. If the simulation is run for long enough
time, all nodes in the network will be suspected. Even when
default constant background noise is used, there are many
false positives due to interference noise from competing
transmissions. It is interesting to note that false positives
are higher in low-density networks than in high-density
networks though the interference noise is likely to be less in
the former networks. The reason is, in low-density net-
works, the hop distances are larger and signals overheard
during monitoring are weaker correspondingly. Also, since
there are more hops in each route in the low-density
network, there are more chances that nodes will be
suspected. Although fewer false positives occur when the
threshold is higher (e.g., 15 percent), malicious nodes can
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Fig. 14. Throughput in normal networks.

take advantage of it and drop more packets without being
detected. Therefore, in the remaining of this paper, we
choose 10 percent as the detection threshold.

5.2 Impact of Intrusion Detection Technique on

Normal Networks

There are too many false positives when monitoring is used
in normal mobile ad hoc networks, especially when the
background noise is simulated using the GEV noise model.
However, it is not clear if the false positives have any
impact on the network performance: since there may be
multiple paths between a source and its destination, when a
node is suspected, an alternate path that does not involve
the node may be used without any loss of performance.
Therefore, in this set of simulations, we used the overall
network throughput as the performance metric. We
measured the network throughput with and without GEV
noise model. Then, we turned on the Watchdog IDT
(explained above), reran the same configurations and
measured the network throughput.

We measured the number of delivered data bytes every
100 seconds after the warmup time. The network through-
put at any time is given by dividing the total bytes
delivered up to that point since warmup by the time
elapsed since the warmup.

Fig. 14 shows impact of Watchdog IDT (denoted, WD) on
the network throughput in both high-density and low-
density networks without attacks. In a high-density net-
work, WD does not affect the network throughput sig-
nificantly since sources can find alternate paths to get
around the false positives. But in low-density networks, due
to very high false positives and due to relatively fewer
alternate paths, WD hurts the network performance,
especially when GEV background noise model is used.
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Fig. 15. Throughput in networks with attackers. Ten nodes are malicious
nodes which drop all received data packets.

5.3 Effectiveness of Intrusion Detection Technique

in Networks with Attackers
Next, we evaluated the effectiveness of WD when there are
attackers, who participate in the route discovery process as
normal nodes but drop all received data packets. We
simulated the case where 10 of the network nodes are
malicious and drop all data packets. This is the attack
model used in [20]. It is noteworthy that it is much harder
to detect malicious nodes when they drop selectively.
Therefore, the simulated attack presents an easier challenge
for an IDT.

Fig. 15 shows network throughput when the 10 mal-
icious nodes drop all received data packets starting at
simulation time of 600 seconds. Without WD, the network
throughput degrades to 40 percent in the high-density
network, and to 46 percent in the low-density network. In
the high-density network, with WD active, the network
throughput is improved from 53.3 to 90.1 kbps with default
background noise, and from 54.7 to 65.8 kbps with GEV
background noise. In the low-density network, however,
WD does not mitigate the impact of the attacks, especially
when GEV noise model is used.

To further understand the throughput behavior, we
looked at the total false positives and true positives for
different packet drop rates (see Fig. 16). The two networks
differ significantly in the number of true and false positives.
First, let us consider the dense network with 1,500 x 300 m?
field. The number of false positives is larger than the
number of true positives when drop rate is low (5 to
20 percent), and false positives are close to true positives
when for 40 to 100 percent drop rates. It is difficult to
differentiate malicious nodes from normal nodes, especially
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Fig. 16. Comparison of false positives and true positives with 10
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when the drop rate is low. As shown in Fig. 15, WD is
effective for this case and mitigates packet dropping
reasonably well (the throughput drop is arrested near the
end of simulation). Under the GEV noise model, the
number of false positives is two to three times the number
of true positives. Consequently, WD fails to mitigate packet
dropping effectively.

Let us consider the sparse network, 2,200 x 440 m?. Even
with the default background noise model, the number of
false positives are about 2.5 times that of true positives.
Because of the lower node density, the distances between
consecutive nodes in a path are likely to be closer to the end
of the nominal radio range; therefore, the interference noise,
which is modeled by the simulator, from competing
transmissions by other nodes in the network is a significant
factor. When GEV noise model is used, the number of false
positives are even higher—about 3.5 times the true
positives. Consequently, WD has an adverse impact on
the network performance when GEV noise model is used:
the throughput is slightly higher when WD is not used even
when the attackers drop packets.

5.4 Discussion

The simulation results for Watchdog IDT in [20] appear to
differ significantly from those presented in this paper for
several reasons. Marti et al. [20] use a square field with high
node density (p > 20). Therefore, the paths used in their
simulations are mostly short paths with many alternative
paths to bypass suspected nodes. Also, they simulated their
networks with default noise model and for only 200 seconds
after the attacks are launched. As the network operates
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longer, the performance deteriorates significantly, espe-
cially when the environment is noisy.

A typical IDS will complement monitoring with addi-
tional techniques to reduce false positives. Even in such
systems, monitoring because of the ease and simplicity of its
implementation is likely to be the early warning indicator,
which triggers more accurate and expensive secondary
methods. Obviously, there is an overhead or cost associated
with false positives. If an early warning system is prone to a
large number of false positives, then there is a significant
cost incurred even if nodes are not falsely suspected or
labeled as malicious. This cost can be the loss of throughput,
more control packet transmissions, increased energy con-
sumption, or larger packet delays.

To quantify this cost, we used WD. Of course, WD does
not have a secondary warning system, and the network
throughput captures the effects of false positives due to
monitoring completely, especially in a normal network with
no attacks. In this sense, our use of WD may be considered
as that of an aggregation technique that combines the cost of
false positives due to monitoring into a quantifiable
throughput loss.

In a more practical system in which a simpler early
warning technique triggers a more expensive and accurate
detection method, these false positives may lead to another
type of cost. If the most common case is no attacks, then the
high overhead caused by false positives may reduce use of
the IDS with users opting to manually turn it on when high
security is needed or to run it only on nodes with sufficient
energy, computational, and network resources.

If monitoring is used simultaneously with other techni-
ques, to reduce the lead time, then the high false positive
rate due to monitoring is likely to pollute the data used for
detection. We have not evaluated this effect in this study.

It is possible to reduce the number of false positives due
to monitoring by having higher threshold values, allowing
a node to exceed the not-overheard threshold multiple
times before labeled as suspicious, or both. This will likely
mitigate the false positive problem in normal networks
without attacks (the most common case). However, such a
design reduces the true positive rate, and the network
becomes less responsive and less resilient to attacks. In the
unlikely event of an attack, the detection will take a long
time since malicious nodes can exploit the detection rule
by alternating between normal and attack modes and stay
undetected for long periods.

6 RELATED WORK

Many IDTs for MANETSs have been proposed in literature.
They can be classified as: signature-based detection,
anomaly detection, and specification-based detection. A
survey of intrusion detection techniques is given in [25].
Based on how the data needed for intrusion analysis are
gathered, IDTs for MANETs can be divided into three
approaches: monitoring-based, probing-based, or explicit
feedback among intermediate nodes in routes. (Explicit
feedback among end nodes is commonly used for both
security and performance tuning. We do not specifically
review the literature on this technique.)
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Watchdog and pathrater [20] are the first monitoring-
based technique proposed for ad hoc networks. In this
approach, nodes monitor transmission activities of neigh-
boring nodes and analyze packet contents to detect and
mitigate an attack after it is started. When a node suspects
its next hop, it will send an alarm message back to source
node. Pathrater is used to punish suspicious nodes by not
including them in routing. However, monitoring-based
intrusion detection is not likely to be accurate for ad hoc
networks due to varying noise levels, varying signal
propagation characteristics in different directions, and
interference due to competing transmissions within the
network. In this paper, we showed monitoring gives very
high false positives when environmental noise effects are
considered. We tried to complement the existing results by
quantifying the benefits and overheads of watchdog in
more realistic noise conditions.

The Watchdog technique has been extensively studied
for its deficiency, false positives and has been modified or
supplemented it with other mechanisms to make it more
accurate. Specific results include CONFIDANT [7], [5],
CORE [21], and LARS [12]. These results use different
policies to propagate monitored information (trust) to
others in order to mitigate misbehavior and enforce
cooperation. In particular, Buchegger and Le Boudec [5]
present a Bayesian approach to assign trust and reputation
ratings the CONFIDANT system. Their simulation results
(with the default noise model of a constant value) show that
incorporating secondary trust information gathered from
other nodes with the primary trust information directly
gathered (by monitoring) can significantly speed up the
detection of misbehaved nodes. The effectiveness of these
approaches needs to be carefully evaluated with more
realistic noise simulation models or experiments.

There are several other papers on using a reputation/
trust system for MANETs [11], [19], [18]. Luo et al. [19]
describe a localized trust model in which multiple nodes
are collaboratively used to provide authentication services.
Eschenauer et al. [11] describe a trust framework which
encompasses Pretty Good Privacy (PGP) [32] like trust
models. Liu et al. [18] present a dynamic trust model to
address packet drops by selfish and malicious nodes. In
general, a trust system requires propagation and dissemi-
nation of trust. Also trust evidence must be distributed
redundantly to handle the unreliable connectivity in
MANETs [11]. Trust propagation is complex, not well
understood in the context of ad hoc networks, in which
trust collection and dissemination may be incomplete and
problematic and has high computational requirements
(e.g., collaborative authentication [19]) and communication
overhead (requiring localized or limited distance network
floods [18]).

Buchegger et al. [6] modified passive monitoring with a
passive acknowledgment (PACK) mechanism in which a
node resends a not-overheard packet multiple times. Using
a three-node testbed, they show that PACK loses signifi-
cantly fewer packets than a nonmonitoring-based approach.
However, the retransmission overhead is not analyzed.
PACK requires additional book keeping, such as timers and
retransmissions. Based on our result that noise makes



BOPPANA AND SU: ON THE EFFECTIVENESS OF MONITORING FOR INTRUSION DETECTION IN MOBILE AD HOC NETWORKS

overhearing unreliable, it is likely that many of these
retransmissions are redundant.

In probing-based approaches [1], [29], [30], [16], nodes
query other nodes and receive their reception and transmis-
sion of data. Analyzing this information, they can detect
intruders. However, probing-based approaches have dif-
ferent issues. First, it will incur more delay to detect
malicious nodes since an anomalous activity needs to be
suspected /identified prior to probing for relevant data from
other nodes. Second, malicious nodes can give false probe
data to avoid detection. Third, malicious nodes can also
collude to avoid detection, or frame up legitimate nodes, or
deceive legitimate nodes to send incorrect information.

The explicit feedback approach by Liu et al. [17] requires
downstream nodes (toward the destination) send explicit
ACKs to upstream nodes two hops away from them. This
achieves the intended effect of monitoring with explicit
ACK packets between nodes two hops away from each
other. This method overcomes the limitations of monitoring
at the cost of additional packet transmissions, book keeping,
and computational overhead. We have used a similar
approach, denoted p-hop crosscheck, p > 2, to detect control
packet falsification in on-demand route discoveries in
another paper [24]. In addition to the computational and
book-keeping overhead, this approach works only for
isolated and noncolluding malicious nodes. For example,
if there are two malicious nodes in a row in a route that
always send the anticipated feedback ACKs upstream and
ignore any ACKs from downstream nodes, then the 2ACK
scheme for data packets as well as the two-hop crosscheck
for control packets do not work [24].

This paper is based on our earlier conference paper [3].
Compared to the conference version, this paper presents the
fixed window model, additional analysis for different
threshold values, more details on RMSE analysis, descrip-
tion of the GEV noise model, and significantly more
simulation results including the simulation analyses of a
second network with higher node density. The GEV noise
model and the experiments to capture the noise samples are
originally described in another paper [23], which investi-
gates the impact of noise on the performances of routing
protocols. This paper uses the noise model to investigate
passive monitoring and its effectiveness.

7 CONCLUSIONS

Several monitoring-based intrusion detection techniques
proposed in literature rely on each node passively
monitoring the data forwarding by its next hop to mitigate
packet dropping attacks by insider nodes. Though mon-
itoring-based intrusion detection is not likely to be
accurate for ad hoc networks due to varying noise levels,
varying signal propagation characteristics in different
directions, and interference from competing transmissions,
there are no specific studies on the impact of noise on false
positives and the impact of false positives on network
performance.

In this paper, we presented quantitative evaluations of
false positives in monitoring-based intrusion detection for
ad hoc networks. We showed that, even for a simple three-
node configuration, an actual ad hoc network suffers from
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high false positives. We validated the experimental results
using discrete-time Markov chains and probabilistic analy-
sis. However, this problem of false positives cannot be
observed by simulating the same three-node network using
popular ad hoc network simulators such as ns-2 with
mobility extensions, OPNET or Glomosim, because they do
not simulate the noise seen in actual network environments.
To remedy this, we developed a parameterized noise model
based on GEV distribution function. With the noise model
incorporated in the Glomosim simulator, we showed that
the three-node network simulation reveals the same false
positive patterns that the experimental network produced
and the analytical models predict.

We used the simulator fortified with the GEV noise
model to study the impact of monitoring-based intrusion
detection on larger ad hoc networks. Our results indicate
two potential problems with monitoring-based IDT: 1) IDT
may reduce performance of a normal network, especially
when the network is not dense, and 2) IDT may not improve
the network throughput since any mitigation of packet
dropping by malicious nodes is offset by suboptimal paths
used owing to false positives.

The IDT we evaluated is a simple one and depends
primarily on monitoring. A more elaborate IDT may use
additional mechanisms such as trust values of nodes and
cross-checking other nodes monitoring data before actually
suspecting a node. However, even in such techniques,
monitoring may be used as the key step to initiate the
detection process. This can increase the overhead of
intrusion detection and may deter its use. In light of that
our results indicate a fundamental problem with monitor-
ing-based IDTs: the key technique used is unreliable, and
any detection process based on it is likely to be error prone.

In future, we intend to investigate the effectiveness of
probing techniques in the presence of colluding attackers.
We also would like to develop new intrusion detection
techniques that avoid the problems of passive monitoring.
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