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Distributed Fault-Tolerant Quality
of Wireless Networks

Larry C. Llewellyn, Kenneth M. Hopkinson, Member, IEEE, and Scott R. Graham, Member, IEEE

Abstract—A mobile ad hoc network (MANET) consists of a group of communicating hosts that form an arbitrary network topology by
means of any of several wireless communication media. MANET communications represent a diversification in communication
technology necessary to solve the stringent end-to-end requirements of QoS-based communication networks. Of the many
challenges in this complex distributed system, the problem of routing based on a predefined set of customer preferences, critical to
guaranteeing quality-of-service, is the focus of this research. Specifically, this paper modifies a cluster-based QoS routing algorithm
for mobile ad hoc networks with the aim of providing fault tolerance, which is a critical feature in providing QoS in the link failure-prone
environment of mobile networks. Performance of this new fault-tolerant cluster-based QoS wireless algorithm is evaluated according
to failure recovery time, dropped packets, throughput, and sustained flow bandwidth via simulations involving node failure scenarios

along QoS paths.

Index Terms—Fault-tolerant distributed routing, mobile computing, wireless networks.

1 INTRODUCTION

UALITY of Service (QoS) is a defined level of perfor-

mance in a communications network required by a
type of network traffic. Strict QoS requirements are present
in many network situations, such as in critical infrastructure
control and military communication. Effective mobile ad
hoc networks (MANETSs) require QoS capabilities that
provide fault tolerance and fast recovery when links fail
on an intermittent or permanent basis.

MANET topologies can change often and unpredictably.
Most protocols for multihop MANET routing maintain best-
effort routes. High churn or node mobility can cause QoS
requirements to become unachievable. Excessive node
mobility can lead to topology changes before network
updates can propagate [1]. Chakrabarti and Mishra call this
combinatorial stability. Only combinatorially stable net-
works are considered in this paper.

This paper addresses stability and recoverability, two
main problems in routing QoS traffic in mobile networks.

The first issue is stability. With most ad hoc wireless
networks that support QoS, each node acts as a router. In
many distributed reactive routing schemes, if a node does
not know the QoS parameters of its neighbors it broadcasts
the route request packet and the neighboring nodes share
their QoS parameters using broadcast packets. The broad-
cast packets used to discover the QoS parameters of nodes’
neighbors and negotiate QoS paths can flood the network.

o L.C. Llewellyn is with the Systems Validation Branch, HQ AFNIC/EVSS,
203 W. Losey St., Scott AFB, IL 62225.

E-mail: Larry_C.Llewellyn@us.af.mil.

e K.M. Hopkinson and S.R. Graham are with the Department of Electrical
and Computer Engineering, Air Force Institute of Technology (AFIT)/
ENG, 2950 Hobson Way, WPAFB, OH 45433-7765.

E-mail: Kenneth.Hopkinson@afit.edu, Scott.Graham.5@us.af.mil.

Manuscript received 26 June 2008; revised 26 Mar. 2009; accepted 24 Dec.
2009; published online 4 Aug. 2010.

For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2008-06-0249.
Digital Object Identifier no. 10.1109/TMC.2010.148.

A clustered approach can lower this communication over-
head to more scalable levels by limiting intercluster control
communication to gateway nodes.

The second issue is minimizing the QoS impact due to
network failures. If a supporting node fails when traffic is
routed through multiple hops then, in the worst case, the
connection must be rerouted from the source. This global
fault-recovery method requires that the source renegotiate a
new QoS path, which is costly in computation and
communication. If multiple sources were using the failed
node in QoS paths then each source must negotiate a new
path. Despite its cost, this failure method appears to be
common. By contrast, if a protocol allows intermediate
nodes to repair connections locally then the associated
connections will likely only suffer minor disruption. Local
repair can make the difference in meeting time-sensitive
deadlines. Experiments, in this paper, show that a local
fault-tolerant algorithm has significant benefits over a
global alternative. The local method used is similar to Chen
and Nahrstedt’s [2] repair algorithm where QoS connection
failures are handled at the site closest to the link breakpoint.
While the two protocols share this similarity, there are
major differences in the repair methods used and the fault
tolerance achieved. This paper presents the key features,
definitions, and assumptions of the extended fully dis-
tributed cluster-based (EFDCB) routing protocol, which is a
fault-tolerant extension to FDCB [3].

2 RELATED WORK

2.1 Quality-of-Service Routing
Many QoS routing algorithms have been proposed.

Local Proportional Sticky Routing (PSR) was the first
localized QoS routing scheme [4]. PSR is simple yet stable
and is used as an alternative to global QoS routing. PSR
operates in two stages: proportional flow routing and
computing flow proportions. Proportional flow routing
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determines the path of traffic during a cycle. When a cycle is
complete, a new flow proportion is found for each path
based on blocking probabilities.

Credit-Based Routing (CBR) uses a credit scheme that
rewards a path for flow acceptance and penalizes rejection.
Path selection is based on path credits where higher credit
paths are preferred. CBR also monitors flow blocking
probabilities for each path to use in future paths [5].

Quality-Based Routing (QBR) determines paths based on
QoS metric values [6]. QBR monitors a path and translates
flow values into average path qualities. QBR rewards
successful flow and punishes flow error like CBR. The
difference is that CBR assigns credits based on blocking
probabilities while QBR uses average path quality.

Delay-Based QoS Routing (DBR) uses the average delay
on a path to make its routing decisions [7]. The average path
delay is used to measure the path’s quality, and, upon flow
arrival, the path with the least average delay is used to
reroute the incoming traffic.

Stable and Delay Constraints Routing (SDCR) [8] works
in two major phases: routing discovery and maintenance.
Link stability and delay constraints are considered in the
two phases. When in discovery, it sends a QoS request to
the destination first, and selects the most stable path. If
there is no stable path, it will broadcast a route request
(RREQ). When the source receives a route report (RREP), it
will calculate end-to-end delays and determine the best
path. When maintaining source routes, SDCR monitors the
network delay changes. If it receives a route error message
(RRER), it will delete that route from its cache. It will then
recalculate the best route for traffic.

2.2 Multiconstrained QoS Routing

Multiconstrained QoS routing, an NP-Hard problem [9],
involves finding and reserving routes that satisfy multiple
independent constraints. QoS routing can be centralized,
distributed, or hierarchical.

Centralized routing requires that nodes maintain global
knowledge at the source. The global state has to be updated
frequently to cope with network dynamics.

Distributed routing algorithms can be more scalable
since path computation is divided among the nodes. Many
distributed schemes make routing decisions hop-by-hop,
but rely on global state for QoS routing.

Hierarchical routing shares advantages of both centra-
lized and distributed schemes. Each node maintains partial
network state. Groups of nodes are aggregated for scal-
ability. Source routing occurs at each hierarchical level to
find feasible paths, with some inaccuracy [10].

2.3 Quality-of-Service Routing Using MPLS and
Multicommodity Flows

Multiprotocol Label Switching (MPLS) is a QoS support

scheme where packets can be labeled. Routers use the labels

to forward packets along predefined paths. MPLS is often

used with a multicommodity flow optimizer, which finds

routes based on flow constraints [11].

Mitra and Ramakrishnan [12] use multicommodity flows
for QoS routing with MPLS. Applegate and Thorup [13]
show this technique can yield large routing tables. Thorup’s
solution requires an algorithm like Mitra’s [12] as a front
end. Memory size in both can be prohibitive.

TABLE 1
Sequence of Operations for Maintaining Communications

1  Each idle node broadcasts a short beacon packet at periodic intervals
containing its cluster ID announcing it is an active cluster member

2 When a non-cluster member receives the packet it learns it can contact
the neighboring cluster through that node

3 Thereceiver sends a short beacon reply packet containing its cluster ID

4  The two nodes are then gateway nodes which provide access to each
others cluster

2.4 Quality-of-Service Routing Using Heuristics

Yuan [14] proposes two heuristics for multiconstrained
QoS routing based on the extended Bellman-Ford algo-
rithm (EBFA). EBFA computes a feasible path given
multiple constraints, but its runtime/memory can be
exponential. The motivation of both heuristics is to limit
the number of optimal QoS paths maintained in each node.
The time complexity of the limited granularity heuristic is
O(INIKIELI) for N nodes, E edges, and k QoS constraints.
The second heuristic, limited path, limits QoS paths in each
node for scalability. O(IN12lg(IN)) QoS paths are stored
per node, which is optimal. The probability of finding a
QoS path that satisfies constraints is high. Both heuristics
employ source routing and scale poorly.

3 QuALITY-OF-SERVICE ROUTING UsING FDCB

Nargunam and Sebastian’s fully distributed cluster-based
(FDCB) [3] algorithm addresses QoS routing in MANETS.
With FDCB, scalability issues in centralized routing are
circumvented. The FDCB method is similar to hierarchical
routing in that each cluster node only maintains QoS
information for other cluster members, a fraction of the
network. Thus, an increase in nodes should not significantly
increase memory or runtime. Further, since global network
state is shared and maintained by all, the communication
overhead is greatly reduced. In FDCB, if a flow’s source and
destination are not in the same cluster, the source sends a
route request packet to the gateway node, which forwards it
to adjacent cluster(s). As long as the intermediate gateway
nodes and links can support the requested QoS constraints,
this process is repeated until the destination is found. The
discovered path is sent back to the source and the resource
reservation made. The distributed nature of FDCB allows it
to avoid unmanageable shared global state. FDCB’s dis-
tributed routing adds initial latency for the route discovery.
Route requests may not flood the network due to its clustered
architecture, but precautions are needed to ensure route
queries propagate efficiently from source to destination.

Each cluster in the FDCB algorithm has the potential to
obtain gateway nodes, which maintain communication with
adjacent clusters via the operations in Table 1.

With FDCB there is no need for the node aggregation
used in hierarchical routing since clusters need not be
represented by an aggregate data structure.

Although FDCB addresses many of the difficulties with
traditional QoS routing scehemes, it employs a distributed
routing method, which has significant drawbacks. The
paper does not discuss how failures are handled. Support
for cluster joins and leaves are provided; however, the
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TABLE 2
Cases of Disruption

1  The source moves out of range of the first intermediate node in the path.

2 An intermediate node moves out of range of a preceding or successive
node (preceding node is on the source’s side of the intermediate node,
successive is on the destination’s side of the intermediate node)

3 The destination moves out of range of its preceding node (preceding
node is the last intermediate node before the destination)

4 Any node in the path leaves the network

problem of mitigating the impact on QoS in the event of an
unpredicted node leave/failure is untreated. This event is
presumably handled by the common practice of rerouting
QoS traffic from the source.

Nargunam and Sebastian [3] illustrate the problems with
conventional clustering where each cluster has exactly one
node, the “cluster-head,” responsible for organizing the
cluster. Traditional cluster construction requires a cluster-
head election each time one fails or leaves. If the cluster-head
fails or leaves, all of its information and responsibilities
become orphaned until a replacement is elected. To avoid
this problem, the authors propose a distributed architecture
in which each cluster member maintains a QoS parameter
table for each of its cluster members and a table containing all
cluster gateway nodes. FDCB has no effective way to handle
connection failures. The distributed routing design pre-
sented is also ill-suited for MANET QoS applications. FDCB
provide a path to developing a scalable QoS routing solution,
but it could be improved in challenged environments.

4 FAULT TOLERANCE IN Q0S AD Hoc NETWORKS

Each cluster in the FDCB routing algorithm has the potential
to obtain gateway nodes, which maintain communication
with adjacent clusters via the operations in Table 1.

Chen and Nahrstedt [15] propose fault tolerance techni-
ques to reduce the impact of QoS disruptions due to link
failures or network dynamics. The authors only consider
applications which do not require hard guarantees [15].
Further, the authors state that many multimedia applica-
tions accept soft QoS and use adaptation techniques to
reduce the level of QoS disruption [16], [17], [18]. One
technique is to repair the broken path at the failed node by
shifting traffic to a neighboring node and then routing
around the breaking point. This method avoids the costly
process of rerouting the traffic from the source. The second
technique uses multilevel path redundancy, which estab-
lishes multiple paths for the same connection. First-Level
Redundancy sends all data along all paths independently,
which is used for “critical” QoS. Second-Level Redundancy
sends data along the primary path and only uses secondary
paths if the primary path is lost. It is used for connections
which can tolerate a degree of QoS failure. Third-Level
Redundancy is like second level except the secondary paths
are not reserved; only calculated. On failure, an attempt is
made to reserve the secondary path.

The repair algorithm responds to the Table 2 cases. When
case 2 occurs, the preceding node broadcasts a repair-request
message to its neighbors asking if any of them can take over

for the defunct intermediate node. The neighbors that have
links to the successive node reply with their resource
availabilities to the preceding node. If, based on the replies,
the preceding node finds node i has sufficient resources for
that role, it adds the link from itself to node i to the routing
path and then sends i a path-repair message. When i receives
the path-repair message, it reserves the required resources
and adds the link from itself to the successive node to the
routing path. Once the path has been repaired, a path-
validation message is sent to insure that the repaired path
does not violate its end-to-end constraints. A path-validation
message is sent to the destination which sends the message to
the source. The source checks to see if the end-to-end
requirements have been violated. If they have, the source
reroutes the traffic or QoS negotiation with the user
application takes place. The QoS ratio is the performance
metric used during simulation of the repair algorithm,
defined as

total QoS time

oS ratio = .
@ total QoS time + best — effort time

Best-effort time is the amount of time spent repairing the
broken path. The x-axis is the mobility ratio, defined as

mobility ratio

total moving time

~ total stationary time + total moving time

For a mobility ratio of less than 10 percent, the QoS ratio is
above 95 percent. For a mobility ratio above 35 percent, the
ratio is below 80 percent, which is a bad fit for highly
mobile networks.

5 PROBLEM DEFINITION

5.1 Introduction

This paper considers the fault tolerance problem in
MANETs designed to support QoS requirements. The
previous section discussed two techniques that have been
offered [2]; a path redundancy technique and a local repair
algorithm. The protocol presented here is similar to the local
repair algorithm by Chen and Nahrstedt [2] where QoS
connection failures are handled at the site closest to the link
breakpoint. While the two protocols share this similarity,
there are significant differences in the repair methods used
and the level of fault tolerance achieved. This section
presents the motivation, definitions, and assumptions for
the EFDCB routing protocol, which is a fault-tolerant
modification to FDCB routing [3].

5.2 Goals and Hypothesis

Nargunam and Sebastian [3] propose a fully distributed
algorithm, FDCB, in which clustering provides scalability
by lowering the amount of information maintained at each
node. FDCB addresses MANET scalability, but fails to
effectively maintain QoS connections when nodes move,
leave the network, or fail. Since the authors provide no
details, it is assumed that when a QoS path suffers a link
breakage, the source reroutes the traffic via a completely
new path. FDCB also uses a distributed reactive routing
technique which causes undesired packet transmission
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latency for QoS routing applications. FDCB does not
provide a feasible routing scheme or local fault tolerance,
but serves as groundwork to that end.

EFDCB extends FDCB to provide the scalability, effi-
ciency, and fault tolerance critical to maintain QoS connec-
tions in a mobile environment. The goal is to determine if
EFDCB provides efficient QoS route recovery by testing it
against FDCB. EFDCB algorithm only has to consider a
fraction of the total number of network links when finding a
new feasible path through local recovery in the cluster.
Hence, the burden of negotiating newly calculated QoS
paths, as is done in rerouting by FDCB, is significantly
reduced. For this reason, the new local method is expected
to have a considerable runtime advantage resulting in
improved QoS route recovery time. Faster QoS recovery
time equates to lower QoS disruption time, fewer dropped
packets, and improved throughput.

5.3 Approach

To achieve efficient fault tolerance, FDCB is augmented so
that the cluster-head has complete “cluster-state” knowl-
edge. The cluster-head has connectivity awareness for all
cluster nodes. This awareness includes knowledge of all
QoS connections currently supported by each cluster
member, each member’s resource availability, and the
cluster topology. With this scheme, when cluster node :
leaves the cluster, due to mobility or failure, and the QoS
paths supported by i are broken, the cluster-head has all
information required to begin a renegotiating to reestablish
the connection with minimal delay if possible. The cluster-
head collects this knowledge via two processes: commu-
nication with the other clusters via clustered FSR and local
clustered information exchange. These processes ensure,
with high probability and low overhead, that knowledge of
the systems’ state is maintained both to repair existing
paths and to initiate new ones.

5.4 System
5.4.1 Services

EFDCB is targeted toward routing QoS packets in challen-
ging MANET environments where links can break often
and without warning. In these environments, a routing
algorithm needs a contingency plan for link breakages.
EFDCB provides QoS disruption mitigation. When EFDCB
is successful, packets are delivered such that the applica-
tions dependent upon the network are fully functional.
Conversely, if the protocol fails then the dependent
applications could suffer lengthy QoS disruptions since
the source will have to resort to rerouting.

5.4.2 Design

Clustering. Numerous schemes exist for clustering nodes in
MANETs. FDCB constructs nonoverlapping clusters based
on bandwidth and delay factors for each link [3]. The
Virtual Grid Architecture (VGA) [19] uses location informa-
tion from the Global Positioning System to cluster nodes
into a fixed rectilinear virtual topology to make routing and
network management as efficient as possible.

The clustering algorithm adopted here is a modified
version of the Generalized Distributed and Mobility
Adaptive Clustering (GDMAC) [20]. GDMAC performs

well in the mobility models (random waypoint, random walk,
and Manhattan) used in many simulations [20]. The protocol
is also straightforward, allowing easy modification.

GDMAC has been modified to support fault tolerance in
QoS supporting MANETs. It is notable that the original
clustering algorithm was not applied to QoS. This means an
underlying QoS routing protocol and supporting proce-
dures (i.e., for path negotiation, resource reservation, and
resource deallocation) must be added. The QoS support
procedures have been built into GDMAC in EFDCB.

The optimum cluster size is dependent on several
MANET characteristics. Gupta and Kumar [21] show that
the per node capacity of a random ad hoc network, where
each of n nodes can transmit W bits per second, is
©(W/y/nlogn) using a geometric analysis. The cluster size
used leaves sufficient bandwidth for the required control
packets (assuming each node has a 54 Mbps transmission
rate). It is assumed clusters are situated so that the only
intercluster nodes able to communicate are gateways.

Larger cluster sizes typically yield high communication
overhead and lack diversity from other networks with
respect to changing channel conditions. Gupta et al. showed
that larger cluster sizes can cause exponentially higher
overhead [22]. Kim and Wang created a way to reduce
cluster overhead. Their Bandwidth Adaptive Clustering
(BAC) makes cluster members forward their overhead
messages probabilistically [23]. The more bandwidth a
member has, the higher the likelihood it will send its
overhead communications. In tests, BAC has shown better
performance on the construction and maintenance of
mobile clusters, adaptivity to network conditions, and
effectiveness in reducing overhead.

QoS routing. FDCB uses an on-demand reactive routing
scheme, but EFDCB adopts a more proactive approach. The
QoS routing scheme used by EFDCB is Clustered Fisheye
State Routing (CFSR) [24]. CFSR proposes a clustering
framework to reduce redundant broadcast routing control
messages. For FSR, the frequency at which node i sends its
link state information to node j depends upon the distance
from ¢ to j (namely, the scope j falls in). The greater the
distance, the less frequent the link state update.

In CFSR, cluster-heads and gateways execute the original
FSR protocol to send link state updates about the cluster,
while ordinary nodes only send link state about themselves.
This limits the messages from much of the network
(ordinary nodes). The result is lower overhead. Assuming
combinatorial stability, each node becomes aware of the
complete network state with lower bandwidth. The dis-
advantage is that routing control messages traverse the
network at a lower rate since a smaller fraction of network
nodes broadcast full control messages.

In CFSR’s protocol, redundancy is not minimized;
however, it is reduced considerably. In order to minimize
redundancy, each cluster-head must not receive link state
information about the same cluster from more than one
gateway node. To accomplish this, the entire clustered
network is partitioned into as many disjoint sets as the
cluster has gateway nodes. These partitions are determined
by finding the distance from each external network node to
each local cluster gateway node using the topology graph
stored in the routing table. The local cluster gateway node
that has the shortest distance to the external network node
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TABLE 3
CFSR Definitions

Symbol Definition

i generic node executing the update procedure.

A; set of nodes adjacent to i (i's neighbor list).

N set of external network nodes local gateway node i is closest to
(i will exchange updates with this set of nodes as described
above).

TT:.LS(j) denotes the link state information reported by node j. Link
state info contains j’s k weights wjx for the k QoS constraints
for each link j reports on.

TT. SEQ(j) denotes the time stamp indicating when node j generated this
link state information.

TT: i's topology table. Each destination j has an entry in table TT;
for each QoS constraint (e.g., if three constrained routing is
used j would have TT.LS(wj), TT:.LS(wj2), TT:.LS(wjs)). Also,
for each link state entry in TTi j has TT:.SEQ()).

NEXT; i's next hop table. NEXT(j) denotes the next hop to forward
packets destined for j on the path with the required constraints.

Scope defined as the set of nodes that can be reached within a given
number of hops.

D; Di(j) is the shortest path distance from i to j.

includes that external node in its control message. Due to
the FSR mechanics, the gateway node closest to the external
network node will be the first gateway to receive the
external node’s link state update. It is responsible for
providing this information to the cluster.

CFSR is QoS ready with the addition of bandwidth and
channel quality information to the link state entry. EFDCB
uses CFSR with a few modifications. CFSR is initiated once
the clustering converges. Before presenting CFSR pseudo-
code, some definitions are provided. The definitions are
summarized in Table 3. Bolded text represents modifica-
tions to the original definitions.

Each node begins with an empty neighbor list 4; and an
empty topology table 7T'7;. After node ¢ initializes in the
Nodelnit() procedure, it learns about its neighbors by
examining the sender ID of each received packet. i then
calls the Pkt_process procedure on the received packet which
contains the link state information from its neighbors.
Pkt_process ensures the most up-to-date link state informa-
tion is used by comparing the local sequence number with
the embedded sequence number pkt.SEQ(j). If any entry in
the incoming message has a newer sequence number for
destination j, TT;.LS(j) is replaced with pkt.LS(j) and
TT;.SEQ(j) is replaced by pkt.SEQ(j).

FindSP(i) generates the shortest path tree rooted at i. The
shortest path algorithm needs to generate a next hop table
for each path created. This shortest path tree is used by i to
send route updates to the set of nodes in N.

RoutingUpdate(i) scans the topology table and if D;(z) is
within range of the fish-eye scope level I, TT;.LS(x) is
included in the update message. The Updatelnterval;
attribute is used to adjust the link state update frequency
for the various fish-eye scopes.

By adopting this new scheme over the original FDCB
method of distributed routing, more memory is required.
Also, although routing control packets are sent periodically,
CFSR significantly reduces the broadcast control packets
over pure proactive protocols. This is because only a small
fraction of the network population is allowed to broadcast
full control messages. These changes allow each node to be

© Intermediate Ordinary Node
@ Gateway Node

@ Potential Gateway Node

@ Source

@ Destination

® Cluster-head

Fig. 1. Clustered ad hoc network.

TABLE 4
Cases Causing QoS Path Breakage

Ordinary I node moves out of range of a succ I node in the cluster
Ordinary I node moves out of range of a prec I node in the cluster
I GWN moves out of range of a succ I node in the cluster

I GWN moves out of range of a prec I node in the cluster

I GWN moves out of range of a succ I GWN in the cluster

I GWN moves out of range of a prec I GWN in the cluster

I GWN moves out of range of a succ GWN not in the cluster

I GWN moves out of range of a prec GWN not in the cluster

I CH moves out of range of a succ or prec I node in the cluster

O W0 Ul WN =

aware of the complete network state at a lower bandwidth
cost. Given that link state information is now available,
using any efficient QoS routing algorithm (such as the
limited path heuristic [14]), EFDCB is able to routing
packets based on QoS constraints.

Fault tolerance. Definitions are presented here to enable
a detailed description of the EFDCB fault-tolerant approach,
which are summarized in Table 5. An intermediate (I) node is
a node that supports a QoS connection. A defunct (D) node is
a cluster node that previously was an I node; but has either
moved out range or failed. A gateway node (GWN) is a
cluster node used to communicate with an adjacent cluster.
A potential GWN (P-GWN) is a node with the ability to
communicate with the same adjacent cluster as the current
GWN,; it is only used if the current GWN becomes a D node.
For example, in Fig. 1, n3 is a P-GWN since it can
communicate with n1 and the current GWN is n4 since it
is communicating with nl. A cluster-head (CH) is a cluster
node responsible for monitoring and updating a cluster
table that records all QoS connections the cluster supports.
CH is also responsible for initiating QoS connection repairs.
A CH can also be a GWN. An ordinary node is neither a CH
nor a GWN.

In Fig. 1, let n0 be the source, 110 the destination, and P
the QoS path. Each node 7 in P has a successive (succ) node
except n10. Further, each node 7 in P has a preceding (prec)
node except n0. In a clustered ad hoc network, P can be
broken if any of the cases in Table 4 occur.

When D node is an ordinary I node (cases 1 and 2), the
cluster-head aggregates all available cluster resources and
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TABLE 5
EFDCB Definitions

Symbol Definition Symbol Definition

v The generic node executing the algorithm (assume v Gateway  Cluster node that is used to communicate with an
includes the node’s ID and its weight) [20] Node adjacent cluster

Cluster-head this variable in which every node records the ID of the Ch(-) Boolean variables. Node v sets Ch(u), , (MHUTE)” to
cluster-head that it joins (note Cluster-head, denotes node . . _ .
o's cluster-head) [20] true.when either it sends a CH(v) message (v = u) or it

receives a CH(u) message from oy v,y e I'(v)) [20]-

Cluster-head cluster node which has the responsibility of monitor- NT node QoS table containing the current existing con-
ing and updating the cluster QoS table as well as han- nections of the associated node (i.e., v.NT refers to
dling connection failures (i.e., aggregating cluster re- node v’s own QoS table) - sent by node v to the clus-
sources, supported QoS connection constraints, find- ter-head when either 1) node v’s cluster-head changes
ing feasible paths through the cluster, and notifying 2) node v’s QoS table changes or 3) update to the
cluster nodes of the new paths) cluster-head is required

GatewayNode(-) ~ Boolean variable. GatewayNode(v) is set to true when AT table containing the current available resources of the
cluster node v is adjacent to, and can communicate associated node (i.e., v.AT refers to node v’'s own
with, at least one other node in an adjacent cluster available resources table)

Wo Weight of v, an integer > 0 which indicates how good v CcT cluster QoS table containing the address, weight, NT
is for serving as a cluster-head. The weight might be and AT of all cluster nodes - knowledge shared by all
computed based on the nodes bandwidth, available cluster nodes via periodic cluster-head broadcast
energy, or its mobility [20]

Ordinary Node  cluster node which is neither a gateway node nor a w(p) is the vector sum of all weights for all constraints of all
Cluster-head edges in path p

GT table of gateway nodes for the cluster, maintained and Cluster(v)  the set of nodes in v’s cluster, initialized to & [20]
broadcast by the cluster-head

r © the set of all nodes one hop away from v in the same I ©) the set of all nodes one hop away from v and in anoth-
cluster [20] er cluster. Initialized to null and only updated if v
becomes a Gateway node

H The H parameter implements Ghosh and Basagni’s idea that K Ghosh and Basagni’s K parameter controls the spatial
cluster re-organization is only needed when the new cluster- density of the cluster-heads. Up to K 20 cluster-heads
head is better than the current one by some specified value. are allowed to be neighbors. By setting K > 0, the prob-
That is, a clustered node switches to a newly arrived cluster- ability of cluster re-organization is lowered since a
head only when the weight of the new cluster-head exceeds cluster-head is not forced to give up its position when
the weight of its current cluster-head by a quantity H. By up to K-1 cluster-heads with bigger weights become its
manipulating the value of H, the likelihood a node will neighbors [20]. To simplify EFDCB, values of H = 0 and
switch to a new neighboring cluster-head can be controlled K = 0 are used. By setting H = 0, K = 0, cluster-heads are
[20]. not allowed to be neighbors.

Connex(-) Boolean variable. Cluster-head sets Connex(v) to true ConnexParams(-) table of variables into which the Cluster-head
when v is supporting a connection. Connex(v) is false oth- records the QoS connection requirements of a
erwise particular path (e.g., ConnexParams(p) would

contain a table of the QoS parameters for path p)

PATHN newly calculated set of feasible paths through the cluster PATH(dst) the set of QoS constrained paths to the destination dst
for the supported connections

PATHF set of paths through the cluster that have failed due to the PATHo the original set of feasible paths through the cluster

failed node

for the supported connections

cluster supported QoS routes and recalculates the feasible
QoS paths for the routes that traverse the cluster. If the
required resources for the QoS constraints of all paths exist;
these new routes will be the optimum routes for the current
cluster. The route resource negotiations are all handled
within the cluster and the route is restored. When the
D node is a GWN (3-8), the CH first ensures the P-GWN can
handle the QoS constraints previously supported by the
now D GWN. Once it is determined that the P-GWN can
handle this traffic, the necessary resources are allocated.
After a specified time not receiving a beacon message from
the D GWN, the preceding node to the D GWN attempts to
route traffic through the P-GWN and restores the route.
Note: Case 9 (the CH fails while supporting a QoS
connection) is addressed in Section 5.4.2.4.

EFDCB reduces the impact of a connection failure since
the cluster-head has complete cluster connectivity aware-
ness. The result is efficient fault-tolerant QoS route
maintenance for MANETs.

EFDCB protocol. EFDCB is primarily message driven,
as is FDCB [20]. The procedure executed by a node

depends on the message it receives. Several message types
are exchanged between nodes. Key definitions are also
given. To aid in distinguishing parts of the protocol,
assumptions and definitions that are originally in FDCB
are in plain text. Modifications or additions are in bold. A
summary is in Table 6.

At cluster set up, or when a node is added to the
network, its variables are initialized as follows:

Cluster-head NULL
Connex(-), Ch(-), GatewayNode(-) false
PATH,, PATH;, PATHy, 11 (v), Cluster(-) ©

CT, GT, NT, AT, ConnexParams(-) NULL
H, K 0

Assumptions

e All nodes have a unique identifier.
e Two nodes can be members of the same cluster if
their euclidean distance is <30 m (as in 802.11g).
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TABLE 6
Messages
CH(v) Used by a node v to communicate to its neighbors that it CLSTR_PRMS_UP  Broadcast at regular intervals by cluster-head v to
intends to be a cluster-head [20]. DT(v, CT) update each cluster nodes’ cluster QoS table.
HELLO(x, Creates gateways via adjacent nodes in other clusters. Node REPAIR(ConnexPa Sent by the cluster-head to notify node v to restore a
Cluster-head, u periodically sends a HELLO(u, Cluster-head, Init) message rams(p), v, Cluster-  connection using the information in the ConnexPa-
Init) to try to receive a HELLO(v, Cluster-head, Reply) reply. head) rams(p) table.

RESIGN(w) Used to require the resignation from the role of cluster-head
of any receiving cluster-heads whose weight is <w [20].

QOS_VALID( Message sent from source u to destination v after a failed link

) has been repaired. The QoS validation message is initialized
by source u after receiving LINK_REPAIRED(failed_node, v,
u) from the new node to the path - v.

JOIN(v, u) Sent by a node v to communicate to its neighbors that it will
be part of the cluster whose cluster-head is node u [20].

CTS(u) Sent by destination v back to source u along the initialized

(intermediately allocated) path to finalize the resource alloca-
tions

e Nodes signal their presence via a periodic beacon
message and the drifting in of a new node is realized
when its new neighbors hear its beacons.

e  When a node does not hear from a known neighbor
within a set timespan, it assumes the neighbor is
either “dead” or out of range due to mobility

e Determining a node has failed or moved out of range
will prompt the corresponding procedure.

e All procedures are atomic except Route_traffic(u)
and the procedures executed to respond to the
PATH(v.rsrcs, dst) and CTS(u) messages.

e  When discussing the relevant features of EFDCB, it
is assumed that the CFSR has converged. That is, all
gateway nodes in the network have path routing
table entries for all network destinations. Also, it is
assumed that applications using this QoS network
have soft QoS constraints and use adaptive techni-
ques to minimize QoS disruptions. Combinatorial
stability is also assumed. Further, nodes have the
ability to send and receive best-effort traffic along
with QoS traffic. Finally, resources allocated for a
QoS connection are deallocated after a specified
period of inactivity.

Messages and Procedures

EFDCB is an inherently message-driven protocol. A
summary of the key messages is shown in Table 6. An
illustration of two of the most important procedures in
AFDCB, Node_failure and Init, are illustrated in Fig. 2.

EFDCB'’s protocols are presented next. A few of the basic
clustering procedures are largely the same as in FDCB, but
are included for completeness. Most procedures are new.
As stated earlier, pseudocode appears in bold when it
represents a modification or addition FDCB.

Init. Init remains predominantly as described in FDCB
[20]. When the cluster is initialized, or when a node vis added
to the network, v executes the Init procedure to determine its
role. If among its neighbors, there is a cluster-head with
bigger weight, then v will join it and send a PARAMS
message providing the cluster-head with v's NT and AT
which the cluster-head will then use to update the CT. If no
node exists which has a weight bigger than v, v will be a
cluster-head. In this case, the new cluster-head v checks the

REPAIR_FAILURE
(v, Cluster-head)
PATH(v.rsrcs, dst)

Sent when v's attempts to repair a connection fails.

Used by source v to request resources from each node
u along the path of a new potential QoS connection to
destination dst.

FAILED_CONNE
X(failed_node, p, v)
PARAMS(v.NT,
v.AT, Cluster-
head)

Sent to source v of QoS path p in the event that the
failed connection supporting p could not be repaired.
Used to send information about the supported con-
nections (v.NT), as well as the available resources
(v.AT), of node v to the cluster-head.

number of its neighbors that are already cluster-heads. If they
exceed K =0, then a RESIGN message is also transmitted,
carrying the weight of the first cluster-head (the node with
the lowest weight) that violates the K-neighborhood condi-
tion (the weight is determined by operator miny ). Since
K =0, the node with the largest weight will replace all
cluster-heads in range who have a lower weight than v. A
visual representation of this procedure is shown in the lower
part of Fig. 2.

Node_failure. When node v is made aware of the failure of
node u, v checks if its own role is cluster-head and if v was
in its cluster. If so, v removes u from Cluster(v). In this case,
if 4 was an intermediate node supporting one or more
connections, cluster-head v aggregates all cluster resources
and all supported QoS traffic and determines new feasible
QoS paths. Node v then advises all relevant cluster nodes to
support the QoS connection via the REPAIR message. If all
QoS connections cannot be supported by the available
cluster resources (i.e., an infeasibility exists), the cluster-
head sends a FAILED_CONNEX message to all sources that
were using resources on the failed node and no path
changes are implemented in the cluster. If v is an ordinary

C|USW W, <Wey

Fig. 2. Overview diagram of Node_failure and Init Procedures of
EFDCB.
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node, v was its own cluster-head supporting a QoS
connection, and v is the node with the next weight w, in
descending order after w, (i.e., FJvVze {I'(v) — {u}}:
w, > w,), node v then becomes the new cluster-head and
attempts to fix u’s failed connection. In the case where v is
an ordinary node which is not the next weight w, in
descending order after w,, and u was its own cluster-head
(whether or not supporting a QoS connection), v waits a
specified period of time to receive the CH(y) message from
the cluster node with the next highest weight to u, node y. If
v receives the CH(y) message in the allotted time, v joins y’s
cluster. If v does not receive the CH(y) message in the
required time, v must find a new role for itself. In this case, v
determines if there exists a cluster-head z € I'(v) : w, >
w,. Node v joins the cluster-head with the bigger weight
and sends its NT and AT to its new cluster-head, otherwise
it becomes a cluster-head. In any case, where u was the
cluster-head and was also supporting a connection, the new
cluster-head will attempt to repair u’s failed connection
only if the cluster remains relatively preserved (i.e., the
node next in weight after w, becomes the new cluster-head).
The reclustering process is invoked for each node if node v,
where FvVz e {['(v) — {u}}:w, > w, does not become
the new cluster-head. The time required for re-clustering
will add significant time to the connection recovery process;
therefore, rerouting is employed in this situation. It is likely
the cluster will change very little when a cluster-head fails
since combinatorial stability is assumed. Further, since all
cluster nodes are already aware of the next potential cluster-
head (i.e., this information is broadcast by the cluster-head
via the CT at periodic intervals), once a cluster-head fails
cluster members wait a short amount of time (propagation
delay + processing delay + error) to receive the CH(v)
message from the expected new cluster-head. If the CH(v)
message is not received in the allotted time, all cluster
nodes must determine their new roles. The Node_failure
procedure is shown in Fig. 2.

New_link. New_link is the same as in FDCB except for the
addition of the PARAMS message. Once cluster node v
discovers a new node w, it checks to see if u is a cluster-head.
If w is a cluster-head and weight w,, is greater than the weight
of v's current cluster-head, u becomes v’s new cluster-head
and sends u a PARAMS message. Conversely, if v is a
cluster-head and the number of neighboring cluster-heads is
greater than 0, the weight of the cluster-head « that violates
the K = 0 condition is determined. If w, > w,, node x will be
sent the RESIGN message. If there is no cluster-head z such
that w, > w,, v will no longer be a cluster-head and will join
the cluster-head with the biggest weight. Node v will also
send its new cluster-head the PARAMS message.

Route_traffic(u). Source node v is made aware of the need
to route new traffic by the associated application. Node v
checks its cluster members to see if u is in this set of nodes. If u
is in the current cluster, u’s available resources are obtained
from the CT table. If the required resources are available, they
are reserved and the traffic is sent. If the destination is not in
the current cluster, v forwards the PATH(v.rsrcs, dst) to the
cluster gateway nodes.

The following procedures are initiated when the corre-
sponding message is received:

On receiving PARAMS(u.NT, u.AT, Cluster-head):
performed by the Cluster-head (in this case, node v): On
receiving the message PARAMS(u.NT, u.AT, v), Cluster-
head v updates the CT with this new information. v then
checks the time since the broadcast of the last CT. If
sufficient time has passed, v broadcasts the CT to all cluster
nodes. During construction of a new cluster, the cluster-
head may receive many CT updates. The CT is never sent at
intervals less than some time T'. This allows the cluster to
reach a level of stability before broadcasting cluster table
updates. A CLSTR_PRMS_UPDT(CT, v) message is broad-
cast at regular intervals (similar to the beacon message)
throughout the life of the cluster-head.

On receiving PARAMS(CT, Cluster-head): On receiving
the message PARAMS(CT, Cluster-head), v first ensures that
the cluster-head which sent the message is v’s cluster-head.
Node v then checks to see that the CT has an accurate
account of v's NT and AT. If these two conditions hold, v
records the received cluster QoS table. Otherwise, if v
received from the correct cluster-head but CT is incorrect, v
sends its NT and AT to the cluster-head.

On receiving REPAIR(ConnexParams(p), v, Cluster-
head): On receiving the REPAIR(ConnexParams(p), v, Clus-
ter-head), v first ensures that the cluster-head that sent the
message is v's cluster-head. Node v then checks to see that it
has the resources to support the new connection in the
ConnexParams(p) message. Once resources are verified, v
uses the information it has about the connection (from the
ConnexParams(p) table) to attempt to restore the link. If the
link is restored, LINK_REPAIRED(failed_node, v, u) is sent
from v to source u of the QoS traffic. If v finds it cannot
communicate with the nodes to make the connection, v sets
the boolean ERROR to true, and v.NT and v.AT are sent to
tell the cluster-head whether the connection is reconnected
or not. This procedure is executed for the reconnection of
links that may or may not have failed since the cluster-head
finds a new set of feasible paths for all connections through
the cluster when a failure occurs.

On receiving LINK_REPAIRED(failed_node, u, x): This
concept is borrowed from Chen and Nahrstedt [15]. On
receiving the message LINK_REPAIRED(failed_node, u, x),
source node v sends the QOS_VALID(y, v) to any destina-
tion node y which received QoS traffic that passed through
failed_node. Once y receives this message, it sends the
QOS_VALID(v, y) message enabling v to determine if end-
to-end delay constraint has been violated.

On receiving REPAIR_FAILURE(y, Cluster-head): per-
formed by the Cluster-head: On receiving the message
REPAIR_FAILURE(u, Cluster-head) cluster-head v immedi-
ately sends a FAILED_CONNEX(failed_node, v, x) back to
any source  which was using resources on failed_node.

On receiving FAILED_CONNEX(failed_node, u, v):
node v attempts to reroute QoS traffic via Route_traffic(¢)
for each route » which traversed the failed_node.

On receiving QOS_VALID(v, u): On receiving the
message QOS_VALID(v, u), node v immediately sends a
QOS_VALID(u, v) back to the source.

On receiving HELLO(u, Cluster-head, Init): On receiving
the message HELLO(u, Cluster-head, Init), node v checks the
value of Cluster-head to determine whether the sender, v, is a
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member of the same cluster or of an adjacent cluster. If v is a
member of the same cluster the message is discarded. If the
sender is a member of an adjacent cluster v then checks to see
ifithas received a HELLO message from u earlier. If v has not
received a HELLO message previously from u, v notes that it
can contact the adjacent cluster through node u. Node v then
notifies the cluster-head of this, and transmits a HELLO(v,
Cluster-head, Reply) message to the sender. u receives the
HELLO(v, Cluster-head, Reply) message, notes it can contact
the adjacent cluster through v, and notifies its cluster-head.
Node v is now a gateway node from its cluster to u’s cluster
and u is a gateway node from its cluster to v’s cluster.

On receiving MYNGHBRS((Ilu) Cluster-head): per-
formed by the Cluster-head: On receiving the message
MYNGHBRS(II, Cluster-head), Cluster-head amalgamates the
received II(u) into the cluster gateway table (GT). Cluster-
head then broadcasts the GT to all cluster nodes. MYNGHBRS
messages are likely to be rare so no limitation is imposed on
the frequency with which CLSTR_GN_UPDT(GT, v) mes-
sages can be sent.

On receiving PATH(u.rsrcs, dst): On receiving the
message PATH(u.rsrcs, dst), v checks to see if it has the
required resources using its availability table (v.AT). If not,
v drops the PATH packet. If v has the required resources, it
does an intermediary allocation of the resources (adjusting
the AT to reflect this potential additional connection). If v is
the destination, it allocates the necessary resources and
responds with a CTS(u) message which traverses back to
source u. Node v waits a predetermined amount of time to
receive the data packet. If the data packet is not received in
time, v deallocates the resources. If v is not the destination,
once the intermediary resource allocation is done, a count-
down timer is initiated. If the associated CTS(u) message is
not received before the counter expires, the resources are
deallocated. Note that this procedure is not atomic since
intermediary nodes must be looking for the receipt of the
CTS(u) message or handling other received messages or
events while decrementing its counter. By using the count
down timer, resources are not held for extended periods
when the path is never used (e.g., if a node farther down the
path cannot support the QoS request). If v is not the
destination, v checks to see if the destination is in its routing
table and if the path in the routing table entry meets the
required constraints. If so, v routes the PATH(u.rsrcs, dst)
message on to the destination. If no path exists to the
destination which can support the required constraints, v
discards the packet.

On receiving CH(u): The procedure executed is almost
the same as in FDCB. The exception is the addition of the
two send PARAMS lines which are executed after a node
accepts a new cluster-head. When v’s neighbor « becomes a
cluster-head and v receives the CH message from node u, v
checks to see if w, is larger than the weight of v’s current
cluster-head (plus parameter H, which equals 0 in this work
as mentioned in the definitions). If it is, v joins u’s cluster. If
v is a cluster-head with more than K neighbors which are
clusters (K also equals 0 as mentioned in the definitions),
the cluster-head with the smallest weight is found so that it
may give up its cluster-head position.

On receiving CTS(u): On receiving CTS(u), v checks to
see if it is source . If it is, it begins transmitting QoS traffic.
If not, and v has earmarked resources for u’s connection, the
previous intermediate resource allocation is finalized and
the node table (v.NT) is updated to reflect the connection. v
transmits the update to the cluster-head.

On receiving JOIN(u, 2): The procedure executed upon
receipt of JOIN(u, 2) is similar to the FDCB JOIN(u, v). The
only exception is the addition of a send PARAMS line
executed after a node accepts a new cluster-head. After
receiving the JOIN(u, z) message, the behavior of node v
depends on whether it is a cluster-head. If v is a cluster-
head, checks for one of two cases. Node v checks if u is
joining its cluster (i.e., z = v) or if u belonged to its cluster
and is now joining another cluster (i.e., z # v). In the first
case, u is added to Cluster(v) and sends its NT and AT to the
cluster-head. In the second, u is removed from Cluster(v). If
v is not a cluster-head and u was its cluster-head v has to
decide its role. It will join a new cluster-head x such that
w, > w, if one exists. Otherwise it will become a cluster-
head and ensure the K-neighborhood is respected.

On receiving RESIGN(w): The procedure executed on
receipt of the RESIGN(w) message is essentially the same as
in FDCB. The exception is the addition of the send
PARAMS line which is executed after a node joins a new
cluster. After receiving the RESIGN(w) message, node v
checks if w, < w. If so, v gives up its cluster-head status and
joins the nearest cluster-head with the largest weight. Once
v has received the RESIGN message and confirmed the need
to resign, it sends its NT (supported connections list and
available resources) to the new cluster-head.

5.5 Implosion Avoidance Techniques

Our system does not employ feedback implosion avoidance,
but there are several techniques that can be used. Tracked
Sender List (TSL) [25] is initially an empty message queue
that tracks the most recent network feedback. If Negative
Acknowledgments (NAKSs) are sent throughout the network,
TSL ensures that these NAK messages are not flooding the
network by testing the TSL queue and the NAK message that
the host is forwarding. If the NAK matches a message in the
queue, it suppresses its NAK and forwards the NAK
received. Another technique to mitigate feedback implosion
is Hierarchical ARQ (H-ARQ) [26]. H-ARQ consists of three
schemes: terminal side, Local Recovery Router (LRR), and
Data Broadcast Server (DBS). On the terminal side, instanta-
neous NAKSs will not be sent. If a faulty packet is received or
packets are not received at all then a node will stop data
reception and will display an error message. If after receiving
one or several faulty packets it receives a good packet, a node
will send a NAK for the faulty packet(s). Next, the LRR
scheme uses a cache to store NAK packets. If this cache
reaches a threshold, all other standing NAKs will be
forwarded directly to the DBS system. After the DBS collects
all NAKs from the LRRs, it will calculate whether it can
recover from the NAKSs on its own. If so, it sends the NAKs
back to the LRRs to be recovered. If they cannot be dealt with
locally, the NAKSs in the DBS are broadcasted to the network
for assistance. These techniques are just two of many that can
be incorporated into our system.
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5.6 Summary

This section presents key design features of the EFDCB
routing protocol. EFDCB unifies modified GDMAC and
FDCB protocols and uses CFSR for QoS routing. EFDCB
uses a cluster-head model to mitigate connection failures.
This model employs cluster state knowledge sharing with
to make the cluster-head aware of supported QoS connec-
tions in the cluster. Cluster state knowledge is shared with
all cluster members for use in the event of a cluster-head
failure. CFSR allows each node in the EFDCB network to be
aware of the complete network state with low bandwidth
impact. EFDCB is different from FDCB since link failures
are handled locally instead of rerouting traffic from the
source and QoS traffic is routed with lower packet
transmission delays. The EFDCB fault-tolerant method
differs from Chen and Nahrstedt’s [15] work in that a
clustered approach is used to help avoid their repair
method’s limitations. EFDCB does not require that the
predecessor of a failed node be capable of reaching
the failed node’s successor. EFDCB presents an innovative
solution to fault-tolerant QoS supporting MANETS.

6 ANALYSIS AND RESULTS
6.1 System Boundaries

This research does not focus on EFDCB’s ability to lower
resource requirements [3]; it focuses on EFDCB'’s ability to
reduce recovery time for QoS traffic. The most vital
component of the system is the QoS routing protocol.

Given the focus of this research, the intent is not to
implement all of EFDCB, but only the features required to
determine if the EFDCB QoS routing protocol provides
efficient route recovery. Hence, the clustering portion of
EFDCB is “bootstrapped,” meaning the MANET is already
clustered when the system initializes. Since clustering is
hardcoded, node ¢ moving out of communication range of
node j is simulated by forcing i to fail. CFSR is also
bootstrapped in this simulated system by using a (centra-
lized) QoS routing algorithm which employs source routing
based on bandwidth. The algorithm models traffic requests
as multicommodity flows to determine if traffic bandwidth
demands can be satisfied. With this routing model, all
nodes have complete network state knowledge as with
CFSR; however, traffic flows can be split. Simulations were
run on ns2 using custom middleware application agents
and a custom routing module to emulate EFDCB. The
MANET is simulated by using a method in which lower
bandwidth is used for routing control and beacon packets
(i.e., 54 Mbps throughout cluster) and higher bandwidth
(i.e., 100-200 Mbps links using channels/power to go
between adjacent nodes) for data traffic. Mobility was
emulated by causing links to fail or recover. This allowed
greater consistency between trials and easier comparisons
between EFDCB and FDCB. The standard nodal protocol
stack was used in ns2. Failures were simulated by causing
nodes to go offline.

6.2 Workload

The system workload is the rate at which nodes in the
network fail. A different node failure rate value is used
for each group of simulations. The particular node that

fails is chosen randomly. The number and type of QoS
connection requests made by each source node is kept
constant (as are the number of source-destination pairs
and length of connections) during the simulations;
however, these values are changed between experimental
phases. The intracluster bandwidth is also altered between
experimental phases. Since the EFDCB algorithm is tested
against the original FDCB protocol, the same workloads
are used with both algorithms.

6.3 Performance Metrics

The system performance metrics in this analysis are
connection recovery time, number of dropped packets,
throughput, and amount of sustainable flow bandwidth.
Connection recovery time is the time to reestablish a failed
connection from the moment data traffic stops. This
measures how efficient the routing algorithms are at
repairing broken links, so that conclusions can be made
about how well the offered traffic load is serviced. Traffic is
expected to be serviced at a higher rate in EFDCB than
FDCB since connection interrupts should be minimized.

Testing will illustrate EFDCB'’s ability to maintain flow
demands given network failures over FDCB’s global
rerouting alternative. If EFDCB is only allowed to perform
reconnections locally within the cluster, then in cases where
the cluster cannot support the failed flow due to available
resource limitations EFDCB will have to determine which
flows to support and which to drop. By looking at EFDCB’s
ability to maintain flow demands while removing its ability
to reroute from the source, insight about EFDCB’s efficiency
is obtained. Data collected on the number of dropped
packets and throughput is critical in determining the
protocol’s ability to provide QoS.

6.4 Experimental Factors

6.4.1 System

Due to EFDCB’s distributed nature, it is resilient to many
factors which affect FDCB. EFDCB has the resources to
repair a failed connection or not. For this reason, bandwidth
is a key factor when finding feasible paths. Cluster topology
is a factor since this set of edges must be considered when
finding feasible paths. When considering FDCB, many more
factors affect it since its failure handling is centralized. One
is the distance from source to destination. The message
notifying the source of a failed connection must make its
way from the cluster-head to the source. During routing,
negotiation messages must travel from the source to
relevant clusters. The communication overhead impacts
FDCB'’s performance.

6.4.2 Workload

By manipulating node failure rate it is possible to illustrate
FDCB'’s inability to efficiently operate through failures. The
primary intent is to alter the network by removing nodes
supporting QoS connections. Manipulating these support
nodes has the effect of increasing network dynamics. The
increase in failed connections will demonstrate whether
FDCB provides efficient protection in such challenging
situations. The primary interests here are connection
recovery time, number of dropped packets, throughput,
and the sustainable flow bandwidth.
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TABLE 7
Experimental Design for the First Phase of Experiments
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6.5 Failure Rate

Consider a large QoS supporting MANET in which 3/4 of
the nodes are filling a supporting role—that is 3/4 of the
nodes have no data to send but provide connectivity
between other source-destination pairs. If the supporting
nodes are gradually removed from the network, the number
of possible connections decreases. Since each intermediate
node has a particular set of QoS capabilities, removing one
node could prevent a source from transmitting its data. In
this experiment, nodes are randomly removed and then,
after 200 milliseconds, returned to the network. With this
method, there is no concern for running out of network
resources as long as the rate at which nodes return is greater
than or equal to the rate nodes are removed. The node
failure rate is studied at 11 levels. The exact levels for this
factor are shown in Table 7.

Table 8 illustrates the experiments for sustained flow
bandwidth response. For this set of experiments, the
network is initialized so that the available network
bandwidth is extremely small. EFDCB is not allowed to
reroute from the source. The desire is to saturate the
network so that EFDCB will quickly run out of resources
and be forced to drop flows. All cluster links are reduced
to half the original bandwidth. The average bandwidth per
flow is increased by increasing the number of source
destination pairs as well as the demand for the additional
traffic. The average cluster bandwidth is calculated as the
average bandwidth available from the incoming gateway
node to the outgoing gateway node. For comparison, FDCB
is run under the same load and topology characteristics
just described.

6.6 Evaluation Technique

Using ns2 [27], the system is configured as shown in Fig. 3.
Each node has a simulated best-effort omnidirectional
interface (for cluster maintenance) as well as a QoS
supporting directional interface. At simulation start, all

TABLE 8
Experimental Design for the Second Phase of Experiments
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QoS links have the ability to support any one of the
requested QoS connections, but once a QoS connection has
been established the associated intermediate nodes may or
may not have the bandwidth available to support addi-
tional QoS requests. The arrows indicate gateway node and
potential gateway node connections. Clusters are defined at
simulation initialization. The goal is to balance the gateway
interconnections, the number of cluster, and the overall size
and complexity in the scenario tested.

Once a source-destination connection has been estab-
lished, and the source begins to transmit the data, an
intermediate node is randomly removed. This forces the
routing algorithm to either reroute the traffic from the

Cluster-head ©

Fig. 3. Experimental network architecture.
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Fig. 5. Mean failures versus failure rate.

source (FDCB) or attempt to reestablish the connection
(EFDCB) in the cluster associated with the removed node.
In the case where the source and destination are separated
only by a single node, it is likely that the local connection
reestablishment option will be just as costly (in terms of
recovery time) as having the source recalculate a route. As
more nodes and clusters are added between the source and
destination, the local algorithm will prevail in terms of time
necessary to reestablish the path.

6.7 Experimental Design

The key is to demonstrate that the EFDCB algorithm is
quicker at connection reestablishment. By repeatedly
adding/removing random nodes from the set supporting
the source-destination connections, the connection failure
handling of the protocol under test is exercised. All
experiments are performed on both FDCB and EFDCB.

6.8 Preliminary Testing

Initial testing on the effects of distance between source-
destination pairs for a constant failure rate shows it has a
major impact on performance for the FDCB algorithm.

These initial tests show that the EFDCB system is
minimally affected by this parameter, as shown in Fig. 4.
FDCB displays significant growth in mean recovery time
per failure response as hop counts increase. Experiments
investigating effects of this parameter on EFDCB and FDCB
were not explored further; however, these initial experi-
ments help to confirm the intuition that distance has a
significant effect on the global nature of FDCB.

Additional testing was performed to evaluate the failure
rate at which the competing algorithms begin to be
unsuccessful, assuming instantaneous failure discovery for
both algorithms. The threshold failure rate at which FDCB
begins to break down is roughly 25 failures per second.
EFDCB continues to function properly up to 100 failures per
second. The limiting factor is the maximum recovery time. If
the length of time to repair a broken link is longer than the
interval between new broken links, EFDCB does not

Algorithm ]
@ EFDCB
® FDCB

w

Recovery Time (seconds)
~
-
-

% 1'0 15
Failures per Second

Fig. 6. Raw data plot of recovery time versus failure rate.

TABLE 9
Initial Experimentation Based on
Source-Destination Hop Distance

Experiment |Number |Number
of Hops |of Runs

1 3 10

2 4 10

3 5 10

4 6 10

5 7 10

6 3 10

7 9 10

perform updates fast enough to have an accurate view of
the network state. This relates to combinatorial stability. For
FDCB, the maximum recovery time depends upon the
network size. For EFDCB, the maximum recovery time
depends upon the cluster size, a fraction of the total
network. In both cases, maximum recovery time is a
consequence of network topology.

6.9 Results of Simulations

Fig. 5 illustrates that 9 out of 11 times the EFDCB algorithm
encountered more average failures than FDCB. Therefore,
the FDCB algorithm has a slight advantage in terms of
offered load. That is, the EFDCB algorithm on average must
handle more network failures than its predecessor during
this experimentation. This is completely a product of the
randomness of the failures.

Fig. 6 shows a raw data plot of recovery time versus
failure rate for the failure rate values shown in Table 9.
Recovery time is calculated as the sum of the individual
recovery times of each reestablished connection for a given
single experiment. The graph shows that both algorithms
appear to have linear responses to linear increases in the
failure rate. The data further demonstrate a spreading trend
for FDCB as the rate of failures increase. This suggests a
linear positive correlation where the variation of recovery
time depends on the rate of failures. In general, much more
variation in recovery time is recorded for FDCB than for
EFDCB. This makes sense since more hops means more
packets must be sent for route negotiation with intermedi-
ate clusters, and more transmitted packets means more
processing and propagation time.

The scatterplot of mean recovery time versus failure rate
(Fig. 7) demonstrates an obvious linear relationship
between the two variables. Average recovery time is
calculated as the average time spent handling failures per
experiment (i.e., for the one node failure per 40 ms
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Fig. 10. Raw data plot of dropped packets versus failure rate.

experiment, run 10 times, the average recovery time is
calculated, for the one node failure per 50 ms experiment,
run 10 times, the average recovery time is calculated, and so
on). For every failure rate tested, EFDCB has a faster
recovery time than FDCB by more than a factor of two.

The mean recovery time fitted line plots for FDCB and
EFDCB are shown in Figs. 8 and 9. The 80 percent
prediction intervals capture the mean values indicating
that these mean recovery time models fit the data well. The
prediction interval provides a range within which one can
expect the predicted response for a single sample to fall.
Note that FDCB has more than twice the slope of EFDCB,
hence more than twice the rate of increase for mean
recovery time as the failure rate increases.
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The raw data illustrating the effects of failure rate on
number of dropped packets are shown in Fig. 10. The trend
is similar to that noted for recovery time; however, the
relationship between variables appears to be less linear.

The scatterplot of mean dropped packets versus failure
rate (Fig. 11) and mean percentage (Fig. 12) as well as the
fitted line plot (Fig. 13) and mean fitted line plot (Fig. 14)
provide additional evidence to support the notion of
inconsistency in true linearity for the dropped packet
response to failure rate input for FDCB. The fitted line
shows that a wider prediction interval is necessary to
capture the range that one can expect the predicted
response for a single sample to fall for FDCB compared to
EFDCB with 80 percent confidence. The difference in
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prediction interval ranges is even more noticeable if one
notes that the maximum value for the y-axis of the FDCB
fitted line plot is more than twice that of the EFDCB fitted
line plot. Fig. 13 shows that the prediction interval fails to
capture one particular mean dropped packet for FDCB. This
deviation from consistent linearity for FDCB is likely due to
interaction caused by variations in the distance between the
cluster-head where the failed node is located and any
source directly impacted by the failed node. Thus, the
greater the distance (in hops) between these two nodes, the
more likely QoS packets will be dropped. This is because as
distance increases the time required for the source to realize
the node in its QoS path has failed also increases. EFDCB,
by contrast, does give the impression of a strong linear
dropped packet response to linear increases in failure rate.
This makes sense since EFDCB is somewhat resistant to
variations in distance between the failed node’s cluster-
head and the sources using resources on that failed node.
Similar to the mean recovery time results, for every failure
rate tested, EFDCB has less mean dropped packets than
FDCB by more than a factor of two.

The throughput versus failure rate results (Figs. 15 and 16)
show that both algorithms have a general linear response.
The deviations from concise linearity can be attributed to the
effects of distance interacting with the failure rate. Fig. 17
shows the percentage of optimal throughput versus
failure rate. Percentage of optimal throughput is (realized
throughput)/(throughput without failures).

EFDCB’s mean throughput never falls below the
90 percent threshold. FDCB dips to 79 percent of the
optimal throughput.

The bar chart of sustained flow bandwidth versus failure
rate (Fig. 18) shows that with a saturated network the
“pure” local protocol (EFDCB with rerouting functionality
removed) is able to compete effectively with the global
rerouting algorithm for failure rates up to 6.7 failures per
second. Beyond 6.7 failures per second, the global rerouting
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Fig. 17. Percentage of optimal throughput versus failure rate.
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Fig. 18. Sustained flow bandwidth versus failure rate.

algorithm (FDCB) is significantly better at finding new
routes when link failures occur. The EFDCB protocol is
designed to invoke global recovery in cases where the flow
is no longer sustainable by local resources. The bottom line
is that EFDCB obtains the advantages of both the “pure”
global and the “pure” local recovery methods.

Sustained flow bandwidth remains constant at 16.7 node
failures per second and above due to the criteria used to
pick the random node for failure. The algorithm first checks
to see if the node failure will render the flow irreparable. If
removal of a cluster node makes connectivity through the
cluster impossible, no cluster node will be removed; thus,
the upper bound on the worst-case mean sustained flow
bandwidth is less than or equal to the sum of available
bandwidth through the clusters without breaking connec-
tivity. The choice between the set of flows to support and
the set to drop involves picking the set that optimizes the
sustained flow bandwidth.

Figs. 19a and 19b confidence interval graphs compare the
number of dropped and received packets for EFDCB and
FDCB. EFDCB drops fewer packets and recovers more
packets than FDCB. Figs. 19c and 19d compare the number
of failures and recovery time for EFDCB and FDCB. EFDCB
allows more failures and has lower recovery times.

7 CONCLUSION

This paper presents a distributed fault-tolerant routing
protocol for QoS support in mobile ad hoc networks, which
mitigates disruption time under network failures.

The work demonstrates that the traditional method of
rerouting QoS traffic from the source given a link failure
yields serious negative QoS disruption consequences; an
efficient local fault-tolerant algorithm can significantly
mitigate the time required to reestablish a connection.
Lowering the reconnection time reduces QoS disruptions.
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Experiments show that a pure rerouting algorithm
exhibits significant growth in recovery time as the source
to destination distance increases. This is logical when one
considers the message exchanges that must occur for a
source to reroute its traffic. Specifically, once the cluster-
head associated with the failed node realizes a node has
failed it sends a “failed node” message to any source using
resources on that node. The elapsed time between the
moment the node fails to the time the source is notified is
equal to the time required for the cluster-head to notice the
failure plus the time for the failed node message to
propagate to the source. Next, the source must determine
a new feasible route. Upon determining a new route, the
source must negotiate its demands with the cluster-heads of
all clusters that have resources the source desires to use and
then wait for responses from these cluster-heads. An
increase in the number of clusters between the source and
destination has a significant impact on the negotiation and
recovery time. Recovery time results showed that EFDCB is
more than two times faster than the global rerouting
alternative at all failure rates tested. The dropped packet
and throughput results reflected similar outcomes.

REFERENCES

[1] S. Chakrabarti and A. Mishra, “QoS Issues in Ad Hoc Wireless
Networks,” IEEE Comm. Magazine, vol. 39, no. 2, pp. 142-148, Feb.
2001.

S. Chen and K. Nahrstedt, “On Finding Multi-Constrained Paths,”
Proc. Record 1998 IEEE Int’l Record on Comm. (ICC '98), pp. 874-879,
1998.

A.S. Nargunam and M.P. Sebastian, “Fully Distributed Cluster
Based Routing Architecture for Mobile Ad Hoc Networks,” Proc.
IEEE Int’l Conf. Wireless and Mobile Computing, Networking, and
Comm., pp. 383-389, 2005.

(2]

B3]

(4]

(5]
o]

(]

(8]

]

[10]

[11]

(12]

(13]

(14]

[15]

[16]

S. Nelakuditi, Z.L. Zhang, R.P. Tsang, and D.H.C. Du, “Adaptive
Proportional Routing: A Localized QoS Routing Approach,” IEEE/
ACM Trans. Networking, vol. 10, no. 6, pp. 790-804, Dec. 2002.
S.H. Alabbad and M.E. Woodward, “Localised Credit Based QoS
Routing,” IEE Proc.—Comm., vol. 153, no. 6, pp. 787-796, Dec. 2006.
A H. Mohammad and M.E. Woodward, “Localized Quality Based
QoS Routing,” Proc. Performance Evaluation of Computer and
Telecomm. Systems (SPECTS), pp. 209-216, 2008.

AS. Alzahrani and M.E. Woodward, “End-to-End Delay in
Localized QoS Routing,” Proc. IEEE Int’l Conf. Comm. Systems
(ICCS), pp. 1700-1706, 2008.

P. Yang and B. Huang, “QoS Routing Protocol Based on Link
Stability with Dynamic Delay Prediction in MANET,” Proc. Pacific-
Asia Workshop Computational Intelligence and Industrial Applications
(PACIIA), pp. 515-518, 2008.

A. Puri and S. Tripakis, “Algorithms for Routing with Multiple
Constraints,” Report Number UCB/ERL MO01/7, Electrical Eng.
and Computer Science Dept., Univ. of California, 2001.

S. Chen, “Routing Support for Providing Guaranteed End-to-End
Quality-of-Service,” PhD dissertation, Univ. of Illinois, 1999.

A. Mellouk, “Quality of Service Dynamic Routing Schemes for
Real Time Systems in IP Network,” Proc. Networking Int’l Conf.
Systems and Int’l Conf. Mobile Comm. and Learning Technologies ICN/
ICONS/MCL, p. 93, 2006.

D. Mitra and K.G. Ramakrishnan, “A Case Study of Multiservice,
Multipriority Traffic Engineering Design for Data Networks,”
Proc. IEEE Int’l Global Telecomm. Conf. (GLOBECOM ’99), pp. 1077-
1083, 1999.

D. Applegate and M. Thorup, “Load Optimal MPLS Routing with
N + M Labels,” Proc. IEEE INFOCOM, 2003.

X. Yuan, “Heuristic Algorithms for Multiconstrained Quality-of-
Service Routing,” IEEE/ACM Trans. Networking, vol. 10, no. 2,
pp- 244-256, Apr. 2002.

S. Chen and K. Nahrstedt, “Distributed Quality-of-Service Rout-
ing in Ad-Hoc Networks,” IEEE Selected Areas in Comm., vol. 17,
no. 8, pp. 1488-1505, Aug. 1999.

S. Cen, C. Py, R. Staehli, C. Cowan, and J. Walpole, “A Distributed
Real-Time MPEG Video Audio Player,” Proc. Fifth Int'l Workshop
Network and Operating System Support of Digital Audio and Video
(NOSSDAV '95), pp. 151-162, 1995.



190

(7]

[18]

[19]

(20]

(21]

(22]

[23]

[24]

(23]

[20]

[27]

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO.2, FEBRUARY 2011

F. Goktas, F.M. Smith, and R. Bajcsy, “Telerobotics over Commu-
nication Networks,” Proc. 36th IEEE Conf. Decision Control,
pp- 2399-2404, 1997.

N. Tran and K. Nahrstedt, “Active Arbitration by Program
Delegation in Video on Demand,” Proc. IEEE Int’l Conf. Multimedia
Computing and Systems, pp. 96-105, 1998.

J.N. Al-Karaki, A.E. Kamal, and R. Ul-Mustafa, “On the Optimal
Clustering in Mobile Ad Hoc Networks,” Proc. IEEE Consumer
Comm. and Networking Conf., pp. 71-76, 2004.

R. Ghosh and S. Basagni, “Mitigating the Impact of Node Mobility
on Ad Hoc Clustering,” Wireless Comm. and Mobile Computing,
vol. 8, no. 3, pp. 295-308, 2008.

P. Gupta and P.R. Kumar, “The Capacity of Wireless Networks,”
IEEE Trans. Information Theory, vol. 46, no. 2, pp. 388-404, Mar.
2000.

I. Gupta, K.P. Birman, and R. Van Renesse, “Fighting Fire with
Fire: Using Randomized Gossip to Combat Stochastic Scalability
Limits,” Int'l ]. Quality and Reliability Eng., vol. 18, no. 3, pp. 165-
184, May/June 2002.

Y. Wang and M.S. Kim, “Bandwidth-Adaptive Clustering for
Mobile Ad Hoc Networks,” Proc. Int’l Conf. Computer Comm. and
Networks, pp. 103-108, 2007.

G. Dimitriadis and F.N. Pavlidou, “Clustered Fisheye State
Routing for Ad Hoc Wireless Networks,” Proc. IEEE Fourth Int’l
Workshop Mobile and Wireless Comm. Network, pp. 207-211, 2002.
A.H. Thamrin, H. Kusumoto, and J. Murai, “Scaling Multicast
Communications by Tracking Feedback Sensors,” Proc. Int’l
Conf. Advanced Information Networking and Applications (AINA),
pp- 1-6, 2006.

L. Gu, Z. Niu, J. Lv, and H. Yoshiuchi, “An NAK-Based
Hierarchical ARQ Scheme for Reliable Data Multicast in Inte-
grated Communication and Broadcast Networks,” Proc. Asia-
Pacific Conf. Comm. (APCC), pp. 1-5, 2008.

L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidermann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu,
“Advances in Network Simulation,” Computer, vol. 33, no. 5,
pp- 59-67, May 2000.

r

Larry C. Llewellyn received the MS degree in
electrical engineering from the Air Force Institute
of Technology (AFIT) in March 2007. Currently,
he is the System Validation Branch chief at the
Air Force Network Integration Center. His
research interests lie in the area of fault-tolerant
and reliable networks.

Kenneth M. Hopkinson received the PhD
degree in computer science from Cornell Uni-
versity in 2004. He is an associate professor of
computer science at the Air Force Institute of
Technology. His research interests are in robust
distributed systems. He is a member of Upsilon
Pi Epsilon, Eta Kappa Nu, the IEEE, and the
IEEE Computer Society.

Scott R. Graham received the PhD degree in
electrical engineering from the University of
lllinois at Urbana-Champaign in 2004. He is an
adjunct professor of computer engineering at the
Air Force Institute of Technology. His research
interests include directional networks and net-
worked control systems. He is a member of Tau
Beta Pi, Eta Kappa Nu, and the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



