
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Optimizing Service Selection and Allocation in
Situational Computing Applications

Chiara Sandionigi, Danilo Ardagna, Gianpaolo Cugola and Carlo Ghezzi

Abstract—This paper describes a novel model for the service
selection problem of workflow-based applications in the context of
self-managing situated computing. In such systems, the execution
environment includes different types of devices, from remote
servers to personal notebooks, smartphones, and wireless sensors,
which build an infrastructure that can dynamically change both
its physical and logical architecture at run-time. We assume that
worflows are defined abstractly; i.e., they invoke abstract services
whose concrete counterparts can be selected dynamically. We
also assume that concrete service implementations may possibly
migrate on the nodes of the infrastructure. The selection problem
we address is framed as an optimization problem of the quality
of service, which evaluates at run-time the optimal binding to
concrete services as well as the trade-off between the remote
execution of software fragments and their dynamic deployment
on local nodes of the computational environment. The final
deployment takes into account quality of service constraints,
the capabilities of the physical devices involved, including their
performance and energy consumption, and the characteristics of
the networking links connecting them.

Index Terms—M.1.0.e Optimization of Services Systems,
M.6.1.b Optimization of Services Composition, M.4.4.h Quality
of Services.

I. INTRODUCTION

Recent advances in information and communication tech-

nology led to the development of pervasive applications that

live in a large scale, continuously evolving environment [1].

Billions of mobile phones, intelligent sensors, and embedded

mobile systems surround all of us throughout our everyday

lives and interact with each other to help in achieving our

goals. On the other hand, this requires innovative software

applications capable of operating in a situation (or context)-
aware manner. Based on the current situation (e.g., the current

spatial location) they may choose dynamically the components

to interact with, among those discovered in the surrounding

environment, in order to achieve their goals.
Many emerging applications fall under this case and the

term ambient intelligence is often used to indicate their target.

As an example, later in the paper we consider health care as

our main case study, and in particular assisted living of elderly

or impaired people, who need an external help to achieve

certain levels of autonomy through automation of assisted

interaction with the world.
The Software as a Service (SaaS) paradigm [2] is especially

relevant in the above context for three main reasons. First, it

fosters the idea that each software fragment provides a well-

defined functionality of general use to be composed with other

The authors are with the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy. E-mail: last-
name@elet.polimi.it.

software fragments to achieve specific goals [3]. This is ob-

tained through a precisely defined interface specification that

is separate from its implementation. The interface specification

defines the functionality and, more generally, the Quality of

Service (QoS) promised by the service, whereas the implemen-

tation is hidden to the clients [4], [5]. Second, the architecture

is based on a discovery phase that precedes the binding
between service invocation and service implementation. In

the discovery phase, the description of the required service

is used to query a registry, where service specifications are

published. This step decouples service providers and service

requesters, giving rise to the third characteristics of SaaS:

dynamic binding. Indeed, thanks to the discovery phase the

client may specify the requested service abstractly, through

its required interface. The concrete service that is bound to

an invocation is selected dynamically, at run-time, depending

on its provided interface, on the required and provided QoS,

and on other considerations (more details later). Dynamic

binding allows software architectures to evolve at run-time,

since the components that are part of the application and

their relationships may change dynamically [4]–[6]. This is

particularly important for situation-aware software operating

in dynamic environments like the ones we target, as it supports

continuous self-adaptation of the application’s architecture in

response to situational changes [7].

Given these premises, we can look at the binding problem

from the situation-aware, pervasive applications viewpoint

as an optimization problem, which tries to select the best

services to invoke in order to maximize the QoS of the

overall composition [3]–[5]. In this paper, we propose a novel

approach for service selection in a pervasive environment by

considering two dominant factors: dynamism of the external

environment [1] and the ability of moving code around the

network [8]. As we mentioned, the former dimension is typical

of modern pervasive scenarios, which involve mobile users,

mobile devices, wireless networks, and complex interactions

schemas, which change frequently at run-time. It asks for

solutions that easily accommodate the need for re-optimization

as significant changes occur [9]. The latter dimension allows

the choice of two alternative ways of executing a service.

The former is remote execution in the service provider’s run-

time environment. This is normally the only possible solution

for pure service-oriented applications, like those based on

Web services. Pervasive applications, however, may support

another way of executing the service called local execution,

which is based on dynamically deploying and executing the

service locally on the nodes of the pervasive environment. As

an example, the processing of data collected through sensors

Digital Object Indentifier 10.1109/TSC.2012.18 1939-1374/12/$31.00 © 2012 IEEE

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

could be done on a local node, to avoid the need of transmitting

the collected data to a remote processing node [28]. Our

approach can take local execution into account whenever it is

a viable option, both in the case where services are stateless

and in the case in which they are stateful, as discussed later

in the paper.

The remainder of the paper is organized as follows. Sec-

tion II presents our reference framework, which is currently

under development, and describes a home health care ap-

plication used as a case study to show the benefits of our

approach. Section III introduces the application and quality

models we adopt. Optimization and run-time re-optimization

are presented in Sections IV and V, respectively. Experimental

results in Section VI demonstrate the effectiveness of our

approach, while a discussion of other literature proposals is

reported in Section VII. Finally, Section VIII draws some

conclusions and illustrates future work.

II. REFERENCE FRAMEWORK

The work described in this paper is part of a larger research

effort (SMScom [11]), which is devoted to developing sys-

tematic approaches and tools to assist design, implementation,

operation, and evolution of the self-managing, situation-aware

applications. A typical SMScom scenario involves one or

more users immersed in a pervasive environment, composed of

different devices, connected through wired and wireless links,

and capable of collaborating to promptly and efficiently satisfy

the users’ needs. The logical architecture which results from

this vision is shown in Figure 1.

Applications are expressed as workflows built from a set of

abstract services. This is exemplified by the activity diagram

in Figure 1, which represents an application orchestrating

four abstract services: as1, as2, as3, as4. In this paper, we

assume that orchestrations are implemented in a BPEL-like

language [12]. At run-time, the main end-user device (typically

a hand-held device, like the PDA in the figure) acts as the

Application Manager, running a light-weight BPEL engine to

orchestrate the application’s execution. As the application is

launched, and possibly also as dynamic changes are detected

in the environment in which the application is immersed, the

Application Manager invokes an Optimizer module (running in

the same user’s device or as a remote service) to dynamically

select the binding to the concrete services to invoke. The set

of available concrete services is retrieved from the SMScom
Service Registry [11], an extension of a UDDI registry [?],

[3], [13], where concrete services are registered and annotated

by a semantic description. The Optimizer module may also

decide where services have to run. As mentioned, we consider

that some concrete services can be executed either by the

Service Provider exporting them (remote execution), or they

can be dynamically deployed and executed on the devices

available in the pervasive environment close to the end-user

(local execution), which provide (possibly limited) computing

capabilities. Once the assignment of abstract to concrete

services has been established, the user’s Application Manager

invokes concrete service operations, through wrappers that are

dynamically generated according to the WSDL specification

of the chosen services. These wrappers leverage the SMScom

middleware [14] that runs on the pervasive system glueing all

the devices together to support seamless service location and

invocation.

Our framework can deal with both stateless and stateful
services. Decentralized execution can be an option only in

the case of stateless services or stateful services whose state

must be kept to support execution of a single instance of the

workflow. In the latter case, once a binding is established and

a decision is made concerning remote versus local execution,

no further change is possible until execution of the instance

terminates. Stateful services whose state must be kept to

support execution of a multiple instances are instead not to

be transferrable for local execution. A possible decision to

decentralize their execution would in fact involve all possible

workflows that might access them, whereas here we only

consider decisions that optimize single workflow instances.

The Optimizer module represents a core component of our

approach. It has to dynamically discover the optimal mapping

between each abstract service and a (local or remote) concrete

service that implements it. The main goal of the Optimizer is

to maximize the QoS perceived by the end-user in running the

application, while satisfying, at the same time, the constraints

specified as part of the application’s requirements. In particu-

lar, the SMScom framework supports the specification of both

local constraints (which predicate on properties of a single

abstract service) and global constraints (which introduce non-

functional requirements on a set of abstract services or on the

whole workflow).

The data about services needed by the Optimizer are stored

in the SMScom registry. For each service, the registry tells

us whether the service can be dynamically deployed on local

nodes or not. It also stores data about QoS parameters (e.g., re-

sponse time, energy consumption, etc.) monitored at run-time.

The data retrieved from the registry provide the parameters for

the initial service selection problem. QoS parameters, however,

are subject to high variability. Indeed, the performance of

services available in the Internet can vary up to an order of

magnitude within the same business day [15], while the user

behavior and the characteristics of the pervasive environment

(i.e., the application’s context [16]) also change at run-time.

For example, if a user connected to an ad-hoc WIFI network

changes his physical position the network bandwidth might

be reduced and one or more physical devices could even

become unreachable. In addition, other devices may suddenly

stop operating if their batteries deplete. Run-time situational

variability is the main obstacle to the continuous fulfilment

of the global constraints the user wants to satisfy. To address

this problem, execution monitoring, dynamic service selection,

and workflow optimization have to be performed continuously,

interleaved with application’s execution. At the same time, re-

optimization has to be triggered by the Application Manager

if the invocation of a service fails or if the performance of

services degrades, violating global constraints.

The effectiveness of the framework above will be assessed

through a proof of concept application borrowed from the

healthcare domain, whose goal is to provide a nursing home

service involving non-specialised personnel only. In particular,

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

Fig. 1. SMScom reference framework

we consider the workflow illustrated by the activity diagram in

Figure 2, where a person with heart and diabetes problems is

living at her home, where two networks are available. The

former is a body sensor network, i.e., a network built by

wireless wearable sensors, which collects data on the patient’s

biological and physiological parameters. More specifically, the

patient wears sensors to monitor heart rate, blood pressure

and, occasionally, when the medical examination at home

takes place, sensors to evaluate glucose and oxygen blood

concentration. The latter is a local area network, which

connects heart rate and blood pressure sensors to a local PC.

The local area network provides also WIFI connectivity to the

nurse hand-held device, which plays the role of the Application

Manager, storing and hosting the execution of the application

reported in Figure 2.

When the medical examination at home starts, heart rate and

blood pressure are gathered from the corresponding sensors.

These services are stateless, and can only be executed remotely

on the corresponding devices that offer them. Then, the ap-

plication evaluates if an electrocardiogram (ECG) is required.

In such a case, multi-electrode ECG probes are applied to the

patient and an ECG is performed by a portable sensor provided

by the medical personnel. The ECG processing service is an

expert system which is able to diagnose ECG data while the

non-specialized medical personnel is not. The ECG service

is stateful, and can be both executed remotely or transferred

for local execution. Then, the medical personnel performs

oximetry and glucose analyses. Oximetry and glucose analysis

services are stateless, and they can be: (i) executed on the

portable sensor, (ii) executed on a remote service provider,

(iii) dynamically deployed and executed on the nurse’s hand-

held device, or (iv) dynamically deployed and executed on the

local PC. Finally, the application decides if further analyses

are needed at a remote center. In this case, a remote (steteful)

service is selected dynamically according to the patient’s

location (gathered by the Application Manager). The service

can only be executed on a remote Service Provider and is

accessible by possibly many instances of medical workflows.

Fig. 2. Home healthcare application case study (Medical examination at
home)

III. APPLICATION AND QUALITY MODELS

In this section we first provide a detailed description of the

application model adopted in our framework (Section III-A)

and then in Section III-B we discuss the quality model.

A. Application Model

As mentioned, we focus on applications coded as work-

flows, whose representation may be given in terms of ac-

tivity diagrams and whose implementation may be written

in BPEL [12]. We assume the workflow to be abstract;

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

i.e., all service invocations directed to services that are not

known yet and must be instantiated prior to execution. For

simplicity, we also assume the activity diagram to have a

single entry and a single exit node. To model the peculiar

aspects of our framework, activity diagrams are enriched with

ad-hoc annotations. Annotations can be associated with the

entry node of the activity diagram to indicate the global

constraints on QoS dimensions and the ranking of the QoS

metrics to be optimized (see AN7 and AN4 in Figure 2).

An annotation can indicate whether several abstract operations

of the workflow correspond to the same stateful service (see

annotation AN6, which is associated with two operations). The

“Stateful service” annotation is also associated in Figure 2 to

the “Analysis center reservation” service, shared with other

workflows, which by its very nature cannot be moved locally.

Finally, we assume that all loops are annotated with the

maximum number of expected iterations (see annotation AN1,

discussed below).

Fig. 3. Execution paths arising from the case study specification and anno-
tations. Horizontal bars indicate the start and the end of parallel operations.

In summary, Figure 2 contains the following annotations

relevant for our case study:

• AN1: The loop can be executed at most twice (in order to

book either a blood analysis or a cardiology examination

or both).

• AN2: The ECG must be performed within at most 5

minutes.

• AN3: The medical center analyses cost has to be lower

than 200 Euros, which is the maximum budget available

by the patient’s health insurance.

• AN4: The medical examination must take less than 10

minutes.

• AN5: The Analysis Center reservation service is stateful.

• AN6: The Get ECG data and ECG processing operations

are implemented by the same stateful service.

• AN7: The rank in the quality metrics is: availability, cost,

time, and energy.

An annotation like AN1, which prescribes the maximum

number of loop iterations, allows loop unfolding at compile

time. The unfolding of the original activity diagram yields an

expanded activity diagram that is represented by a directed

acyclic graph (DAG). The unfolding is necessary for the

optimization procedure to guarantee that global constraints

are satisfied [4]. The value to choose for the bound can be

evaluated from past executions by inspecting system logs or

it can be specified by the software architect at design time,

based on previous experience. Annotations like AN2 model a

local constraint, which predicates on the quality attributes of

a single abstract service. In our example, it prescribes that its

execution time has to be lower than a given threshold. Vice-

versa, annotations like AN3 and AN4 above model global

constraints, i.e., those that predicate on the quality attributes

of a group of abstract services (e.g., AN3) or they can specify

a constraint for the whole application (e.g., AN4).

As in [6], we define the following concepts:

Execution paths represent all the possible runs of an ap-

plication, given the upper bounds on loop iterations.

Execution paths may include the execution of ab-

stract services in sequence or in parallel but they

do not include branches. Execution paths may be

represented graphically as shown by the examples

in Figure 3.

Sub-paths differ from execution paths since they cannot

include parallel execution of abstract services. A

sub-path of an execution path ep is a sequence

of abstract services [as1, as2, . . . , asn] encountered

by traversing an execution path from its initial to

its final node. For example, the leftmost execution

path in Figure 3 defines the following subpaths

[as1, as2, as5, as7, as8] and [as1, as2, as6, as7, as8].

Finally, notice that, as in other proposals in the litera-

ture [4], [6], [9], we do not consider exceptions in our

optimization problem, and consequently global constraints are

guaranteed only for the nominal execution of the application.

While in principle exceptions could be easily included in our

formulation of the optimization problem, our approach will

lead to very conservative solutions. Indeed, we optimize for

the worst case scenario in terms of service calls, e.g., we

consider the maximum number of cycle iterations. In presence

of exceptions, the worst case scenario is the one in which

every possible exception happen, requiring every possible

compensation action to be run. Clearly this would lead to a

very conservative solution, which would be of limited interest

for the end-users as it refers to a very unlikely scenario.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

B. Quality Model

The problem of selecting the concrete service to be bound to

an abstract service is a multi-objective problem, since several

quality criteria can be associated with services execution. In

this paper, we focus on the following set of quality dimensions,

which have been the basis for QoS considerations also in other

approaches [4], [6], [17]:

• Response time: A numeric value representing the ex-

pected delay between the time when an operation is in-

voked and the time when the result is obtained. Response

time is measured in seconds.

• Availability: A value in the range [0,1] representing the

probability that a given operation of a concrete service is

available, i.e., its invocation at run-time will be performed

successfully.

• Cost: A number representing the fee (e.g., in Euros) the

end-user has to pay to the Service Provider for local or

remote service operation invocation.

• Energy: A value representing the energy (in Joule) con-

sumed for the deployment of concrete services and exe-

cution of operations on local devices.

In our approach, we assume that the end-user can express

preferences among quality dimensions; e.g., response time

may be valued more than cost. This is expressed by ranking

the quality attributes (see annotation AN7 in Figure 2).

The response time of a concrete service operation is given

by the sum of the time required for the request/response

messages transmission and the time required to execute the

service operation by a local device or by a remote service

provider. Furthermore, if a concrete service has to be deployed

locally, then also the deployment time has to be considered,

which will further delay the first concrete service operation

execution (but not the following ones, since the service is

already locally available).

Let I, J , and K denote the finite sets of abstract ser-

vices, concrete services, and devices available in the end-user

neighbourhood to execute concrete services, respectively. Let

k ∈ K be the device that runs the Application Manager.

Furthermore, let OP1j , where j ∈ J , denote the set of

operations implemented by the j-th concrete service and let

OP2i, where i ∈ I , be the set of operations that implement the

i-th abstract service. Finally, let Si denote the set of concrete

services that can be bound to the abstract service i ∈ I and

let Dj indicate the set of local devices that are available to

execute the j-th concrete service.

To precisely characterize the response time of an operation

o ∈ OP1j offered by a service j, we will denote by twj,o,k

the time required for the data transfer when the service is

executed on the device k, while TWj,o will indicate the time

required for the data transfer when the service operation is

executed remotely. Similarly, tj,o,k will indicate the execution

time of service j operation o ∈ OP1j locally on device k,

while Tj,o is the time for the remote execution of operation o
guaranteed by the Service Provider. Finally, dj,k will denote

the time required for the deployment of service j on device

k. We assume that a concrete service is monolithic, i.e., the

code of the whole set of operation OP1j is downloaded and

deployed on local devices.

In our framework, once the abstract to concrete service

operation binding has been established, the deployment of all

concrete services in the pervasive environment starts concur-

rently for all the involved devices. Alternatively, one could

choose to postpone the deployment of concrete services on

local devices until concrete services are invoked. This choice

would save bandwidth and energy, but it would delay service

execution and hence penalize performance.

We assume that concrete service operations have a different

availability (cost) for local and remote execution, which will be

denoted by aj,o,k. (cj,o) and Aj,o (Cj,o), respectively. Notice

that since physical devices might have different characteristics,

the local availability aj,o,k of operation o of concrete service

j , depends on the physical device k on which the service will

be deployed.

Energy is also a critical factor in most pervasive systems,

since battery-operated devices can support local execution only

if their battery is not exhausted at the time the services are

deployed and operations are executed locally. We will denote

by b̂0,k the initial energy of the device k when the application

execution starts. Furthermore, we will assume that, as the

time elapses, the batteries of devices discharge linearly with

slope αk. We will denote with ej,k the energy consumed for

deploying service j on device k and with êj,o,k the energy

consumed for executing operation o ∈ OP1j of service j on

device k. Finally, we will indicate with ewj,o,k the energy

consumed by a device k �= k to communicate with the

Application Manager for the execution of service j operation

o ∈ OP1j , and with EWj,o the energy consumed by the

Application Manager for the data transfer associated with the

remote/local execution of operation o on another device.

For the sake of simplicity, we assume that the energy

consumed by a device k to communicate with the Application

Manager while executing an operation o only depends on the

protocol used for such communication. As a result, the same

energy ewj,o,k is also consumed by the Application Manager

to communicate during the execution of operation o1.

The global constraints specified by the end-users on the

overall response time, availability, and cost will be denoted

by T , A, and C, respectively.

Each quality parameter that depends on the end-user context

is evaluated at run-time; for example, the service deployment

time, which depends on the service size and on the bandwidth

of the wireless network connecting the devices. Conversely,

quality parameters that are intrinsic characteristics of each

service are stored and retrieved by the Optimizer module from

the registry. In particular, if the same service is accessible from

the same provider but with different quality characteristics

(i,e., quality level), then multiple copies of the same service

will be stored in the registry, each copy being characterized

by its own quality profile.

As a final remark, we observe that the parameters related

with executing a service operation on specific devices (e.g., the

energy consumed to execute the operation or to communicate

1This assumption does not change the nature of the optimization problem
and could be easily relaxed.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

TABLE I
SERVICE SELECTION PROBLEM PARAMETERS AND DECISION VARIABLES

Application Parameters
I Set of abstract service indexes
J Set of concrete service indexes
K Set of device indexes
epl l-th execution path

splm m-th sub-path belonging to execution path l
L Number of execution paths generated by unfolding the application workflow
Si ⊆ J Set of indexes of concrete services supporting abstract service i execution
OP1j Set of indexes of operations implemented by concrete service j
OP2j Set of indexes of operations implementing abstract service i
Dj ⊆ K Set of local device indexes supporting concrete service j execution

QoS Parameters
twj,o,k Time required for the data transfer when the service j operation o ∈ OP1j is executed

on the device k
Evaluated at run-time

TWj,o Time required for the data transfer when service j operation o ∈ OP1j is executed
remotely

Evaluated at run-time

tj,o,k Local execution time of service j operation o ∈ OP1j on device k Evaluated at run-time
Tj,o Execution time for the remote execution of service j operation o ∈ OP1j Stored in the SMScom registry
dj,k Time required for the deployment of service j on device k Evaluated at run-time
aj,o,k Availability of service j operation o ∈ OP1j when executed locally by device k Evaluated at run-time
Aj,o Availability for the remote execution of service j operation o ∈ OP1j Stored in the SMScom registry
cj,o Cost for the local execution of service j operation o ∈ OP1j Stored in the SMScom registry
Cj,o Cost for the remote execution of service j operation o ∈ OP1j Stored in the SMScom registry

b̂0,k Initial energy level of device k Evaluated at run-time
αk Devices discharge parameter slope Evaluated at run-time
ej,k Energy consumption for the deployment of service j on device k Evaluated at run-time
êj,o,k Energy consumption for the execution of service j operation o ∈ OP1j on device k Evaluated at run-time
ewj,o,k Energy consumed by the device k for the data transfer with the application Evaluated at run-time

manager for the execution of service j operation o ∈ OP1j
EWj,o Energy consumed by the application manager during the data transfer Evaluated at run-time

of the remote/local execution of service j operation o ∈ OP1j

Decision Variables
yi,j 1 if concrete service j is remotely executed to support abstract service i, 0 otherwise
zi,j,k 1 if concrete service j is executed locally by device k to support abstract service i, 0 otherwise
vi,j,o 1 if abstract service i is executed by operation o ∈ OP1j , 0 otherwise
xi,j,k 1 if concrete service j is deployed on device k and invoked for the first time to execute abstract service i, 0 otherwise
wi,j,k 1 if concrete service j has already been deployed on device k when abstract service i is executed, 0 otherwise

some results) can be roughly estimated by looking at the char-

acteristics of the devices involved and at the operation itself,

e.g., by knowing the MIPS/MFLOPS of a micro-controller

and the number of instructions of the operation. Part of this

information could be provided by device producers and by

service providers and they could be stored in the registry.

Alternatively, the same figures could be calculated off-line,

once for all, by testing each device with the different services

or relying on some benchmarking data.

Table I summarizes the notation introduced so far and

adopted in the remainder of the paper.

IV. OPTIMIZATION MODEL

The main decisions which have to be taken to solve the

service selection problem are: (i) determining if services have

to be executed locally or remotely, (ii) in case of local

execution, determining which is the device that will be devoted

to host each concrete service, and (iii) assigning abstract

services to specific operations of concrete services.

The following decision variables are used to model this

optimization problem:

• yi,j : Equals 1 if concrete service j is remotely executed

to support abstract service i, 0 otherwise;

• zi,j,k: Equals 1 if concrete service j is locally deployed

and executed by device k to support abstract service i, 0

otherwise;

• ỹi,j,o: Equals 1 if the abstract service i is executed by

operation o ∈ OP1j of concrete service j remotely, 0

otherwise;

• z̃i,j,o,k: Equals 1 if the abstract service i is executed by

operation o ∈ OP1j of concrete service j locally by

device k, 0 otherwise.

Finally, in order to correctly evaluate the time and energy

required to deploy concrete services in the pervasive environ-

ment, the following binary variables are introduced2:

• xi,j,k: Equals 1 if concrete service j is deployed on device

k and invoked for the first time to execute abstract service

i, 0 otherwise;

• wi,j,k: Equals 1 if concrete service j has already been

deployed on device k when abstract service i is executed,

0 otherwise.

The service selection problem includes constraints associ-

ated with services assignment, stateful services, cost, time,

energy, and availability.

2Recall that in our framework the deployment starts when the application
execution begins for the whole set of concrete services that have to be
deployed locally.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

Service assignment constraints: For each abstract service i, at

most one remote service (operation) can be selected. Hence,

among the variables yi,j (ỹi,j,o) at most one can be set to 1.

Thus, the following conditions holds:
∑

j∈Si

yi,j ≤ 1, ∀i ∈ I, (1)

∑

j∈Si,o∈OP1j∩OP2i

ỹi,j,o ≤ 1, ∀i ∈ I. (2)

Similarly, considering the pervasive environment, at most

one concrete service (operation) deployed on a local device

performs abstract service i execution, hence:
∑

j∈Si,k∈Dj

zi,j,k ≤ 1, ∀i ∈ I, (3)

∑

j∈Si,o∈OP1j∩OP2i,k∈Dj

z̃i,j,o,k ≤ 1, ∀i ∈ I. (4)

Finally, every abstract service has to be executed either
locally or remotely:

∑
j∈Si,

⎛
⎝yi,j +

∑
k∈Dj

zi,j,k

⎞
⎠ = 1, ∀i ∈ I, (5)

∑
j∈Si,o∈OP1j∩OP2i

⎛
⎝ỹi,j,o +

∑
k∈Dj

z̃i,j,o,k

⎞
⎠ = 1, ∀i ∈ I. (6)

Stateful services constraints: If two abstract services i1 and

i2 have to be executed by the same concrete service, then the

following constraint families are introduced:

yi1,j = yi2,j , ∀j ∈ Si1 ∩ Si2 (7)

yi1,j = 0, ∀j ∈ Si1 \ Si2 (8)

yi2,j = 0, ∀j ∈ Si2 \ Si1 (9)

zi1,j,k = zi2,j,k, ∀j ∈ Si1 ∩ Si2 , ∀k ∈ Dj (10)

zi1,j,k = 0, ∀j ∈ Si1 \ Si2 , ∀k ∈ Dj (11)

zi2,j,k = 0, ∀j ∈ Si2 \ Si1 , ∀k ∈ Dj (12)

Cost constraints: The costs for the local and remote execution

of a concrete service j are given by cj and Cj , respectively.

Since, for equation (6), exactly one variable among ỹi,j,o and

z̃i,j,o,k is raised to 1, the cost of execution of the abstract

service i can be computed as follows:

costi =
∑

j∈Si,o∈OP1j∩OP2i

⎛
⎝Cj,o · ỹi,j,o +

∑
k∈Dj

cj,o · z̃i,j,o,k

⎞
⎠ ,

∀i ∈ I. (13)

The cost of each execution path l can be computed as the

sum of the costs of the corresponding abstract services:

Ĉl =
∑

i∈epl

costi, ∀l ∈ [1, L], (14)

hence the cost global constraint can be expressed as:

Ĉl ≤ C, ∀l ∈ [1, L], (15)

while the overall cost of the application C can be computed

conservatively as the maximum cost over all the execution

paths:

Ĉl ≤ C, ∀l ∈ [1, L]. (16)

Alternatively, C can be computed as the average value over

all the execution paths, as in [6]. In this paper, we will always

take the worst case perspective.

Time constraints: The time experienced by the end-users for

the execution of each abstract service must consider the

execution time of the corresponding concrete service, the

possible deployment of the concrete service on a device, and

the time required for the data transfers between each concrete

service and the application manager. Since for all i exactly

one variable among ỹi,j,o and z̃i,j,o,k is raised to 1, the time

spent for the concrete service execution is given by:

exeT imei =
∑

j∈Si,o∈OP1j∩OP2i

(Tj,o · ỹi,j,o+

+
∑

k∈Dj

tj,o,k · z̃i,j,o,k
)
, ∀i ∈ I. (17)

Similarly, the data transfer time associated with abstract
service i execution is given by:

dataTransfT imei =
∑

j∈Si,o∈OP1j∩OP2i

(TWj,o · ỹi,j,o+

+
∑

k∈Dj\{k}
twj,o,k · z̃i,j,o,k

)
, ∀i ∈ I, (18)

Indeed, if the service is hosted on the Application Manager

k, the data transfer time is null since it is performed in the

device RAM.

The time required to deploy the concrete service j on a

device k to support abstract service i is given by:

deployT imei,j,k = xi,j,k ·dj,k, ∀i ∈ I, j ∈ Si, k ∈ Dj . (19)

The variables xi,j,k, wi,j,k, and zi,j,k are related as follows:

xi,j,k = zi,j,k − wi,j,k, ∀i ∈ I, j ∈ Si, k ∈ Dj (20)
∑

i∈Prec(i,l)

zi,j,k ≤ M · wi,j,k, ∀l ∈ [1, L],∀i ∈ epl, j ∈ Si, k ∈ Dj ,

(21)

where Prec(i, l) denotes the set of abstract services which

precede abstract service i along a given execution path, while

M is any constant greater or equal to |I|. In this way, when

the concrete service j is executed for the really first time on

the device k along execution path l, both xi,j,k and zi,j,k are

raised to one. Then, if the concrete service j is invoked again

on device k, equation (21) raises wi,j,k to 1, zi,j,k is also set

to 1, while xi,j,k is forced to 0.

If we denote by dsi and dfi the starting and finishing time

of the deployment of any concrete service for the execution

of abstract service i, then the following condition holds:

dfi ≥ dsi+
∑

i∈Prec(i,l)

∑
j∈Si,k∈Dj

deployT imei,j,k, ∀l ∈ [1, L], ∀i ∈ epl.

(22)

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

Let us denote by tsi,m and tfi,m the starting and finishing

time of abstract service i along the sub-path m. The execution

of abstract service i can start after the finishing deployment

time, hence:

tsi,m ≥ dfi, ∀l ∈ [1, L], ∀splm ∈ epl, ∀i ∈ splm, (23)

and the abstract service finishing time is given by:

tfi,m = tsi,m + exeT imei+

dataTransfT imei, ∀l ∈ [1, L], ∀splm ∈ epl, ∀i ∈ splm.
(24)

Moreover, the execution of an abstract service i can start

only after the finishing time of its direct predecessor along the

sub-path m (DPrec(i,m)):

tsi,m ≥ tfi,m, ∀l ∈ [1, L], ∀splm ∈ epl, ∀i ∈ splm,∀i ∈ DPrec(i,m).
(25)

Finally, the execution time of each execution path l is equal

to the finishing time of the last abstract service n, hence the

execution time global constraint can be expressed as:

tfn,l ≤ T , ∀l ∈ [1, L], (26)

and the execution time of the application T is computed as

the maximum execution time over all the execution paths:

tfn,m ≤ T, ∀l ∈ [1, L], ∀splm ∈ epl. (27)

Energy constraints: In order to execute concrete services on

local devices, their residual energy after the deployment must

be positive and greater than the energy required to execute the

concrete service. The energy consumption for deployment of

concrete service j on device k to support abstract service i
execution is given by:

deployEnergyi,j,k = ej,k·xi,j,k∀i ∈ I, j ∈ Si, k ∈ Dj , (28)

while the energy consumption for the concrete service execu-

tion is given by:

eExecutioni,j,k =
∑

o∈OP1j∩OP2i

êj,o,k · z̃i,j,o,k∀i ∈ I, j ∈ Si, k ∈ Dj

(29)

The residual energy of any device different to the Applica-

tion Manager after the execution of an abstract service i along

the execution path l can be calculated as follows:

bi,l,k = b̂0,k − αk · tsi,l +
−

∑

i∈Prec(i,l),j∈Si

(
eExecutioni,j,k − deployEnergyi,j,k+

−
∑

o∈OP1j∩OP2i

ewj,o,k · z̃i,j,o,k

⎞
⎠ ,

∀l ∈ [1, L],∀i ∈ epl, ∀k �= k (30)

The first term is the initial energy of the device, the second

term entails the energy discharged during the application

execution, while the term in parentheses takes into account

the energy consumed for the deployment, execution and data

transfer with the Application Manager for the invocation of

concrete services hosted on the device k.

Particular attention must be reserved to the Application

Manager device, whose residual energy can be calculated as

follows:

bi,l,k = b̂0,k − αk · tsi,l −
∑

i∈Prec(i,l),j∈Si

(
eExecutioni,j,k+

− deployEnergyi,j,k −
∑

o∈OP1j∩OP2i

ewj,o,k · z̃i,j,o,k +

−
∑

o∈OP1j∩OP2i

EWj,o · ỹi,j,o
⎞
⎠ ,∀l ∈ [1, L], ∀i ∈ epl, (31)

where the last term in parentheses takes into account the

energy consumed for the invocation of concrete services hosted

by remote Service Providers.

After the execution of any abstract service i, the residual

energy of every device cannot be negative, hence:

bi,l,k ≥ 0, ∀l ∈ [1, L], ∀i ∈ epl, ∀k ∈ K. (32)

When the last abstract service n is executed, the difference

between the initial and the residual energy of device k along

the execution path l equals the overall energy consumed for

the application along the execution path. Hence, the energy

consumed for the whole application equals the maximum of

the sum of energy consumption of every device:

E ≥
∑

k∈K
b̂0,k − bn,l,k, ∀l ∈ [1, L]. (33)

Availability constraints: The availability of every abstract

service can be computed as:

âi =
∏

j∈Si,o∈OP1j∩OP2i

A
ỹi,j,o
j,o

∏
j∈Si,o∈OP1j∩OP2i,k∈Di

a
z̃i,j,o,k
j,o,k ,

∀i ∈ I (34)

while the availability of an execution path l is given by:

Âl =
∏

i∈epl

âi, ∀l ∈ [1, L]. (35)

Hence, the availability global constraints can be introduced

as follows:

Âl ≥ A, ∀l ∈ [1, L], (36)

and the availability of the application A can computed as the

minimum availability over all the execution paths:

Âl ≥ A, ∀l ∈ [1, L]. (37)

The availability formula can be linearized by applying the

logarithm function; for example constraint (36) becomes:

ln(Âl) =
∑

i∈epl,j∈Si,o∈OP1j∩OP2i

ln(Aj,o) · ỹi,j,o+

+
∑

i∈epl,j∈Si,o∈OP1j∩OP2i,k∈Dj

ln(aj,o,k) · z̃i,j,o,k ≤ ln(A)

,∀l ∈ [1, L].
(38)

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

The service selection problem includes only binary and

continuous variables and linear constraints, hence it is a Mixed

Integer Linear Programming (MILP) problem. The problem

is multi objective. In our approach, the end-user preferences

induce an ordering on the optimization of quality attributes.

The optimization problem is solved iteratively, once for each

quality attribute, and the optimum value obtained as a solution

is introduced as a constraint in the subsequent problem. For

example, according to the preferences specified by annotation

AN7 in Figure 2, the following problems are solved:

• optA = maxA
subject to: (1)-(37)

• optC = minC
subject to: (1)-(37)

A = optA

• optT = minT
subject to: (1)-(37)

A = optA

C = optC

• minE
subject to: (1)-(37)

A = optA

C = optC

T = optT

V. RUN-TIME RE-OPTIMIZATION

In pervasive environments, the dynamic nature of the service

selection problem and the high variability of service and device

parameters ask for solutions that can accommodate run-time

re-optimization.

For example, a re-optimization step should be performed

if a service operation fails or provides degraded performance,

if a device becomes unavailable because of battery depletion

or because it goes out range of the Application Manager

network, etc. On the other hand, run-time re-optimization has

to be performed carefully since it might introduce a significant

overhead (e.g., the UDDI registry has to be accessed again,

device specific parameters like energy consumption and exe-

cution time parameters for new candidate services have to be

evaluated, etc.).

As in other approaches [6], [9], the basic idea we follow

is to monitor the QoS of service operation invocations and

to re-estimate the quality values expected for the running

application. Whenever the new estimates indicate a significant

deviation from the values obtained by the initial optimal

solution, abstract service invocations that still remain to be

executed must be re-optimized in order to avoid QoS viola-

tions.

This basic approach is tailored to the SMScom framework

by triggering re-optimization in the following cases only:

• If the current QoS values differ from their corresponding

prediction more than a given threshold. This addresses

the problem of variability of services and local device

performance, while keeping the overhead under control

through a careful selection of the threshold.

• If a service operation invocation fails, due to a fault in

the remote Service Provider or a because the local device

assigned for execution has became unreachable, then a

substitute service operation has to be selected through a

re-optimization step.

• Since the optimization is performed by evaluating a

priori the maximum number of cycle iterations, a re-

optimization is triggered when a loop execution ends and

the current number of iterations differs from the expected

one.

• Finally, a re-optimization is also performed periodically

to take into account highly dynamic environments in

which new candidate services and local devices may

appear during long runs of the application.

Notice that the QoS constraints and the optimization param-

eters may also adapt to the execution context, possibly asking

for an explicit intervention of the end-user, who triggers a

new re-optimization. As an example, if the battery level of

the Application Manager has reached a critical level, then the

end-user might be triggered to revise the QoS metrics ranking,

prioritizing energy consumption over availability, or relaxing

the execution time constraint (in some conditions tolerating

lower performance may reduce energy consumption).

Re-optimization requires some information on the current

state of the application execution. It starts by revising the

application’s unfolded activity diagram represented by a DAG,

eliminating the abstract services that belong to conditional

branches that were not followed during the execution. Addi-

tional constraints can be introduced for those abstract services

that were already executed, setting their quality parameters to

the values monitored for service invocations (see [4], [60], for

further details). In general, these two steps allows to remove

some decision variables and abstract services from the re-

optimization model, which, in turn, reduces the computational

effort required for the re-optimization w.r.t. the initial opti-

mization.

VI. EXPERIMENTAL RESULTS

To solve our optimization problems we used the IBM ILOG

CPLEX 12.1 tool, which implements a parallel branch and cut

procedure [18]. In order to prove scalability of the proposed

model, an extensive experimental analysis has been performed.

The physical system supporting the experiments is based on

VMWare ESXi 4.0, running on an Intel Nehalem dual socket

quad-core system with 32 GB of RAM. CPLEX is hosted in

a Virtual Machine (VM) running Ubuntu 11.04 Linux. The

VM has four physical cores dedicated to its execution with

guaranteed performance and 8GB of memory reserved.

This section is structured into two parts: The former aims

at proving the scalability of the approach, the latter shows the

results of the case study simulation.

A. Scalability of the optimization model

The model has been tested considering a large set of ran-

domly generated instances, where the application parameters

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

and QoS values have been varied as reported in Table II.

Problems with up to 40 abstract services, 160 concrete services

(with up to 5 operations each), and 15 devices have been

considered. The set of concrete services supporting abstract

services and the set of local devices supporting concrete ser-

vice execution were randomly generated. The QoS parameters

were randomly generated assuming a uniform distribution in

intervals chosen as follows.

Availability values: Minimum and maximum availability

values were randomly generated in the range [0, 1].

Cost values: As in other approaches proposed in the litera-

ture [6], [19], we assume that the cost of a service operation

invocation is inversely proportional to the execution time and

depends exponentially on availability. Hence, it is evaluated

as:

cj,o = ηi · 1

tj,o,k
· eδi·aj,o,k ,

where ηi and δi are constants that depend on the particular

functionality implemented by the abstract service (i.e., the

higher the complexity of the functionality, the higher the cost).

Time values: Time parameters were calculated by consid-

ering the Internet for remote communication and ZigBee for

local communication. Internet, based on WIFI connection, is

characterized by 5 ms latency (i latency) and 2 Mb/s band-

width (i bw) [24], while ZigBee by 8 ms latency (z latency)

and 250 Kb/s bandwidth (z bw) [20], [21]. The service size

(s size) has been randomly generated in the range (500, 2000)

byte, while the data size (d size) in the range (10, 4000)

byte according to the data reported in [22]. Hence, the time

parameters have been randomly generated in the following

ranges:

dj,k = i latency+
s size

i bw
+z latency+

s size

z bw
= (65, 221)ms

twj,o,k = z latency +
d size

z bw
= (18, 417)ms

TWj,o = i latency +
d size

i bw
= (10, 25)ms

tj,o,k = (0.002, 1)s

Tj,o = (0.01, 40)s

Energy values: For each device, the initial energy has been

considered in the range (5000, 18000) J [23], while the power

consumption has been set equal to 6 mW for execution

(execution power) [?], 65 mW for ZigBee transmission

(z power) [21], 1.5 W for WiFi transmission (i power) [24]

and 40 μW in idle state (idle power). By considering these

parameters and the chosen time values, the energy parameters

have been randomly generated in the following ranges:

ej,k = dj,k · z power = (4, 14)mJ

êj,k = tj,o,k · execution power = (0.012, 6)mJ

ewj,o,k = twj,o,k · z power = (1, 27)mJ

EWj,o = TWj,o · i power = (15, 32)mJ

TABLE II
VALUES OF APPLICATION AND QOS PARAMETERS

Application Parameters
I 20, 30, 40
J 80, 120, 160
K 5, 10, 15

QoS Parameters
aj,o,k (0, 1)
Aj,o (0, 1)
cj,o (0.02, 27) [$]
Cj,o (0.02, 27) [$]
dj,k (0.065, 0.221) [s]
tj,o,k (0.002, 1) [s]
Tj,o (0.01, 40) [s]

twj,o,k (0.018, 0.417) [s]
TWj,o (0.01, 0.025) [s]

b̂0,k (5000, 18000) [J]
ej,k (0.004, 0.014) [J]
êj,o,k (0.000012, 0.006) [J]
ewj,o,k (0.001, 0.027) [J]
EWj,o (0.015, 0.032) [J]
αk (0.000003, 0.000065) [J]

αk = (dj,k + tj,k + twj,k) · idle power = (3.4, 65.52)μJ

In order to evaluate the performance of the proposed

optimization model, the average optimization time required

for instances of variable size for the iterated multi-objective

optimization is reported in Table III. Each value reported in

the table corresponds to the average time over 10 randomly

generated instances. A total number of 180 test cases have

been considered.

The CPLEX solver execution time has been limited to

15 s for each objective. However, no difference in the final

solution is observed with respect to executions without any

time limits, hence each objective is optimally solved for

every randomly generated instance considered. For problem

instances of maximum size (which are almost one order of

magnitude larger than the current applications executed in

pervasive environments), the overall CPLEX execution time

is around 30 s, while a few seconds are enough for typical

problems.

TABLE III
AVERAGE OPTIMIZATION EXECUTION TIME (IN SECONDS)

|K|=5 |K|=10 |K|=15
(|I|,|J |) 80 120 160 80 120 160 80 120 160

20 2.04 3.43 4.88 4.5 6.89 9.47 6.55 10.94 14.94
40 6.06 11.23 13.49 12.86 20.36 31.26 20.4 33.61 33.2

B. Case study execution

In this section we illustrate a simulation of the healthcare

case study. As described in Section II, in the envisioned

scenario the following local devices are available: i) body

sensors, which collect data on biological and physiological

parameters, ii) a local PC, and iii) the hand-held device with

the role of Application Manager.

The scenario is composed of three main activities, each of

which corresponds to a macro-functionality: i) data reading,

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

executable only by the sensors, ii) data processing, executable

both locally and remotely, and iii) analysis reservation, exe-

cutable only remotely.

The characteristics of the candidate concrete services are

reported in Table IV. An abstract service is supported on

average by two concrete services with up to two operations

each.

TABLE IV
CASE STUDY CONCRETE SERVICE OPERATIONS AND DEVICE CANDIDATES

Concrete service Operation Supported abstract services Supporting devices
s1 o1 as1 sensor
s2 o2 as1 sensor
s3 o3 as2 sensor
s4 o4 as2 sensor
s5 o5 as3 sensor
s5 o6 as4 sensor
s6 o7 as3 sensor
s6 o8 as4 sensor
s7 o9 as5 PC, sensor, hand-held, remote
s8 o10 as6 PC, sensor, hand-held, remote
s9 o11 as5 PC, sensor, hand-held, remote
s10 o12 as6 PC, sensor, hand-held, remote
s11 o13 as7, as8 remote
s12 o14 as7, as8 remote

The execution is performed in three steps, as shown in

Figure 4. The optimum solution is found and the execution of

the application starts. Heart rate, blood pressure, and ECG are

provided by the corresponding sensors, whereas the oximetry

and glucose analysis are assigned to the hand-held device,

while the reservations are assigned to the remote service s11
(see Figure 4a).

Due to a failure of the ECG get data implemented by con-

crete service s5, a re-optimization is triggered (see Figure 4b)

and a different concrete service (s6) is selected. Finally, at the

end of the analysis, the application establishes that the patient

requires only one additional exam at an Analysis Center.

Hence, a second re-optimization is performed (see Figure 4c)

since the current number of iterations of the loop differs

from the one expected at design-time. Then, the reservation

is performed by the new service s12 and the application

execution ends.

Together, the three diagrams in Figure 4 show that our

approach easily addresses the various situations encountered

in our case study, always finding the optimal solution to end

the workflow. Most important for our research is the time

required for finding this optimal solution: in our case study,

optimization and re-optimization have always been performed

in less than 100 ms. This shows that in a typical pervasive

scenario the time required to find an optimal solution is

negligible with respect to the time needed to run the workflow.

VII. RELATED WORK

Pervasive computing [1] has recently attracted attention

both from industry and academia. Enabling technology, like

Mobile Ad-Hoc Networks (MANETs) [25], [26], Wireless

Sensor Networks (WSNs) [27], [28], Wireless Sensor and

Actuator Networks (WSANs) [29], have rapidly developed and

are now moving from the research to the production stage.

Progress in technology has been only partially accompanied

by progress in design methodology. As a result, pervasive

and situation-aware applications are presently designed in a

largely ad-hoc manner, and this may limit their use in large-

scale settings and/or settings that require high dependability.

A promising research direction is now focusing on designing

pervasive and situation-aware applications based on the con-

cepts developed in the area of Service-Oriented Computing

(SOC). Although SOC has been originally proposed mainly

for Internet-wide, business-to-business scenarios, it is now

increasingly proposed as an effective approach to systematic

design of pervasive systems [30], [31]. In particular, industrial

proposals like Jini [32], Universal Plug and Play [33], and

OSGI [34] together with a large body of academic research

(e.g., [35]–[41]) address the issues related with implementing

Service–Oriented Architectures (SOAs) in generic pervasive

environments involving embedded and mobile devices. More

recently, several academic researchers have matured the idea

of using SOAs in WSNs and WSANs to reduce the complexity

in building applications involving such technologies. This idea

was explored by developing different middleware systems to

let individual sensor nodes act as service providers [14], [42]–

[47].

In SOA systems, building applications through the com-

position of available services is a key point [3]. Current

research approaches can be classified into two main categories:

composition by planning and business process optimization

[?]. The former approach, proposed by the Semantic Web and

AI communities, investigates the problem of synthesizing a

complex behaviour from an explicit goal and a set of candidate

services which contribute to a partial solution of the complex

problem. In the latter case [4]–[6], [48], complex applications

are specified as workflow processes and the best available set

of services are dynamically selected at run-time by solving an

optimization problem. The Semantic Web and AI approach is

very flexible since an application schema is built automatically

or semi-automatically from a high level specification of the

required functionality [49]–[52], but it is usually computation

intensive and, from the QoS point of view, only sub-optimal

solutions can be identified [49].

In process optimization, vice versa, the application schema

is given and the optimum mapping of activities to component

services candidate for their execution is identified. Process

optimization has its roots in workflow scheduling problems

where the mapping of tasks to resources has to be identified

such that some temporal or resource constraints (i.e., agents

which can support tasks executions) are met [53].

The literature has provided three generations of solutions.

First generation solutions implemented local approaches [4],

[6], [54] that select services one at a time by associating the

running abstract activity to the best candidate service which

supports its execution. Local approaches are very simple (the

optimum solution can be identified by polynomial time algo-

rithms), but they can guarantee only local QoS constraints [55].

Recently very efficient solutions have been provided within

the Web Service challenge [56]–[59], which, however are able

only to identify the set of candidate services minimizing the

response time or maximizing the process throughput.

Second generation solutions proposed global approaches

[4], [9], [48], [60]–[62]. The set of services which satisfy

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

Fig. 4. Case study execution

the process constraints and user preferences for the whole

application are identified before executing the process. In

this way, QoS constraints can predicate at a global level.

Second generation techniques are based on the solution of

NP-hard optimization problems. In [63], the complexity of

some variants of the global process optimization problem is

analyzed, while an overview of heuristic techniques can be

found in [62]. Global approaches have been proposed for the

first time in [4], where the process optimization problem has

been formalized as a MILP problem, solved by integer linear

programming solvers. Some recent proposals face the process

optimization problem by implementing genetic algorithms

[9], [60], [61]. Genetic algorithms are more flexible than

MILP approaches, since they allow considering also non-linear

composition rules for the evaluation of the process QoS, but

are less computationally efficient. In current implementations

some execution time is wasted by generating also non-feasible

solutions. More recently, in [54] process optimization has been

modeled as a multiple choice multiple dimension knapsack

problem and as a graph constrained optimum path problem and

efficient heuristic techniques have been proposed. An efficient

recursive branch and bound algorithm has also been proposed

by [64].

Second generation solutions, requiring the solution of NP-

hard problems, introduce a significant overhead in the system.

To reduce optimization complexity, a number of solutions have

been proposed which guarantee global constraints only for the

critical path [4] (i.e., the path which corresponds to the highest

execution time), or reduce loops to a single task [9], [60].

Another drawback of second generation solutions is that, if

the end-user introduces severe QoS constraints for the process

execution, i.e., limited resources which set the problem close

to unfeasibility conditions (e.g., limited budget or stringent

execution time limit), no solutions could be identified and the

process execution fails [9], [60].

Third generation techniques [5], [6], [65] try to overcome

the limitations of the previous approaches. In particular, the

work described in [6] focuses on the execution of processes

under severe QoS constraints. Negotiation is exploited if a

feasible solution cannot be identified, to bargain QoS pa-

rameters with Service Providers offering services, reducing

process invocation failures. The proposed approach has been

proven particularly efficient for large process instances. A

hybrid global/local approach has been proposed in [5] with

the aim of reducing optimization complexity and allowing also

a decentralized implementation of the optimization process.

Recently in [65], a novel approach based on local search with

the aim to maximize the QoS under probabilistic constraints

has been proposed. The goal is to provide the solution which

returns the best quality level q∗, such that the probability that

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

the actual quality received by the end-user falls below q is

within a prescribed threshold.

A related and complementary problem is addressed by [?],

which focuses on the interdependencies of dynamic binding

policies adopted by different compositions, which may be

running concurrently. Since multiple bindings to the currently

best performing concrete service may degrade its performance,

different alternative strategies, including probabilistic and co-

operative strategies, are explored and compared.

All of the above mentioned approaches only focus on the

selection of available remote services and do not take into

account the option of locally deploying and running services.

This paper is based on the work presented in [6], which has

been extended in order to: (i) consider the local execution of

services on the devices available in the pervasive environment,

(ii) modelling network interaction more in more detail, (iii)

implementing the optimization of multiple quality criteria

incrementally, and (iv) taking into account energy constraints

explicitly.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposed a new approach to dynamic service

selection and allocation, which optimizes the QoS exhibited

by an application described as an abstract workflow. The

abstract workflow orchestrates a number of abstract services

that must be bound to single operations of concrete services

by a selection procedure that performs the QoS optimization.

Optimization includes deciding—whenever possible—whether

a service should be executed remotely or whether it is prefer-

able to deploy and execute it locally. The proposed framework

for dynamic service composition aims at supporting situation-

aware computing, where decisions about optimal service se-

lection and allocation must be made dynamically.

Our future work will put this framework in practice in a

number of case studies that are currently undertaken [11]. Fur-

ther refinements of the optimization approach will be explored,

including support of direct communication between services

that are co-located on the same device, avoiding interaction

and communication with the Application Manager. Finally,

the optimization of multiple process instances competing in

the same situational environment will be also considered.

ACKNOWLEDGMENT

This research has been partially funded by the Euro-

pean Commission, Programme IDEAS-ERC, Project 227977-

SMScom. Authors thank Dr. Bernardetta Addis for many

fruitful discussions on linearization of bi-linear constraints.

REFERENCES

[1] F. Adelstein, S. K. Gupta, G. Richard III, L. Schwiebert Fundamentals
of Mobile and Pervasive Computing McGraw-Hill, 2004

[2] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, K. Pohl A journey to
highly dynamic, self-adaptive service-based applications In Automated
Software Eng., Vol. 15, N. 3-4, p. 313-341, 2008

[3] K. Nakamura, M. Aoyama Value-Based Dynamic Composition of Web
Services In APSEC, p. 139-146, 2006

[4] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnamam, H. Chang QoS-
Aware Middleware for Web Services Composition In IEEE Trans. on
Software Engineering, Vol. 30, N. 5, May 2004

[5] M. Alrifai, T. Risse Combining Global Optimization with Local
Selection for Efficient QoS-aware Service Composition In WWW2009
Proc., 2009

[6] D. Ardagna, B. Pernici Adaptive Service Composition in Flexible
Processes IEEE Trans. on Software Engineering, Vol. 33, N. 6, p. 369-
384, 2007

[7] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann Service-Oriented
Computing: a Research Roadmap In Int. J. Cooperative Inf. Syst., Vol.
17, N. 2, p. 223-255, 2008

[8] A. Carzaniga, G. P. Picco, G. Vigna Designing distributed applications
with mobile code paradigms In Int. Conf. on Software engineering, p.
22-32, 1997

[9] G. Canfora, M. Di Penta, R. Esposito, M. L. Villani A framework for
QoS-aware binding and re-binding of composite web services In Journal
of Systems and Software, Vol. 81, N. 10, p. 1754-1769, 2008

[10] K. Sohraby, D. Minoli, T. Znati Wireless Sensor Networks: Technology,
Protocols, and Applications J. Wiley, 2007

[11] SMSCom Porject Web site http://deepse.ws.dei.polimi.it/smscom/index.html
[12] OASIS Standard WS-BPEL 2.0

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel/ws-bpel.pdf

[13] OASIS UDDI OASIS Standard http://uddi.xml.org/
[14] G. Cugola, A. Margara SLIM: Service Location and Invocation Middle-

ware for Mobile Wireless Sensor and Actuator Networks In Int. Journal
of Systems and Service-Oriented Engineering, p. 60-74, 2010

[15] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, R. P. Doyle
Managing energy and server resources in hosting centers In SOSP 2001
Proc., 2001

[16] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, L. Tanca
Context information for knowledge reshaping In Int. J. Web Eng.
Technol., Vol. 5, N. 1, p. 88-103, 2009

[17] S. Chandrasekaran, J. A. Miller, G. Silver, I. B. Arpinar, A. P. Sheth
Performance Analysis and Simulation of Composite Web Services
In Electronic Market: The Int. Journal of Electronic Commerce and
Business Media, Vol. 13, N. 2, p. 120-132, 2003

[18] L. Wolsey Integer Programming John Wiley and Sons, 1998
[19] L. Zhang, D. Ardagna SLA Based Profit Optimization in Autonomic

Computing Systems In ICSOC 2004 Proc., p. 173-182, 2004
[20] B. Latre, P. De Mil, I. Moerman, N. Van Dierdonck, B. Dhoedt,

P. Demeester Maximum Throughput and Minimum Delay in IEEE
802.15.4 In Mobile Ad-hoc and Sensor Networks, 2005

[21] Chipcon Products from Texas Instruments 2.4 GHz IEEE 802.15.4 /
ZigBee-ready RF Transceiver Texas Instruments, 2006

[22] R. E. Klabunde Cardiovascular Physiology Concepts
http://www.cvphysiology.com/Arrhythmias/A009.htm

[23] Find the energy contained in standard battery sizes
http://www.allaboutbatteries.com/Energy-tables.html

[24] S. Litchfield How to: Know how much power each component of
your smartphone uses http://www.allaboutsymbian.com/features/item/
How to Know how much power each component of your smartphone uses.php

[25] C.E. Perkins Ad Hoc Networking Addison Wesley, 2000
[26] C. K. Toh Ad hoc mobile wireless networks Prentice Hall Inc., 2000
[27] H. Karl, A. Willig Protocols and Architectures for Wireless Sensor

Networks J. Wiley, 2005
[28] K. Sohraby, D. Minoli, T. Znati Wireless Sensor Networks: Technology,

Protocols, and Applications J. Wiley, 2007
[29] I. F. Akyildiz, I. H. Kasimoglu Wireless sensor and actor networks:

Research challenges Ad Hoc Networks, Vol. 2, N. 4, 2004
[30] S. Kalasapur, M. Kumar, B. Shirazi Evaluating service oriented

architectures (SOA) in pervasive computing In Proc. of the 4th Annual
IEEE Int. Conf. on Pervasive Computing and Communications, 2006

[31] S. Helal The Landscape of Pervasive Computing Standards Morgan and
Claypool, 2010

[32] K. Arnold, R. Scheifler, J. Waldo, B. O’Sullivan, A. Wollrath The JINI
Specification Addison-Wesley Longman Publishing Co. Inc., 1999

[33] Universal Plug and Play (UPnP) http://www.upnp.org/
[34] OSGi Alliance http://www.osgi.org/
[35] D. Chakraborty, A. Joshi, T. Finin, Y. Yesha Service composition for

mobile environments In Mobile Networks and Applications, Vol. 10, N.
4, 2005

[36] U. Bellur, N. C. Narendra Towards service orientation in pervasive
computing systems In Int. Conf. on Information Technology: Coding
and Computing, 2005

[37] S. Kalasapur, M. Kumar, B. A. Shirazi Dynamic Service Composition
in Pervasive Computing In IEEE Trans. on Parallel and Distributed
Systems, Vol. 18, N. 7, 2007

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

[38] A. Bottaro, A. Gerodolle, P. Lalanda Pervasive Service Composition
in the Home Network In Int. Conf. on Advanced Networking and
Application, 2007

[39] B. Mokhtar. Sonia, N. Georgantasa, V. Issarny COCOA: COnversation-
based service COmposition in pervAsive computing environments with
QoS support In Journal of Systems and Software, Vol. 80, N. 12, 2007

[40] N. Ibrahim, F. Le Mouel A Survey on Service Composition Middleware
in Pervasive Environments In Int. Journal of Computer Sciences Issues,
Vol. 1, 2009

[41] J. Zhou, J. Riekki, J. Sun Pervasive Service Computing toward
Accommodating Service Coordination and Collaboration In Int. Conf.
on Frontier of Computer Science and Technology, 2009

[42] E. Avilés-López, J. A. Garcı́a-Macı́as TinySOA: a service-oriented
architecture for wireless sensor networks In Service Oriented Computing
and Applications, Vol. 3, N. 2, p. 99-108, 2009

[43] J. Leguay, M. Lopez-Ramos, K. Jean-Marie, V. Conan An efficient
service oriented architecture for heterogeneous and dynamic wireless
sensor networks In IEEE Conf. on Local Computer Networks, p. 740-
747, 2008

[44] F. C. Delicato, P. F. Pires, F. Paulo, L. Pirmez, L. F. Carmo A Flexible
Web Service Based Architecture for Wireless Sensor Networks In Int.
Conf. on Distributed Computing Systems, 2003

[45] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, J. Sztipanovits
OASiS: A Programming Framework for Service-Oriented Sensor Net-
works In Int. Conf. Communication Systems Software and Middleware,
2007

[46] D. I. Tapia, J. A. Fraile, S. Rodrı́guez, J. F. de Paz, J. Bajo Wireless
Sensor Networks in Home Care In Int. Work-Conf. on Artificial Neural
Networks, 2009

[47] L. Gurgen, C. Roncancio, C. Labbe, A. Bottaro, V. Olive SStreaMWare:
a service oriented middleware for heterogeneous sensor data manage-
ment In Int. Conf. on Pervasive services, 2008

[48] A. A. Patil, S. A. Oundhakar, A. P. Sheth, K. Verma METEOR-S web
service annotation framework In WWW Proc., 2004

[49] A. Lazovik, M. Aiello, M. Papazoglou Planning and Monitoring the
Execution of Web Service Requests In Journal on Digital Libraries, p.
235-246, 2006

[50] A. Marconi, M. Pistore, P. Traverso Automated Composition of Web
Services: the ASTRO Approach In IEEE Data Eng. Bull., Vol. 3, N. 3,
p. 23-26, 2008

[51] L. A. G. da Costa, P. F. Pires, M. Mattoso Automatic Composition of
Web Services with Contingency Plans In ICWS Workshop, 2004

[52] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal,
B. Srivastava A service creation environment based on end to end
composition of web services In WWW Proc., p. 128-137, 2005

[53] P. Senkul, I. H. Toroslu An architecture for workflow scheduling under
resource allocation constraints In Inf. Syst., Vol. 30, N. 5, p. 399-422,
2005

[54] T. Yu, Y. Zhang, K-J Lin Efficient algorithms for Web services selection
with end-to-end QoS constraints In ACM Trans. Web, Vol. 1, N. 1, 2007

[55] Z. Maamar, Q. Z. Sheng, B. Benatallah Interleaving Web Services
Composition and Execution Using Software Agents and Delegation In
WSABE, 2003

[56] Web Service Challenge http://www.wschallenge.org/
[57] Z. Huang, W. Jiang, S. Hu, Z. Liu Effective Pruning Algorithm for

QoS-Aware Service Composition In CEC, p. 519-522, 2009
[58] Y. Yan, B. Xu, Z. Gu, S. Luo A QoS-Driven Approach for Semantic

Service Composition In CEC, p. 523-526, 2009
[59] S-C Oh, J-Y Lee, S-H Cheong, S-M Lim, M-W Kim, S-S Lee, J-B Park,

S-D Noh, M. M. Sohn WSPR*: Web-Service Planner Augmented with
A* Algorithm In CEC, p. 515-518, 2009

[60] G. Canfora, M. di Penta, R. Esposito, M. L. Villani QoS-Aware
Replanning of Composite Web Services In ICWS Proc., 2005

[61] D. B. Claro, P. Albers, J. K. Hao Selecting Web Services for Optimal
Composition In ICWS Proc., 2005

[62] M. C. Jaeger, G. Muhl, S. Golze QoS-Aware Composition of Web
Services: An Evaluation of Selection Algorithms In COOPIS Proc.,
2005

[63] P. A. Bonatti, P. Festa On optimal service selection In WWW Proc.,
2005

[64] C. Wan, C. Ullrich, L. Chen, R. Huang, J. Luo, Z. Shi On Solving
QoS-Aware Service Selection Problem with Service Composition In
GCC Proc., 2008

[65] Q. Liang, X. Wu, H. C. Lau Optimizing Service Systems Based on
Application-Level QoS In IEEE Trans. on Services Computing, Vol. 2,
p. 108-121, 2009

[66] C. Ghezzi, A. Motta, V. Panzica La Manna, G. Tamburrelli QoS Driven
Dynamic Binding in-the-many In Int. Conf. on the Quality of Software
Architectures, 2010

Chiara Sandionigi received the bachelor and master
degrees in Computer Engineering from Politecnico
di Milano, where she is presently a PhD student at
the Dipartimento di Elettronica e Informazione. Her
PhD activity is supported by the European Space
Agency. Her research interests are related to the
design of embedded systems, with focus on recon-
figurability and reliability-aware properties, and on
the optimization of service based systems.

Danilo Ardagna received the Ph.D. degree in com-
puter engineering in 2004 from Politecnico di Mi-
lano, from which he graduated in December 2000.
Now he is an Assistant Professor at the Dipartimento
di Elettronica e Informazione, at Politecnico di Mi-
lano. His work focuses on the design, prototype and
evaluation of optimization algorithms for resource
management and planning of Service Oriented and
autonomic computing systems.

Gianpaolo Cugola received his Dr.Eng. degree in
Electronic Engineering from Politecnico di Milano.
In 1998 he received the Prize for Engineering and
Technology from the Dimitri N. Chorafas Founda-
tion for his Ph.D. thesis on Software Development
Environments. He is currently Associate Professor
at Politecnico di Milano where he teaches several
courses in the area of Computer Science. His re-
search interests are in the area of Software Engi-
neering and Distributed Systems. In particular, his
current research focuses on middleware technology

for largely distributed and highly reconfigurable distributed applications with a
special attention to the issue of Content Based Routing as the basic mechanism
to develop advanced middleware services like publish/subscribe and data
sharing.

Carlo Ghezzi is a Professor and Chair of Software
Engineering at Politecnico di Milano. He is an ACM
Fellow, an IEEE Fellow, and a member of the
Italian Academy of Sciences. He was awarded the
ACM SIGSOFT Distinguished Service Award. He
has been General Chair and a Program Co-Chair
of the IEEE International Conference on Software
Engineering, Program Chair of the European Soft-
ware Engineering Conference, General Co-Chair of
the International Conference on Service Oriented
Computing. He has been the Editor in Cheif of the

ACM Transaction on Software Engineering and Methodology and currently
is an Associate Editor of IEEE Transactions on Software Engineering,
Communications of the ACM, Science of Computer Programming, Service
Oriented Computing and Applications, and Computing. His research has
been focusing on different facets of software engineering and programming
languages. Currently, he is active in the area of design mnethodologies for
evolvable and distributed software architectures for ubiquitous and pervasive
computer applications.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

