

Security-aware Service Composition with
Fine-grained Information Flow Control

Wei She, I-Ling Yen, Bhavani Thuraisingham, University of Texas at Dallas
Elisa Bertino, Purdue University

Abstract—Enforcing access control in composite services is essential in distributed multi-domain environment. Many advanced
access control models have been developed to secure web services at execution time. However, they do not consider access
control validation at composition time, resulting in high execution-time failure rate of composite services due to access control
violations. Performing composition-time access control validation is not straightforward. First, many candidate compositions need
to be considered and validating them can be costly. Second, some service composers may not be trusted to access protected
policies and validation has to be done remotely. Another major issue with existing models is that they do not consider information
flow control in composite services, which may result in undesirable information leakage. To resolve all these problems, we
develop a novel three phase composition protocol integrating information flow control. To reduce the policy evaluation cost, we
use historical information to efficiently evaluate and prune candidate compositions and perform local/remote policy evaluation
only on top candidates. To achieve effective and efficient information flow control, we introduce the novel concept of
transformation factor to model the computation effect of intermediate services. Experimental studies show significant
performance benefit of the proposed mechanism.

Index Terms—Secure service composition, access control, information flow control.

—————————— ——————————

1 INTRODUCTION

Service composition has been extensively studied in recent
years. Although a lot of new models and mechanisms have
been proposed, many issues in service composition still
remain unsolved. Among them, access control is one of the
major concerns. Though it is essential to develop access
control models and techniques to secure individual
component services as well as composite services, it is also
necessary to consider when to evaluate the access control
policies. All existing works consider access control only at
execution time. However, without the composition-time
access control validation, the composite service may be very
likely to fail at the execution time due to access control
violations, wasting composition and execution efforts. To
avoid repeating failed compositions, bookkeeping of the
failure becomes necessary, resulting in a more complicated
and time consuming composition and execution protocol. To
resolve this problem, it is desirable to enforce the access
control policies of individual component services at the
service composition time in addition to the execution-time
access control enforcement.

Existing works do not consider composition time access
control validation. There have been some works on
security-aware composition [BAR08, CAR06, DEN03,
HAN06, PAC08]. These works characterize security as a set
of attributes that can be quantitatively measured. The
security properties of a service can be specified in terms of
these attributes. To protect critical data resources and/or
services, the user and service providers may define security
constraints (i.e. policies) for a composition in terms of these
attributes. A composite service is considered to be secure if
the security properties of all individual services satisfy all
the security constraints defined by the service providers and
the user. One major issue with the above works is that they
consider very simple attributes such as the type of
encryption algorithm, the type of authentication protocol, etc.

Although it is possible to extend these mechanisms to
include access control policies as security constraints, none
of these works consider the specific issues involved in
modeling, specification, and evaluation of these policies.

There are several issues when considering access control
at composition time. The first issue is who should evaluate
the access control policies. Existing secure service
composition mechanisms assume a fully trusted service
composer, which is not always true, especially in a
multi-domain environment. In such an environment, there
are many users in different domains and they may use
different service composers. These distributed service
composers may be in different domains from those of the
web services. Some of these domains may have protected
access control policies that should not be released to some
parties (e.g. some service composers). Thus, it is unlikely
that a service composer is fully trusted by the providers of
all involved services (all the concrete services considered by
the composer, not just those actually selected) for accessing
their protected policies. Consequently, the service composer
cannot complete policy evaluation without interacting with
the service providers with protected policies.

Second, the performance issue in secure service
composition should be carefully considered. The service
composer may have to explore a lot of candidate
compositions to find one candidate that satisfies the security
constraints of all component services. To validate each
candidate, the composer needs to validate each service pair
(si, sj) by evaluating sj’s security properties against si’s
access control policies. The policies of some services may
be very complex and require a significant amount of
evaluation time. Also, a service composer may not readily
have the policies of all services from all domains and may
need to download the needed policies at the composition
time. In case some policies are protected, the composer

Digital Object Indentifier 10.1109/TSC.2012.3 1939-1374/12/$31.00 © 2012 IEEE

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

needs to interact with the security authorities of the
corresponding domains for remote policy evaluation or
negotiation. If such a policy evaluation process is applied to
every candidate composition, the cost can be extremely high.
Note that if policy evaluation is delayed to execution time,
the problem of exploring many potentially illegitimate
compositions would occur and the cost would be even
higher due to the involvement of actual execution.

We introduce a three phase service composition protocol
to address the performance issue and trusted composer issue
in composition-time access control validation. In the first
phase, as the search space may be very large, a more
efficient but less precise method is used to quickly prune the
candidate compositions. Specifically, we use the information
of historical service composition transactions to estimate the
fitness of candidate compositions, rank them, and select the
top candidates. In the second phase, we consider a local
policy evaluation process to achieve more precise evaluation
of candidate compositions. In this process, the composer
uses the policies and/or certificates cached or newly
downloaded from the security authorities of involved
services to locally validate the candidate compositions. The
accesses to the policies by the composers are considered as
special privileges granted rather than assumed. Although it is
unlikely that the service composer can validate all candidate
compositions, a majority of the service pairs may still be
validated, and many invalid candidate compositions can be
eliminated. In the third phase, we consider a remote policy
evaluation process to validate previously unverifiable pairs
of services. In this process, the security authorities of the
involved services evaluate their protected access control
policies and return their decisions to the composer to help
derive the final composition decisions. Negotiation may be
needed in this phase to exchange the credentials and/or
policy information between the service composer and the
security authorities and between the security authorities in
different domains. Since the service pairs validated in the
second phase need not be checked again, this time
consuming process will only be performed on a few service
pairs of very few final candidates.

Besides not considering access control at composition
time, existing access control models also do not effectively
handle information flow control (neither composition time
nor execution time). Existing works consider advanced
models to secure individual web services, including adaptive
action-based access control [BER06], context-aware access
control [BHA04], access control for conversational web
services [PAC11], credential-based access control [ARD11,
AGA04], etc. Some of these works also consider securing
composite services at the execution time [AGA04, ZHU06].
But they only consider direct accesses to the services and do
not consider the flow of sensitive information among
indirectly interacting services. Consider a service chain <s0,
s1, s2 >. Assume that s1’s output is computed from some of
its own sensitive information and some sensitive data
received from s0. When s1’s output is sent to s2, s2 may use

the received data to derive the sensitive information of s0,
resulting in an information flow from s0 to s2. Such
information flows, if not handled carefully, may result in
undesired information leakage.

There have been some limited works that address the
information flow problem in composite services. But they
are either too strict, treating direct and indirect accesses
exactly the same way [CHA05, YIL07], or too complex,
exhaustively enumerating all the possible combinations of
intermediate services and specifying information flow
control policies accordingly [SRI07]. To achieve fine-
grained information flow control while avoiding the pitfalls
in existing models, we introduce the concept of
transformation factor, which specifies how likely the
sensitive input or local data of a service can be derived from
its output, and consider it in making information flow
control decisions. Note that the information flow control
policies should also be evaluated at both composition time
and execution time. We integrate the information flow
control model into our three phase composition protocol.

To study the performance of the proposed mechanism, we
develop a simulation system to simulate various protocols
and compare their performance, including the three-phase
composition protocol, the single-phase composition protocol,
and the protocol without composition-time access control
validation. The result shows that, without composition-time
access control validation, the composition and execution
cost increases dramatically as the success rate decreases (If
the access control policies of component services are strict,
then it is difficult to find a valid composition and the success
rate is low). When the success rate is around 50%, even the
single-phase protocol performs better than the protocol
without composition-time access control. The three-phase
composition protocol performs much better than the other
two mechanisms even when the success rate is high (90%).
We also compare the performance of the protocols under
various service chain sizes. With the increasing service chain
size, the performance gain by the three-phase protocol
becomes more significant.

The rest of this paper is organized as follows. Section 2
presents the system model, including a general model for
web service systems, the access control model, and the
formalization of service chain and information flow. Section
3 presents a motivating example to illustrate various issues
and considerations. Section 4 introduces the information
flow control rules, which will be used to guide the
composition process. In Section 5, we discuss the
three-phase composition protocol. The experimental study
and results are presented in Section 6. Section 7 presents
related works. Section 8 concludes this paper.

2 SYSTEM MODEL

2.1 A Model of Web Service System
We consider a general web service system (Figure 1), which
consists of multiple domains and multiple service composers.
Each domain includes a set of web services, a set of data

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

resources, and a security authority (SA) which manages a set
of access control policies to control the accesses to the data
resources in the domain. The web service system is defined
in Definition 2.1.

Definition 2.1. A web service system includes a set of
domains {d1, d2, …} and a set of service composers {scomp1,
scomp2, …}. Each domain di is a tuple <di.S, di.R, di.sa>
where, di.S = {di.s1, di.s2, …} is the set of all services in di,
di.R = {di.r1, di.r2, …} is the set of all data resources in di,
and di.sa is the security authority of di. di.sa manages a set of
access control policies di.Pol = {di.pol1, di.pol2, …} to
control the accesses to di.R. �

Fig. 1. Web service system.

Data resource refers to the data/information itself and any
entity that may store or receive data/information. Such an
entity can be a data container, such as a file, a directory, a
relation, a view, etc., or an exhaustible resource, such as a
printer, a scanner, the disk space, CPU cycle, etc. We assume
that all services are semi-honest. They follow the protocol
and conform to the access control policies, but some
services may attempt to derive the sensitive information of
others from the information they have received. Also, we do
not consider the interoperability issues. There are techniques
in the literature that can help resolve these issues [NAT04].

For convenience, we use dom(x) to represent the domain
of x where x can be a service or a data resource. Also, we
use Pol(r), Pol(r) ⊆ dom(r).Pol, to denote the set of all
access control policies in dom(r) that are applicable to r,
where r is a data resource.

2.2 Service and Service Chain
We consider an abstract dataflow model to model the flow of
data/information in service chains. In this model, each
service y takes the input data y.In from the end user or
another service x, completes its own computation, and
generates its output y.Out which is delivered to another
service or the end user z. The computation of y may use
some data resources stored in dom(y), i.e. y.R. As we only
consider the deterministic system, the set of output data of y,
y.Out, can be expressed as a function of its input, y.In, and
local data resources, y.R. We define web service as follows.

Definition 2.2. A web service s is a tuple <s.In, s.Out, s.R,
s.F> where, s.In = {s.in1, s.in2, …} is the set of all input data
of s, s.Out = {s.out1, s.out2, …} is the set of all output data

of s, s.R = {s.r1, s.r2, …} is the set of all local data in dom(s)
that are used in the computation of s, and fs is the
computation function of s that s.Out = fs(s.In, s.R). �

Generally, a composite service can be defined using a
workflow, which is the composition of component services.
We consider abstract and concrete workflows. In an abstract
workflow, each component service is abstract and is to be
grounded to a concrete service. In a concrete workflow, each
component service is a concrete web service. Upon
composition, the service composer is given the desired
abstract workflow and instantiates each abstract component
service by a concrete service. In this thesis, we only consider
a simplified workflow, a service chain. The simplification is
for the convenience in defining the notations and algorithms.
The solutions provided in this thesis are applicable to
general workflows with parallel composition and loop. We
define the abstract and concrete service chains as follows.

Definition 2.3. An abstract service chain <s0, as1, …, asn,
sn+1> consists of two end users, s0 and sn+1, where s0 is the
user who sends the input data to as1 and sn+1 is the user who
receives the output data from asn, and a sequence of abstract
services, as1, …, asn, that should be grounded to concrete
services. A concrete service chain <s0, s1, …, sn, sn+1>
consists of the two end users, s0 and sn+1, and a sequence of
concrete services s1, …, sn. �

We consider that a user submits an abstract service chain
<s0, as1, …, asn, sn+1> to a service composer and the
composer returns a concrete service chain <s0, s1, …, sn,
sn+1> to the user, where asi is grounded to si, 1 i n. Note
that we consider the two end users, s0 and sn+1, as services.
They may be the same user or may be different. During
composition, we only need to consider the selection of as1 to
asn. But when considering access control, all users/services
in the concrete service chain, from s0 to sn+1, should be
considered. The service composer explores various
candidate concrete compositions chk, for all k, and selects
the best solution to return to the user. We use chk.<s0, s1, …,
sn, sn+1> to represent the concrete service chain for chk and
chk.si to represent the specific service si in this chain.

2.3 Attribute-based Access Control
We consider a general attribute-based access control model
[HEB09, WAN04, YUA05]. A set of attributes is defined for
each service/data resource. The attributes of a service may
include service name, WSDL pointer, the permission granted
to the service, reputation, etc. The attributes of a data
resource may include owner, security classification, etc. The
attributes of a data resource are included in the metadata and
stored with the data. The attributes of a service must be
asserted by a security authority and included in a certificate,
called the attribute certificate. The attribute certificate must
be signed by its issuer. The attribute and attribute certificate
are defined as follows.

Definition 2.4. Each service or data resource x is
associated with a set of attributes Attr(x) = {attr1(x),

d3

d2 d1

Service
Security Domain

Data Resource
Security Authority
Service Composer

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

attr2(x), …}. Each attribute attr(x) ∈ Attr(x) is defined as a
tuple (attr(x).name, attr(x).val) in which, attr(x).name is a
string that uniquely specifies the name of the attribute, and
attr(x).val is the value of the attribute.

Each service s owns a set of attribute certificates s.AC.
Each attribute certificate s.ac ∈ s.AC is issued by a security
authority to certify that s owns certain attributes s.ac.Attr,
where s.ac.Attr ⊆ Attr(s). �

We consider that the security authority in each domain
manages the attribute certificates of all services in the
domain. The attributes of a service can be sensitive or
non-sensitive. Attribute certificates containing only
non-sensitive attributes can be freely exchanged among
different parties. However, the release of an attribute
certificate with sensitive attributes requires negotiation.

In attribute-based access control, an access control policy
is a set of conditions defined over the set of all attributes
used by a domain (the set of all attributes defined for
services and resources in the domain). For simplicity, we
consider a unified set of attributes defined across all
domains. When a service s accesses a data resource r, s
presents its attribute certificate s.ac which contains a set of
attributes s.ac.Attr to dom(r).sa. dom(r).sa verifies s.ac from
its issuer (may be dom(s).sa, dom(r).sa, or another security
authority trusted by dom(r).sa) and extracts s.ac.Attr from
s.ac. s.ac.Attr are evaluated against the access control
policies Pol(r), Pol(r) ⊆ dom(r).Pol.

Figure 2 shows an example attribute certificate and
attribute-based access control policy. To evaluate the policy,
the SA substitutes the variables in the policy by s’s attributes
(e.g. replace subscriptionType(s) by “regular”).

Fig. 2. Attribute certificate and attribute-based policy.

3 MOTIVATING EXAMPLE

We consider an example application workflow (Figure 3) to
motivate and demonstrate the need for the information flow
control in service composition and the benefit of considering
access control at composition time. It is also used as a
running example to help illustrate various concepts in our
model. The workflow is used to help with screening of
disease x by first extracting association rules from medical
data of patients with and without disease x. The association
rules are then used to determine how likely a new patient
does have disease x. The workflow consists of the following
abstract services, a client program CLN, a medical database
MDB, a template image database TDB, an image
enhancement service IES, an image registration service IRS,

an object recognition service ORS, an association rule
mining service ARM, and a classifier CLS. CLN first
searches MDB (with keyword x) for the medical records of
the patients who are diagnosed to have the disease x, and
searches TDB (with keywords such as “bone”, “polyp”,
“nodule”, etc.) for the template images for object
recognition. Each medical record stored in MDB includes
the alphanumeric medical data, e.g. the patient’s medical
history, family history, personal data (e.g. gender, age,
height, weight, living area, etc.), and the medical images (e.g.
CT, X-ray, Nuclear, etc.). The alphanumeric medical data of
MDB are sent to ARM. The template images are sent to ORS.
The medical images are first sent to IES which performs
image enhancement (e.g. noise cancellation, etc.). The
enhanced images are sent to IRS which performs image
registration to align different images into one coordinate
system. The aligned images are sent to ORS which detects
and recognizes the objects in the images (e.g. bones, polyps,
nodules, etc.) using the template images. After recognition,
it assigns labels to the recognized objects in the image. The
labeled images are sent to ARM, which uses these images
together with the alphanumeric medical data received from
MDB to extract association rules (in the form of (y1, …, yn)

 x, where yi, 1 i n, is an object label or a string
extracted from the alphanumeric medical data and x is the
disease name) which are sent to CLS.

Fig. 3. Example workflow.

Now consider the sensitivity of the data that are used by
the composite service (Note that this abstract composite
service includes three abstract service chains). We assume
that the search keywords that CLN sends to MDB and TDB
are not sensitive and, hence, require no protection. The
alphanumeric medical data that MDB sends to ARM and the
medical images that MDB sends to IES are sensitive and the
recipients are required to have read permissions to these data.
(Note that the recipient rather than the invoker needs to have
the proper privilege. For example, IES needs to have read
permission to the medical images in MDB, but CLN does
not.) The template images are used in a pay-per-use manner
and, hence, require the recipients to present proper privilege.

Next, consider the concrete services that can be used to
instantiate the abstract services and the privileges they have
(Figure 4). For simplicity, we assume that CLN, MDB, TDB,
IES, IRS, and CLS are already concretized by cln1, mdb1,
tdb1, ies1, irs1, and cls1, respectively. cln1 and cls1 are hosted
by hospital A (domain dA). mdb1 and tdb1 are hosted by
hospital B (domain dB) and research institute C (domain dC),
respectively. ies1 and irs1 are hosted by research institute D
(domain dD). ORS can be instantiated by ors1, ors2, and ors3.
Note that ies1 does not modify the content of the medical

MDB

IES IRS ORS

ARM CLS CLN

TDB

Attribute certificate of s
 {subscriptionType = “regular”,
 subscriptionExpirationDate = 12/31/2012,
 penaltyLevel = 0.05}

Attribute-based access control policy of r
 ((subscriptionType(s) = subscriptionType(r)) ∧
 (subscriptionExpirationDate(s) systemDate) ∧
 (penaltyLevel(s) 0.1)) allow(s, r)

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

image received from mdb1 and irs1 does not modify the
content of the images received from ies1. Hence, the medical
images of mdb1 are essentially delivered to the ORS service
(ors1, ors2, or ors3) in their raw forms. ARM can be
instantiated by arm1 and arm2. We consider that ors1 and
arm1 are hosted by institute D, ors2 is hosted by research
institute E (domain dE), and ors3 and arm2 are hosted by
university F (domain dF).

Fig. 4. Concrete services and their permissions.

For simplicity, we assume that all the services can be
invoked by anyone and we only define the resource-based
access control policies here. Consider that service x invokes
service y. If y does not read/write any sensitive local data
(e.g. a table, etc.) in its computation, then the invocation can
be directly granted. If y reads some sensitive local data
resources r, then the invocation is granted when x has the
read permission to r. Similarly, if y writes to r, then the
invocation is granted when x has the write permission to r.
Figure 4 depicts the resource access rights. We consider that
institutes D and E are federated with hospital B and, hence,
services ies1, irs1, ors1, arm1, ors2 have the read permission
to the medical data in domain dB. Also, we consider that
institute E has purchased the service of tdb1 from institute C
and, hence, ors2 has the read permission to the template
images in domain dC. No other read/write accesses to the
medical data or the template images are allowed.

Information flow control illustration. Conventional
access control models cannot address the security needs in
this application. For example, the medical images of mdb1
are delivered to the ORS service in raw forms and ors3 does
not have the read permission for the medical images of mdb1,
the selection of ors3 should be prohibited. Also, as arm2 does
not have the privilege for the template images in tdb1, arm2
should not be selected either. However, conventional models
do not consider information flow control and will allow ORS
to be grounded to ors3 or ARM to be grounded to arm2,
resulting in undesirable information flows.

Benefit of composition-time access control validation.
Assume that access control is not validated at composition
time. Suppose that the workflow (Figure 3) is first
concretized by the composite services {cln1, mdb1, tdb1, ies1,
irs1, ors3, arm2, cls1}. During execution, cln1, mdb1, and tdb1

are invoked and executed successfully. But when mdb1 sends
out the alphanumeric medical data to arm2, since arm2 does
not have read permission to the alphanumeric medical data
of mdb1, mdb1 cannot send its output to arm2 and the
execution fails. All the execution of cln1, mdb1, and tdb1 are
wasted. After this failure, the execution coordinator needs to
pass the execution information to the service composer and
the composer records the access control violation between
mdb1 and arm2 and then replaces arm2 with arm1. The
execution of the new composite service {cln1, mdb1, tdb1,
ies1, irs1, ors3, arm1, cls1} also fails as ors3 has neither the
read permission to the medical images of mdb1 nor the
permission to the template image of tdb1. Again, cln1, mdb1,
ies1, irs1, and tdb1 have completed their execution and the
efforts are wasted. Such failure may continue until the only
feasible composition {cln1, mdb1, tdb1, ies1, irs1, ors2, arm1,
cls1} is selected and executed.

If access control validation is performed at composition
time, then the selected composition is likely to succeed,
avoiding wasting unsuccessful execution efforts. (Note that
there may still be policies that can only be evaluated at
execution time, which can still results in failures).

4 INFORMATION FLOW CONTROL RULES

In a service chain, the output data of service si may be
computed from some sensitive information of si and/or of
si’s prior services. When delivered to the subsequent services
sj, j > i, sj may be able to derive the sensitive information of
si or of si’s prior services from the data it has received. Thus,
during composition, it is desirable that the service composer
can make sure that the information flow from si to sj does
not violate any security constraints. To ensure the secure
information flow, each service in the service chain needs to
define detailed policies to control the flow of its sensitive
information. Also, it is desired to define rules to govern the
composition process such that the service chain generated by
the service composer does not violate any information flow
control policies specified by the services in the chain. In this
section, we define the information flow control (IFC) rules.

4.1 Basic IFC Rules
The goal of information flow control is to guarantee that the
sensitive information of each service in a service chain is not
only secured from direct accesses but also secured after it
flows (in its raw or processed form) to the subsequent
services. Note that, the output data of service si, si.Out =
si.F(si−1.Out, si.R) = si.F(si−1.F(si−2.Out, si−1.R), si.R) = … =
si.F(si−1.F(...(s1.F(s0.F(s0.R), s1.R), …), si−1.R), si.R). Thus, to
achieve information flow control in service chain <s0, …,
sn+1>, the service composer needs to ensure that, for each
service pair in the service chain (si, sj), 0 i n, i < j n+1,
sj is authorized to access the sensitive information contained
in si.R. This principle is specified by the basic IFC rules
given as follows.

BIFC1: valid(si, sj) ⇐ auth(Attr(sj), Attr(si.R), Pol(si.R)),
for all i, j, 0 i n, i < j n+1.

Template

Can-read Relationship Domain

cln1 mdb1

tdb1

ies1

irs1 cls1
dA

dC

dB
dD

ors1

arm1

ors2

dE

arm2 ors3

dF

Medical Data

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

BIFC2: valid(<s0, ..., sn+1>) ⇐ ∧valid(si, sj), for all i, j, 0
 i n, i < j n+1.

Here, auth(Attr(sj), Attr(si.R), Pol(si.R)) denotes the
information flow control decision (true, false, or unknown)
made by evaluating the attributes of the requesting service sj,
Attr(sj), and the attributes of the requested data resource si.R,
Attr(si.R), against the information flow control policies that
are applicable to si.R, Pol(si.R). valid(si, sj) denotes the
validity of the service pair (si, sj). If valid(si, sj) is true, then
the selection of service pair (si, sj) is valid. If all the
selections are valid, then the service composition is valid.

4.2 Transformation Factor and Advanced IFC Rule
To validate a service chain based on the basic IFC rules, we
need to evaluate sj against the information flow control
policies of si, for all i, j, 0 i < n, i < j n+1. In practice,
some of the policy evaluation tasks may be unnecessary.
First, there may exist some service sk, 0 < k < n+1, such that
the sensitive information contained in its input sk.In is not
derivable from its output, sk.Out. In this case, for any pair of
services (si, sj), where 0 i < k, k < j n+1, valid(si, sj) is
always true. On the other hand, if all the intermediate
services between si and sj do not transform their inputs when
generating their outputs, sj and si are as though interacting
directly and, hence, sj should be validated against the
information flow control policies of si.R (similar to the
approach in [CHA05, YIL07]). If the intermediate services
between si and sj transform si.Out to some extend when
generating sj−1.Out but there is still potential of deriving
some partial information of si.Out from sj−1.Out, then the
potential risk should be taken into consideration when
validating sj against si’s information flow control policies. To
recognize these situations, we introduce transformation
factor (TF) to estimate the risk of sj deriving si’s sensitive
information from sj’s input data, sj.In, and consider the risk
as a major factor in computing valid(si, sj). We define
multi-level transformation factor to measure how a service
processes its input and local data to generate its output in
Definition 4.1.

Definition 4.1. In the service chain <s0, …, sn+1>, the
transformation factor of a service si, tf(si), 0 i n+1,
specifies how much transformation service si makes when
generating si.Out using si.In and si.R. �

Table 1 lists four transformation factor levels in our
model. Note that HR < MR < LR < NR.

Next, we define the transformation factor for partial
service chains, based on the transformation factor of each
individual service in the chain in Definition 4.2.

Definition 4.2. In the service chain <s0, …, sn+1>, the
transformation factor of a partial service chain <si, …, sj>,
tf(<si, …, sj>), 0 i n, i < j n+1, specifies how much
transformation the partial service chain <si, …, sj> makes
when generating sj.Out using si.In and si.R, …, sj.R. tf(<si, …,
sj>) = max{tf(si), …, tf(sj)}. �

Table 1. Transformation factor levels.

TF Level Description

NR
(No risk)

Impossible to derive the sensitive information in
the input or local data from the output.

LR
(Low risk)

Difficult to derive the sensitive information in
the input or local data from the output.

MR
(Medium risk)

Some sensitive information in the input or local
data is derivable from the output.

HR
(High risk)

A majority or all of the sensitive information in
the input or local data is derivable from the
output, or the output contains the raw
information of the input or local data.

Transformation factor of a partial service chain can
impact the information flow control decisions of indirectly
interacting services. It also has a major effect on the naïve
pair-wise validation process. The flow of sensitive
information in a service chain may be “broken” by a service
with NR transformation factor. According to Table 1, if there
exists a service sk, 0 < k < n+1, s.t. tf(sk) = NR, then we
consider that it is very difficult to derive the sensitive
information contained in sk.In and sk.R from sk.Out. This
breaks the information flow, and the service chain can be
considered as two partial service chains, <s0, …, sk> and
<sk+1, …, sn+1>. When considering information flow control,
such partial service chains can be considered separately, as
the data generated by any two services in different partial
chains can be considered as unrelated. Based on this
observation, we define an advanced IFC rule to specify the
situation under which the policy evaluation for some service
pairs (si, sj) can be fully ignored (always true). Also, we
rewrite the basic IFC rules to include transformation factor
as a factor in making information flow control decisions.
The advanced IFC rules are specified as follows.

AIFC1: valid(si, sj) ⇐ (tf(<si, …, sj−1>) = NR), for all i, j,
0 i n, i < j n+1.

AIFC2: valid(si, sj) ⇐ auth(Attr(sj), Attr(si.R), tf(si, …,
sj−1), Pol(si.R)), for all i, j, 0 i n, i < j n+1.

AIFC3: valid(<s0, ..., sn+1>) ⇐ ∧valid(si, sj), for all i, j, 0
 i n, i < j n+1.

4.3 Examples of Transformation Factor Settings
For some services (e.g. alphanumeric input/output, the

local data access is static), static program analysis may help
determine their transformation factors [SHE09a, SHE09b].
However, in case that a service takes in or generates
non-alphanumeric data (e.g. image, audio, video, etc.), the
transformation factor may only be determined based on its
functionality. For simplicity, we consider that a security
officer decides the transformation factors of services in each
domain.

Consider the example system in Section 3. The image
enhancement service IES takes in a set of input images,
removes the noise in them, and reconditions them for object
recognition. Since the enhanced image contains raw data in
the original image, its transformation factor can be HR.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

In some cases, part of the sensitive information contained
in the input may be derivable from its output. The search
engine MDB searches for the medical records of the patients
diagnosed to have disease x. Though the search keyword x
may not be directly seen in the search result, it may be
possible to guess the value of x from the common
information in these records. If the likelihood of making a
successful guess (e.g. when the output always contains very
few records) is very low, then the transformation factor can
be set to LR. If the likelihood is moderate, then the
transformation factor is set to MR.

The association rule mining service ARM takes in a set of
medical images with object labels and the associated
alphanumeric medical data and derives association rules. As
it is impossible to derive the sensitive information, such as
the patient medical history, etc., from the output association
rules, its transformation factor can be set to NR.

5 SECURITY-AWARE SERVICE COMPOSITION

In service composition, the service composer takes an
abstract service chain <s0, as1, …, asn, sn+1> from the user
and selects concrete services to instantiate as1, …, asn while
satisfying the information flow control constraints. The
composer first retrieves a set of concrete services for each
abstract service asi from UDDI and generates a set of
candidate concrete compositions CH0. For each chk in CH0,
the composer follows the advanced IFC rules and verifies
whether valid(chk.<s0, ..., sn+1>) is true.

The service composer may have to explore O(cn)
candidate concrete compositions, where n is the number of
abstract services in the abstract service chain and c is the
average number of candidate concrete services per abstract
service. For each candidate composition chk, the service
composer needs to verify whether valid(chk.si, chk.sj) is true,
for all i, j, 0 i n, i < j n+1. This requires generating
O(n2) information flow control decisions. The decision
making may also involve retrieving Pol(chk.si.R) from
dom(chk.si).sa and chk.sj.ac from dom(chk.sj).sa. Even if
Pol(chk.si.R) and chk.sj.ac are cached by the service
composer, the policy evaluation may still be expensive, as
the service composer may have to evaluate many rules in
Pol(chk.si.R) and combine the results. In case that
Pol(chk.si.R) and/or some attributes in chk.sj.ac are protected,
the service composer needs to interact with dom(chk.si).sa
and/or dom(chk.sj).sa in order to compute auth(Attr(chk.sj),
Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)). If this
policy evaluation process is applied to each candidate
composition, the composition cost can be very high.

We consider a three-phase mechanism to achieve efficient
security-aware service composition. In the first phase
(Section 5.1), there are many candidates and an efficient
method is used to quickly evaluate candidate concrete
compositions and the most promising candidates are selected
for further analysis. Instead of actually computing
valid(chk.si, chk.sj) using auth(Attr(chk.sj), Attr(chk.si.R),
tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)), the service composer

uses the validation results of historical composition
transactions to compute the likelihood of valid(chk.si, chk.sj)
being true (denoted as LL(chk.si, chk.sj)). Accordingly, the
fitness value of each candidate composition chk, fit(chk), is
computed and the top L1 (L1 is the percentage that ranges
from 0 to 1) candidates are selected and included in CH1.

In the second phase (Section 5.2), a more accurate but
potentially more time consuming process is used to evaluate
the candidates in CH1. For each candidate in CH1, chk, the
service composer uses the cached or newly downloaded (if
the information is not cached or is stale) policies Pol(chk.si.R)
and/or certificates chk.sj.ac to compute auth(Attr(chk.sj),
Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)), for all i,
j, 0 i n, i < j n+1, locally. In some cases, the value of
valid(chk.<s0, …, sn+1>) may be determined. In case that
valid(chk.<s0, …, sn+1>) is false, chk is removed from CH1. If
valid(chk.<s0, …, sn+1>) is true, chk (a valid composition) is
directly returned to the user and the third phase analysis is
skipped. As some policies and attributes may be protected
and cannot be downloaded, the validity of some candidate
concrete compositions may not be verifiable by the service
composer. In this case, the fitness value for each candidate
chk in CH1, fit(chk), are recomputed, and the top L2 (L2 is the
percentage that ranges from 0 to 1) candidate concrete
compositions are selected and included in CH2.

In the third phase (Section 5.3), any previously selected
compositions (in CH2) should be fully validated. For each
service pair (chk.si, chk.sj) in a candidate concrete
composition chk in CH2, if Pol(chk.si.R) is protected, then the
service composer needs to forward the attributes of chk.sj,
Attr(chk.sj), to dom(chk.si).sa for remote policy evaluation. If
the policy evaluation requires some protected attributes of
chk.sj, the service composer needs to initiate a negotiation
session in which, dom(chk.si).sa retrieves the protected
attributes of chk.sj from dom(chk.sj).sa.

In case that the third phase analysis does not yield a
solution from CH2, the process will rewind to the second
phase to choose the next best L2 candidates in CH1 and
perform third-phase analysis again. If CH1 does not include
a valid composition, then the process will rewind to the first
phase and choose the next best L1 candidate compositions in
CH0 and perform the whole process again. The overall
three-phase composition protocol is given in Figure 5.

Fig. 5. Three-phase service composition algorithm.

5.1 First Phase Analysis
We develop a set of likelihood computation (LLC) rules to
compute LL(chk.si, chk.sj). First, we consider the case when

1. Run first phase analysis on CH0 and sort CH0.
2. Include top-L1 candidates in CH1.
3. Run second phase analysis on CH1 and sort CH1.
4. Include top-L2 candidates in CH2.
5. Run third phase analysis on CH2.
6. Set CH1 = CH1 − CH2 and go to 4.
7. Set CH0 = CH0 − CH1 and go to 2.
8. Return ∅.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

there is an information flow break between chk.si and chk.sj.

LLC1: If tf(<chk.si, …, chk.sj−1>) = NR, then LL(chk.si,
chk.sj) = 1. �

If rule LLC1 is not applicable, then we need to use the
historical validation results to estimate LL(chk.si, chk.sj). To
facilitate the estimation of the likelihood, the service
composer maintains a database VDB to store the validation
results of all service pairs in historical composition
transactions. The transformation factor between the two
services also impacts the information flow control decisions.
Thus, each record in VDB (for service pair (x, y)) records (x,
y).<vresult, tf>. Here, (x, y).vresult is the final result of
valid(x, y). (x, y).tf = tf(<x, …, pre(y)>), where pre(y)
denotes the service right before y in the original service
chain. Note that (x, y).tf is computed based on the original
service chain but the record does not need to keep the
original chain information.

We first consider retrieving strongly matched records for
(chk.si, chk.sj) to estimate LL(chk.si, chk.sj).

LLC2: If there exist service pairs (xl, yl) in VDB, s.t. for
all l, chk.si = xl, chk.sj = yl, and tf(<chk.si, …, chk.sj−1>) = (xl,
yl).tf, then (chk.si, chk.sj) and (xl, yl), for all l, have strong
matches, and LL(chk.si, chk.sj) = Avgl{(xl, yl).vresult}. �

Avgl{(xl, yl).vresult} computes the average over (xl,
yl).vresult. Note that, we convert true to 1 and false to 0.

If rules LLC1 and LLC2 are not applicable, then we
consider retrieving weakly matched records in VDB.

LLC3: If there exist service pairs (xl, yl) in VDB, s.t. chk.si
= xl, chk.sj = yl, and tf(<chk.si, …, chk.sj−1>) (xl, yl).tf, then
(chk.si, chk.sj) and (xl, yl), for all l, have weak matches with
matching level mll = (1 – Δtf/maxtf), where Δtf = |
tf(<chk.si, …, chk.sj−1>) – (xl, yl).tf|, and LL(chk.si, chk.sj) = (Σl
(xl, yl).vresult⋅mll)/(Σlmll). �

Here, we convert the transformation factor levels into
numerical values (HR = 0, MR = 1, LR = 2, NR = 3). Note
that maxtf is 4.

If rules LLC1 through LLC3 are not applicable, then there
is no record in VDB that matches (chk.si, chk.sj). In this case,
we set LL(chk.si, chk.sj) = 1 (rule LLC4). This way, chk.si and
chk.sj are likely to be selected in the first and second phases
and validated in the third phase and, hence, the validation
results are generated, which may be used in future
composition transactions. Note that, if we have selected a
concrete composition without service pair (x, y) in the
second phase, then we can replace the corresponding service
pair with (x, y) and the fitness of the new service chain will
be greater than or equal to the fitness of the previous one.
We also consider that the service composers may exchange
their historical information offline or when there is
insufficient information to help evaluate the likelihoods and
use the historical information of other service composers to
help compute the fitness of candidate compositions.
Therefore, it is very unlikely that the rules LLC1 through
LLC3 are not applicable.

LLC4: If rules LLC1 through LLC3 are not applicable,
then set LL(chk.si, chk.sj) = 1. �

We define fit(chk) = ∏ijLL(chk.si, chk.sj), for all i, j, 0 i
n, i < j n+1. The service composer will rank all candidate
compositions based on their fitness and select the top L1
candidates and include them in CH1. The detailed protocol
for the first-phase analysis is given in Figure 6.

Fig. 6. First phase protocol.

5.2 Second Phase Analysis
In the second phase, the service composer computes
auth(Attr(chk.sj), Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>),
Pol(chk.si.R)), for all i, j, 0 i n, i < j n+1, using its
cached attributes Attr(chk.sj) and/or policies Pol(chk.si.R). If
the required information is not in cache, then the service
composer downloads Pol(chk.si.R) from dom(chk.si).sa and
chk.sj.ac (containing Attr(chk.sj)) from dom(chk.sj).sa.

To avoid potential frauds, the download of information
flow control policies and/or attribute certificates needs to be
properly controlled. We consider each service composer is
associated with a set of attributes. These attributes may
include the name of the service composer, the domain of the
composer, the trust level of a security authority on the
composer, the permission granted to the service composer
for downloading some policies/certificates from a domain,
etc. The attributes of a service composer must be asserted by
a security authority. For authentication and non-repudiation
purpose, the asserted attributes are included in an attribute
certificate and signed by the issuer. In Definition 5.1, we
define the attributes and attribute certificates of service
composers.

Definition 5.1. Each service composer scomp is
associated with a set of attributes Attr(scomp). scomp owns a
set of attribute certificates scomp.AC. Each attribute
certificate, scomp.ac ∈ scomp.AC, is a certificate issued by a
security authority to certify that scomp holds certain
attributes scomp.ac.Attr ⊆ Attr(scomp). �

We consider each security authority di.sa defines a set of
policies to control the download of the policies and/or
certificates of di.sa. Such a policy is called the disclosure
policy. We use di.PolD = {di.polD1, di.polD2, …} to represent
the set of all disclosure policies in domain di. When a

INPUT: CH0, L1. OUTPUT: CH1, LS.
1. For each candidate composition chk ∈ CH0,

1) For all i, j, 0 i n, i < j n+1,
� Compute LL(chk.si, chk.sj) using LLC1, …,

LLC4.
2) Compute fit(chk) := ∏ijLL(chk.si, chk.sj), for all i,

j, 0 i n, i+1 j n+1.
2. Set LS := {LL(chk.si, chk.sj) | for all i, j, k, 0 i < j

n+1}.
3. Sort elements in CH0 in the descending order of

their fitness and copy the top L1 |CH0| elements in
CH0 into CH1.

4. Return CH1 and LS.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

service composer scomp requests for downloading certain
protected policies and/or certificates from di.sa, scomp must
present one of its attribute certificates, scomp.ac, to di.sa.
After receiving the download request of scomp, di.sa
extracts scomp.ac.Attr from scomp.ac and evaluates
scomp.ac.Attr against di.PolD. If the decision is true, di.sa
sends the requested policies and/or certificates to scomp. If
the decision is false, then the requested policies/certificates
cannot be disclosed to scomp and the policy evaluation has
to be performed remotely at di.sa.

In the second phase, for each candidate concrete
composition chk in CH1, the composer refines LL(chk.si,
chk.sj) computed in the first phase, for all i, j, 0 i < j n+1,
using cached or downloaded policies Pol(chk.si.R) and/or
attributes certificates chk.sj.ac to compute auth(Attr(chk.sj),
Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)) locally.
If it is evaluated to true, then LL(chk.si, chk.sj) is set to 1. If it
is evaluated to false, then chk is removed from CH1. If it
cannot be fully evaluated, then the same LL(chk.si, chk.sj)
computed in the first phase will be used. Based on the
updates, the service composer re-ranks the candidates in
CH1, and selects the top L2 candidates. The second phase
protocol is shown in Figure 7.

Fig. 7. Second phase protocol.

5.3 Third Phase Analysis
In the third phase, the service composer scomp contacts the
security authorities dom(chk.si).sa, for all i, 0 i n, to
perform remote policy evaluation, that is, to compute
auth(Attr(chk.sj), Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>),
Pol(chk.si.R)) that have not been validated in the second
phase. In this phase, the service composer scomp may send
the cached attributes of chk.sj, Attr(chk.sj) (included in the
attribute certificate chk.sj.ac, to dom(chk.si).sa. However,
some attributes in Attr(chk.sj) may be protected by
dom(chk.sj).sa and cannot be revealed to scomp. In this case,

dom(chk.si).sa, for all i, 0 i n, where the evaluation of
Pol(chk.si.R) requires some protected attributes of chk.sj, for
some j, i < j n+1, need to negotiate with dom(chk.sj).sa to
retrieve the protected attributes [LEE06, OLS06].

A negotiation session includes a startup round, and m
negotiation rounds. The service composer decides the
maximal number of negotiation rounds M, and may
terminate the negotiation session if m exceeds M. Note that,
m may be 0, indicating that all attributes required by the
remote policy evaluation are already provided by the service
composer and, hence, no negotiation is required.

In the startup round, the service composer initiates the
negotiation by sending the cached attributes (included in
attribute certificates) required by the remote policy
evaluation within a special message to all dom(chk.si).sa.

In each round of the negotiation, each security authority
identifies the missing attributes required for the policy
evaluation and the security authorities who own these
attributes, and sends an attribute request to the service
composer. The service composer routes the attribute requests
to the designated authorities. On receiving the attribute
request from the service composer, each security authority
evaluate its disclosure policies and may return the requested
attributes in an attribute response. The attribute response is
also routed by the service composer.

In this paper, we consider a synchronized negotiation
protocol in which, the service composer acts as the
negotiation broker between all security authorities. This is to
avoid direct negotiation between all dom(chk.si).sa, 0 i n,
and all dom(chk.sj).sa, i < j n+1, which results in O(n2)
negotiation channels. During the negotiation, the service
composer reorganizes the packages received from different
security authorities, and consolidates the packages with the
same destination into one message. This approach can
reduce the number of negotiation channels into O(n). Note
that protected attributes should be encrypted during
communication. Thus, although the message transfer is
through the service composer, the service composer does not
know the actual attribute values.

By the end of the negotiation session, either all
dom(chk.si).sa retrieves the required attributes for policy
evaluation, or the negotiation fails. For the latter case, the
service composer will set valid(chk.<s0, …, sn+1>) to false.
For the former case, auth(Attr(chk.sj), Attr(chk.si.R),
tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)), for all i, j, 0 i n, i
< j n+1, will be either true or false and, hence,
valid(chk.<s0, …, sn+1>) can be fully decided.

In the third phase, the service composer takes the top
candidate concrete composition chk in CH2 and may start
negotiation for the service pairs in chk that have not been
fully validated. Then, valid(chk.<s0, …, sn+1>) will have a
definite result. If the result is true, chk is returned to the user.
If the result is false, chk is removed from CH2 and the next
highest ranked candidate composition will be selected to go
through the same validation process. The third phase
protocol is shown in Figure 8.

INPUT: CH1, LS, L2. OUTPUT: CH2, LS, Ch.
1. Set ResultCache := ∅.
2. For each candidate composition chk ∈ CH1,

1) For all i, j, 0 i n, i+1 j n+1,
� If there exists valid(chk.si, chk.sj) in ResultCache then

set LL(chk.si, chk.sj) := 1, and go to 2.1.
� If there does not exist Pol(chk.si.R) in cache then

download Pol(chk.si.R) from dom(chk.si).sa and store
Pol(chk.si.R) in cache.

� Result := auth(Attr(chk.sj), Attr(chk.si.R), tf(<chk.si, …,
chk.sj−1>), Pol(chk.si.R)).

� If Result = unknown then request attributes from
dom(chk.sj).sa, and compute auth(Attr(chk.sj),
Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)).

� If Result = false then delete chk from CH1 and go to 2.
� If Result = true then set LL(chk.si, chk.sj) := 1 in LS

and insert valid(chk.si, chk.sj) into ResultCache.
2) Re-compute fit(chk), chk ∈ CH1.

3. Sort elements in CH1 in the descending order of their
fitness and copy top L2 |CH0| elements in CH1 into CH2.

4. Return CH2 and LS.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Fig. 8. Third phase protocol.

6 PERFORMANCE EVALUATION

To validate the effectiveness and evaluate the performance
of the three-phase composition mechanism, we design a set
of experiments and compare the three-phase approach with
the conventional single phase composition approach. To
facilitate the performance comparison and validation, we set
up a simulation system to simulate the composition of
service chains.

6.1 Experimental Setup
The simulation system includes 80 domains and 400
concrete services. Each domain has a domain ID (1 to 80)
and the longitude and latitude. The longitude and latitude are
used to generate the communication latency between the
service composer and the security authority of the domain.
We use WS-Sim toolset [SHE10] to generate the longitude
and latitude for each domain and use the correlation between
communication latency and distance collected from the
Internet to generate the simulated latency.

For each concrete service, we first uniformly randomly
select its domain (with equal probability of being in any of
the 80 domains). Each concrete service instantiates an
abstract service and we consider 200 different abstract
services (each abstract service is realized by 2 concrete
services). Each concrete service has its own concrete service
ID, the ID of the corresponding abstract service, its domain
ID, the size of the output, and the service latency.

We also use WS-Sim [SHE10] toolset to generate the
service output size and the service latency. The generation of
transformation factor for each service is based on the
characteristics of the web services in each category in
WS-Sim. We first consider two main categories of web
services, including the data-centric service category (e.g.
data center, digital library, video hosting sites, etc.) and
functional service category (e.g. image processing, object
recognition, etc.), based on their major functions. Then, we
divide each main category into subcategories based on the
type of data they process, including video/audio, image,

document, and alphanumeric data. For each subcategory, we
choose several sample web services and generate
transformation factor for each of these services. For example,
for the subcategory of functional service with image data
type, we consider image enhancement service, image
registration service, feature extraction service, and object
recognition service. We assume that a functional service
with image input/output has equal probability to be in one of
these four sample services. For each sample web service, we
derive its transformation factor based on its functionality.
For example, for image enhancement service and image
registration service, the transformation factor is HR. The
transformation factor of feature extraction service is MR.
The transformation factor of object recognition service is LR.
Hence, the transformation factor of a service in the category
of functional service with image data type has 50% to be HR,
25% to be MR, and 25% to be LR.

The policy download flag and policy evaluation time are
randomly generated to facilitate the simulation of the policy
evaluation process. The set of all security policies in each
domain is associated with a single policy download flag
which is uniformly distributed between 0 (not downloadable)
and 1 (downloadable). We use MatLab to analyze the result
of a rule engine scalability test [YOU05] to generate the
policy evaluation time (i.e. the time required to evaluate an
access control policy). The result shows that the policy
evaluation time follows a Gaussian distribution where μ =
106.61 (in milliseconds) and λ = 169.33. This distribution is
used to generate the policy evaluation time. To simulate the
policy download time, we randomly generate policy sizes.
The generation of policy size SP follows the equation: SP =

 1 i K SRi, where K is the number of policy rules and SRi,
1 i K, is the size of the ith policy rule. For simplicity, we
assume that K is uniformly distributed between 1 and 50 and
SRi is uniformly distributed between 64 and 512 bytes.

Though we simulate the policy sizes and evaluation time,
we do not actually perform policy evaluation. Instead, we
use a simple rule to generate the validation results to avoid
inconsistent validation outcomes in the simulation. The rule
is that the access is granted only if the clearance level of the
requesting service is greater than or equal to the security
class of the requested data object.

One factor that has significant impact on performance is
the success rate of the composition tasks. When the success
rate is high, the conventional single-phase composition
mechanism can easily find out a valid composition, while
the three-phase composition process needs to spend extra
time on the first and second phases and, hence, the
advantage it has cannot pay off the extra overhead. On the
other hand, when the success rate is low, the single-phase
approach may spend much longer time on finding out a valid
composition and, hence, the three-phase method may
perform much better. We intend to study the impact of the
success rate, but it is difficult to directly control the success
rate. Instead, we generate different percentages of public
services to indirectly control the success rate.

INPUT: CH2, LS. OUTPUT: ch.
1. For each candidate composition chk ∈ CH2, do

1) For all i, j, 0 i n, i+1 j n+1,
� If auth(Attr(chk.sj), Attr(chk.si.R), tf(<chk.si, …,

chk.sj−1>), Pol(chk.si.R)) = unknown then retrieve
Attr(chk.sj) from local cache and send Attr(chk.sj) to
dom(chk.si).sa, for all i, for remote policy
evaluation.

2. Perform negotiation.
3. For each candidate composition chk ∈ CH2,

1) For all i, j, 0 i n, i < j n+1,
� If LL(chk.si, chk.sj) 1 and auth(Attr(chk.sj),

Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R))
= true then set LL(chk.si, chk.sj) := 1.

2) Re-compute fit(chk)
3) If fit(chk) = 1 then set ch := chk and return ch.

4. Set ch := ∅, and return ch.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

For simulation purpose, we consider an attribute based
access control system in which each data resource is
assigned a security class and each service is assigned a
clearance level by each domain. The security class sc(r)
measures the sensitivity level of data r and also the level of
security protection required by r. The security class is
defined by multiple levels, including NP (No Protection), LP
(Low Protection), MP (Medium Protection), MHP
(Medium-high Protection), and HP (High Protection), where
NP < LP < MP < MHP < HP. We use cl(s, d) to represent the
clearance level of service s in domain d. We consider a
simple access control policy, that is, a request is only
granted if the clearance level (ranging from NP to HP) of the
requesting service is greater than or equal to the security
class of the requested data. In the simulation, we ignore data
resources that do not need protection and generate the
security classes for sensitive data resources following a
uniform distribution between LP and HP. We use public
services ratio (PSR, 0 PSR 1) as a parameter, and
generate the clearance levels of non-public services
following a uniform distribution between LP and HP. Note
that the simple model here is to ease the simulation system
as it will be very difficult to simulate real attribute-based
policies and certificates.

The client generates a length-n abstract service chain by
randomly selecting n different abstract services (uniform
distribution) and submits it to the service composer. The
composer uses a conventional single-phase method and the
three-phase composition process to select concrete services
for the abstract service chain.

We also design a caching system to store the downloaded
policies and the validation results of historical composition
transactions. We consider a simple first-in first-out cache
replacement policy.

6.2 Experimental Results
We conduct experiments to study the performance of the

three-phase composition protocol (P1), the conventional
single-phase composition protocol (P2), and the protocol
without composition-time access control validation (P3),
under different success rates, different service chain lengths,
and variant L1 and L2.

In Figure 9, we compare the performance of P1, P2, and
P3 under different success rates. As can be seen, when the
success rate decreases, the time required by P3 increases
dramatically since the wasted execution efforts become
more severe. When the success rate is below 68%, the cost
of P3 is higher than the single-phase protocol (P2). (Note
that in P1 and P2, we need to perform access control
validation at composition time, and redo it at execution time
to assure security). The performance gain of P1 becomes
significant even at a high success rate. When the success rate
is 97%, P1 is only 3% faster than P2 and performs slightly
worse than P3. When the success rate is 53%, P1 is 24%
faster than P2 and 37% faster than P3.

20

22

24

26

28

30

32

34

36

38

40

50556065707580859095100

Success Rate (%)

C
om

po
si

tio
n

T
im

e
pl

us
E

xe
cu

tio
n

T
im

e
(s

)

P1
P2
P3

Fig. 9. Composition time vs. success rate.

0

4

8

12

16

20

24

28

32

36

40

6 7 8 9 10 11 12 13 14

Service Chain Length

C
om

po
si

tio
n

T
im

e
(s

)

P1

P2

Fig. 10. Composition time vs. service chain length.

1

2

3

4

5

6

20 30 40 50 60 70 80

L1/L2 (%)

C
om

po
si

tio
n

T
im

e
(s

)

Variant L1

Variant L2

Fig. 11. Composition time vs. L1 and L2.

In Figure 10, we compare the composition time of P1 and
P2 under different service chain lengths at a relatively high
success rate (ranging from 88% (length = 6) to 74% (length
= 14)). For shorter service chains (length 10), both
methods can find a valid composition quickly. In some cases,
the three-phase protocol (P1) may even perform a little
worse than P2 due to the extra time spent for fitness
calculation. For longer service chains (length > 10), P1
performs much better than P2, from 30% improvement at
length 11 to 70% improvement at length 14. From the
growing trend, the performance improvement in the

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

three-phase scheme can be much more significant with
increasing problem size.

Figures 11 shows how the selection of top candidate
ratios in the first and second phases, L1 and L2, can impact
the performance of the three-phase composition protocol.
The result shows that L1 and L2 do not significantly impact
the performance. With different L1, the composition time of
the three-phase protocol oscillates between 2.3sec and 3sec.
With different L2, the composition time oscillates between
2.6sec and 2.8sec.

7 RELATED WORK

The existing works in web service security generally fall
into two research directions. One research direction is the
development of execution time access control schemes to
secure web services [AGA04, ARD11, BER06, DAM01,
OAS07, PAC11, WON04, ZHU06]. [WON04] considers a
role-based access control for web services. It treats web
service as a special type of data resource, and applies both
action-based (control the accesses to service operations) and
resource-based (control the accesses to data resources
accessed through web services) access control. [BHA04]
considers dynamically changing security requirements of
services and defines contextual parameters, e.g. time,
location, etc., to capture such requirements. An access
request includes a set of contextual parameters which is
evaluated together with the user information against the
policies. [BER06] considers an adaptive access control
model for web services characterized by variant protection
granularities. It allows to divide the domain of the service
input into multiple value ranges and to specify different
access control policies for different ranges. It also allows to
group multiple services into a service class and to specify
access control policies for the service class. [PAC11]
considers the controlled dissemination of policy information
to users in conversational web service. It models a service as
a finite state machine in which, each transition is associated
with a service operation and a set of access control policies.
At each state, it determines the set of policies that may be
enforced afterwards (the policies for all service operations
that may lead to a final state) and allows only these policies
to be disseminated. [DAM01] focuses on the protection of
SOAP messages, and considers the XPath (a path in the tree
representation of XML-like document such as SOAP) as the
first-class object in the access control system. [ARD11]
considers the credential-based access control with the
abstraction of complex concepts, e.g. a set, a
disjunction/conjunction, etc., into a single concept in policy
specification. It also supports the recursive reasoning on
credentials and negotiation. [AGA04] uses DAML-S to
specify access control lists and includes them in an
SPKI/SDSI credential to facilitate a credential-based access
control. [AGA04, ZHU06] also consider the composition of
access control policies of individual component services into
composite service level policies and use a centralized entity
(e.g. the workflow execution engine) to enforce the policies.

They focus on the control of the user’s accesses to the
component services but do not consider securing the
interactions between individual component services.

There have been a few works that consider the
information flow problem in composite services [CHA05,
SRI07, YIL07]. In [CHA05, YIL07], interactions between
nonconsecutive services are validated in exactly the same
way as that of consecutive services. The computation effects
of intermediate services are disregarded. For example, in the
service chain <s0, s1, s2, s3, s4>, s2, s3, and s4 are validated as
if they are directly interacting with s0 (i.e. s1). This approach,
though capable of ensuring information flow security, poses
overly restrictive constraints. Without proper privileges, the
composition of s2, s3, and s4 is prohibited even if s0’s output
does not really flow into s2, s3, and s4. In [SRI07], an
extreme approach is considered. When specifying policies, it
needs to consider all intermediate services. Consider the
same example service chain. To validate the accesses
between s0 and s4, it is necessary to consider all possible
compositions of intermediate services between them. As can
be seen, this approach is almost infeasible, considering its
complexity for policy specification.

Another research direction is security-aware service
composition [BAR08, CAR06, DEN03, HAN06, PAC08].
These systems treat security as a set of quantitatively
measurable attributes, e.g. the type of encryption scheme,
the type of authentication protocol, trust and reputation, etc.
The security properties of each service are specified in terms
of these attributes. The users and service providers may
specify their security constraints, also in terms of these
attributes, to ensure the secure use of their services and/or
data resources. To achieve secure composition, the service
composer ensures that the security properties of all the
selected concrete services satisfy all the security constraints.
[DEN03] focuses on the definition of security ontologies in
DAML+OIL to facilitate the specification of security
properties and constraints. It uses Java Theorem Prover to
match security properties with security constraints. It also
identifies several situations in which different levels of
match may be achieved, and suggests using negotiation
when an exact match between the security constraints and
security properties cannot be found. In [CAR06], security
properties of services are evaluated by a trusted authority
and certified by SAML assertions issued by the authority.
The validated security properties are stored in the WSDL
document of the corresponding service. Also, the
user-specified security constraints are included in the SOAP
requests, and used to prune the candidate services prior to
the composition process. On the other hand, the security
constraints specified by the service providers are included in
the WSDL documents, and are validated when allocating a
concrete service to an activity in the workflow. Also, AI
planning techniques are used to achieve service selection
and composition. In [HAN06], the negotiation process is
introduced in secure service composition. Each concrete
service has multiple sets of security properties (which are

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

protected rather than publicly available), each with a
preference level. Prior to the negotiation, the most preferable
sets of security properties are always loaded to the
negotiation agent. When a mismatch is detected, some
services may provide their less preferable sets of properties
to achieve composition. The re-composition issue is also
considered for the case when the security constraints posed
by the service providers or the user are changed. In [PAC08],
each web service is modeled as a finite state machine where,
each transition arc is associated with a service operation and
defined a precondition (an access control policy). It also
models each composite service as a finite state machine
where, each state includes the states of all its component
services and each transition records the invoker/invokee
information and the service operation to be invoked. It
considers that each service defines a set of access control
policies to specify the credentials required to grant the
access and a set of credential disclosure policies to specify
how a specific credential can be released. The verification of
a composition is to verify, for each transition (in the
composite service), whether the invoker’s credential
disclosure policies comply with the access control policies
of the invokee. In [BAR08], the composition/matchmaking
problem is mapped to the type system of an enriched
λ-calculus. It considers security constraints and properties
from the perspective of events. With a predefined set of
events, both security constraints and properties can be
expressed as a temporally ordered sequence of events. To
decide whether a security property matches a security
constraint, one only needs to verify whether the order of
events in the security property conforms to the security
constraint. However, this work provides very little
information about how actual access control policies can be
abstracted in this manner.

8 CONCLUSION

We have developed an innovative security-aware service
composition protocol with composition-time information
flow control, which can reduce the execution-time failure
rate of the composed composite services due to information
flow control violations. We define information flow control
rules based on the concept of transformation factor to guide
the composition process. We also develop a three-phase
composition protocol, which can quickly eliminate invalid
concrete compositions and identify the composition that
satisfies the information flow control policies. Experimental
study confirms the efficiency of the mechanism.

Our approach can greatly reduce the potential access
control violations at execution time, but cannot guarantee
that there are no access control violations at run time and a
suitable execution-time access control model will be needed
to provide further protection. Consider a web service with a
backend database. The data resources that may be accessed
during the service execution may not be determined at the
composition time (nor even at the service invocation time).
To control the accesses to the data resources that are further

protected, we are going to consider a hybrid information
flow analysis approach. Specifically, we plan to use static
program analysis techniques to find the data accesses within
services that can be determined statically and perform
composition-time access control validation with the policies
defined for these data resources. For the accesses that can
only be determined at run time, we consider dynamic
information flow tracking techniques to track down the flow
of sensitive information both inside the service and between
services to perform execution-time access control.

ACKNOWLEDGEMENT

This research is supported by the Air Force Office of
Scientific Research, under Award No. FA-9550-08-1-0260,
the NSF Industry University Collaborative Research Center
(IUCRC) on Net-Centric Systems and its industrial
membership, the NSF Fundamental Research Program under
Award No. IIP-1128270. We thank our research sponsors for
their support.

REFERENCES
[AGA04] Agarwal, S., Sprick, B., “Access control for semantic

web services,” IEEE International Conference on Web Services,
pp.770, 2004.

[ARD11] Ardagna, C.A., Vimercati, S.D.C.D., Paraboschi, S.,
Pedrini, E., Samarati, P., Verdicchio, M., “Expressive and
deployable access control in open web service applications,”
IEEE Transactions on Services Computing, vol. 4, no. 2, pp.
96-109, 2011.

[BAR08] Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.,
“Semantics-based design for secure web services,” IEEE
Transactions on Software Engineering, vol. 34, no. 1, pp. 33-49,
2008.

[BER06] Bertino, E., Squicciarini, A.C., Martino, L., Paci, F., “An
adaptive access control model for web services,” International
Journal of Web Services Research, vol. 3, no. 3, pp. 27-60,
2006.

[BHA04] Bhatti, R., Bertino, E., Ghafoor, A., “A trust-based
context-aware access control model for web-services,” IEEE
International Conference on Web Services, pp. 184-191, 2004.

[CAR06] Carminati, B., Ferrari, E., Hung, P.C.K., “Security
conscious web service composition,” IEEE International
Conference on Web Services, pp. 489-496, 2006.

[CHA05] Chafle, G., Chandra, S., Mann, V., Nanda, M.G.,
“Orchestrating composite web services under data flow
constraints,” IEEE International Conference on Web Services,
pp. 211-218, 2005.

[DAM01] Damiani, E., De Capitani di Vimercati S., Paraboschi, S.,
Samarati, P., “Fine grained access control for SOAP e-services,”
ACM International Conference on World Wide Web, pp.
504-513, 2001.

[DEN03] Denker, G., Kagal, L., Finin, T., Paolucci, M., Sycara, K.,
“Security for DAML web services: annotation and
matchmaking,” Lecture Notes in Compute Science, vol.
2870/2003, pp. 335-350, 2003.

[HAN06] Jun Han, Kowalczyk, R., Khan, K.M., “Security-oriented
service composition and evolution,” Asia Pacific Conference on
Software Engineering, pp. 71-78, 2006.

[HEB09] Hebig, R.N., Meinel, C., Menzel, M., Thomas, I.,

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Warschofsky, R., “A web service architecture for decentralised
identity- and attribute-based access control,” IEEE International
Conference on Web Services, pp. 551-558, 2009.

[IBM03] IBM Specification, “Business process execution language
for web services version 1.1,” http://public.dhe.ibm.
com/software/dw/specs/ws-bpel/ws-bpel.pdf, 2003.

[LEE06] Lee, A.J., Winslett, M., Basney, J., Welch, V., “Traust: a
trust negotiation-based authorization service for open systems,”
The ACM Symposium on Access Control Models and
Technologies, pp. 39-48, 2006.

[NAN04] Nanda, M.G., Chandra, S., Sarkar, V., “Decentralizing
execution of composite web services,” ACM SIGPLAN
Conference on Object-oriented Programming, Systems,
Languages, and Applications, 2004.

[NAT04] Natalya F.N., “Semantic integration: a survey of
ontology-based approaches,” ACM Special Interest Group on
Management of Data, vol. 33, no. 4, pp. 66-70, 2004.

[OAS07] OASIS, “Web services profile of XACML (WS-XACML)
version 1.0,” http://www.oasis-open.org/
committees/download.php/24951/xacml-3.0-profile-webservices
-spec-v1-wd-10-en.pdf, 2007.

[OLS06] Olson, L., Winslett, M., Tonti, G., Seeley, N., Uszok, A.,
Bradshaw, J., “Trust negotiation as an authorization service for
web services,” IEEE International Conference on Data
Engineering Workshops, pp. 21, 2006.

[PAC08] Paci, F., Ouzzani, M., Mecella, M., “Verification of
access control requirements in web services choreography,”
IEEE International Conference on Services Computing, pp. 5-12,
2008.

[PAC11] Paci, F., Mecella, M., Ouzzani, M., Bertino, E.,
“ACCONV – an access control model for conversational web
services,” ACM Transactions on the Web, vol. 5, no. 3, 2011.

[SHE09a] Wei She, I-Ling Yen, Thuraisingham, B., Bertino, E.,
“The SCIFC model for information flow control in web service
composition,” IEEE International Conference on Web Services,
pp.1-8, 2009.

[SHE09b] Wei She, I-Ling Yen, Thuraisingham, B., Bertino, E.,
“Effective and efficient implementation of an information flow
control protocol for service composition,” IEEE International
Conference on Service-Oriented Computing and Applications,
pp.1-8, 2009.

[SHE10] Wei She, I-Ling Yen, Thuraisingham, B., “WS-Sim: a
web service simulation toolset with realistic data support,” IEEE
Conference on Computer Software and Applications Workshops,
pp.109-114, 2010.

[SRI07] Srivatsa, M., Iyengar, A., Mikalsen, T., Rouvellou, I., Jian
Yin, “An access control system for web service compositions,”
IEEE International Conference on Web Services, pp. 1-8, 2007.

[WAN04] Lingyu Wang, Wijesekera, D., Jajodia, S., “A
logic-based framework for attribute based access control,” ACM
Workshop on Formal Methods on Security Engineering, 2004.

[WON04] Wonohoesodo, R., Tari, Z., “A role based access Control
for web services,” IEEE International Conference on Services
Computing, pp. 49-56, 2004.

[W3C04] W3C, “OWL web ontology language overview,”
http://www.w3.org/TR/2004/REC-owl-features-20040210/,
2004.

[YIL07] Yildiz, U., Godart, C., “Information flow control with
decentralized service compositions,” IEEE International
Conference on Web Services, pp. 9-17, 2007.

[YOU05] Young, C., “Microsoft’s rule engine scalability results - a
comparison with Jess and Drools,” http://geekswithblogs.net/
cyoung/articles/54022.aspx, 2005.

[YUA05] Yuan, E., Jin Tong, “Attributed based access control
(ABAC) for web services,” IEEE International Conference on
Web Services, pp. 561-569, 2005.

[ZHU06] Junqiang Zhu, Yu Zhou, Weiqin Tong, “Access control
on the composition of web services,” International Conference
on Next Generation Web Services Practices, pp. 89-93, 2006.

Wei She received the BS and MS
degrees from Tsinghua University,
China, in 2001 and 2004, respectively,
and entered University of Texas at
Dallas, USA, for PhD studies since
2006. His research interests include
web services, access control, and
information flow control. He is a
member of the IEEE.

I-Ling Yen is a Professor in Computer Science Department at
University of Texas at Dallas. Her research interests include
cloud computing, service computing, high assurance systems,
and security. She had published many technical papers and
received many research awards in these areas.

Bhavani Thuraisingham is the Louis A.
Beecherl, Jr. I Distinguished Professor
and Director of the Cyber Security
Research Center (CSRC) at University
of Texas at Dallas. She is an elected
Fellow of IEEE, the AAAS, the British
Computer Society, the SPDS (Society
for Design and Process Science) and
the Society of Information Reuse and
Integration (subcommittee of IEEE

Systems, Man and Cybernetics Society). The recipient of
numerous awards, she has over 30 years experience in
industry, MITRE, NSF and Academia. Her work has resulted
in 100+ journal articles, 200+ conference papers, three US
patents and 12 books.

Elisa Bertino is a Professor in
Computer Science Department at
Purdue University and the director of
the Center for Education and Research
in Information Assurance and Security.
Her main research interests include
security, privacy, database systems,
digital identity management systems,
distributed systems, and multimedia
systems. She has served on the

editorial boards of several scientific journals. She is a fellow
of the IEEE and a fellow of the ACM. She received the 2002
IEEE Computer Society Technical Achievement Award and
the 2005 IEEE Computer Society Tsutomu Kanai Award.

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

