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Abstract—Enforcing access control in composite services is essential in distributed multi-domain environment. Many advanced 
access control models have been developed to secure web services at execution time. However, they do not consider access 
control validation at composition time, resulting in high execution-time failure rate of composite services due to access control 
violations. Performing composition-time access control validation is not straightforward. First, many candidate compositions need 
to be considered and validating them can be costly. Second, some service composers may not be trusted to access protected 
policies and validation has to be done remotely. Another major issue with existing models is that they do not consider information 
flow control in composite services, which may result in undesirable information leakage. To resolve all these problems, we 
develop a novel three phase composition protocol integrating information flow control. To reduce the policy evaluation cost, we 
use historical information to efficiently evaluate and prune candidate compositions and perform local/remote policy evaluation 
only on top candidates. To achieve effective and efficient information flow control, we introduce the novel concept of 
transformation factor to model the computation effect of intermediate services. Experimental studies show significant 
performance benefit of the proposed mechanism. 

Index Terms—Secure service composition, access control, information flow control. 

——————————      —————————— 

1 INTRODUCTION

Service composition has been extensively studied in recent 
years. Although a lot of new models and mechanisms have 
been proposed, many issues in service composition still 
remain unsolved. Among them, access control is one of the 
major concerns. Though it is essential to develop access 
control models and techniques to secure individual 
component services as well as composite services, it is also 
necessary to consider when to evaluate the access control 
policies. All existing works consider access control only at 
execution time. However, without the composition-time 
access control validation, the composite service may be very 
likely to fail at the execution time due to access control 
violations, wasting composition and execution efforts. To 
avoid repeating failed compositions, bookkeeping of the 
failure becomes necessary, resulting in a more complicated 
and time consuming composition and execution protocol. To 
resolve this problem, it is desirable to enforce the access 
control policies of individual component services at the 
service composition time in addition to the execution-time 
access control enforcement. 

Existing works do not consider composition time access 
control validation. There have been some works on 
security-aware composition [BAR08, CAR06, DEN03, 
HAN06, PAC08]. These works characterize security as a set 
of attributes that can be quantitatively measured. The 
security properties of a service can be specified in terms of 
these attributes. To protect critical data resources and/or 
services, the user and service providers may define security 
constraints (i.e. policies) for a composition in terms of these 
attributes. A composite service is considered to be secure if 
the security properties of all individual services satisfy all 
the security constraints defined by the service providers and 
the user. One major issue with the above works is that they 
consider very simple attributes such as the type of 
encryption algorithm, the type of authentication protocol, etc. 

Although it is possible to extend these mechanisms to 
include access control policies as security constraints, none 
of these works consider the specific issues involved in 
modeling, specification, and evaluation of these policies. 

There are several issues when considering access control 
at composition time. The first issue is who should evaluate 
the access control policies. Existing secure service 
composition mechanisms assume a fully trusted service 
composer, which is not always true, especially in a 
multi-domain environment. In such an environment, there 
are many users in different domains and they may use 
different service composers. These distributed service 
composers may be in different domains from those of the 
web services. Some of these domains may have protected 
access control policies that should not be released to some 
parties (e.g. some service composers). Thus, it is unlikely 
that a service composer is fully trusted by the providers of 
all involved services (all the concrete services considered by 
the composer, not just those actually selected) for accessing 
their protected policies. Consequently, the service composer 
cannot complete policy evaluation without interacting with 
the service providers with protected policies. 

Second, the performance issue in secure service 
composition should be carefully considered. The service 
composer may have to explore a lot of candidate 
compositions to find one candidate that satisfies the security 
constraints of all component services. To validate each 
candidate, the composer needs to validate each service pair 
(si, sj) by evaluating sj’s security properties against si’s 
access control policies. The policies of some services may 
be very complex and require a significant amount of 
evaluation time. Also, a service composer may not readily 
have the policies of all services from all domains and may 
need to download the needed policies at the composition 
time. In case some policies are protected, the composer 
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needs to interact with the security authorities of the 
corresponding domains for remote policy evaluation or 
negotiation. If such a policy evaluation process is applied to 
every candidate composition, the cost can be extremely high. 
Note that if policy evaluation is delayed to execution time, 
the problem of exploring many potentially illegitimate 
compositions would occur and the cost would be even 
higher due to the involvement of actual execution. 

We introduce a three phase service composition protocol 
to address the performance issue and trusted composer issue 
in composition-time access control validation. In the first 
phase, as the search space may be very large, a more 
efficient but less precise method is used to quickly prune the 
candidate compositions. Specifically, we use the information 
of historical service composition transactions to estimate the 
fitness of candidate compositions, rank them, and select the 
top candidates. In the second phase, we consider a local 
policy evaluation process to achieve more precise evaluation 
of candidate compositions. In this process, the composer 
uses the policies and/or certificates cached or newly 
downloaded from the security authorities of involved 
services to locally validate the candidate compositions. The 
accesses to the policies by the composers are considered as 
special privileges granted rather than assumed. Although it is 
unlikely that the service composer can validate all candidate 
compositions, a majority of the service pairs may still be 
validated, and many invalid candidate compositions can be 
eliminated. In the third phase, we consider a remote policy 
evaluation process to validate previously unverifiable pairs 
of services. In this process, the security authorities of the 
involved services evaluate their protected access control 
policies and return their decisions to the composer to help 
derive the final composition decisions. Negotiation may be 
needed in this phase to exchange the credentials and/or 
policy information between the service composer and the 
security authorities and between the security authorities in 
different domains. Since the service pairs validated in the 
second phase need not be checked again, this time 
consuming process will only be performed on a few service 
pairs of very few final candidates. 

Besides not considering access control at composition 
time, existing access control models also do not effectively 
handle information flow control (neither composition time 
nor execution time). Existing works consider advanced 
models to secure individual web services, including adaptive 
action-based access control [BER06], context-aware access 
control [BHA04], access control for conversational web 
services [PAC11], credential-based access control [ARD11, 
AGA04], etc. Some of these works also consider securing 
composite services at the execution time [AGA04, ZHU06]. 
But they only consider direct accesses to the services and do 
not consider the flow of sensitive information among 
indirectly interacting services. Consider a service chain <s0, 
s1, s2 >. Assume that s1’s output is computed from some of 
its own sensitive information and some sensitive data 
received from s0. When s1’s output is sent to s2, s2 may use 

the received data to derive the sensitive information of s0, 
resulting in an information flow from s0 to s2. Such 
information flows, if not handled carefully, may result in 
undesired information leakage. 

There have been some limited works that address the 
information flow problem in composite services. But they 
are either too strict, treating direct and indirect accesses 
exactly the same way [CHA05, YIL07], or too complex, 
exhaustively enumerating all the possible combinations of 
intermediate services and specifying information flow 
control policies accordingly [SRI07]. To achieve fine- 
grained information flow control while avoiding the pitfalls 
in existing models, we introduce the concept of 
transformation factor, which specifies how likely the 
sensitive input or local data of a service can be derived from 
its output, and consider it in making information flow 
control decisions. Note that the information flow control 
policies should also be evaluated at both composition time 
and execution time. We integrate the information flow 
control model into our three phase composition protocol. 

To study the performance of the proposed mechanism, we 
develop a simulation system to simulate various protocols 
and compare their performance, including the three-phase 
composition protocol, the single-phase composition protocol, 
and the protocol without composition-time access control 
validation. The result shows that, without composition-time 
access control validation, the composition and execution 
cost increases dramatically as the success rate decreases (If 
the access control policies of component services are strict, 
then it is difficult to find a valid composition and the success 
rate is low). When the success rate is around 50%, even the 
single-phase protocol performs better than the protocol 
without composition-time access control. The three-phase 
composition protocol performs much better than the other 
two mechanisms even when the success rate is high (90%). 
We also compare the performance of the protocols under 
various service chain sizes. With the increasing service chain 
size, the performance gain by the three-phase protocol 
becomes more significant. 

The rest of this paper is organized as follows. Section 2 
presents the system model, including a general model for 
web service systems, the access control model, and the 
formalization of service chain and information flow. Section 
3 presents a motivating example to illustrate various issues 
and considerations. Section 4 introduces the information 
flow control rules, which will be used to guide the 
composition process. In Section 5, we discuss the 
three-phase composition protocol. The experimental study 
and results are presented in Section 6. Section 7 presents 
related works. Section 8 concludes this paper. 

2 SYSTEM MODEL 

2.1 A Model of Web Service System 
We consider a general web service system (Figure 1), which 
consists of multiple domains and multiple service composers. 
Each domain includes a set of web services, a set of data 
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resources, and a security authority (SA) which manages a set 
of access control policies to control the accesses to the data 
resources in the domain. The web service system is defined 
in Definition 2.1. 

Definition 2.1. A web service system includes a set of 
domains {d1, d2, …} and a set of service composers {scomp1, 
scomp2, …}. Each domain di is a tuple <di.S, di.R, di.sa> 
where, di.S = {di.s1, di.s2, …} is the set of all services in di, 
di.R = {di.r1, di.r2, …} is the set of all data resources in di, 
and di.sa is the security authority of di. di.sa manages a set of 
access control policies di.Pol = {di.pol1, di.pol2, …} to 
control the accesses to di.R.  � 

 

Fig. 1. Web service system. 

Data resource refers to the data/information itself and any 
entity that may store or receive data/information. Such an 
entity can be a data container, such as a file, a directory, a 
relation, a view, etc., or an exhaustible resource, such as a 
printer, a scanner, the disk space, CPU cycle, etc. We assume 
that all services are semi-honest. They follow the protocol 
and conform to the access control policies, but some 
services may attempt to derive the sensitive information of 
others from the information they have received. Also, we do 
not consider the interoperability issues. There are techniques 
in the literature that can help resolve these issues [NAT04]. 

For convenience, we use dom(x) to represent the domain 
of x where x can be a service or a data resource. Also, we 
use Pol(r), Pol(r) ⊆ dom(r).Pol, to denote the set of all 
access control policies in dom(r) that are applicable to r, 
where r is a data resource. 

2.2 Service and Service Chain 
We consider an abstract dataflow model to model the flow of 
data/information in service chains. In this model, each 
service y takes the input data y.In from the end user or 
another service x, completes its own computation, and 
generates its output y.Out which is delivered to another 
service or the end user z. The computation of y may use 
some data resources stored in dom(y), i.e. y.R. As we only 
consider the deterministic system, the set of output data of y, 
y.Out, can be expressed as a function of its input, y.In, and 
local data resources, y.R. We define web service as follows. 

Definition 2.2. A web service s is a tuple <s.In, s.Out, s.R, 
s.F> where, s.In = {s.in1, s.in2, …} is the set of all input data 
of s, s.Out = {s.out1, s.out2, …} is the set of all output data 

of s, s.R = {s.r1, s.r2, …} is the set of all local data in dom(s) 
that are used in the computation of s, and fs is the 
computation function of s that s.Out = fs(s.In, s.R). � 

Generally, a composite service can be defined using a 
workflow, which is the composition of component services. 
We consider abstract and concrete workflows. In an abstract 
workflow, each component service is abstract and is to be 
grounded to a concrete service. In a concrete workflow, each 
component service is a concrete web service. Upon 
composition, the service composer is given the desired 
abstract workflow and instantiates each abstract component 
service by a concrete service. In this thesis, we only consider 
a simplified workflow, a service chain. The simplification is 
for the convenience in defining the notations and algorithms. 
The solutions provided in this thesis are applicable to 
general workflows with parallel composition and loop. We 
define the abstract and concrete service chains as follows. 

Definition 2.3. An abstract service chain <s0, as1, …, asn, 
sn+1> consists of two end users, s0 and sn+1, where s0 is the 
user who sends the input data to as1 and sn+1 is the user who 
receives the output data from asn, and a sequence of abstract 
services, as1, …, asn, that should be grounded to concrete 
services. A concrete service chain <s0, s1, …, sn, sn+1> 
consists of the two end users, s0 and sn+1, and a sequence of 
concrete services s1, …, sn.  � 

We consider that a user submits an abstract service chain 
<s0, as1, …, asn, sn+1> to a service composer and the 
composer returns a concrete service chain <s0, s1, …, sn, 
sn+1> to the user, where asi is grounded to si, 1  i  n. Note 
that we consider the two end users, s0 and sn+1, as services. 
They may be the same user or may be different. During 
composition, we only need to consider the selection of as1 to 
asn. But when considering access control, all users/services 
in the concrete service chain, from s0 to sn+1, should be 
considered. The service composer explores various 
candidate concrete compositions chk, for all k, and selects 
the best solution to return to the user. We use chk.<s0, s1, …, 
sn, sn+1> to represent the concrete service chain for chk and 
chk.si to represent the specific service si in this chain. 

2.3 Attribute-based Access Control 
We consider a general attribute-based access control model 
[HEB09, WAN04, YUA05]. A set of attributes is defined for 
each service/data resource. The attributes of a service may 
include service name, WSDL pointer, the permission granted 
to the service, reputation, etc. The attributes of a data 
resource may include owner, security classification, etc. The 
attributes of a data resource are included in the metadata and 
stored with the data. The attributes of a service must be 
asserted by a security authority and included in a certificate, 
called the attribute certificate. The attribute certificate must 
be signed by its issuer. The attribute and attribute certificate 
are defined as follows. 

Definition 2.4. Each service or data resource x is 
associated with a set of attributes Attr(x) = {attr1(x), 

d3 

d2 d1 

Service 
Security Domain 

Data Resource 
Security Authority 
Service Composer 
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attr2(x), …}. Each attribute attr(x) ∈ Attr(x) is defined as a 
tuple (attr(x).name, attr(x).val) in which, attr(x).name is a 
string that uniquely specifies the name of the attribute, and 
attr(x).val is the value of the attribute. 

Each service s owns a set of attribute certificates s.AC. 
Each attribute certificate s.ac ∈ s.AC is issued by a security 
authority to certify that s owns certain attributes s.ac.Attr, 
where s.ac.Attr ⊆ Attr(s).  � 

We consider that the security authority in each domain 
manages the attribute certificates of all services in the 
domain. The attributes of a service can be sensitive or 
non-sensitive. Attribute certificates containing only 
non-sensitive attributes can be freely exchanged among 
different parties. However, the release of an attribute 
certificate with sensitive attributes requires negotiation. 

In attribute-based access control, an access control policy 
is a set of conditions defined over the set of all attributes 
used by a domain (the set of all attributes defined for 
services and resources in the domain). For simplicity, we 
consider a unified set of attributes defined across all 
domains. When a service s accesses a data resource r, s 
presents its attribute certificate s.ac which contains a set of 
attributes s.ac.Attr to dom(r).sa. dom(r).sa verifies s.ac from 
its issuer (may be dom(s).sa, dom(r).sa, or another security 
authority trusted by dom(r).sa) and extracts s.ac.Attr from 
s.ac. s.ac.Attr are evaluated against the access control 
policies Pol(r), Pol(r) ⊆ dom(r).Pol. 

Figure 2 shows an example attribute certificate and 
attribute-based access control policy. To evaluate the policy, 
the SA substitutes the variables in the policy by s’s attributes 
(e.g. replace subscriptionType(s) by “regular”). 

 

Fig. 2. Attribute certificate and attribute-based policy. 

3 MOTIVATING EXAMPLE 

We consider an example application workflow (Figure 3) to 
motivate and demonstrate the need for the information flow 
control in service composition and the benefit of considering 
access control at composition time. It is also used as a 
running example to help illustrate various concepts in our 
model. The workflow is used to help with screening of 
disease x by first extracting association rules from medical 
data of patients with and without disease x. The association 
rules are then used to determine how likely a new patient 
does have disease x. The workflow consists of the following 
abstract services, a client program CLN, a medical database 
MDB, a template image database TDB, an image 
enhancement service IES, an image registration service IRS, 

an object recognition service ORS, an association rule 
mining service ARM, and a classifier CLS. CLN first 
searches MDB (with keyword x) for the medical records of 
the patients who are diagnosed to have the disease x, and 
searches TDB (with keywords such as “bone”, “polyp”, 
“nodule”, etc.) for the template images for object 
recognition. Each medical record stored in MDB includes 
the alphanumeric medical data, e.g. the patient’s medical 
history, family history, personal data (e.g. gender, age, 
height, weight, living area, etc.), and the medical images (e.g. 
CT, X-ray, Nuclear, etc.). The alphanumeric medical data of 
MDB are sent to ARM. The template images are sent to ORS. 
The medical images are first sent to IES which performs 
image enhancement (e.g. noise cancellation, etc.). The 
enhanced images are sent to IRS which performs image 
registration to align different images into one coordinate 
system. The aligned images are sent to ORS which detects 
and recognizes the objects in the images (e.g. bones, polyps, 
nodules, etc.) using the template images. After recognition, 
it assigns labels to the recognized objects in the image. The 
labeled images are sent to ARM, which uses these images 
together with the alphanumeric medical data received from 
MDB to extract association rules (in the form of (y1, …, yn) 

 x, where yi, 1  i  n, is an object label or a string 
extracted from the alphanumeric medical data and x is the 
disease name) which are sent to CLS. 

 

Fig. 3. Example workflow. 

Now consider the sensitivity of the data that are used by 
the composite service (Note that this abstract composite 
service includes three abstract service chains). We assume 
that the search keywords that CLN sends to MDB and TDB 
are not sensitive and, hence, require no protection. The 
alphanumeric medical data that MDB sends to ARM and the 
medical images that MDB sends to IES are sensitive and the 
recipients are required to have read permissions to these data. 
(Note that the recipient rather than the invoker needs to have 
the proper privilege. For example, IES needs to have read 
permission to the medical images in MDB, but CLN does 
not.) The template images are used in a pay-per-use manner 
and, hence, require the recipients to present proper privilege. 

Next, consider the concrete services that can be used to 
instantiate the abstract services and the privileges they have 
(Figure 4). For simplicity, we assume that CLN, MDB, TDB, 
IES, IRS, and CLS are already concretized by cln1, mdb1, 
tdb1, ies1, irs1, and cls1, respectively. cln1 and cls1 are hosted 
by hospital A (domain dA). mdb1 and tdb1 are hosted by 
hospital B (domain dB) and research institute C (domain dC), 
respectively. ies1 and irs1 are hosted by research institute D 
(domain dD). ORS can be instantiated by ors1, ors2, and ors3. 
Note that ies1 does not modify the content of the medical 

MDB 

IES IRS ORS 

ARM CLS CLN 

TDB 

Attribute certificate of s 
 {subscriptionType = “regular”, 
 subscriptionExpirationDate = 12/31/2012, 
 penaltyLevel = 0.05} 

Attribute-based access control policy of r 
 ((subscriptionType(s) = subscriptionType(r)) ∧
 (subscriptionExpirationDate(s)  systemDate) ∧ 
 (penaltyLevel(s)  0.1))  allow(s, r) 
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image received from mdb1 and irs1 does not modify the 
content of the images received from ies1. Hence, the medical 
images of mdb1 are essentially delivered to the ORS service 
(ors1, ors2, or ors3) in their raw forms. ARM can be 
instantiated by arm1 and arm2. We consider that ors1 and 
arm1 are hosted by institute D, ors2 is hosted by research 
institute E (domain dE), and ors3 and arm2 are hosted by 
university F (domain dF). 

 

Fig. 4. Concrete services and their permissions. 

For simplicity, we assume that all the services can be 
invoked by anyone and we only define the resource-based 
access control policies here. Consider that service x invokes 
service y. If y does not read/write any sensitive local data 
(e.g. a table, etc.) in its computation, then the invocation can 
be directly granted. If y reads some sensitive local data 
resources r, then the invocation is granted when x has the 
read permission to r. Similarly, if y writes to r, then the 
invocation is granted when x has the write permission to r. 
Figure 4 depicts the resource access rights. We consider that 
institutes D and E are federated with hospital B and, hence, 
services ies1, irs1, ors1, arm1, ors2 have the read permission 
to the medical data in domain dB. Also, we consider that 
institute E has purchased the service of tdb1 from institute C 
and, hence, ors2 has the read permission to the template 
images in domain dC. No other read/write accesses to the 
medical data or the template images are allowed. 

Information flow control illustration. Conventional 
access control models cannot address the security needs in 
this application. For example, the medical images of mdb1 
are delivered to the ORS service in raw forms and ors3 does 
not have the read permission for the medical images of mdb1, 
the selection of ors3 should be prohibited. Also, as arm2 does 
not have the privilege for the template images in tdb1, arm2 
should not be selected either. However, conventional models 
do not consider information flow control and will allow ORS 
to be grounded to ors3 or ARM to be grounded to arm2, 
resulting in undesirable information flows. 

Benefit of composition-time access control validation. 
Assume that access control is not validated at composition 
time. Suppose that the workflow (Figure 3) is first 
concretized by the composite services {cln1, mdb1, tdb1, ies1, 
irs1, ors3, arm2, cls1}. During execution, cln1, mdb1, and tdb1 

are invoked and executed successfully. But when mdb1 sends 
out the alphanumeric medical data to arm2, since arm2 does 
not have read permission to the alphanumeric medical data 
of mdb1, mdb1 cannot send its output to arm2 and the 
execution fails. All the execution of cln1, mdb1, and tdb1 are 
wasted. After this failure, the execution coordinator needs to 
pass the execution information to the service composer and 
the composer records the access control violation between 
mdb1 and arm2 and then replaces arm2 with arm1. The 
execution of the new composite service {cln1, mdb1, tdb1, 
ies1, irs1, ors3, arm1, cls1} also fails as ors3 has neither the 
read permission to the medical images of mdb1 nor the 
permission to the template image of tdb1. Again, cln1, mdb1, 
ies1, irs1, and tdb1 have completed their execution and the 
efforts are wasted. Such failure may continue until the only 
feasible composition {cln1, mdb1, tdb1, ies1, irs1, ors2, arm1, 
cls1} is selected and executed. 

If access control validation is performed at composition 
time, then the selected composition is likely to succeed, 
avoiding wasting unsuccessful execution efforts. (Note that 
there may still be policies that can only be evaluated at 
execution time, which can still results in failures). 

4 INFORMATION FLOW CONTROL RULES 

In a service chain, the output data of service si may be 
computed from some sensitive information of si and/or of 
si’s prior services. When delivered to the subsequent services 
sj, j > i, sj may be able to derive the sensitive information of 
si or of si’s prior services from the data it has received. Thus, 
during composition, it is desirable that the service composer 
can make sure that the information flow from si to sj does 
not violate any security constraints. To ensure the secure 
information flow, each service in the service chain needs to 
define detailed policies to control the flow of its sensitive 
information. Also, it is desired to define rules to govern the 
composition process such that the service chain generated by 
the service composer does not violate any information flow 
control policies specified by the services in the chain. In this 
section, we define the information flow control (IFC) rules. 

4.1 Basic IFC Rules 
The goal of information flow control is to guarantee that the 
sensitive information of each service in a service chain is not 
only secured from direct accesses but also secured after it 
flows (in its raw or processed form) to the subsequent 
services. Note that, the output data of service si, si.Out = 
si.F(si−1.Out, si.R) = si.F(si−1.F(si−2.Out, si−1.R), si.R) = … = 
si.F(si−1.F(...(s1.F(s0.F(s0.R), s1.R), …), si−1.R), si.R). Thus, to 
achieve information flow control in service chain <s0, …, 
sn+1>, the service composer needs to ensure that, for each 
service pair in the service chain (si, sj), 0  i  n, i < j  n+1, 
sj is authorized to access the sensitive information contained 
in si.R. This principle is specified by the basic IFC rules 
given as follows. 

BIFC1: valid(si, sj) ⇐ auth(Attr(sj), Attr(si.R), Pol(si.R)), 
for all i, j, 0  i  n, i < j  n+1. 

Template 

Can-read Relationship Domain 

cln1 mdb1 

tdb1 

ies1 

irs1 cls1 
dA 

dC 

dB 
dD 

ors1 

arm1 

ors2 

dE 

arm2 ors3 

dF 

Medical Data 

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



 
 

BIFC2: valid(<s0, ..., sn+1>) ⇐ ∧valid(si, sj), for all i, j, 0 
 i  n, i < j  n+1. 

Here, auth(Attr(sj), Attr(si.R), Pol(si.R)) denotes the 
information flow control decision (true, false, or unknown) 
made by evaluating the attributes of the requesting service sj, 
Attr(sj), and the attributes of the requested data resource si.R, 
Attr(si.R), against the information flow control policies that 
are applicable to si.R, Pol(si.R). valid(si, sj) denotes the 
validity of the service pair (si, sj). If valid(si, sj) is true, then 
the selection of service pair (si, sj) is valid. If all the 
selections are valid, then the service composition is valid. 

4.2 Transformation Factor and Advanced IFC Rule 
To validate a service chain based on the basic IFC rules, we 
need to evaluate sj against the information flow control 
policies of si, for all i, j, 0  i < n, i < j  n+1. In practice, 
some of the policy evaluation tasks may be unnecessary. 
First, there may exist some service sk, 0 < k < n+1, such that 
the sensitive information contained in its input sk.In is not 
derivable from its output, sk.Out. In this case, for any pair of 
services (si, sj), where 0  i < k, k < j  n+1, valid(si, sj) is 
always true. On the other hand, if all the intermediate 
services between si and sj do not transform their inputs when 
generating their outputs, sj and si are as though interacting 
directly and, hence, sj should be validated against the 
information flow control policies of si.R (similar to the 
approach in [CHA05, YIL07]). If the intermediate services 
between si and sj transform si.Out to some extend when 
generating sj−1.Out but there is still potential of deriving 
some partial information of si.Out from sj−1.Out, then the 
potential risk should be taken into consideration when 
validating sj against si’s information flow control policies. To 
recognize these situations, we introduce transformation 
factor (TF) to estimate the risk of sj deriving si’s sensitive 
information from sj’s input data, sj.In, and consider the risk 
as a major factor in computing valid(si, sj). We define 
multi-level transformation factor to measure how a service 
processes its input and local data to generate its output in 
Definition 4.1. 

Definition 4.1. In the service chain <s0, …, sn+1>, the 
transformation factor of a service si, tf(si), 0  i  n+1, 
specifies how much transformation service si makes when 
generating si.Out using si.In and si.R.  � 

Table 1 lists four transformation factor levels in our 
model. Note that HR < MR < LR < NR. 

Next, we define the transformation factor for partial 
service chains, based on the transformation factor of each 
individual service in the chain in Definition 4.2. 

Definition 4.2. In the service chain <s0, …, sn+1>, the 
transformation factor of a partial service chain <si, …, sj>, 
tf(<si, …, sj>), 0  i  n, i < j  n+1, specifies how much 
transformation the partial service chain <si, …, sj> makes 
when generating sj.Out using si.In and si.R, …, sj.R. tf(<si, …, 
sj>) = max{tf(si), …, tf(sj)}.   � 

Table 1. Transformation factor levels. 

TF Level Description 

NR  
(No risk) 

Impossible to derive the sensitive information in 
the input or local data from the output. 

LR  
(Low risk) 

Difficult to derive the sensitive information in 
the input or local data from the output. 

MR  
(Medium risk) 

Some sensitive information in the input or local 
data is derivable from the output. 

HR  
(High risk) 

A majority or all of the sensitive information in 
the input or local data is derivable from the 
output, or the output contains the raw 
information of the input or local data. 

Transformation factor of a partial service chain can 
impact the information flow control decisions of indirectly 
interacting services. It also has a major effect on the naïve 
pair-wise validation process. The flow of sensitive 
information in a service chain may be “broken” by a service 
with NR transformation factor. According to Table 1, if there 
exists a service sk, 0 < k < n+1, s.t. tf(sk) = NR, then we 
consider that it is very difficult to derive the sensitive 
information contained in sk.In and sk.R from sk.Out. This 
breaks the information flow, and the service chain can be 
considered as two partial service chains, <s0, …, sk> and 
<sk+1, …, sn+1>. When considering information flow control, 
such partial service chains can be considered separately, as 
the data generated by any two services in different partial 
chains can be considered as unrelated. Based on this 
observation, we define an advanced IFC rule to specify the 
situation under which the policy evaluation for some service 
pairs (si, sj) can be fully ignored (always true). Also, we 
rewrite the basic IFC rules to include transformation factor 
as a factor in making information flow control decisions. 
The advanced IFC rules are specified as follows. 

AIFC1: valid(si, sj) ⇐ (tf(<si, …, sj−1>) = NR), for all i, j, 
0  i  n, i < j  n+1. 

AIFC2: valid(si, sj) ⇐ auth(Attr(sj), Attr(si.R), tf(si, …, 
sj−1), Pol(si.R)), for all i, j, 0  i  n, i < j  n+1. 

AIFC3: valid(<s0, ..., sn+1>) ⇐ ∧valid(si, sj), for all i, j, 0 
 i  n, i < j  n+1. 

4.3 Examples of Transformation Factor Settings 
For some services (e.g. alphanumeric input/output, the 

local data access is static), static program analysis may help 
determine their transformation factors [SHE09a, SHE09b]. 
However, in case that a service takes in or generates 
non-alphanumeric data (e.g. image, audio, video, etc.), the 
transformation factor may only be determined based on its 
functionality. For simplicity, we consider that a security 
officer decides the transformation factors of services in each 
domain. 

Consider the example system in Section 3. The image 
enhancement service IES takes in a set of input images, 
removes the noise in them, and reconditions them for object 
recognition. Since the enhanced image contains raw data in 
the original image, its transformation factor can be HR. 
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In some cases, part of the sensitive information contained 
in the input may be derivable from its output. The search 
engine MDB searches for the medical records of the patients 
diagnosed to have disease x. Though the search keyword x 
may not be directly seen in the search result, it may be 
possible to guess the value of x from the common 
information in these records. If the likelihood of making a 
successful guess (e.g. when the output always contains very 
few records) is very low, then the transformation factor can 
be set to LR. If the likelihood is moderate, then the 
transformation factor is set to MR. 

The association rule mining service ARM takes in a set of 
medical images with object labels and the associated 
alphanumeric medical data and derives association rules. As 
it is impossible to derive the sensitive information, such as 
the patient medical history, etc., from the output association 
rules, its transformation factor can be set to NR. 

5 SECURITY-AWARE SERVICE COMPOSITION 

In service composition, the service composer takes an 
abstract service chain <s0, as1, …, asn, sn+1> from the user 
and selects concrete services to instantiate as1, …, asn while 
satisfying the information flow control constraints. The 
composer first retrieves a set of concrete services for each 
abstract service asi from UDDI and generates a set of 
candidate concrete compositions CH0. For each chk in CH0, 
the composer follows the advanced IFC rules and verifies 
whether valid(chk.<s0, ..., sn+1>) is true. 

The service composer may have to explore O(cn) 
candidate concrete compositions, where n is the number of 
abstract services in the abstract service chain and c is the 
average number of candidate concrete services per abstract 
service. For each candidate composition chk, the service 
composer needs to verify whether valid(chk.si, chk.sj) is true, 
for all i, j, 0  i  n, i < j  n+1. This requires generating 
O(n2) information flow control decisions. The decision 
making may also involve retrieving Pol(chk.si.R) from 
dom(chk.si).sa and chk.sj.ac from dom(chk.sj).sa. Even if 
Pol(chk.si.R) and chk.sj.ac are cached by the service 
composer, the policy evaluation may still be expensive, as 
the service composer may have to evaluate many rules in 
Pol(chk.si.R) and combine the results. In case that 
Pol(chk.si.R) and/or some attributes in chk.sj.ac are protected, 
the service composer needs to interact with dom(chk.si).sa 
and/or dom(chk.sj).sa in order to compute auth(Attr(chk.sj), 
Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)). If this 
policy evaluation process is applied to each candidate 
composition, the composition cost can be very high. 

We consider a three-phase mechanism to achieve efficient 
security-aware service composition. In the first phase 
(Section 5.1), there are many candidates and an efficient 
method is used to quickly evaluate candidate concrete 
compositions and the most promising candidates are selected 
for further analysis. Instead of actually computing 
valid(chk.si, chk.sj) using auth(Attr(chk.sj), Attr(chk.si.R), 
tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)), the service composer 

uses the validation results of historical composition 
transactions to compute the likelihood of valid(chk.si, chk.sj) 
being true (denoted as LL(chk.si, chk.sj)). Accordingly, the 
fitness value of each candidate composition chk, fit(chk), is 
computed and the top L1 (L1 is the percentage that ranges 
from 0 to 1) candidates are selected and included in CH1. 

In the second phase (Section 5.2), a more accurate but 
potentially more time consuming process is used to evaluate 
the candidates in CH1. For each candidate in CH1, chk, the 
service composer uses the cached or newly downloaded (if 
the information is not cached or is stale) policies Pol(chk.si.R) 
and/or certificates chk.sj.ac to compute auth(Attr(chk.sj), 
Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)), for all i, 
j, 0  i  n, i < j  n+1, locally. In some cases, the value of 
valid(chk.<s0, …, sn+1>) may be determined. In case that 
valid(chk.<s0, …, sn+1>) is false, chk is removed from CH1. If 
valid(chk.<s0, …, sn+1>) is true, chk (a valid composition) is 
directly returned to the user and the third phase analysis is 
skipped. As some policies and attributes may be protected 
and cannot be downloaded, the validity of some candidate 
concrete compositions may not be verifiable by the service 
composer. In this case, the fitness value for each candidate 
chk in CH1, fit(chk), are recomputed, and the top L2 (L2 is the 
percentage that ranges from 0 to 1) candidate concrete 
compositions are selected and included in CH2. 

In the third phase (Section 5.3), any previously selected 
compositions (in CH2) should be fully validated. For each 
service pair (chk.si, chk.sj) in a candidate concrete 
composition chk in CH2, if Pol(chk.si.R) is protected, then the 
service composer needs to forward the attributes of chk.sj, 
Attr(chk.sj), to dom(chk.si).sa for remote policy evaluation. If 
the policy evaluation requires some protected attributes of 
chk.sj, the service composer needs to initiate a negotiation 
session in which, dom(chk.si).sa retrieves the protected 
attributes of chk.sj from dom(chk.sj).sa. 

In case that the third phase analysis does not yield a 
solution from CH2, the process will rewind to the second 
phase to choose the next best L2 candidates in CH1 and 
perform third-phase analysis again. If CH1 does not include 
a valid composition, then the process will rewind to the first 
phase and choose the next best L1 candidate compositions in 
CH0 and perform the whole process again. The overall 
three-phase composition protocol is given in Figure 5. 

 

Fig. 5. Three-phase service composition algorithm. 

5.1 First Phase Analysis 
We develop a set of likelihood computation (LLC) rules to 
compute LL(chk.si, chk.sj). First, we consider the case when 

1. Run first phase analysis on CH0 and sort CH0. 
2. Include top-L1 candidates in CH1. 
3. Run second phase analysis on CH1 and sort CH1. 
4. Include top-L2 candidates in CH2. 
5. Run third phase analysis on CH2. 
6. Set CH1 = CH1 − CH2 and go to 4. 
7. Set CH0 = CH0 − CH1 and go to 2. 
8. Return ∅. 
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there is an information flow break between chk.si and chk.sj. 

LLC1: If tf(<chk.si, …, chk.sj−1>) = NR, then LL(chk.si, 
chk.sj) = 1.  � 

If rule LLC1 is not applicable, then we need to use the 
historical validation results to estimate LL(chk.si, chk.sj). To 
facilitate the estimation of the likelihood, the service 
composer maintains a database VDB to store the validation 
results of all service pairs in historical composition 
transactions. The transformation factor between the two 
services also impacts the information flow control decisions. 
Thus, each record in VDB (for service pair (x, y)) records (x, 
y).<vresult, tf>. Here, (x, y).vresult is the final result of 
valid(x, y). (x, y).tf = tf(<x, …, pre(y)>), where pre(y) 
denotes the service right before y in the original service 
chain. Note that (x, y).tf is computed based on the original 
service chain but the record does not need to keep the 
original chain information. 

We first consider retrieving strongly matched records for 
(chk.si, chk.sj) to estimate LL(chk.si, chk.sj). 

LLC2: If there exist service pairs (xl, yl) in VDB, s.t. for 
all l, chk.si = xl, chk.sj = yl, and tf(<chk.si, …, chk.sj−1>) = (xl, 
yl).tf, then (chk.si, chk.sj) and (xl, yl), for all l, have strong 
matches, and LL(chk.si, chk.sj) = Avgl{(xl, yl).vresult}. � 

Avgl{(xl, yl).vresult} computes the average over (xl, 
yl).vresult. Note that, we convert true to 1 and false to 0. 

If rules LLC1 and LLC2 are not applicable, then we 
consider retrieving weakly matched records in VDB. 

LLC3: If there exist service pairs (xl, yl) in VDB, s.t. chk.si 
= xl, chk.sj = yl, and tf(<chk.si, …, chk.sj−1>)  (xl, yl).tf, then 
(chk.si, chk.sj) and (xl, yl), for all l, have weak matches with 
matching level mll = (1 – Δtf/maxtf), where Δtf = | 
tf(<chk.si, …, chk.sj−1>) – (xl, yl).tf|, and LL(chk.si, chk.sj) = (Σl 
(xl, yl).vresult⋅mll)/(Σlmll).  � 

Here, we convert the transformation factor levels into 
numerical values (HR = 0, MR = 1, LR = 2, NR = 3). Note 
that maxtf is 4. 

If rules LLC1 through LLC3 are not applicable, then there 
is no record in VDB that matches (chk.si, chk.sj). In this case, 
we set LL(chk.si, chk.sj) = 1 (rule LLC4). This way, chk.si and 
chk.sj are likely to be selected in the first and second phases 
and validated in the third phase and, hence, the validation 
results are generated, which may be used in future 
composition transactions. Note that, if we have selected a 
concrete composition without service pair (x, y) in the 
second phase, then we can replace the corresponding service 
pair with (x, y) and the fitness of the new service chain will 
be greater than or equal to the fitness of the previous one. 
We also consider that the service composers may exchange 
their historical information offline or when there is 
insufficient information to help evaluate the likelihoods and 
use the historical information of other service composers to 
help compute the fitness of candidate compositions. 
Therefore, it is very unlikely that the rules LLC1 through 
LLC3 are not applicable. 

LLC4: If rules LLC1 through LLC3 are not applicable, 
then set LL(chk.si, chk.sj) = 1.  � 

We define fit(chk) = ∏ijLL(chk.si, chk.sj), for all i, j, 0  i  
n, i < j  n+1. The service composer will rank all candidate 
compositions based on their fitness and select the top L1 
candidates and include them in CH1. The detailed protocol 
for the first-phase analysis is given in Figure 6. 

 

Fig. 6. First phase protocol. 

5.2 Second Phase Analysis 
In the second phase, the service composer computes 
auth(Attr(chk.sj), Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), 
Pol(chk.si.R)), for all i, j, 0  i  n, i < j  n+1, using its 
cached attributes Attr(chk.sj) and/or policies Pol(chk.si.R). If 
the required information is not in cache, then the service 
composer downloads Pol(chk.si.R) from dom(chk.si).sa and 
chk.sj.ac (containing Attr(chk.sj)) from dom(chk.sj).sa. 

To avoid potential frauds, the download of information 
flow control policies and/or attribute certificates needs to be 
properly controlled. We consider each service composer is 
associated with a set of attributes. These attributes may 
include the name of the service composer, the domain of the 
composer, the trust level of a security authority on the 
composer, the permission granted to the service composer 
for downloading some policies/certificates from a domain, 
etc. The attributes of a service composer must be asserted by 
a security authority. For authentication and non-repudiation 
purpose, the asserted attributes are included in an attribute 
certificate and signed by the issuer. In Definition 5.1, we 
define the attributes and attribute certificates of service 
composers. 

Definition 5.1. Each service composer scomp is 
associated with a set of attributes Attr(scomp). scomp owns a 
set of attribute certificates scomp.AC. Each attribute 
certificate, scomp.ac ∈ scomp.AC, is a certificate issued by a 
security authority to certify that scomp holds certain 
attributes scomp.ac.Attr ⊆ Attr(scomp).  � 

We consider each security authority di.sa defines a set of 
policies to control the download of the policies and/or 
certificates of di.sa. Such a policy is called the disclosure 
policy. We use di.PolD = {di.polD1, di.polD2, …} to represent 
the set of all disclosure policies in domain di. When a 

INPUT: CH0, L1. OUTPUT: CH1, LS. 
1. For each candidate composition chk ∈ CH0, 

1) For all i, j, 0  i  n, i < j  n+1, 
� Compute LL(chk.si, chk.sj) using LLC1, …, 

LLC4. 
2) Compute fit(chk) := ∏ijLL(chk.si, chk.sj), for all i, 

j, 0  i  n, i+1  j  n+1. 
2. Set LS := {LL(chk.si, chk.sj) | for all i, j, k, 0  i < j  

n+1}. 
3. Sort elements in CH0 in the descending order of 

their fitness and copy the top L1 |CH0|  elements in 
CH0 into CH1. 

4. Return CH1 and LS. 

IEEE TRANSACTIONS ON SERVICES COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



 
 

service composer scomp requests for downloading certain 
protected policies and/or certificates from di.sa, scomp must 
present one of its attribute certificates, scomp.ac, to di.sa. 
After receiving the download request of scomp, di.sa 
extracts scomp.ac.Attr from scomp.ac and evaluates 
scomp.ac.Attr against di.PolD. If the decision is true, di.sa 
sends the requested policies and/or certificates to scomp. If 
the decision is false, then the requested policies/certificates 
cannot be disclosed to scomp and the policy evaluation has 
to be performed remotely at di.sa. 

In the second phase, for each candidate concrete 
composition chk in CH1, the composer refines LL(chk.si, 
chk.sj) computed in the first phase, for all i, j, 0  i < j  n+1, 
using cached or downloaded policies Pol(chk.si.R) and/or 
attributes certificates chk.sj.ac to compute auth(Attr(chk.sj), 
Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)) locally. 
If it is evaluated to true, then LL(chk.si, chk.sj) is set to 1. If it 
is evaluated to false, then chk is removed from CH1. If it 
cannot be fully evaluated, then the same LL(chk.si, chk.sj) 
computed in the first phase will be used. Based on the 
updates, the service composer re-ranks the candidates in 
CH1, and selects the top L2 candidates. The second phase 
protocol is shown in Figure 7. 

 

Fig. 7. Second phase protocol. 

5.3 Third Phase Analysis 
In the third phase, the service composer scomp contacts the 
security authorities dom(chk.si).sa, for all i, 0  i  n, to 
perform remote policy evaluation, that is, to compute 
auth(Attr(chk.sj), Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), 
Pol(chk.si.R)) that have not been validated in the second 
phase. In this phase, the service composer scomp may send 
the cached attributes of chk.sj, Attr(chk.sj) (included in the 
attribute certificate chk.sj.ac, to dom(chk.si).sa. However, 
some attributes in Attr(chk.sj) may be protected by 
dom(chk.sj).sa and cannot be revealed to scomp. In this case, 

dom(chk.si).sa, for all i, 0  i  n, where the evaluation of 
Pol(chk.si.R) requires some protected attributes of chk.sj, for 
some j, i < j  n+1, need to negotiate with dom(chk.sj).sa to 
retrieve the protected attributes [LEE06, OLS06]. 

A negotiation session includes a startup round, and m 
negotiation rounds. The service composer decides the 
maximal number of negotiation rounds M, and may 
terminate the negotiation session if m exceeds M. Note that, 
m may be 0, indicating that all attributes required by the 
remote policy evaluation are already provided by the service 
composer and, hence, no negotiation is required. 

In the startup round, the service composer initiates the 
negotiation by sending the cached attributes (included in 
attribute certificates) required by the remote policy 
evaluation within a special message to all dom(chk.si).sa. 

In each round of the negotiation, each security authority 
identifies the missing attributes required for the policy 
evaluation and the security authorities who own these 
attributes, and sends an attribute request to the service 
composer. The service composer routes the attribute requests 
to the designated authorities. On receiving the attribute 
request from the service composer, each security authority 
evaluate its disclosure policies and may return the requested 
attributes in an attribute response. The attribute response is 
also routed by the service composer. 

In this paper, we consider a synchronized negotiation 
protocol in which, the service composer acts as the 
negotiation broker between all security authorities. This is to 
avoid direct negotiation between all dom(chk.si).sa, 0  i  n, 
and all dom(chk.sj).sa, i < j  n+1, which results in O(n2) 
negotiation channels. During the negotiation, the service 
composer reorganizes the packages received from different 
security authorities, and consolidates the packages with the 
same destination into one message. This approach can 
reduce the number of negotiation channels into O(n). Note 
that protected attributes should be encrypted during 
communication. Thus, although the message transfer is 
through the service composer, the service composer does not 
know the actual attribute values. 

By the end of the negotiation session, either all 
dom(chk.si).sa retrieves the required attributes for policy 
evaluation, or the negotiation fails. For the latter case, the 
service composer will set valid(chk.<s0, …, sn+1>) to false. 
For the former case, auth(Attr(chk.sj), Attr(chk.si.R), 
tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)), for all i, j, 0  i  n, i 
< j  n+1, will be either true or false and, hence, 
valid(chk.<s0, …, sn+1>) can be fully decided. 

In the third phase, the service composer takes the top 
candidate concrete composition chk in CH2 and may start 
negotiation for the service pairs in chk that have not been 
fully validated. Then, valid(chk.<s0, …, sn+1>) will have a 
definite result. If the result is true, chk is returned to the user. 
If the result is false, chk is removed from CH2 and the next 
highest ranked candidate composition will be selected to go 
through the same validation process. The third phase 
protocol is shown in Figure 8. 

INPUT: CH1, LS, L2. OUTPUT: CH2, LS, Ch. 
1. Set ResultCache := ∅. 
2. For each candidate composition chk ∈ CH1, 

1) For all i, j, 0  i  n, i+1  j  n+1, 
� If there exists valid(chk.si, chk.sj) in ResultCache then 

set LL(chk.si, chk.sj) := 1, and go to 2.1. 
� If there does not exist Pol(chk.si.R) in cache then 

download Pol(chk.si.R) from dom(chk.si).sa and store 
Pol(chk.si.R) in cache. 

� Result := auth(Attr(chk.sj), Attr(chk.si.R), tf(<chk.si, …, 
chk.sj−1>), Pol(chk.si.R)). 

� If Result = unknown then request attributes from 
dom(chk.sj).sa, and compute auth(Attr(chk.sj), 
Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)). 

� If Result = false then delete chk from CH1 and go to 2. 
� If Result = true then set LL(chk.si, chk.sj) := 1 in LS 

and insert valid(chk.si, chk.sj) into ResultCache. 
2) Re-compute fit(chk), chk ∈ CH1. 

3. Sort elements in CH1 in the descending order of their 
fitness and copy top L2 |CH0|  elements in CH1 into CH2. 

4. Return CH2 and LS. 
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Fig. 8. Third phase protocol. 

6 PERFORMANCE EVALUATION 

To validate the effectiveness and evaluate the performance 
of the three-phase composition mechanism, we design a set 
of experiments and compare the three-phase approach with 
the conventional single phase composition approach. To 
facilitate the performance comparison and validation, we set 
up a simulation system to simulate the composition of 
service chains. 

6.1 Experimental Setup 
The simulation system includes 80 domains and 400 
concrete services. Each domain has a domain ID (1 to 80) 
and the longitude and latitude. The longitude and latitude are 
used to generate the communication latency between the 
service composer and the security authority of the domain. 
We use WS-Sim toolset [SHE10] to generate the longitude 
and latitude for each domain and use the correlation between 
communication latency and distance collected from the 
Internet to generate the simulated latency. 

For each concrete service, we first uniformly randomly 
select its domain (with equal probability of being in any of 
the 80 domains). Each concrete service instantiates an 
abstract service and we consider 200 different abstract 
services (each abstract service is realized by 2 concrete 
services). Each concrete service has its own concrete service 
ID, the ID of the corresponding abstract service, its domain 
ID, the size of the output, and the service latency. 

We also use WS-Sim [SHE10] toolset to generate the 
service output size and the service latency. The generation of 
transformation factor for each service is based on the 
characteristics of the web services in each category in 
WS-Sim. We first consider two main categories of web 
services, including the data-centric service category (e.g. 
data center, digital library, video hosting sites, etc.) and 
functional service category (e.g. image processing, object 
recognition, etc.), based on their major functions. Then, we 
divide each main category into subcategories based on the 
type of data they process, including video/audio, image, 

document, and alphanumeric data. For each subcategory, we 
choose several sample web services and generate 
transformation factor for each of these services. For example, 
for the subcategory of functional service with image data 
type, we consider image enhancement service, image 
registration service, feature extraction service, and object 
recognition service. We assume that a functional service 
with image input/output has equal probability to be in one of 
these four sample services. For each sample web service, we 
derive its transformation factor based on its functionality. 
For example, for image enhancement service and image 
registration service, the transformation factor is HR. The 
transformation factor of feature extraction service is MR. 
The transformation factor of object recognition service is LR. 
Hence, the transformation factor of a service in the category 
of functional service with image data type has 50% to be HR, 
25% to be MR, and 25% to be LR. 

The policy download flag and policy evaluation time are 
randomly generated to facilitate the simulation of the policy 
evaluation process. The set of all security policies in each 
domain is associated with a single policy download flag 
which is uniformly distributed between 0 (not downloadable) 
and 1 (downloadable). We use MatLab to analyze the result 
of a rule engine scalability test [YOU05] to generate the 
policy evaluation time (i.e. the time required to evaluate an 
access control policy). The result shows that the policy 
evaluation time follows a Gaussian distribution where μ = 
106.61 (in milliseconds) and λ = 169.33. This distribution is 
used to generate the policy evaluation time. To simulate the 
policy download time, we randomly generate policy sizes. 
The generation of policy size SP follows the equation: SP = 

 1  i  K SRi, where K is the number of policy rules and SRi, 
1  i  K, is the size of the ith policy rule. For simplicity, we 
assume that K is uniformly distributed between 1 and 50 and 
SRi is uniformly distributed between 64 and 512 bytes. 

Though we simulate the policy sizes and evaluation time, 
we do not actually perform policy evaluation. Instead, we 
use a simple rule to generate the validation results to avoid 
inconsistent validation outcomes in the simulation. The rule 
is that the access is granted only if the clearance level of the 
requesting service is greater than or equal to the security 
class of the requested data object. 

One factor that has significant impact on performance is 
the success rate of the composition tasks. When the success 
rate is high, the conventional single-phase composition 
mechanism can easily find out a valid composition, while 
the three-phase composition process needs to spend extra 
time on the first and second phases and, hence, the 
advantage it has cannot pay off the extra overhead. On the 
other hand, when the success rate is low, the single-phase 
approach may spend much longer time on finding out a valid 
composition and, hence, the three-phase method may 
perform much better. We intend to study the impact of the 
success rate, but it is difficult to directly control the success 
rate. Instead, we generate different percentages of public 
services to indirectly control the success rate. 

INPUT: CH2, LS.   OUTPUT: ch. 
1. For each candidate composition chk ∈ CH2, do 

1) For all i, j, 0  i  n, i+1  j  n+1, 
� If auth(Attr(chk.sj), Attr(chk.si.R), tf(<chk.si, …, 

chk.sj−1>), Pol(chk.si.R)) = unknown then retrieve 
Attr(chk.sj) from local cache and send Attr(chk.sj) to 
dom(chk.si).sa, for all i, for remote policy 
evaluation. 

2. Perform negotiation. 
3. For each candidate composition chk ∈ CH2, 

1) For all i, j, 0  i  n, i < j  n+1, 
� If LL(chk.si, chk.sj)  1 and auth(Attr(chk.sj), 

Attr(chk.si.R), tf(<chk.si, …, chk.sj−1>), Pol(chk.si.R)) 
= true then set LL(chk.si, chk.sj) := 1. 

2) Re-compute fit(chk) 
3) If fit(chk) = 1 then set ch := chk and return ch. 

4. Set ch := ∅, and return ch. 
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For simulation purpose, we consider an attribute based 
access control system in which each data resource is 
assigned a security class and each service is assigned a 
clearance level by each domain. The security class sc(r) 
measures the sensitivity level of data r and also the level of 
security protection required by r. The security class is 
defined by multiple levels, including NP (No Protection), LP 
(Low Protection), MP (Medium Protection), MHP 
(Medium-high Protection), and HP (High Protection), where 
NP < LP < MP < MHP < HP. We use cl(s, d) to represent the 
clearance level of service s in domain d. We consider a 
simple access control policy, that is, a request is only 
granted if the clearance level (ranging from NP to HP) of the 
requesting service is greater than or equal to the security 
class of the requested data. In the simulation, we ignore data 
resources that do not need protection and generate the 
security classes for sensitive data resources following a 
uniform distribution between LP and HP. We use public 
services ratio (PSR, 0  PSR  1) as a parameter, and 
generate the clearance levels of non-public services 
following a uniform distribution between LP and HP. Note 
that the simple model here is to ease the simulation system 
as it will be very difficult to simulate real attribute-based 
policies and certificates. 

The client generates a length-n abstract service chain by 
randomly selecting n different abstract services (uniform 
distribution) and submits it to the service composer. The 
composer uses a conventional single-phase method and the 
three-phase composition process to select concrete services 
for the abstract service chain. 

We also design a caching system to store the downloaded 
policies and the validation results of historical composition 
transactions. We consider a simple first-in first-out cache 
replacement policy. 

6.2 Experimental Results 
We conduct experiments to study the performance of the 

three-phase composition protocol (P1), the conventional 
single-phase composition protocol (P2), and the protocol 
without composition-time access control validation (P3), 
under different success rates, different service chain lengths, 
and variant L1 and L2. 

In Figure 9, we compare the performance of P1, P2, and 
P3 under different success rates. As can be seen, when the 
success rate decreases, the time required by P3 increases 
dramatically since the wasted execution efforts become 
more severe. When the success rate is below 68%, the cost 
of P3 is higher than the single-phase protocol (P2). (Note 
that in P1 and P2, we need to perform access control 
validation at composition time, and redo it at execution time 
to assure security). The performance gain of P1 becomes 
significant even at a high success rate. When the success rate 
is 97%, P1 is only 3% faster than P2 and performs slightly 
worse than P3. When the success rate is 53%, P1 is 24% 
faster than P2 and 37% faster than P3. 
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Fig. 9. Composition time vs. success rate. 
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Fig. 10. Composition time vs. service chain length. 
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Fig. 11. Composition time vs. L1 and L2. 

In Figure 10, we compare the composition time of P1 and 
P2 under different service chain lengths at a relatively high 
success rate (ranging from 88% (length = 6) to 74% (length 
= 14)). For shorter service chains (length  10), both 
methods can find a valid composition quickly. In some cases, 
the three-phase protocol (P1) may even perform a little 
worse than P2 due to the extra time spent for fitness 
calculation. For longer service chains (length > 10), P1 
performs much better than P2, from 30% improvement at 
length 11 to 70% improvement at length 14. From the 
growing trend, the performance improvement in the 
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three-phase scheme can be much more significant with 
increasing problem size. 

Figures 11 shows how the selection of top candidate 
ratios in the first and second phases, L1 and L2, can impact 
the performance of the three-phase composition protocol. 
The result shows that L1 and L2 do not significantly impact 
the performance. With different L1, the composition time of 
the three-phase protocol oscillates between 2.3sec and 3sec. 
With different L2, the composition time oscillates between 
2.6sec and 2.8sec. 

7 RELATED WORK 

The existing works in web service security generally fall 
into two research directions. One research direction is the 
development of execution time access control schemes to 
secure web services [AGA04, ARD11, BER06, DAM01, 
OAS07, PAC11, WON04, ZHU06]. [WON04] considers a 
role-based access control for web services. It treats web 
service as a special type of data resource, and applies both 
action-based (control the accesses to service operations) and 
resource-based (control the accesses to data resources 
accessed through web services) access control. [BHA04] 
considers dynamically changing security requirements of 
services and defines contextual parameters, e.g. time, 
location, etc., to capture such requirements. An access 
request includes a set of contextual parameters which is 
evaluated together with the user information against the 
policies. [BER06] considers an adaptive access control 
model for web services characterized by variant protection 
granularities. It allows to divide the domain of the service 
input into multiple value ranges and to specify different 
access control policies for different ranges. It also allows to 
group multiple services into a service class and to specify 
access control policies for the service class. [PAC11] 
considers the controlled dissemination of policy information 
to users in conversational web service. It models a service as 
a finite state machine in which, each transition is associated 
with a service operation and a set of access control policies. 
At each state, it determines the set of policies that may be 
enforced afterwards (the policies for all service operations 
that may lead to a final state) and allows only these policies 
to be disseminated. [DAM01] focuses on the protection of 
SOAP messages, and considers the XPath (a path in the tree 
representation of XML-like document such as SOAP) as the 
first-class object in the access control system. [ARD11] 
considers the credential-based access control with the 
abstraction of complex concepts, e.g. a set, a 
disjunction/conjunction, etc., into a single concept in policy 
specification. It also supports the recursive reasoning on 
credentials and negotiation. [AGA04] uses DAML-S to 
specify access control lists and includes them in an 
SPKI/SDSI credential to facilitate a credential-based access 
control. [AGA04, ZHU06] also consider the composition of 
access control policies of individual component services into 
composite service level policies and use a centralized entity 
(e.g. the workflow execution engine) to enforce the policies. 

They focus on the control of the user’s accesses to the 
component services but do not consider securing the 
interactions between individual component services. 

There have been a few works that consider the 
information flow problem in composite services [CHA05, 
SRI07, YIL07]. In [CHA05, YIL07], interactions between 
nonconsecutive services are validated in exactly the same 
way as that of consecutive services. The computation effects 
of intermediate services are disregarded. For example, in the 
service chain <s0, s1, s2, s3, s4>, s2, s3, and s4 are validated as 
if they are directly interacting with s0 (i.e. s1). This approach, 
though capable of ensuring information flow security, poses 
overly restrictive constraints. Without proper privileges, the 
composition of s2, s3, and s4 is prohibited even if s0’s output 
does not really flow into s2, s3, and s4. In [SRI07], an 
extreme approach is considered. When specifying policies, it 
needs to consider all intermediate services. Consider the 
same example service chain. To validate the accesses 
between s0 and s4, it is necessary to consider all possible 
compositions of intermediate services between them. As can 
be seen, this approach is almost infeasible, considering its 
complexity for policy specification. 

Another research direction is security-aware service 
composition [BAR08, CAR06, DEN03, HAN06, PAC08]. 
These systems treat security as a set of quantitatively 
measurable attributes, e.g. the type of encryption scheme, 
the type of authentication protocol, trust and reputation, etc. 
The security properties of each service are specified in terms 
of these attributes. The users and service providers may 
specify their security constraints, also in terms of these 
attributes, to ensure the secure use of their services and/or 
data resources. To achieve secure composition, the service 
composer ensures that the security properties of all the 
selected concrete services satisfy all the security constraints. 
[DEN03] focuses on the definition of security ontologies in 
DAML+OIL to facilitate the specification of security 
properties and constraints. It uses Java Theorem Prover to 
match security properties with security constraints. It also 
identifies several situations in which different levels of 
match may be achieved, and suggests using negotiation 
when an exact match between the security constraints and 
security properties cannot be found. In [CAR06], security 
properties of services are evaluated by a trusted authority 
and certified by SAML assertions issued by the authority. 
The validated security properties are stored in the WSDL 
document of the corresponding service. Also, the 
user-specified security constraints are included in the SOAP 
requests, and used to prune the candidate services prior to 
the composition process. On the other hand, the security 
constraints specified by the service providers are included in 
the WSDL documents, and are validated when allocating a 
concrete service to an activity in the workflow. Also, AI 
planning techniques are used to achieve service selection 
and composition. In [HAN06], the negotiation process is 
introduced in secure service composition. Each concrete 
service has multiple sets of security properties (which are 
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protected rather than publicly available), each with a 
preference level. Prior to the negotiation, the most preferable 
sets of security properties are always loaded to the 
negotiation agent. When a mismatch is detected, some 
services may provide their less preferable sets of properties 
to achieve composition. The re-composition issue is also 
considered for the case when the security constraints posed 
by the service providers or the user are changed. In [PAC08], 
each web service is modeled as a finite state machine where, 
each transition arc is associated with a service operation and 
defined a precondition (an access control policy). It also 
models each composite service as a finite state machine 
where, each state includes the states of all its component 
services and each transition records the invoker/invokee 
information and the service operation to be invoked. It 
considers that each service defines a set of access control 
policies to specify the credentials required to grant the 
access and a set of credential disclosure policies to specify 
how a specific credential can be released. The verification of 
a composition is to verify, for each transition (in the 
composite service), whether the invoker’s credential 
disclosure policies comply with the access control policies 
of the invokee. In [BAR08], the composition/matchmaking 
problem is mapped to the type system of an enriched 
λ-calculus. It considers security constraints and properties 
from the perspective of events. With a predefined set of 
events, both security constraints and properties can be 
expressed as a temporally ordered sequence of events. To 
decide whether a security property matches a security 
constraint, one only needs to verify whether the order of 
events in the security property conforms to the security 
constraint. However, this work provides very little 
information about how actual access control policies can be 
abstracted in this manner. 

8 CONCLUSION 

We have developed an innovative security-aware service 
composition protocol with composition-time information 
flow control, which can reduce the execution-time failure 
rate of the composed composite services due to information 
flow control violations. We define information flow control 
rules based on the concept of transformation factor to guide 
the composition process. We also develop a three-phase 
composition protocol, which can quickly eliminate invalid 
concrete compositions and identify the composition that 
satisfies the information flow control policies. Experimental 
study confirms the efficiency of the mechanism. 

Our approach can greatly reduce the potential access 
control violations at execution time, but cannot guarantee 
that there are no access control violations at run time and a 
suitable execution-time access control model will be needed 
to provide further protection. Consider a web service with a 
backend database. The data resources that may be accessed 
during the service execution may not be determined at the 
composition time (nor even at the service invocation time). 
To control the accesses to the data resources that are further 

protected, we are going to consider a hybrid information 
flow analysis approach. Specifically, we plan to use static 
program analysis techniques to find the data accesses within 
services that can be determined statically and perform 
composition-time access control validation with the policies 
defined for these data resources. For the accesses that can 
only be determined at run time, we consider dynamic 
information flow tracking techniques to track down the flow 
of sensitive information both inside the service and between 
services to perform execution-time access control. 
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