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Abstract—Ad hoc low-power wireless networks are an exciting research direction in sensing and pervasive computing. Prior security

work in this area has focused primarily on denial of communication at the routing or medium access control levels. This paper explores

resource depletion attacks at the routing protocol layer, which permanently disable networks by quickly draining nodes’ battery power.

These “Vampire” attacks are not specific to any specific protocol, but rather rely on the properties of many popular classes of routing

protocols. We find that all examined protocols are susceptible to Vampire attacks, which are devastating, difficult to detect, and are

easy to carry out using as few as one malicious insider sending only protocol-compliant messages. In the worst case, a single Vampire

can increase network-wide energy usage by a factor of OðNÞ, where N in the number of network nodes. We discuss methods to

mitigate these types of attacks, including a new proof-of-concept protocol that provably bounds the damage caused by Vampires

during the packet forwarding phase.

Index Terms—Denial of service, security, routing, ad hoc networks, sensor networks, wireless networks

Ç

1 INTRODUCTION

AD hoc wireless sensor networks (WSNs) promise
exciting new applications in the near future, such as

ubiquitous on-demand computing power, continuous con-
nectivity, and instantly deployable communication for
military and first responders. Such networks already
monitor environmental conditions, factory performance,
and troop deployment, to name a few applications. As
WSNs become more and more crucial to the everyday
functioning of people and organizations, availability faults
become less tolerable—lack of availability can make the
difference between business as usual and lost productivity,
power outages, environmental disasters, and even lost lives;
thus high availability of these networks is a critical
property, and should hold even under malicious conditions.
Due to their ad hoc organization, wireless ad hoc networks
are particularly vulnerable to denial of service (DoS) attacks
[75], and a great deal of research has been done to enhance
survivability [2], [5], [13], [14], [50], [75].

While these schemes can prevent attacks on the short-
term availability of a network, they do not address attacks
that affect long-term availability—the most permanent
denial of service attack is to entirely deplete nodes’
batteries. This is an instance of a resource depletion attack,
with battery power as the resource of interest. In this paper,
we consider how routing protocols, even those designed to
be secure, lack protection from these attacks, which we call
Vampire attacks, since they drain the life from networks

nodes. These attacks are distinct from previously studied
DoS, reduction of quality (RoQ), and routing infrastructure
attacks as they do not disrupt immediate availability, but rather
work over time to entirely disable a network. While some of
the individual attacks are simple, and power draining and
resource exhaustion attacks have been discussed before
[53], [59], [68] prior work has been mostly confined to other
levels of the protocol stack, e.g., medium access control
(MAC) or application layers, and to our knowledge there is
little discussion, and no thorough analysis or mitigation, of
routing-layer resource exhaustion attacks.

Vampire attacks are not protocol-specific, in that they do
not rely on design properties or implementation faults of
particular routing protocols, but rather exploit general
properties of protocol classes such as link-state, distance-
vector, source routing, and geographic and beacon routing.
Neither do these attacks rely on flooding the network with
large amounts of data, but rather try to transmit as little
data as possible to achieve the largest energy drain,
preventing a rate limiting solution. Since Vampires use
protocol-compliant messages, these attacks are very difficult to
detect and prevent.

Contributions. This paper makes three primary con-
tributions. First, we thoroughly evaluate the vulnerabilities
of existing protocols to routing layer battery depletion
attacks. We observe that security measures to prevent
Vampire attacks are orthogonal to those used to protect routing
infrastructure, and so existing secure routing protocols such
as Ariadne [29], SAODV [78], and SEAD [28] do not protect
against Vampire attacks. Existing work on secure routing
attempts to ensure that adversaries cannot cause path
discovery to return an invalid network path, but Vampires
do not disrupt or alter discovered paths, instead using
existing valid network paths and protocol-compliant
messages. Protocols that maximize power efficiency are
also inappropriate, since they rely on cooperative node
behavior and cannot optimize out malicious action. Second,
we show simulation results quantifying the performance of
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several representative protocols in the presence of a single
Vampire (insider adversary). Third, we modify an existing
sensor network routing protocol to provably bound the
damage from Vampire attacks during packet forwarding.

1.1 Classification

The first challenge in addressing Vampire attacks is
defining them—what actions in fact constitute an attack?
DoS attacks in wired networks are frequently characterized
by amplification [52], [54]: an adversary can amplify the
resources it spends on the attack, e.g., use 1 minute of its
own CPU time to cause the victim to use 10 minutes.
However, consider the process of routing a packet in any
multihop network: a source composes and transmits it to
the next hop toward the destination, which transmits it
further, until the destination is reached, consuming re-
sources not only at the source node but also at every node
the message moves through. If we consider the cumulative
energy of an entire network, amplification attacks are always
possible, given that an adversary can compose and send messages
which are processed by each node along the message path.
So, the act of sending a message is in itself an act of
amplification, leading to resource exhaustion, as long as the
aggregate cost of routing a message (at the intermediate
nodes) is lower than the cost to the source to compose and
transmit it. So, we must drop amplification as our definition
of maliciousness and instead focus on the cumulative
energy consumption increase that a malicious node can
cause while sending the same number of messages as an
honest node.

We define a Vampire attack as the composition and
transmission of a message that causes more energy to
be consumed by the network than if an honest node
transmitted a message of identical size to the same
destination, although using different packet headers.
We measure the strength of the attack by the ratio of
network energy used in the benign case to the energy used
in the malicious case, i.e., the ratio of network-wide power
utilization with malicious nodes present to energy usage with
only honest nodes when the number and size of packets sent
remains constant. Safety from Vampire attacks implies that
this ratio is 1. Energy use by malicious nodes is not
considered, since they can always unilaterally drain their
own batteries.

1.2 Protocols and Assumptions

In this paper, we consider the effect of Vampire attacks on
link-state, distance-vector, source routing, and geographic
and beacon routing protocols, as well as a logical ID-based
sensor network routing protocol proposed by Parno et al.
[53]. While this is by no means an exhaustive list of routing
protocols which are vulnerable to Vampire attacks, we view
the covered protocols as an important subset of the routing
solution space, and stress that our attacks are likely to apply
to other protocols.

All routing protocols employ at least one topology
discovery period, since ad hoc deployment implies no prior
position knowledge. Limiting ourselves to immutable but
dynamically organized topologies, as in most wireless
sensor networks, we further differentiate on-demand
routing protocols, where topology discovery is done at
transmission time, and static protocols, where topology is

discovered during an initial setup phase, with periodic
rediscovery to handle rare topology changes. Our adver-
saries are malicious insiders and have the same resources
and level of network access as honest nodes. Furthermore,
adversary location within the network is assumed to be
fixed and random, as if an adversary corrupts a number of
honest nodes before the network was deployed, and cannot
control their final positions. Note that this is far from the
strongest adversary model; rather this configuration repre-
sents the average expected damage from Vampire attacks.
Intelligent adversary placement or dynamic node compro-
mise would make attacks far more damaging.

While for the rest of this paper we will assume that a
node is permanently disabled once its battery power is
exhausted, let us briefly consider nodes that recharge their
batteries in the field, using either continuous charging or
switching between active and recharge cycles. In the
continuous charging case, power-draining attacks would
be effective only if the adversary is able to consume power
at least as fast as nodes can recharge. Assuming that packet
processing drains at least as much energy from the victims
as from the attacker, a continuously recharging adversary
can keep at least one node permanently disabled at the cost
of its own functionality. However, recall that sending any
packet automatically constitutes amplification, allowing
few Vampires to attack many honest nodes. We will show
later that a single Vampire may attack every network node
simultaneously, meaning that continuous recharging does
not help unless Vampires are more resource constrained
than honest nodes. Dual-cycle networks (with mandatory
sleep and awake periods) are equally vulnerable to
Vampires during active duty as long as the Vampire’s cycle
switching is in sync with other nodes. Vampire attacks may
be weakened by using groups of nodes with staggered
cycles: only active-duty nodes are vulnerable while the
Vampire is active; nodes are safe while the Vampire sleeps.
However, this defense is only effective when duty cycle
groups outnumber Vampires, since it only takes one
Vampire per group to carry out the attack.

1.3 Overview

In the remainder of this paper, we present a series of
increasingly damaging Vampire attacks, evaluate the
vulnerability of several example protocols, and suggest
how to improve resilience. In source routing protocols, we
show how a malicious packet source can specify paths
through the network which are far longer than optimal,
wasting energy at intermediate nodes who forward the
packet based on the included source route. In routing
schemes, where forwarding decisions are made indepen-
dently by each node (as opposed to specified by the
source), we suggest how directional antenna and worm-
hole attacks [30] can be used to deliver packets to multiple
remote network positions, forcing packet processing at
nodes that would not normally receive that packet at all,
and thus increasing network-wide energy expenditure.
Lastly, we show how an adversary can target not only
packet forwarding but also route and topology discovery
phases—if discovery messages are flooded, an adversary
can, for the cost of a single packet, consume energy at
every node in the network.
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In our first attack, an adversary composes packets with
purposely introduced routing loops. We call it the carousel
attack, since it sends packets in circles as shown in Fig. 1a. It
targets source routing protocols by exploiting the limited
verification of message headers at forwarding nodes,
allowing a single packet to repeatedly traverse the same
set of nodes. Brief mentions of this attack can be found in
other literature [10], [53], but no intuition for defense nor
any evaluation is provided. In our second attack, also
targeting source routing, an adversary constructs artificially
long routes, potentially traversing every node in the net-
work. We call this the stretch attack, since it increases packet
path lengths, causing packets to be processed by a number
of nodes that is independent of hop count along the shortest
path between the adversary and packet destination. An
example is illustrated in Fig. 1b. Results show that in a
randomly generated topology, a single attacker can use a
carousel attack to increase energy consumption by as much
as a factor of 4, while stretch attacks increase energy usage
by up to an order of magnitude, depending on the position
of the malicious node. The impact of these attacks can be
further increased by combining them, increasing the
number of adversarial nodes in the network, or simply
sending more packets. Although in networks that do not
employ authentication or only use end-to-end authentica-
tion, adversaries are free to replace routes in any overheard
packets, we assume that only messages originated by adversaries
may have maliciously composed routes.

We explore numerous mitigation methods to bound the
damage from Vampire attacks, and find that while the
carousel attack is simple to prevent with negligible over-
head, the stretch attack is far more challenging. The first
protection mechanism we consider is loose source routing,
where any forwarding node can reroute the packet if it
knows a shorter path to the destination. Unfortunately, this
proves to be less efficient than simply keeping global
network state at each node, defeating the purpose of source
routing. In our second attempt, we modify the protocol
from [53] to guarantee that a packet makes progress
through the network. We call this the no-backtracking
property, since it holds if and only if a packet is moving
strictly closer to its destination with every hop, and it
mitigates all mentioned Vampire attacks with the exception
of malicious flooded discovery, which is significantly

harder to detect or prevent. We propose a limited topology
discovery period (“the night,” since this is when vampires
are most dangerous), followed by a long packet forwarding
period during which adversarial success is provably
bounded. We also sketch how to further modify the
protocol to detect Vampires during topology discovery
and evict them after the network converges (at “dawn”).

2 RELATED WORK

We do not imply that power draining itself is novel, but
rather that these attacks have not been rigorously defined,
evaluated, or mitigated at the routing layer. A very early
mention of power exhaustion can be found in [68], as “sleep
deprivation torture.” As per the name, the proposed attack
prevents nodes from entering a low-power sleep cycle, and
thus deplete their batteries faster. Newer research on
“denial-of-sleep” only considers attacks at the MAC layer
[59]. Additional work mentions resource exhaustion at the
MAC and transport layers [60], [75] but only offers rate
limiting and elimination of insider adversaries as potential
solutions. Malicious cycles (routing loops) have been briefly
mentioned [10], [53], but no effective defenses are discussed
other than increasing efficiency of the underlying MAC and
routing protocols or switching away from source routing.

Even in non-power-constrained systems, depletion of
resources such as memory, CPU time, and bandwidth may
easily cause problems. A popular example is the SYN flood
attack, wherein adversaries make multiple connection
requests to a server, which will allocate resources for each
connection request, eventually running out of resources,
while the adversary, who allocates minimal resources,
remains operational (since he does not intend to ever
complete the connection handshake). Such attacks can
be defeated or attenuated by putting greater burden on
the connecting entity (e.g., SYN cookies [7], which offload
the initial connection state onto the client, or cryptographic
puzzles [4], [48], [73]). These solutions place minimal load
on legitimate clients who only initiate a small number of
connections, but deter malicious entities who will attempt a
large number. Note that this is actually a form of rate
limiting, and not always desirable as it punishes nodes who
produce bursty traffic but may not send much total data
over the lifetime of the network. Since Vampire attacks rely
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Fig. 1. Malicious route construction attacks on source routing: carousel attack (a) and stretch attack (b).



on amplification, such solutions may not be sufficiently
effective to justify the excess load on legitimate nodes.

There is also significant past literature on attacks and
defenses against quality of service (QoS) degradation, or
RoQ attacks, that produce long-term degradation in net-
work performance [23], [26], [41], [42], [44], [71], [76]. The
focus of this work is on the transport layer rather than
routing protocols, so these defenses are not applicable.
Moreover, since Vampires do not drop packets, the quality
of the malicious path itself may remain high (although with
increased latency).

Other work on denial of service in ad hoc wireless
networks has primarily dealt with adversaries who prevent
route setup, disrupt communication, or preferentially
establish routes through themselves to drop, manipulate,
or monitor packets [14], [28], [29], [36], [78]. The effect of
denial or degradation of service on battery life and other
finite node resources has not generally been a security
consideration, making our work tangential to the research
mentioned above. Protocols that define security in terms of
path discovery success, ensuring that only valid network
paths are found, cannot protect against Vampire attacks,
since Vampires do not use or return illegal routes or prevent
communication in the short term.

Current work in minimal-energy routing, which aims to
increase the lifetime of power-constrained networks by
using less energy to transmit and receive packets (e.g., by
minimizing wireless transmission distance) [11], [15], [19],
[63] is likewise orthogonal: these protocols focus on
cooperative nodes and not malicious scenarios. Additional
on power-conserving MAC, upper layer protocols, and
cross-layer cooperation [24], [34], [43], [45], [66], [67], [69],
[77]. However, Vampires will increase energy usage even
in minimal-energy routing scenarios and when power-
conserving MAC protocols are used; these attacks cannot
be prevented at the MAC layer or through cross-layer
feedback. Attackers will produce packets which traverse
more hops than necessary, so even if nodes spend the
minimum required energy to transmit packets, each packet
is still more expensive to transmit in the presence of
Vampires. Our work can be thought of attack-resistant
minimal-energy routing, where the adversary’s goal in-
cludes decreasing energy savings.

Deng et al. discuss path-based DoS attacks and defenses
in [13], including using one-way hash chains to limit the
number of packets sent by a given node, limiting the rate at
which nodes can transmit packets. While this strategy may
protect against traditional DoS, where the malefactor
overwhelms honest nodes with large amounts of data, it
does not protect against “intelligent” adversaries who use a
small number of packets or do not originate packets at all.
As an example of the latter, Aad et al. show how protocol-
compliant malicious intermediaries using intelligent packet-
dropping strategies can significantly degrade performance
of TCP streams traversing those nodes [2]. Our adversaries
are also protocol compliant in the sense that they use well-
formed routing protocol messages. However, they either
produce messages when honest nodes would not, or send
packets with protocol headers different from what an
honest node would produce in the same situation.

Another attack that can be thought of as path based is the
wormhole attack, first introduced in [30]. It allows two
nonneighboring malicious nodes with either a physical or
virtual private connection to emulate a neighbor relation-
ship, even in secure routing systems [3]. These links are not
made visible to other network members, but can be used by
the colluding nodes to privately exchange messages. Similar
tricks can be played using directional antennas. These
attacks deny service by disrupting route discovery, return-
ing routes that traverse the wormhole, and may have
artificially low associated cost metrics (such as number of
hops or discovery time, as in rushing attacks [31]). While
the authors propose a defense against wormhole and
directional antenna attacks (called “Packet Leashes” [30]),
their solution comes at a high cost and is not always
applicable. First, one flavor of Packet Leashes relies on
tightly synchronized clocks, which are not used in most off-
the-shelf devices. Second, the authors assume that packet
travel time dominates processing time, which may not be
borne out in modern wireless networks, particularly low-
power wireless sensor networks.

3 ATTACKS ON STATELESS PROTOCOLS

Here, we present simple but previously neglected attacks on
source routing protocols, such as DSR [35]. In these
systems, the source node specifies the entire route to a
destination within the packet header, so intermediaries do
not make independent forwarding decisions, relying rather
on a route specified by the source. To forward a message,
the intermediate node finds itself in the route (specified in
the packet header) and transmits the message to the next
hop. The burden is on the source to ensure that the route is
valid at the time of sending, and that every node in the
route is a physical neighbor of the previous route hop. This
approach has the advantage of requiring very little
forwarding logic at intermediate nodes, and allows for
entire routes to be sender authenticated using digital
signatures, as in Ariadne [29].

We evaluated both the carousel and stretch attacks
(Fig. 1a) in a randomly generated 30-node topology and a
single randomly selected malicious DSR agent, using the ns-
2 network simulator [1]. Energy usage is measured for the
minimum number of packets required to deliver a single
message, so sending more messages increases the strength
of the attack linearly until bandwidth saturation.1 We
independently computed resource utilization of honest and
malicious nodes and found that malicious nodes did not use
a disproportionate amount of energy in carrying out the
attack. In other words, malicious nodes are not driving
down the cumulative energy of the network purely by their
own use of energy. Nevertheless, malicious node energy
consumption data are omitted for clarity. The attacks are
carried out by a randomly selected adversary using the least
intelligent attack strategy to obtain average expected damage
estimates. More intelligent adversaries using more informa-
tion about the network would be able to increase the
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strength of their attack by selecting destinations designed to
maximize energy usage.

Per-node energy usage under both attacks is shown in
Fig. 2. As expected, the carousel attack causes excessive
energy usage for a few nodes, since only nodes along a
shorter path are affected. In contrast, the stretch attack
shows more uniform energy consumption for all nodes in
the network, since it lengthens the route, causing more
nodes to process the packet. While both attacks significantly
network-wide energy usage, individual nodes are also
noticeably affected, with some losing almost 10 percent of
their total energy reserve per message. Fig. 3a diagrams the
energy usage when node 0 sends a single packet to node 19
in an example network topology with only honest nodes.
Black arrows denote the path of the packet.

Carousel attack. In this attack, an adversary sends a packet
with a route composed as a series of loops, such that the same
node appears in the route many times. This strategy can be
used to increase the route length beyond the number of
nodes in the network, only limited by the number of
allowed entries in the source route.2 An example of this
type of route is in Fig. 1a. In Fig. 3b, malicious node 0 carries
out a carousel attack, sending a single message to node 19
(which does not have to be malicious). Note the drastic
increase in energy usage along the original path.3 Assuming
the adversary limits the transmission rate to avoid saturat-
ing the network, the theoretical limit of this attack is an
energy usage increase factor of Oð�Þ, where � is the
maximum route length.

Overall energy consumption increases by up to a factor
of 3.96 per message. On average, a randomly located
carousel attacker in our example topology can increase
network energy consumption by a factor of 1:48� 0:99. The
reason for this large standard deviation is that the attack
does not always increase energy usage—the length of the
adversarial path is a multiple of the honest path, which is in
turn, affected by the position of the adversary in relation to
the destination, so the adversary’s position is important to
the success of this attack.

Stretch attack. Another attack in the same vein is the
stretch attack, where a malicious node constructs artificially long
source routes, causing packets to traverse a larger than
optimal number of nodes. An honest source would select the route Source! F ! E ! Sink, affecting four nodes includ-

ing itself, but the malicious node selects a longer route,
affecting all nodes in the network. These routes cause nodes
that do not lie along the honest route to consume energy by
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Fig. 2. Node energy distribution under various attack scenarios. The
network is composed of 30 nodes and a single randomly positioned
Vampire. Results shown are based on a single packet sent by the
attacker.

Fig. 3. Energy map of the network in terms of fraction of energy
consumed per node. Black arrows show the packet path through the
network. Each dotted line represents an “energy equivalence zone,”
similar to an area of equal elevation on a topological chart. Each line is
marked with the energy loss by a node as a fraction of total original
charge.

2. The ns-2 DSR implementation arbitrarily limits the route length to 16.
3. Energy usage is greatest at node 10 likely due to its distance from its

nearest neighbors.



forwarding packets they would not receive in honest
scenarios. An example of this type of route is in Fig. 1b.
The outcome becomes clearer when we examine Fig. 3c and
compare to the carousel attack. While the latter uses energy
at the nodes who were already in the honest path, the former
extends the consumed energy “equivalence lines” to a wider
section of the network. Energy usage is less localized around
the original path, but more total energy is consumed.

The theoretical limit of the stretch attack is a packet that
traverses every network node, causing an energy usage
increase of factor OðminðN; �ÞÞ, where N is the number of
nodes in the network and � is the maximum path length
allowed. This attack is potentially less damaging per packet
than the carousel attack, as the number of hops per packet is
bounded by the number of network nodes. However,
adversaries can combine carousel and stretch attacks to
keep the packet in the network longer: the resulting
“stretched cycle” could be traversed repeatedly in a loop.
Therefore, even if stretch attack protection is not used, route
loops should still be detected and removed to prevent the
combined attack. In our example topology, we see an
increase in energy usage by as much as a factor of 10.5 per
message over the honest scenario, with an average increase
in energy consumption of 2:67� 2:49. As with the carousel
attack, the reason for the large standard deviation is that the
position of the adversarial node affects the strength of the
attack. Not all routes can be significantly lengthened,
depending on the location of the adversary. Unlike the
carousel attack, where the relative positions of the source
and sink are important, the stretch attack can achieve the
same effectiveness independent of the attacker’s network position
relative to the destination, so the worst case effect is far
more likely to occur.

The true significance of the attack becomes evident in
Fig. 4a, which shows network-wide energy consumption
in the presence of a single randomly selected Vampire in
terms of the “maliciousness” of the adversary, or the
induced stretch of the optimal route in number of hops.
(Increasing maliciousness beyond nine has no effect due to
the diameter of our test topology.) Network links become
saturated at 10,000 messages per second (even without the
stretch attack), but the adversary can achieve the same
effects by sending an order of magnitude fewer messages at
a stretch attack maliciousness level of 8 or greater. This
reduces cumulative network energy by 3 percent, or almost
the entire lifetime of a single node. Therefore, the stretch
attack increases the effectiveness of an adversary by an
order of magnitude, reducing its energy expenditure to
compose and transmit messages. With 100 messages, the
result is less severe, but still pronounced: the network loses
1 percent of its total energy, or 9 percent of the lifetime of a
single node. The effect becomes less visible when we look at
10 messages or fewer in Fig. 4b, but is still noticeable.

Since DSR uses hop count as a cost metric, constructing
longer source routes could in fact decrease the amount of
per-hop energy spent on sending packets if energy
minimization protocols were used since shorter physical
distances decrease required sending power, and thus
battery drain. We construct long routes greedily, assuming
global topology knowledge,4 but attacks can be further
optimized to consume more energy by considering relative
node distances—given enough information, our adversary
could construct not just longer but maximum-energy paths.
Forwarding nodes using minimum-energy routing [15],
[63], [66] could replace long distance transmissions with a
number of shorter distance hops, but the attack still works
since the malicious path is longer, independent of in-
network optimizations applied to it.

These attacks would be less effective in hierarchical
networks, where nodes send messages to aggregators, who
in turn sends it to other aggregators, which route it to a
monitoring point. The described attacks are only valid
within the network “neighborhood” of the adversarial
node. If an adversary corrupts nodes intelligently or
controls a small but nontrivial percentage of nodes, it can
execute these attacks within individual network neighbor-
hoods: a single adversary per neighborhood would disable
the entire network. We discuss the notion of neighborhoods
in more detail in Section 8.

3.1 Mitigation Methods

The carousel attack can be prevented entirely by having
forwarding nodes check source routes for loops. While this
adds extra forwarding logic and thus more overhead, we
can expect the gain to be worthwhile in malicious
environments. The ns-2 DSR protocol does implement loop
detection, but confusingly does not use it to check routes in
forwarded packets.5 When a loop is detected, the source
route could be corrected and the packet sent on, but one of
the attractive features of source routing is that the route can
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Fig. 4. Effects of a single-node stretch attacker on a network of 30 nodes
after removal of source route length limits. Maliciousness is measured in
terms of the induced stretch of the optimal route, in number of hops.

4. This can be obtained by probing routes to every host in the network.
5. Routes are not discarded after they have been used, but are stored in a

local cache in case the same destination will be used in the near future.
Routes retrieved from the local cache are checked for loops before use.



itself be signed by the source [29]. Therefore, it is better to
simply drop the packet, especially considering that the
sending node is likely malicious (honest nodes should not
introduce loops). An alternate solution is to alter how
intermediate nodes process the source route. To forward a
message, a node must determine the next hop by locating
itself in the source route. If a node searches for itself from
the destination backward instead from the source forward,
any loop that includes the current node will be automati-
cally truncated (the last instance of the local node will be
found in the source route rather than the first). No extra
processing is required for this defense, since a node must
perform this check anyway—we only alter the way the
check is done.

The stretch attack is more challenging to prevent. Its
success rests on the forwarding node not checking for
optimality of the route. If we call the no-optimization case
“strict” source routing, since the route is followed exactly as
specified in the header, we can define loose source routing,
where intermediate nodes may replace part or all of the
route in the packet header if they know of a better route to
the destination. This makes it necessary for nodes to
discover and cache optimal routes to at least some fraction
of other nodes, partially defeating the as-needed discovery
advantage. Moreover, caching must be done carefully lest a
maliciously suboptimal route be introduced. We simulated
the loose source routing defense using random-length
suboptimal paths in randomly generated network topolo-
gies of up to 1,000,000 nodes, with diameter 10-14. Results
(Fig. 5) demonstrate that the amount of node-local storage
required to achieve reasonable levels of mitigation ap-
proaches global topology knowledge, defeating the purpose
of using source routing. The dashed trend line represents
the expected path length of rerouted packets if each node
stores logN network paths, where N is the number of
network nodes, while the solid trend line represents the
majority of actual network paths in a loose source-routing
setup. The number of nodes traversed by loose source-
routed packets is suboptimal by at least a factor of 10, with
some routes approaching a factor of 50. Only a few
messages encountered a node with a better path to the
destination than the originally assigned long source route.
Therefore we conclude that loose source routing is worse than
keeping global state at every node.

Alternatively, we can bound the damage of carousel and
stretch attackers by limiting the allowed source route length

based on the expected maximum path length in the
network, but we would need a way to determine the
network diameter.6 While there are suitable algorithms [40],
[74] there has been very little work on whether they could
yield accurate results in the presence of adversaries. If the
number of nodes is known ahead of time, graph-theoretic
techniques can be used to estimate the diameter.

Rate limiting may initially seem to be a good defense, but
upon closer examination we see it is not ideal. It limits
malicious sending rate, potentially increasing network
lifetime, but that increase becomes the maximum expected
lifetime, since adversaries will transmit at the maximum
allowed rate. Moreover, sending rate is already limited by
the size of nodes’ receive queues in rate-unlimited networks
(as seen in the 10,000 message scenario in Fig. 4a). Rate
limiting also potentially punishes honest nodes that may
transmit large amounts of time-critical (bursty) data, but
will send little data over the network lifetime.

4 ATTACKS ON STATEFUL PROTOCOLS

We now move on to stateful routing protocols, where
network nodes are aware of the network topology and its
state, and make local forwarding decisions based on that
stored state. Two important classes of stateful protocols are
link-state and distance-vector. In link-state protocols, such
as OLSR [12], nodes keep a record of the up-or-down state
of links in the network, and flood routing updates every
time a link goes down or a new link is enabled. Distance-
vector protocols like DSDV [55] keep track of the next hop
to every destination, indexed by a route cost metric, e.g., the
number of hops. In this scheme, only routing updates that
change the cost of a given route need to be propagated.

Routes in link-state and distance-vector networks are
built dynamically from many independent forwarding
decisions, so adversaries have limited power to affect
packet forwarding, making these protocols immune to
carousel and stretch attacks. In fact, any time adversaries
cannot specify the full path, the potential for Vampire attack
is reduced. However, malicious nodes can still misforward
packets, forcing packet forwarding by nodes who would
not normally be along packet paths. For instance, an
adversary can forward packets either back toward the
source if the adversary is an intermediary, or to a
nonoptimal next hop if the adversary is either an inter-
mediary or the source. While this may seem benign in a
dense obstacle-free topology, worst case bounds are no
better than in the case of the stretch attack on DSR. For
instance, consider the special case of a ring topology:
forwarding a packet in the reverse direction causes it to
traverse every node in the network (or at least a significant
number, assuming the malicious node is not the packet
source but rather a forwarder), increasing our network-
wide energy consumption by a factor of OðNÞ. While ring
topologies are extremely unlikely to occur in practice, they
do help us reason about worst case outcomes. This scenario
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Fig. 5. Loose source routing performance compared to optimal, in a
network with diameter slightly above 10. The dashed trend line
represents expected path length when nodes store logN local state,
and the solid trend line shows actual observed performance.

6. Packet time to live (TTL) also limits route length, but it is set by the
malicious sender. Intermediate nodes may able to reset it to a “reasonable”
value, but it is unclear how to discover that value.



can also be generalized to routing around any network
obstacle along a suboptimal path.

Directional antenna attack. Vampires have little control
over packet progress when forwarding decisions are made
independently by each node, but they can still waste energy
by restarting a packet in various parts of the network. Using a
directional antenna adversaries can deposit a packet in
arbitrary parts of the network, while also forwarding the
packet locally. This consumes the energy of nodes that
would not have had to process the original packet, with the
expected additional honest energy expenditure of OðdÞ,
where d is the network diameter, making d

2 the expected
length of the path to an arbitrary destination from the
furthest point in the network. This attack can be considered
a half-wormhole attack [30], since a directional antenna
constitutes a private communication channel, but the node
on the other end is not necessarily malicious.7 It can be
performed more than once, depositing the packet at various
distant points in the network, at the additional cost to the
adversary for each use of the directional antenna. Packet
Leashes cannot prevent this attack since they are not meant
to protect against malicious message sources, only inter-
mediaries [30].

Malicious discovery attack. Another attack on all
previously mentioned routing protocols (including stateful
and stateless) is spurious route discovery. In most protocols,
every node will forward route discovery packets (and
sometimes route responses as well), meaning it is possible
to initiate a flood by sending a single message. Systems that
perform as-needed route discovery, such as AODV and
DSR, are particularly vulnerable, since nodes may legiti-
mately initiate discovery at any time, not just during a
topology change. A malicious node has a number of ways to
induce a perceived topology change: it may simply falsely
claim that a link is down, or claim a new link to a
nonexistent node. Security measures, such as those pro-
posed by Raffo et al. in [58] may be sufficient to alleviate
this particular problem. Further, two cooperating malicious
nodes may claim the link between them is down. However,
nearby nodes might be able to monitor communication to
detect link failure (using some kind of neighborhood
update scheme). Still, short route failures can be safely
ignored in networks of sufficient density. More serious
attacks become possible when nodes claim that a long-
distance route has changed. This attack is trivial in open
networks with unauthenticated routes, since a single node
can emulate multiple nodes in neighbor relationships [16],
or falsely claim nodes as neighbors. Therefore, let us
assume closed (Sybil-resistant) networks where link states
are authenticated, similar to route authentication in Ariadne
[29] or path-vector signatures in [70]. Now our adversary
must present an actually changed route in order to execute
the attack. To do this, two cooperating adversaries com-
municating through a wormhole could repeatedly an-
nounce and withdraw routes that use this wormhole,
causing a theoretical energy usage increase of a factor of
OðNÞ per packet. Adding more malicious nodes to the mix

increases the number of possible route announce/with-
drawal pairs. Packet Leashes [30] cannot prevent this attack,
with the reasoning being similar to the directional antenna
attack—since the originators are themselves malicious, they
would forward messages through the wormhole, and
return only seemingly valid (and functional) routes in
response to discovery. This problem is similar to route
flapping in BGP [72], but while Internet paths are relatively
stable [25], [61] paths change frequently in wireless ad hoc
networks, where nodes may move in and out of each other’s
range, or suffer intermittent environmental effects. Since
there may be no stable routes in WSNs (hence the need for
ad hoc protocols), this solution would not be applicable.

4.1 Coordinate and Beacon-Based Protocols

Some recent routing research has moved in the direction of

coordinate- and beacon-based routing, such as GPSR and

BVR [21], [37], which use physical coordinates or beacon

distances for routing, respectively. In GPSR, a packet may

encounter a dead end, which is a localized space of minimal

physical distance to the target, but without the target

actually being reachable (e.g., the target is separated by a

wall or obstruction). The packet must then be diverted (in

GPSR, it follows the contour of the barrier that prevents it

from reaching the target) until a path to the target is

available. In BVR, packets are routed toward the beacon

closest to the target node, and then move away from the

beacon to reach the target. Each node makes independent

forwarding decisions, and thus a Vampire is limited in the

distance it can divert the packet. These protocols also fall

victim to directional antenna attacks in the same way as

link-state and distance-vector protocols above, leading to

energy usage increase factor of OðdÞ per message, where d is

the network diameter. Moreover, GPSR does not take path

length into account when routing around local obstructions,

and so malicious misrouting may cause up to a factor of

OðcÞ energy loss, where c is the circumference of the

obstruction, in hops.

5 CLEAN-SLATE SENSOR NETWORK ROUTING

In this section, we show that a clean-slate secure sensor

network routing protocol by Parno et al. (“PLGP” from here

on) [53] can be modified to provably resist Vampire attacks

during the packet forwarding phase. The original version of

the protocol, although designed for security, is vulnerable

to Vampire attacks. PLGP consists of a topology discovery

phase, followed by a packet forwarding phase, with the

former optionally repeated on a fixed schedule to ensure

that topology information stays current. (There is no on-

demand discovery.) Discovery deterministically organizes

nodes into a tree that will later be used as an addressing

scheme. When discovery begins, each node has a limited

view of the network—the node knows only itself. Nodes

discover their neighbors using local broadcast, and form

ever expanding “neighborhoods,” stopping when the entire

network is a single group. Throughout this process, nodes

build a tree of neighbor relationships and group member-

ship that will later be used for addressing and routing.
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7. The attack is not very effective when using virtual wormholes
(encrypted connections), since adversaries sending packets to each other
would accomplish the same goal.



At the end of discovery, each node should compute the
same address tree as other nodes. All leaf nodes in the tree
are physical nodes in the network, and their virtual
addresses correspond to their position in the tree (see
Fig. 6). All nodes learn each others’ virtual addresses and
cryptographic keys. The final address tree is verifiable after
network convergence, and all forwarding decisions can be
independently verified. Furthermore, assuming each legit-
imate network node has a unique certificate of membership
(assigned before network deployment), nodes who attempt
to join multiple groups, produce clones of themselves in
multiple locations, or otherwise cheat during discovery can
be identified and evicted.

Topology discovery. Discovery begins with a time-
limited period during which every node must announce
its presence by broadcasting a certificate of identity,
including its public key (from now on referred to as node
ID), signed by a trusted offline authority. Each node starts
as its own group of size one, with a virtual address 0. Nodes
who overhear presence broadcasts form groups with their
neighbors. When two individual nodes (each with an initial
address 0) form a group of size two, one of them takes the
address 0, and the other becomes 1. Groups merge
preferentially with the smallest neighboring group, which
may be a single node. We may think of groups acting as
individual nodes, with decisions made using secure multi-
party computation. Like individual nodes, each group will
initially choose a group address 0, and will choose 0 or 1
when merging with another group. Each group member
prepends the group address to their own address, e.g., node
0 in group 0 becomes 0.0, node 0 in group 1 becomes 1.0,
and so on. Each time two groups merge, the address of each
node is lengthened by 1 bit. Implicitly, this forms a binary
tree of all addresses in the network, with node addresses as
leaved. Note that this tree is not a virtual coordinate system, as
the only information coded by the tree are neighbor
relationships among nodes.

Nodes will request to join with the smallest group in
their vicinity, with ties broken by group IDs, which are
computed cooperatively by the entire group as a determi-
nistic function of individual member IDs. When larger
groups merge, they both broadcast their group IDs (and the

IDs of all group members) to each other, and proceed with a
merge protocol identical to the two-node case. Groups that
have grown large enough that some members are not
within radio range of other groups will communicate
through “gateway nodes,” which are within range of both
groups. Each node stores the identity of one or more nodes
through which it heard an announcement that another
group exists. That node may have itself heard the
information second hand, so every node within a group
will end up with a next-hop path to every other group, as in
distance vector. Topology discovery proceeds in this
manner until all network nodes are members of a single
group. By the end of topology discovery, each node learns
every other node’s virtual address, public key, and
certificate, since every group members knows the identities
of all other group members and the network converges to a
single group.

Packet forwarding. During the forwarding phase, all
decisions are made independently by each node. When
receiving a packet, a node determines the next hop by
finding the most significant bit of its address that differs
from the message originator’s address (see Fig. 6). Thus,
every forwarding event (except when a packet is moving
within a group in order to reach a gateway node to proceed
to the next group) shortens the logical distance to the
destination, since node addresses should be strictly closer
to the destination (see Function forward_packet).8

5.1 PLGP in the Presence of Vampires

In PLGP, forwarding nodes do not know what path a
packet took, allowing adversaries to divert packets to any
part of the network, even if that area is logically further
away from the destination than the malicious node. This
makes PLGP vulnerable to Vampire attacks. Consider for
instance the now-familiar directional antenna attack: a
receiving honest node may be farther away from the packet
destination than the malicious forwarding node, but the
honest node has no way to tell that the packet it just
received is moving away from the destination; the only
information available to the honest node is its own address
and the packet destination address, but not the address of
the previous hop (who can lie). Thus, the Vampire can
move a packet away from its destination without being
detected. This packet will traverse at most logN logical hops,
with Oð

ffiffiffiffi

2i
p
Þ physical hops at the ith logical hop, giving us

a theoretical maximum energy increase of OðdÞ, where d is
the network diameter and N the number of network nodes.
The situation is worse if the packet returns to the Vampire
in the process of being forwarded—it can now be rerouted
again, causing something similar to the carousel attack.
Recall that the damage from the carousel attack is bounded
by the maximum length of the source route, but in PLGP
the adversary faces no such limitation, so the packet can
cycle indefinitely. Nodes may sacrifice some local storage
to retain a record of recent packets to prevent this attack
from being carried out repeatedly with the same packet.
Random direction vectors, as suggested in PLGP, would
likewise alleviate the problem of indefinite cycles by
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Fig. 6. The final address tree for a fully converged six-node network.
Leaves represent physical nodes, connected with solid lines if within
radio range. The dashed line is the progress of a message through the
network. Note that nonleaf nodes are not physical nodes but rather
logical group identifiers.

8. Since all node addresses are unique, every logical hop either takes a
message strictly closer to, or further from, its destination.



avoiding the same malicious node during the subsequent
forwarding round.

6 PROVABLE SECURITY AGAINST VAMPIRE

ATTACKS

Here, we modify the forwarding phase of PLGP to provably
avoid the above-mentioned attacks. First we introduce the
no-backtracking property, satisfied for a given packet if and
only if it consistently makes progress toward its destination
in the logical network address space. More formally:

Definition 1. No-backtracking is satisfied if every packet p
traverses the same number of hops whether or not an adversary
is present in the network. (Maliciously induced route stretch is
bounded to a factor of 1.)

This does not imply that every packet in the network
must travel the same number of hops regardless of source
or destination, but rather that a packet sent to node D by a
malicious node at location L will traverse the same number
of hops as a packet sent to D by a node at location L that is
honest. If we think of this in terms of protocol execution
traces, no-backtracking implies that for each packet in the
trace, the number of intermediate honest nodes traversed by
the packet between source and destination is independent
of the actions of malicious nodes. Equivalently, traces that
include malicious nodes should show the same network-
wide energy utilization by honest nodes as traces of a
network with no malicious actors. The only notable
exceptions are when adversaries drop or mangle packets
en route, but since we are only concerned with packets
initiated by adversaries, we can safely ignore this situation:
“premangled” packets achieve the same result—they will
be dropped by an honest intermediary or destination.

No-backtracking implies Vampire resistance. It is
not immediately obvious why no-backtracking prevents
Vampire attacks in the forwarding phase. Recall the reason
for the success of the stretch attack: intermediate nodes in a

source route cannot check whether the source-defined
route is optimal, or even that it makes progress toward the
destination. When nodes make independent routing
decisions such as in link-state, distance-vector, coordi-
nate-based, or beacon-based protocols, packets cannot
contain maliciously composed routes. This already means
the adversary cannot perform carousel or stretch attacks—
no node may unilaterally specify a suboptimal path
through the network. However, a sufficiently clever
adversary may still influence packet progress. We can
prevent this interference by independently checking on
packet progress: if nodes keep track of route “cost” or
metric and, when forwarding a packet, communicate the
local cost to the next hop, that next hop can verify that
the remaining route cost is lower than before, and therefore
the packet is making progress toward its destination.
(Otherwise we suspect malicious intervention and drop the
packet.) If we can guarantee that a packet is closer to its
destination with every hop, we can bound the potential
damage from an attacker as a function of network size.
(A more desirable property is to guarantee good progress,
such as logarithmic path length, but both allow us to obtain
an upper bound on attack success.)

PLGP does not satisfy no-backtracking. In nonsource
routing protocols, routes are dynamically composed of
forwarding decisions made independently by each node.
PLGP differs from other protocols in that packets paths
are further bounded by a tree, forwarding packets along
the shortest route through the tree that is allowed by the
physical topology. In other words, packet paths are
constrained both by physical neighbor relationships and
the routing tree. Since the tree implicitly mirrors the
topology (two nodes have the same parent if and only if
they are physical neighbors, and two nodes sharing an
ancestor have a network path to each other), and since every
node holds an identical copy of the address tree, every node
can verify the optimal next logical hop. However, this is not
sufficient for no-backtracking to hold, since nodes cannot be
certain of the path previously traversed by a packet.
Communicating a local view of route cost is not as easy as
it seems, since adversaries can always lie about their local
metric, and so PLGP is still vulnerable to directional
antenna/wormhole attacks, which allow adversaries to
divert packets to any part of the network.

To preserve no-backtracking, we add a verifiable path
history to every PLGP packet, similar to route authentica-
tions in Ariadne [29] and path-vector signatures in [70]. The
resulting protocol, PLGP with attestations (PLGPa) uses this
packet history together with PLGP’s tree routing structure
so every node can securely verify progress, preventing any
significant adversarial influence on the path taken by any packet
which traverses at least one honest node. Whenever node n
forwards packet p, it this by attaching a nonreplayable
attestation (signature). These signatures form a chain
attached to every packet, allowing any node receiving it
to validate its path. Every forwarding node verifies the
attestation chain to ensure that the packet has never
traveled away from its destination in the logical address
space. See Function secure_forward_packet for the
modified protocol.
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PLGPa satisfies no-backtracking. To show that our
modified protocol preserves the no-backtracking property,
we define a network as a collection of nodes, a topology,
connectivity properties, and node identities, borrowing the
model used by Poturalski et al. in [57]. Honest nodes can
broadcast and receive messages, while malicious nodes can
also use directional antennas to transmit to (or receive from)
any node in the network without being overheard by any
other node. Honest nodes can compose, forward, accept, or
drop messages, and malicious nodes can also arbitrarily
transform them. Our adversary is assumed to control m
nodes in an N-node network (with their corresponding
identity certificates and other secret cryptographic material)
and has perfect knowledge of the network topology.
Finally, the adversary cannot affect connectivity between
any two honest nodes.

Since all messages are signed by their originator,
messages from honest nodes cannot be arbitrarily modified
by malicious nodes wishing to remain undetected. Rather,
the adversary can only alter packet fields that are changed
en route (and so are not authenticated), so only the route
attestation field can be altered, shortened, or removed
entirely. To prevent truncation, which would allow Vam-
pires to hide the fact that they are moving a packet away
from its destination, we use Saxena and Soh’s one-way
signature chain construction [64], which allow nodes to add
links to an existing signature chain, but not remove links,
making attestations append only.

For the purposes of Vampire attacks, we are uncon-
cerned about packets with arbitrary hop counts that are
never received by honest nodes but rather are routed
between adversaries only, so we define the hop count of a
packet as follows:

Definition 2. The hop count of packet p, received or forwarded by
an honest node, is no greater than the number of entries in p’s
route attestation field, plus 1.

When any node receives a message, it checks that every
node in the path attestation 1) has a corresponding entry in
the signature chain, and 2) is logically closer to the
destination than the previous hop in the chain (see
Function secure_forward_packet). This way, forward-
ing nodes can enforce the forward progress of a message,
preserving no-backtracking. If no attestation is present, the
node checks to see if the originator of the message is a
physical neighbor. Since messages are signed with the
originator’s key, malicious nodes cannot falsely claim to be
the origin of a message, and therefore do not benefit by
removing attestations.

Theorem 1. A PLGPa packet p satisfies no-backtracking in the
presence of an adversary controlling m < N � 3 nodes if p
passes through at least one honest node.

Proof. Consider two arbitrary PLGPa protocol traces H and
M of the same N-node network, in which node S sends
packet p to node D. Constrain H such that all nodes are
honest, and constrain M such that m < N � 3 are
malicious. Let p reach an arbitrary honest node I along
the protocol-defined packet path in h hops in H, but in
hþ � hops for � > 0 in M (no-backtracking is not

satisfied in the latter). Since PLGPa is deterministic, the
difference � must be attributable to a malicious node.
Further, since the hop count of p when it arrives at I is
greater in M than in H, p’s route attestation chain must
be � longer in M. Recall that every node has a unique
virtual address, and no packet may be forwarded
between any two nodes without moving either backward
or forward through the virtual address space, so p must
have moved backward in the coordinate space by at least
one hop.9

Consider the following three scenarios: 1) I is a
neighbor of S and the next hop of p; 2) I is a neighbor of
D and the last hop of p before the destination; and 3) I is
a forwarding node of the packet, but is neither a
neighbor of S nor D. If I forwards a packet with hþ �
hops in its route attestation, the adversary must have
succeeded in at least one of the following:

. causing honest node I to forward p with nonnull

attestation, over a route that backtracked, violat-

ing the assumption that honest nodes correctly

follow PLGPa;10

. causing honest node I to forward p with a
nonnull attestation, from source S who is I’s
direct neighbor, violating the assumption that
honest nodes correctly follow PLGPa;

. truncating the route attestation, violating the
security of chain signatures.

Finally, if I forwards p with a null attestation, it is
either a neighbor of S or the adversary has broken the
signature scheme used by the sender to attest to the
packet’s invariant fields—an honest I would not forward
a packet with no attestation if the packet source is not a
neighbor.11 Since each possible adversarial action which
results in backtracking violates an assumption, the proof
is complete. tu

Since no-backtracking guarantees packet progress, and
PLGPa preserves no-backtracking, it is the only protocol
discussed so far that provably bounds the ratio of energy

used in the adversarial scenario to that used with only honest
nodes to 1, and by the definition of no-backtracking PLGPa
resists Vampire attacks. This is achieved because packet
progress is securely verifiable. Note that we cannot
guarantee that a packet will reach its destination, since it
can always be dropped. Guaranteed delivery is beyond the
scope of this paper.

In strictly enforced no-backtracking, topology changes
that may eliminate all protocol-level paths to a node that
do not require backtracking, even though network-level
paths still exist (e.g., the GPSR “dead end” scenario). To
deal with such situations we can allow for limited
backtracking (�-backtracking, as opposed to our original
0-backtracking scheme), which provides some leeway in
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9. Malicious nodes who choose to not update route attestations may pass
p indefinitely between themselves, but this does not increase the hop count
as defined (malicious nodes would only be draining their own battery).

10. This case subsumes a malicious source and nonnull packet
attestation.

11. A malicious source transmitting the packet with a null attestation is
allowed without loss of generality.



the way no-backtracking is verified, allowing a certain
amount of total backtracking per packet within the security
parameter �. The extended security proof by induction on
� is trivial.

7 PERFORMANCE CONSIDERATIONS

PLGP imposes increased setup cost over BVR [21], but
compares favorably to in terms of packet forwarding
overhead. While path stretch increases by a factor of 1.5-2,
message delivery success without resorting to localized
flooding is improved: PLGP never floods, while BVR must
flood 5-10 percent of packets depending on network size
and topology [53]. PLGP also demonstrates more equitable
routing load distribution and path diversity than BVR.
Since the forwarding phase should last considerably longer
than setup, PLGP offers performance comparable to BVR in
the average case.

PLGPa includes path attestations, increasing the size of
every packet, incurring penalties in terms of bandwidth use,
and thus radio power. Adding extra packet verification
requirements for intermediate nodes also increases proces-
sor utilization, requiring time, and additional power. Of
course there is nothing to be gained in completely
nonadversarial environments, but in the presence of even
a small number of malicious nodes, the increased overhead
becomes worthwhile when considering the potential da-
mage of Vampire attacks.

The bandwidth overhead of our attestation scheme is
minimal, as chain signatures are compact (less than 30
bytes). Comparatively, a minimum-size DSR route request
packet with no route, payload, or additional options is 12
bytes [35]; we used 512-byte data packets in our simulations.
The additional bandwidth, therefore, is not significant,
increasing per-packet transmit power by about 4:8 �J, plus
roughly half for additional power required to receive [66].

Energy expenditure for cryptographic operations at
intermediate hops is, unfortunately, much greater than
transmit or receive overhead, and much more dependent
on the specific chipset used to construct the sensor.
However, we can make an educated guess about expected
performance and power costs. Highly optimized software-
only implementations of AES-128, a common symmetric
cryptographic primitive, require about 10 to 15 cycles per
byte of data on modern 32-bit x86 processors without AES-
specific instruction sets or cryptographic co-processors [6].
Due to the rapid growth in the mobile space and increased
awareness of security requirements, there has been
significant recent work in evaluating symmetric and
asymmetric cryptographic performance on inexpensive
and low-power devices. Bos et al. report AES-128
performance on 8-bit microcontrollers of 124.6 and
181.3 CPU cycles per byte [9], and Feldhofer et al. report
just over 1,000 cycles per byte using low-power custom
circuits [20]. Surprisingly, although asymmetric cryptogra-
phy is generally up to two orders of magnitude slower
than symmetric, McLoone and Robshaw demonstrate a fast
and low-power implementation of an asymmetric crypto-
system for use in RFID tags [47]. Their circuitry uses 400 to
800 cycles per round (on 8- and 16-bit architectures,
respectively) in the high-current configuration (comparable

in terms of clock cycles to AES for RFID [20], but with half
to one-tenth the gates and vastly less power), and
1,088 cycles when using about six times less current.

Chain signatures are a somewhat more exotic construc-
tion, and require bilinear maps, potentially requiring even
more costly computation than other asymmetric cryptosys-
tems. Bilinear maps introduce additional difficulties in
estimating overhead due to the number of “pairings” from
which implementers can choose. Kawahara et al. use Tate
pairings, which are almost universally accepted as the most
efficient [22], and show that their Java implementation has
similar mobile phone performance as 1,024-bit RSA [62] or
160-bit elliptic curve (ECC) [8] cryptosystems [38]. Scott
et al. show that modern 32-bit smart cards can compute
Tate pairings in as little as 150 ms—comparable efficiency to
symmetric cryptography [65]. Furthermore, English et al.
show how to construct hardware to perform bilinear map
operations in about 75,000 cycles at 50 MHz (1.5 ms) using
5:79 �J [18].12 When using specialized hardware for bilinear
map computation, power requirements for chain signature-
compatible cryptographic operations are roughly equiva-
lent to for transmission of the 30-byte chain signature.
Assuming a node performs both signature verification as
well as a signature append operation, adding attestations to
PLGP introduces roughly the same overhead as increasing
packet sizes by 90 bytes, taking into account transmit power
and cryptographic operations. Without specialized hard-
ware, we estimate cryptographic computation overhead,
and thus increased power utilization, of a factor of 2-4 per
packet on 32-bit processors, but mostly independent of the
route length or the number of nodes in the network: while the
hop record and chain signature do grow, their size increase
is negligible. In other words, the overhead is constant (Oð1Þ)
for a given network configuration (maximum path length),
and cannot be influenced by an adversary. Fortunately,
hardware cryptographic accelerators are increasingly com-
mon and inexpensive to compensate for increased security
demands on low-power devices, which lead to increased
computational load and reduced battery life [17], [18], [20],
[33], [39], [46], [47], [49], [56].

In total, the overhead on the entire network of PLGPa (over
PLGP) when using 32-bit processors or dedicated crypto-
graphic accelerator is the energy equivalent of 90 additional
bytes per packet, or a factor Oðx�Þ, where � is the path
length between source and destination and x is 1.2-7.5,
depending on average packet size (512 and 12 bytes,
respectively). Even without dedicated hardware, the cryp-
tographic computation required for PLGPa is tractable even
on 8-bit processors, although with up to a factor of 30
performance penalty, but this hardware configuration is
increasingly uncommon.

8 SECURING THE DISCOVERY PHASE

Without fully solving the problem of malicious topology
discovery, we can still mitigate it by forcing synchronous
discovery and ignoring discovery messages during the
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12. Even on 8-bit ATmega128 series microcontrollers commonly used in
Mica sensor “motes” [27], Tate pairings can be computed in under
31 seconds [51], and elliptic curve operations take less than a second [17].



intervening periods. This can lead to some nodes being
separated from the network for a period of time, and is
essentially a form of rate limiting. Although we rejected rate
limiting before, it is acceptable here since discovery should
consume a small fraction of running time compared to packet
forwarding. We can enforce rate limits in a number of ways,
such as neighbor throttling [35] or one-way hash chains [14].
We can also optimize discovery algorithms [32] to minimize
our window of vulnerability. If a network survives the high-
risk discovery period, it is unlikely to suffer serious damage
from Vampires during normal packet forwarding.

While PLGPa is not vulnerable to Vampire attacks
during the forwarding phase, we cannot make the same
claim about discovery. However, we can give some intuition
as to how to further modify PLGPa to bound damage from
malicious discovery. (The value of that bound in practice
remains an open problem.) The major issue is that malicious
nodes can use directional antennas to masquerade neigh-
bors to any or all nodes in the network, and therefore look
like a group of size one, with which other groups will try to
preferentially merge. Merge requests are composed of the
requested group’s ID as well as all the group members’ IDs,
and the receiving node will flood this request to other group
members. Even assuming groups generate signed tokens
that cost no energy to verify, a Vampire would be able to
flood its group with every group descriptor it knows, and
use its directional antenna to snoop on broadcasts outside
their neighbor range, relaying merge requests from entirely
honest groups. Since each Vampire will start as a group of
one, other groups will issue merge requests, which the
Vampire can deny. In PLGP, denials are only allowed if
another merge is in progress, so if we modify the reject
message to include the ID of the group with which the
merge is in progress (and a signature for nonrepudiation),
these messages can be kept and replayed at the end of the
topology discovery period, detecting and removing nodes
who incorrectly deny merge requests. Therefore, Vampires
reject legitimate merge requests at their own peril. Any
group containing a Vampire can be made to serially join
with a “group” composed only of each Vampire in the
network (all of them would have to advertise themselves as
neighbors of each group). Even wholly honest groups can
be fooled using directional antennas: Vampires could
maintain the illusion that it is a neighbor of a given group.
Since join events require multiparty computation and are
flooded throughout the group, this makes for a fairly
effective attack. PLGP already provides for the discovery of
such subterfuge upon termination of topology discovery: a
node who is a member of multiple groups will be detected
once those groups join (and all groups are guaranteed to
merge by the end of the protocol).

Since PLGP offers the chance to detect active Vampires
once the network converges, successive rediscovery peri-
ods become safer. This is more than can be said of other
protocols, where malicious behavior during discovery may
go undetected, or at least unpunished. However, the
bound we can place on malicious discovery damage in
PLGPa is still unknown. Moreover, if we can conclude that
a single malicious node causes a factor of k energy increase
during discovery (and is then expelled), it is not clear how
that value scales under collusion among multiple mal-
icious nodes.

9 CONCLUSION

In this paper, we defined Vampire attacks, a new class of
resource consumption attacks that use routing protocols to
permanently disable ad hoc wireless sensor networks by
depleting nodes’ battery power. These attacks do not
depend on particular protocols or implementations, but
rather expose vulnerabilities in a number of popular
protocol classes. We showed a number of proof-of-concept
attacks against representative examples of existing routing
protocols using a small number of weak adversaries, and
measured their attack success on a randomly generated
topology of 30 nodes. Simulation results show that
depending on the location of the adversary, network energy
expenditure during the forwarding phase increases from
between 50 to 1,000 percent. Theoretical worst case energy
usage can increase by as much as a factor of OðNÞ per
adversary per packet, where N is the network size. We
proposed defenses against some of the forwarding-phase
attacks and described PLGPa, the first sensor network
routing protocol that provably bounds damage from
Vampire attacks by verifying that packets consistently
make progress toward their destinations. We have not
offered a fully satisfactory solution for Vampire attacks
during the topology discovery phase, but suggested some
intuition about damage limitations possible with further
modifications to PLGPa. Derivation of damage bounds and
defenses for topology discovery, as well as handling mobile
networks, is left for future work.
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[40] A. Kröller, S.P. Fekete, D. Pfisterer, and S. Fischer, “Deterministic
Boundary Recognition and Topology Extraction for Large Sensor
Networks,” Proc. Ann. ACM-SIAM Symp. Discrete Algorithms, 2006.

[41] A. Kuzmanovic and E.W. Knightly, “Low-Rate TCP-Targeted
Denial of Service Attacks: The Shrew vs. the Mice and Elephants,”
Proc. SIGCOMM, 2003.

[42] Y.-K. Kwok, R. Tripathi, Y. Chen, and K. Hwang, “HAWK:
Halting Anomalies with Weighted Choking to Rescue Well-
Behaved TCP Sessions from Shrew DDoS Attacks,” Proc. Int’l Conf.
Networking and Mobile Computing, 2005.

[43] L. Xiaojun, N.B. Shroff, and R. Srikant, “A Tutorial on Cross-Layer
Optimization in Wireless Networks,” IEEE J. Selected Areas in
Comm., vol. 24, no. 8, pp. 1452-1463, Aug. 2006.

[44] X. Luo and R.K.C. Chang, “On a New Class of Pulsing Denial-of-
Service Attacks and the Defense,” Proc. Network and Distributed
System Security Symp. (NDSS), 2005.

[45] M. Maleki, K. Dantu, and M. Pedram, “Power-Aware Source
Routing Protocol for Mobile Ad Hoc Networks,” Proc. Int’l Symp.
Low Power Electronics and Design (ISLPED), 2002.

[46] Y. Matsuoka, P. Schaumont, K. Tiri, and I. Verbauwhede, “Java
Cryptography on KVM and Its Performance and Security
Optimization Using HW/SW Co-Design Techniques,” Proc. Int’l
Conf. Compilers, Architecture, and Synthesis for Embedded Systems
(CASES), 2004.

[47] M. McLoone and M. Robshaw, “Public Key Cryptography and
RFID Tags,” Proc. RSA Conf. Cryptography (CT-RSA), 2006.

[48] T.J. McNevin, J.-M. Park, and R. Marchany, “pTCP: A Client
Puzzle Protocol for Defending Against Resource Exhaustion
Denial of Service Attacks,” Technical Report TR-ECE-04-10, Dept.
of Electrical and Computer Eng., Virginia Tech, 2004.

[49] V.P. Nambiar, M. Khalil-Hani, and M.M.A. Zabidi, “Accelerating
the AES Encryption Function in OpenSSL for Embedded
Systems,” Proc. Int’l Conf Electrical Design (ICED), 2008.

[50] A. Nasipuri and S.R. Das, “On-Demand Multipath Routing for
Mobile Ad Hoc Networks,” Proc. Int’l Conf. Computer Comm. and
Networks, 1999.

[51] L.B. Oliveira, D.F. Aranha, E. Morais, F. Daguano, J. Lopez, and R.
Dahab, “TinyTate: Computing the Tate Pairing in Resource-
Constrained Sensor Nodes,” Proc. IEEE Sixth Int’l Symp. Network
Computing and Applications (NCA), 2007.

[52] K. Park and H. Lee, “On the Effectiveness of Probabilistic Packet
Marking for IP Traceback under Denial of Service Attack,” Proc.
IEEE INFOCOM, 2001.

[53] B. Parno, M. Luk, E. Gaustad, and A. Perrig, “Secure Sensor
Network Routing: A Clean-Slate Approach,” CoNEXT: Proc. ACM
CoNEXT Conf., 2006.

[54] V. Paxson, “An Analysis of Using Reflectors for Distributed
Denial-of-Service Attacks,” SIGCOMM Computing Comm. Rev.,
vol. 31, no. 3, pp. 38-47, 2001.

[55] C.E. Perkins and P. Bhagwat, “Highly Dynamic Destination-
Sequenced Distance-Vector Routing (DSDV) for Mobile Compu-
ters,” Proc. Conf. Comm. Architectures, Protocols and Applications,
1994.

[56] R. Potlapally, S. Ravi, A. Raghunathan, R.B. Lee, and N.K. Jha,
“Impact of Configurability and Extensibility on IPSec Protocol
Execution on Embedded Processors,” Proc. Int’l Conf. VLSI Design,
2006.

[57] M. Poturalski, P. Papadimitratos, and J.-P. Hubaux, “Secure
Neighbor Discovery in Wireless Networks: Formal Investigation
of Possibility,” Proc. ACM Symp. Information, Computer and Comm.
Security (ASIACCS), 2008.

[58] D. Raffo, C. Adjih, T. Clausen, and P. Mühlethaler, “An Advanced
Signature System for OLSR,” Proc. Second ACM Workshop Security
of Ad Hoc and Sensor Networks (SASN), 2004.

VASSERMAN AND HOPPER: VAMPIRE ATTACKS: DRAINING LIFE FROM WIRELESS AD HOC SENSOR NETWORKS 331



[59] D.R. Raymond, R.C. Marchany, M.I. Brownfield, and S.F. Midkiff,
“Effects of Denial-of-Sleep Attacks on Wireless Sensor Network
MAC Protocols,” IEEE Trans. Vehicular Technology, vol. 58, no. 1,
pp. 367-380, Jan. 2009.

[60] D.R. Raymond and S.F. Midkiff, “Denial-of-Service in Wireless
Sensor Networks: Attacks and Defenses,” IEEE Pervasive Comput-
ing, vol. 7, no. 1, pp. 74-81, Jan.-Mar. 2008.

[61] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP Routing Stability
of Popular Destinations,” Proc. Second ACM SIGCOMM Workshop
Internet Measurement (IMW), 2002.

[62] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Comm. ACM,
vol. 21, no. 2, pp. 120-126, 1978.

[63] V. Rodoplu and T.H. Meng, “Minimum Energy Mobile Wireless
Networks,” IEEE J. Selected Areas in Comm., vol. 17, no. 8, pp. 1333-
1344, Aug. 1999.

[64] A. Saxena and B. Soh, “One-Way Signature Chaining: A New
Paradigm for Group Cryptosystems,” Int’l J. Information and
Computer Security, vol. 2, no. 3, pp. 268-296, 2008.

[65] M. Scott, N. Costigan, and W. Abdulwahab, “Implementing
Cryptographic Pairings on Smartcards,” Proc. Eighth Int’l Conf.
Cryptographic Hardware and Embedded Systems (CHES), 2006.

[66] R.C. Shah and J.M. Rabaey, “Energy Aware Routing for Low
Energy Ad Hoc Sensor Networks,” Proc. IEEE Wireless Comm. and
Network Conf. (WCNC), 2002.

[67] S. Singh, M. Woo, and C.S. Raghavendra, “Power-Aware Routing
in Mobile Ad Hoc Networks,” Proc. ACM MobiCom, 1998.

[68] F. Stajano and R. Anderson, “The Resurrecting Duckling: Security
Issues for Ad-Hoc Wireless Networks,” Proc. Int’l Workshop
Security Protocols, 1999.

[69] I. Stojmenovic and X. Lin, “Power-Aware Localized Routing in
Wireless Networks,” IEEE Trans. Parallel and Distributed Systems,
vol. 12, no. 11, pp. 1122-1133, Nov. 2001.

[70] L. Subramanian, R.H. Katz, V. Roth, S. Shenker, and I. Stoica,
“Reliable Broadcast in Unknown Fixed-Identity Networks,” Proc.
Ann. ACM SIGACT-SIGOPS Symp. Principles of Distributed Comput-
ing, 2005.

[71] H. Sun, J.C.S. Lui, and D.K.Y. Yau, “Defending against Low-Rate
TCP Attacks: Dynamic Detection and Protection,” Proc. IEEE 12th
Int’l Conf. Network Protocols (ICNP), 2004.

[72] C. Villamizar, R. Chandra, and R. Govindan, BGP Route Flap
Damping, IETF RFC 2439, 1998.

[73] L. von Ahn, M. Blum, N.J. Hopper, and J. Langford, “CAPTCHA:
Using Hard AI Problems for Security,” Proc. 22nd Int’l Conf. Theory
and Applications of Cryptographic Techniques (Eurocrypt), 2003.

[74] Y. Wang, J. Gao, and J.S.B. Mitchell, “Boundary Recognition in
Sensor Networks by Topological Methods,” Proc. ACM MobiCom,
2006.

[75] A.D. Wood and J.A. Stankovic, “Denial of Service in Sensor
Networks,” Computer, vol. 35, no. 10, pp. 54-62, Oct. 2002.

[76] G. Yang, M. Gerla, and M.Y. Sanadidi, “Defense Against Low-Rate
TCP-Targeted Denial-of-Service Attacks,” Proc. Ninth Int’l Symp.
Computers and Comm. (ISCC), 2004.

[77] J. Yuan, Z. Li, W. Yu, and B. Li, “A Cross-Layer Optimization
Framework for Multihop Multicast in Wireless Mesh Networks,”
IEEE J. Selected Areas in Comm., vol. 24, no. 11, pp. 2092-2103, Nov.
2006.

[78] M.G. Zapata and N. Asokan, “Securing Ad Hoc Routing
Protocols,” Proc. First ACM Workshop Wireless Security (WiSE),
2002.

Eugene Y. Vasserman received the BS degree
in biochemistry and neuroscience in 2003 and
the master’s and PhD degrees in computer
science in 2008 and 2010, all from the University
of Minnesota. He is an assistant professor of
computing and information sciences at Kansas
State University. He is interested in distributed
network security, privacy and anonymity, low-
power and pervasive computing, peer-to-peer
systems, and applied cryptography.

Nicholas Hopper received the BA degree with
majors in mathematics and computer science
from the University of Minnesota-Morris in 1999
and the PhD degree in computer science from
Carnegie Mellon University in 2004. He is an
associate professor in the Department of Com-
puter Science and Engineering, University of
Minnesota. His research interests include cryp-
tography, anonymity, and distributed systems
security.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

332 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 2, FEBRUARY 2013



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


