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Abstract—In online social networks (OSNs), to evaluate trust from one user to another indirectly connected user, the trust evidence in

the trusted paths (i.e., paths built through intermediate trustful users) should be carefully treated. Some paths may overlap with each

other, leading to a unique challenge of path dependence, i.e., how to aggregate the trust values of multiple dependent trusted paths.

OSNs bear the characteristic of high clustering, which makes the path dependence phenomenon common. Another challenge is trust

decay through propagation, i.e., how to propagate trust along a trusted path, considering the possible decay in each node. We analyze

the similarity between trust propagation and network flow, and convert a trust evaluation task with path dependence and trust decay

into a generalized network flow problem. We propose a modified flow-based trust evaluation schemeGFTrust, in which we address

path dependence using network flow, and model trust decay with the leakage associated with each node. Experimental results, with the

real social network data sets of Epinions and Advogato, demonstrate that GFTrust can predict trust in OSNs with a high accuracy, and

verify its preferable properties.

Index Terms—Generalized network flow, online social networks (OSNs), path dependence, trust decay, trust evaluation
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1 INTRODUCTION

“TO be trusting is to be fooled from time to time; to be
suspicious is to live in constant torment (Wu [1]).”

People face trust issues every day in real life. The trust mech-
anism is a tool used to facilitate decision making in diverse
applications. This paper copes with the setting in which a
source s is interested in a single target d (it can be a person, or
a product/service he provides) in online social networks
(OSNs). Some users have preconceived opinions about d. s
might desire to estimate whether or not she would like d,
based on the aggregated opinions of others. In real life, s
might first consult her friends for their recommendations. In
turn, the friends, if they do not have opinions of their own,
may consult their friends, and so on. Based on the cumula-
tive feedback s receives, she can form her own subjective
opinion. A trust evaluation system aims to provide a similar
process to produce high-quality trust prediction for users.

“Trust in a person is a commitment to an action, based on
a belief that the future actions of that person will lead to a
good outcome (Golbeck [2]).” Trust can be built through

direct contact (first-hand), such as a directed link from s to
u, or through a recommendation (second-hand), such as a
trusted path ðs; u; dÞ representing s’s trust of d via u’s recom-
mendation (Fig. 1a). A path is constructed through iterative
recommendations. Multiple sequential and parallel paths
are overlapped to form a directed trusted graph from s to d.
In Fig. 1a, eðs; uÞ and eðu; dÞ are two edges of a sequential
path ðs; u; dÞ; ðs; u; dÞ and ðs; v; dÞ are two parallel paths;
ðs; v; u; dÞ is an overlapped path with paths ðs; u; dÞ and
ðs; v; dÞ. Usually, each edge has a weight value between
0 (no trust) and 1 (full trust) to quantify each direct trust.

1.1 The Motivation

Trust aggregation is still an open problem, although several
attempts have been made (Golbeck [2], Sun et al. [3], Wang
and Wu [4], Jiang et al. [5], Mahoney et al. [6], Taherian et
al. [7]). Two open challenges are “how to aggregate the trust
of overlapped paths” and “how to calibrate trust decay over
iterative recommendations.” Some used high-level aggrega-
tion rules (Sun et al. [3]), including the sequential rule,
where concatenation propagation of trust does not increase
trust (i.e., the trust of ðs; u; dÞ is no more than that of eðs; uÞ
or eðu; dÞ), and the parallel rule, where multi-path propaga-
tion of trust does not reduce trust. However, these rules are
too general to provide specific calculation guidance for trust
aggregation. Moreover, most of the existing work cannot
solve the two challenges simultaneously. OSNs bear the
small-world characteristic of high clustering (Watts [8]).
Because of this, the path dependence phenomenon is much
more common in OSNs. Our motivation is to develop an
efficient scheme that can address the above two challenges
simultaneously, and provide guidelines for automatic trust
prediction in OSNs.

Trust propagation is similar to a flow passing process.
The amount of flow corresponds to the amount of trust.
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Initially, the source is given a certain amount of trust to
be allocated. Then a flow passes from the source to the
sink corresponds to the trust that is being propagated in a
trusted path. Total trust is an aggregation through differ-
ent paths (flows) from the source to sink. As network
flows can be split and merged, we address the path
dependency challenge. In addition, a flow may leak dur-
ing its passing, which can be used to address the trust
decay challenge.

Besides solving the two challenges, we also strive to
design a unique trust evaluation system that is incentive
compatible, friendly to newcomers, and tolerant to the mali-
cious behavior of making Sybils.

1.2 Main Ideas

We propose a novel computational approach for calculat-
ing trust, based on a modified network flow model with
leakage. As shown in Fig. 1b, given an initial flow of 1
(i.e., f0 ¼ 1 representing full trust) at s, what is the final
flow (i.e., fsd representing total aggregated trust) that d
can get? This flow model addresses path dependence by
allowing flow split and merge at each node. Moreover, it
is commonly agreed upon that people place more weight
on direct contacts than on indirect contacts. Therefore,
any viable trust model must address trust decay over iter-
ative recommendations. We introduce a notion of leakage
associated with each recommendation node, which is
analogous to a leakage in a water pipe. At each node
other than s and d, a certain percentage of incoming flow
will be leaked before redirecting to outgoing links (e.g.,
leakðuÞ and leakðvÞ in Fig. 1b). We will describe the
calculation details later.

1.3 Our Contributions

We propose the GFTrust scheme, where we introduce a
modified generalized network flow (simply generalized
flow) model (Wayne [9]) to cope with the trust evaluation
task with path dependence and trust decay (Fig. 1b). Once
the trust from u to v passes a given threshold, v is taken as
trusted by u, but with a given limit on capacity. The full
capacity is 1, corresponding to a full trust. Our model is
analogous to a credit card system, where s takes the role of
a bank; each neighbor is a credit card owner who is allowed
to use a card, but with a given credit limit. Other nodes can
also be taken as a bank or credit card owner in the same
way. Each indirect reference corresponds to a percentage of
credit loss. The goal is to decide whether or not s can accept
the application of d, by calculating the proper credit that d
receives. Our contributions are threefold:

1) Our work is the first to address the two challenges of
path dependence and trust decay simultaneously, in
the domain of trust evaluation in OSNs. Also, we use
a modified generalized flow model with leakage,
which is a novel approach in trust evaluation.

2) As a flow-based model, GFTrust has the advantage
of generality, while saving the normalization process
(since the resulting trust will never be larger than 1).
Moreover, it bears the properties of incentive com-
patibility and Sybil tolerance, and it coincides with
the basic axioms that a trust model should meet (as
shown in Appendix A, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TC.2015.2435785).

3) We conduct extensive experiments on a real social
network data set of Epinions (Jiang et al. [5]). Some
more experiments on the data set of another social
network Advogato (Levien [10]) is shown in Appen-
dix B, available in the online supplemental material.
The experimental results validate the effectiveness of
GFTrust, and also verify its preferable properties.
Moreover, the use of flow increases the accuracy of
trust prediction, while the leakage decreases the
deviation between the values of calculated trust and
the direct trust.

The remainder of this paper is organized as follows:
Section 2 analyzes the background of the two challenges,
and surveys related work in the literature. Section 3 states
the problem we address, and provides the preliminary con-
cepts we will use in network flow theory. Sections 4 and 5
present the solution overview and the algorithm details.
Section 6 analyzes the features and properties. Section 7
describes the experimental evaluation. Finally, Section 8
concludes this paper and suggests future work.

2 BACKGROUND AND RELATED WORK

In this section, we first analyze the necessity of addressing
the two challenges of path dependence and trust decay.
Then, we briefly review the literature.

2.1 Path Dependence

Some models can deal with path dependence (e.g., Golbeck
[2], Jøsang et al. [11]), but they may cause information loss
or reuse. Taking the trusted graph in Fig. 1a for example,
previous models go to two extremes: (1) some ignore the
overlapped edge eðv; uÞ, by using only the shortest paths
ðs; u; dÞ and ðs; v; dÞ (Lin et al. [12]) or ignore more informa-
tion by only considering the shortest, strongest paths (Gol-
beck [2]), which will lead to the loss of information; (2)
others take ðs; v; u; dÞ as an independent path (Jøsang et al.
[11]) by using all three paths, which will reuse the informa-
tion of eðs; vÞ and eðu; dÞ.

2.2 Trust Decay

Let us consider a scenario where s fully trusts v1, and vi
fully trusts viþ1, i 2 ½2; n� 1�, and finally vn fully trusts d.
Then, how about the level in which s trusts d? Two com-
monly used methods will calculate trust as follows: (1)
Multiplication. tðs; dÞ ¼ tðs; v1Þ �

Q
tðvi; viþ1Þ � tðvn; dÞ ¼ 1. (2)

Taking the minimum. tðs; dÞ ¼ minftðs; v1Þ; tðvi; viþ1Þ; . . . ;

Fig. 1. (a) An example of a trusted graph; (b) Evaluating trust using
GFTrust, in which the dashed arrow line represents trust flow.
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tðvn; dÞg ¼ 1. The result will be that s will fully trust many
indirectly connected users who are far away from him/her,
which is inconsistent with real life. This indicates the strong
necessity of considering trust decay through propagation.
Some models have mentioned trust decay (e.g., Golbeck [2],
Sun et al. [3], Jøsang et al. [11]). However, they are on a
coarse-grained level, i.e., they can only guarantee that trust
does not increase during propagation.

2.3 Related Work

The problem of path dependence arises when combining
information from multiple sources that include unknown
amounts of correlation, which have been studied in the trust
domain (Jøsang et al. [11]), and other domains including
information fusion, decision fusion, and control theory.
These areas use mutual information (Paninski [13]), entropy
calculation or Bayesian analysis (Bailey et al. [14], Chen and
Varshney [15]), and state space analysis (Friedland [16])
as tools. The phenomenon of decay usually emerges with
distance, which also has been mentioned (but not well
addressed) (Golbeck [2], Jøsang et al. [11], Ziegler and Lau-
sen [17]). For instance, trust decay is inherent to Appleseed
(Ziegler and Lausen [17]), by setting a spreading factor. Rec-
ognizing the similarity between trust propagation and
flows, we use a natural way to model and tackle the two
challenges using network flows in the domain of OSNs.

Network flow theory has been used in many fields
(Ahuja et al. [18]), and has recently been introduced into a
trust evaluation system. Given capacity limits on the edges,
the goal of the maximum flow problem is to send as much
flow as possible from the source to the sink (see Ahuja et al.
[18] for details). Applying this idea, Levien [10] proposes
the Advogato maximum flow trust metric to distinguish
vicious nodes from good nodes. Given the network struc-
ture, Advogato takes some predefined trusted nodes as
seeds, assigns them capacities, and outputs a set of trusted
nodes that can gain flow from seeds; other nodes are taken
as vicious, and will be excluded. Wang and Wu [4] measure
trust using the network flow theory. Three FlowTrust algo-
rithms are proposed to normalize trust metrics. However,
none of existing works have explicitly addressed the two
challenges of path dependence and trust decay simulta-
neously. Moreover, existing flow-based trust models have
to normalize the maximum flow into a trust value in order
to make it in a predefined range.

The generalized flow problem is a natural generalization
of the traditional network flow. GFTrust uses a carefully
designed generalized flow, which makes it able to solve the
two challenges, save the normalization process, and bear
some additional good properties. We will briefly describe
the idea of generalized flow in the next section.

3 PROBLEM DEFINITION AND PRELIMINARY

CONCEPTS

In this section, we formulate the problem we address, and
provide some preliminary concepts. The notations used in
this paper are described in Table 1. Note that, eðu; vÞ, gðu; vÞ
(and other similar representations), are denoted as e; gðeÞ,
when it is unnecessary to distinguish an edge from others.

3.1 Problem Definition

Given a trusted graph G ¼ ðV;EÞ, V is the set of nodes and
E is the set of edges. For two indirectly connected nodes, s
and d in V , s is the source and d is the destination. For the
confidence of user interactions in online social networks, we
seek to determine how to design an efficient scheme to eval-
uate the trust level of d for s; specifically, how are we to
address the two challenges of path dependence and trust
decay simultaneously?

In OSNs, trust evidence can be collected from three main
sources (Sherchan et al. [19]): attitudes, behaviors, and expe-
rience. Trust has been represented in very different ways,
such as continuous or discrete numerical values (e.g., Taher-
ian et al. [7], Richardson et al. [20], Jøsang et al. [11], Abdul-
Rahman andHailes [21]), or probability/entropy (e.g., Sun et
al. [3]). In this work, we assume that the direct trust values
between any two connected users are already known, which
are represented by continuous numerical values in [0,1], with
1 representing full trust (upper bound) and 0 representing no
trust (lower bound). Our goal is to infer indirect trust values
for any two unconnected users, based on the known ones.

3.2 Preliminary Concepts

The generalized network flow problem (Wayne [9]) is an
extension of standard network flow, in which flow leaks as
it is sent through the network. It is represented by a gain
function in each edge, g : E ! R, where R is the set of real
numbers. For each unit of flow that enters an edge eðu; vÞ at
node u, gðu; vÞ units will arrive at node v. A generalized
flow should satisfy the capacity constraints: 0 � fðu; vÞ �
cðu; vÞ, and the generalized antisymmetry constraints:
8eðu; vÞ 2 E : fðu; vÞ ¼ �gðv; uÞ � fðv; uÞ, where gðv; uÞ ¼ �1=
gðu; vÞ, and the minus sign means that the flow is going in
the opposite direction. Most of the existing network flow
algorithms (Wayne [9]) are based on the Ford-Fulkerson
method (Ford and Fulkerson [22]), the two key concepts of
which are residual network and augmenting path.

Definition 1 (Residual network). Let f be a flow in a network
N ¼ ðV;EÞ, where cðu; vÞ and gðu; vÞ are the capacity and
gain factor of edge eðu; vÞ 2 E, respectively. With respect to
the flow f , the residual network is Nf ¼ ðV;EfÞ, in which the
residual capacity is defined by cfðu; vÞ ¼ cðu; vÞ � fðu; vÞ.

Definition 2 (Augmenting path). An augmenting path is a path
in the residual network, where the capacity on each edge is larger
than 0. A new flow can pass through an augmenting path.

TABLE 1
Notations

SYMBOL DESCRIPTION

G ¼ ðV;EÞ a trusted graph
s=d the source/destination
u=v=u0=v0 a node in the trusted graph
eðu; vÞ an edge from node u to node v
tðu; vÞ trust value from node u to node v
gðu; vÞ the gain factor of edge eðu; vÞ
cðu; vÞ the capacity of edge eðu; vÞ
fðu; vÞ the flow of edge eðu; vÞ
frðv; uÞ the flow of eðv; uÞ in the residual network
cfðu; vÞ the residual capacity of edge eðu; vÞ
gfðv; uÞ the gain factor of eðv; uÞ in the residual network

954 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 3, MARCH 2016



Fig. 2 shows an example of a generalized flow network.
When a flow of f ¼ 80 enters into s, only 80 � gðs; uÞ ¼ 80�
3=4 ¼ 60 can go out of u, and 60 � gðu; dÞ ¼ 60 � 1=2 ¼ 30 can
go out of d. Suppose that cðs; uÞ ¼ cðu; dÞ ¼ 100. After
sending the above flow f , the residual capacity will be
cfðs; uÞ ¼ 100� 80 ¼ 20, cfðu; dÞ ¼ 100� 60 ¼ 40, both of
which are larger than 0, then ðs; u; dÞ is an augmenting path.

4 SOLUTION OVERVIEW

We give the overview of GFTrust. First of all, since people
join in OSNs because they hope to collaborate and interact
with others, we assume that everyone starts cooperatively
and trusting in others in the absence of feedback (we call it
the “initial trust assumption”). And as time passes by, that
trust will be shaped according to the real experience. Biolo-
gists verified that cooperation with trust is our instinct as
human beings through natural selection (Nowak [23], Man-
apat et al. [24], Rand et al. [25]); this can serve as convincing
evidence of our assumption. Based on this, we deem the
trust evaluation process for two indirectly connected users,
s and d, as follows: at first, s fully trusts d. Then, according
to the friends’ suggestions or comments, the initial trust
shrinks little by little. We then model the process using net-
work flow, with three tasks as follows:

Task 1: Determine the initial flow. According to the initial
trust assumption, we let the initial flow from s be f0 ¼ 1.
We find that 1 is the most proper and natural value of initial
flow. Let us try other settings. If f0 ¼ 0, then there is no flow
to send; in this case, no matter how good of a recommenda-
tion the intermediate nodes make, s will not trust d at all. In
another case of f0 ¼ 1, there is infinite flow to send; as long
as there are enough paths from s to d, s will highly trust d,
since a large flow (even > 1) will reach d. Therefore, both
settings are not suitable for our scenario. A more flexible
alternative is to let 0 < f0 < 1. However, there is no need
to adjust it, since the node leakage will take the same role.
That is, we can set a larger node leakage if f0 is larger, and
vice versa. So, we fix f0 ¼ 1, and adjust the node leakage.

Task 2: Explore the node leakage. We set the leakage to be
associated with nodes, since trust decay is caused by nodes
instead of edges. Just mentioning one example, the direct
trust from s to u, tðs; uÞ, will not decay through trust propa-
gation from s to d via u. For modeling node leakage, the
most challenging issue is “How much flow should leak in
each node?” In real life, it may be very complex since many
factors may impact the answer, such as the distance from
source, the tie strength between users, and the personality
of users (some people may opt to trust others, while some
others may opt to distrust). Currently, we mainly consider
the factor of distance (from the source). The GFTrust scheme
offers a framework for considering and integrating other
factors in a reasonable way for the future.

Moreover, we take the approach of the proportional
leakage, in which trust (flow) will shrink a certain pro-
portion during its propagation in each intermediate

node. Another possible method is the fixed value leakage,
where trust (flow) will lose a certain fixed amount. Intui-
tively, both of the two approaches make sense. Here, we
would like to put the latter into the future work, and only
consider the former.

Task 3: Assign the edge capacity. According to our appli-
cation scenario, we use the trust value tðeÞ on edge e to
represent its capacity, which limits the maximum flow
(trust) that can pass through the edge. In this way, the
trust value on each edge cannot be overused. Thus it can
avoid reusing some information, especially when there
exist dependent paths.

Based on the above analysis, we design three key steps
for GFTrust: (1) Modeling trust decay with node leakage; (2)
Constructing generalized flow network; and (3) Calculating
a near-optimal generalized flow.

There are two reasons for setting the goal of deriving a
near-optimal generalized flow: (1) It is still an open problem
of calculating the generalized maximum flow in polynomial
time complexity. According to (Wayne [9]), the time com-
plexity in the worst-case is Oðnmðmþ n lg nÞlg BÞ, where n
is the number of nodes, m is the number of edges, and B is
the biggest integer for scaling decimal numbers to integers.
Kevin (Wayne [9]) presented a family of �-approximation
algorithms for every � > 0, which can improve the above
complexity by a factor of m. Perillo and Heinzelman [26]
uses generalized maximum flow to maximize the lifetime of
energy-constrained wireless sensors, in which the optimal
flow is calculated with linear programming. Its complexity

is Oðp3LÞ, where p is the number of variables, and L is the
variable resolution. (2) A near-optimal maximum flow is
acceptable in our scenario, because the task of trust predic-
tion is to estimate a trust level which is close to the direct
trust (i.e., the ground truth or the expressed trust), instead
of maximizing a trust value.

5 GFTRUST: THE ALGORITHM DETAILS

In this section, we introduce the details of GFTrust. Since
many works of trust evidence collection have been done
(e.g., Golbeck [2], Massa and Avesani [27]), we do not focus
on how to collect the information. Without loss of general-
ity, we assume that the trusted graph is already known, i.e.,
the trust relationships and values of directly-connected
neighbors are already available.

5.1 Modeling Trust Decay with Node Leakage

As mentioned before, trust may decay during its propaga-
tion in a trusted path. We design a series of leakage func-
tions to simulate their patterns (Fig. 3).

A simple scheme is the uniform leakage (Fig. 3a), where
trust decays with the same percentage in each intermediate
node v 2 V n fs; dg. Intuitively, the leakage cannot be too
large, and we try some values in the experiments, as shown
in Eq. (1).

However, trust may decay differently along the propa-
gation; it may first decay quickly (a larger decay), then
slowly (a smaller decay), or vice versa. Therefore, we also
consider the non-uniform leakage, i.e., the percentage of
leakage varies among different intermediate nodes,
according to their distance from the source. Three types

Fig. 2. An example of the generalized flow network.
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of mathematical functions have been examined, as shown
in Eqs. (2), (3), and (4):

�1ðxÞ ¼ leak; leak 2 ½0; 0:5Þ; (1)

�2ðxÞ ¼ 1� cos ðkxÞ; k 2 f0:01; 0:05; 0:09; 0:13g; (2)

�3ðxÞ ¼ lð�xÞ; l 2 fe; 5; 10; 15g; (3)

�4ðxÞ ¼ ðxþ 1Þm;m 2 f�2;�3;�4;�5g; (4)

where x is the distance from the current intermediate node
to the source. Other parameters k; l;m are set tentatively.
The listed values can lead to a reasonable leakage range of
½0; 0:4Þ (Fig. 3).

Since it is not clear how trust will decay during its
propagation, we design the above four leakage functions
to imitate four possible decay patterns. Some of the func-
tions leak more at the closer nodes, while others leak
more at distant nodes. Actually, these functions all favor
the shorter paths over the longer ones. We will test their
effects in the experiments.

5.2 Constructing Generalized Flow Network

To conduct trust evaluation using a generalized flow algo-
rithm, we should first construct the generalized flow net-
work, for which the capacity and gain factor of each edge
should be set. We design Algorithm 1 for the process. As
mentioned before, the capacity is set using the trust value.
Then, the main task is to cope with the gain factor, for which
we have two principles:

1) For the outgoing edges from s and the incoming
edges to d, since all the flows going on these edges
will be fully passed on, we let their gain factors be 1.

2) For the intermediate nodes where flows will leak, the
gain factors should be less than 1. Moreover, in the
generalized flow algorithms, the gain factor is associ-
ated with edge. Thus, we take two steps to transform
the leakage of a node into the gain factor of an edge
(an example is shown in Fig. 4):

Step 1: splitting each intermediate node (lines 1-2). To be
specific, we split a node v into two nodes of vþ (þ indicates
flow coming into it) and v� (� indicates flow going out
from it). Then, we add a new edge eðvþ; v�Þ into the graph,
which is called intermediate edge, corresponding to the

intermediate node. The incoming neighbors of v are linked
to vþ, and outgoing neighbors to v�.

Algorithm 1. Transform(G; s; d)

Input: G, a trusted graph; s, source; d, destination.
Output: G0, a generalized flow network.
1: for each intermediate node v in G do
2: Split v into vþ and v�; Add an edge eðvþ; v�Þ;

Noutðv�Þ  NoutðvÞ;Ninðv�Þ  NinðvÞ.
3: for each edge e in G do
4: if e is an intermediate edge then
5: cðeÞ  1; gðeÞ  1� leakðvÞ.
6: else
7: cðeÞ  tðeÞ; gðeÞ  1.

Step 2: assigning the gain factor for the edge according to
the node leakage. First, we model the trust value of an edge
as its capacity (lines 3-7). Note that we let tðvþ; v�Þ ¼ 1. The
intuition is that a user will always trust his own opinion.
Accordingly, cðvþ; v�Þ ¼ 1. The gain factor of an intermedi-
ate edge eðvþ; v�Þ is gðeÞ ¼ 1� leakðvÞ (lines 4-5), while that
of other edges is 1 (lines 6-7). The percentage of leakðvÞ can
be set according to Eqs. (1), (2), (3), (4).

5.3 Calculating Near-Optimal Generalized Flow

The goal of GFTrust is to solve the two challenges of path
dependence and trust decay, and predict a trust level that is
close to the truth. Therefore, we design a near-optimal maxi-
mum flow algorithm. Before introducing the whole process,
we describe the following two observations:

Observation 1. In the original trusted graph, a shorter
trusted path makes a higher gain, i.e., a flow passing on a
shorter path remains a larger amount than that passing on a
longer path.

Consider two paths: q1 ¼ fs; v1; . . . ; vm; dg and q2 ¼ fs;
u1; . . . ; um; . . . ; un; dg, n > m. Suppose a flow f meets the
capacity constraints. Then, when f passes on q1, the resulting
flowwill be f1 ¼ f �Q i2½1;m�ð1� leakðviÞÞ. Similarly, the same

f passing on q2 will result in f2 ¼ f �Q i2½1;n� ð1� leakðviÞÞ.
We can compare f1 and f2 through the result of � ¼ f2

f1
. Since

leakðviÞ 2 ½0; 1Þ, then � ¼Q
i2½mþ1;n�ð1� leakðviÞÞ � 1. There-

fore, we have f2 � f1. So, we complete the proof.
Taking Fig. 5 for instance, suppose the leakage is 0.1 in

each intermediate node; then a flow f ¼ 0:6 will become

0:6 � 0:9 ¼ 0:54 through the upper path q1 ¼ ðs; vþ1 ; v�1 ; dÞ,
and 0:6 � 0:9 � 0:9 ¼ 0:486 through the lower path q2 ¼ ðs;
vþ2 ; v

�
2 ; v

þ
3 ; v

�
3 ; dÞ. As an extension, if f > 0:6, then sending

0:6 through q1 and the remainder through q2 will get a larger
flow than that in the opposite order.

Observation 2. In the original trusted graph, the trusted
paths with the same length have the same efficiency of
sending flow.

Fig. 4. Transforming node leakage to edge gain factor.

Fig. 3. Four types of leakage functions.
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Consider a special case of Observation 1:m ¼ n. Then we
can get f1 ¼ f2. That is, as long as a flow meets the capacity
constraints, sending it through any path with the same
length will lead to the same result.

Based on the above two observations, we propose a
greedy algorithm to select the shortest trusted path and aug-
menting flow via the path (Algorithm 2). Fig. 6 shows an
example of the calculation process.

Algorithm 2. GFNearOptimal(G0; s; d)

Input: G0, a generalized flow network.
Output: f�, a near-optimal flow.
1: Initialize fðsÞ  1; fD  0.
2: while fðsÞ > 0 do
3: Search the shortest augmenting path p.
4: return f� if p ¼ ? .
5: for each edge e in p do
6: f  minffðsÞ; f � gðeÞ; cðeÞg.
7: f�  f� þ f .
8: for each edge e from d to s do
9: fr  f � 1=gðeÞ; cðeÞ  cðeÞ � fr.
10: fðsÞ  fðsÞ � fr.

5.3.1 Searching the Shortest Path in a Trusted Graph

Based on the above analysis, we adapt the idea of the
Edmonds-Karp algorithm (Edmonds and Karp [28]),
using the breadth-first search to find the shortest trusted
path, which will be used as an augmenting path. Taking
Fig. 6 for instance, let p1 ¼ ðs; uþ; u�; dÞ, p2 ¼ ðs; vþ; v�; dÞ,
p3 ¼ ðs; vþ; v�; uþ; u�; dÞ. The process of selecting a path
is: (1) do the breadth-first search and find the first unused
shortest trusted path, suppose it is p2; (2) send flow from
s to d through p2. After that, record p2 in a used path list.
Note that the same path will not be used again. But, some
edges of it may be used more than once when they are
included in some other paths. However, as we have men-
tioned before, the capacity on each edge is exactly the

trust value, and at most all the capacity is used up. There-
fore, it overcomes the drawback of information reuse in
some existing models, which may lead to inaccurate trust
evaluation results.

5.3.2 Augmenting Flow

We iteratively take the shortest trusted path, and execute
the following two operations (Algorithm 2), until one of the
two end conditions is met: (1) there is no flow remaining to
be sent (i.e., fðsÞ ¼ 0, line 2), or (2) there are no augmenting
paths (i.e., p ¼ f, line 4) for any flow to pass.

Operation 1: Augmenting a flow f through the selected
path. Let fðsÞ be the amount of flow s can send out, and
e 2 E be an edge in the path; f should satisfy: f � cðeÞ, and
f � fðsÞ. More importantly, f leaks in each intermediate
edge, denoted as f ¼ f � gðeÞ. Iteratively do this until f
reaches d.

Operation 2: Calculating the residual capacity of each
edge from d to s, as well as the residual flow that s can send
out. We do this by iteratively subtracting flow fr (corre-
sponding flow of f in the residual network) from capacity,
from d to s. The flow in the residual network is
fr ¼ �f=gðeÞ. The residual capacity is cfðeÞ ¼ cðeÞ � fr, and
the residual flow of s is fðsÞ ¼ fðsÞ � fr.

Since f0 ¼ 1 and flow leaks when it passes through
trusted paths, the result of Algorithm 2 is in the range of
½0; 1�, which is the same with the trust value. Therefore, the
resulting flow can be taken as a trust value directly, without
normalization.

6 ANALYSIS OF GFTRUST

We give an extensive analysis of GFTrust: its efficiency and
near-optimal effect, its unique advantages, its incentive
compatibility, and its malicious behavior resistance proper-
ties. We also analyze its conformity with basic axioms in
Appendix A, available in the online supplemental material.

6.1 Efficiency and Near-Optimal Effect

6.1.1 Efficiency

From the example in Fig. 6, we can see that only two paths
are used to send out flows, i.e., the iterative number of aug-
menting flows is k ¼ 2. We observe that in most cases, the

Fig. 5. An example for Observation 1.

Fig. 6. The process of calculating a feasible flow for the example trusted graph in Fig. 1a. Steps: (1) Find the shortest trusted path ðs; vþ; v�; dÞ to
send flow. It results in f1 ¼ 0:54, and the residual flow of s is 1� 0:6 ¼ 0:4. (2) Send the residual flow along the second shortest trusted path
ðs; uþ; u�; dÞ, which results in f2 ¼ 0:36. With fðsÞ ¼ 0, there is no flow left to be sent. (3) The near-optimal generalized flow is f� ¼ f1 þ f2 ¼ 0:9.
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iterative number in GFTrust is quite small and can be taken
as a constant.

Observation 3. In most cases, the iterative number of aug-
menting flows in GFTrust is a small constant.

The trick lies in the limited initial flow and the selec-
tion of augmenting path. The total flow to be sent is
small, i.e., f0 ¼ 1. Each time we augment flow, we select a
trusted path, whose minimum capacity should be larger
than a predefined threshold. Given the range of trust
value ½0; 1�, the threshold is usually at least as large as
half trust, i.e., 0.5. Even when we set the threshold to be
0.1, then the capacities of edges in trusted paths are not
smaller than 0.1, which indicates that at least a flow of
f ¼ 0:1 can be sent out through a path. Therefore, all the
initial flow can be sent out through, at most, 1/0.1 = 10
paths. In summary, the iterative number of augmenting
flow is small, because the flow supply is small and the
“pipe” is wide.

However, in some special cases, when there are not
enough wide “pipes,” the problem is as complex as the stan-
dard maximum flow problem, for which, the iterative num-
ber of augmenting flows is OðjV jjEjÞ (Cormen et al. [29]).
Note that, although a small number of trusted paths may be
used, all the trusted paths have been considered in GFTrust,
i.e., all paths have the chance to be used. Therefore, it will
not cause the loss of information. Based on the above analy-
sis, we can give the complexity of GFTrust.

Theorem 1. The total time complexity of Algorithms 1 and 2 in
GFTrust is OðjV jjEj2Þ.

Proof. For Algorithm 1, each node and edge are considered
exactly once. Therefore, it takes the time complexity of
OðjV j þ jEjÞ. Usually, a network has more edges than
nodes, i.e., jV j < jEj. Then the complexity can be taken
as OðjEjÞ.

For Algorithm 2, the basic operations of augmenting
flow and calculating residual capacity (lines 6-11) are in
the complexity of OðjEjÞ. Also, the selection of shortest
path is the same with breadth-first search, for which the
time complexity is OðjEjÞ in the worst case.

According to the analysis of Observation 3, in the
worst case, the iterative number is the same with the
Edmonds-Karp algorithm, that is OðjV jjEjÞ. Therefore,
the total complexity will be O(jV jjEj2). tu
Again, according to Observation 3, in most cases, the iter-

ative number is a small constant, for which the total com-
plexity of GFTrust will be O(jEj).

In addition, GFTrust is a local trust metric which is
based on a small trusted graph from source s to sink d,
instead of the whole large OSNs. Local trust metrics
scale well to any social network size, as only tiny subsets
of relatively constant size are visited (Ziegler and Lausen
[17]); we can set the trust threshold and the maximum
length of trusted paths, to restrict the size of trusted
graphs. In fact, many existing trust evaluation algorithms
including Golbeck [2] and Massa and Avesani [27], use
the breadth-first search algorithm. From this point of
view, our algorithm keeps the same time complexity as
others, while solving the two challenges of path depen-
dence and trust decay simultaneously.

6.1.2 Near-Optimal Effect

We check whether GFTrust can gain near-optimal flow, by
comparing it with optimal method (implemented by linear
programming), in the data set of Kaitiaki (www.kaitiaki.
org.nz). Kaitiaki is a small trust network. The data set con-
tains 64 nodes and 178 links. We also assign four levels (i.e.,
0.4, 0.6, 0.8, 1.0) of trust for this data set. For each edge in
Kaitiaki, we calculate the flow that can pass from its starting
node to ending node, through the paths between them (the
original edge is masked). Fig. 7 shows that the results of
GFTrust are very close to the optimal maximum flow. From
this point, the calculated trust of GFTrust is the upper
bound estimation, i.e., s can trust d at most in this level.

6.2 Basic Desirable Properties

The unique advantages of the GFTrust scheme are that it
can deal with both path dependence and trust decay. In
addition, GFTrust saves the normalization process that
other flow-based methods have to do, and it is more general
than non-flow-based models.

6.2.1 Ability to Solve Path Dependence

GFTrust can solve the challenge of path dependence with-
out information reuse or loss, which is difficult to avoid in
other models. The reasons are as follows: (1) Avoiding
information reuse. In GFTrust, the capacity of an edge will
be decreased by exactly the amount of flows passing
through it. Therefore, the trust value on an edge will not be
overused. (2) Avoiding information loss. As mentioned
before, in GFTrust, every edge has the chance to be used for
sending flows. Therefore, the trust value on every edge is
considered.

6.2.2 Ability to Solve Trust Decay

GFTrust can deal with trust decay at a fine-grained level.
The leakage of each intermediate node can be set flexibly.

6.2.3 No Need to Normalize

Since the resulting flow falls in the range of [0,1], it can be
taken as a trust value directly. In this sense, GFTrust calcu-
lates trust in a summation-like way, which may lead to
false positive effects. That is, the resulting trust value may
be larger than the direct trust (the ground truth or the
expressed trust). However, it makes sense that in real life: if
many (more than one) trusted friends recommend someone
to us, we will usually take the advice. Moreover, we can
eliminate or weaken the false positive effects by increasing
the leakage.

Fig. 7. Comparison of GFTrust and optimal method.
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6.2.4 Generality

GFTrust is more general than existing trusted graph-based
models. For example, other flow-based models can be
deemed as a special case of leak ¼ 0. Also, MaxT aggregation
(which selects the most reliable opinion) in the reliability
model can be seen as letting some paths pass zero (0) flows.
Furthermore, the flow-based trust model has been verified to
be able to deal with multi-dimensional information (Wang
andWu [4]). Thus, GFTrust also bears the advantage.

6.3 Special Desirable Properties: Misbehavior
Resistance

In OSNs, users may conduct several kinds of misbehavior,
such as providing bad service (Josang et al. [30]), Sybil
attack (Douceur [31]), bad mouthing (Sun et al. [32]), on-off
attack (Sun et al. [32]), conflicting behavior attack (Sun et al.
[32]), social spamming (Stringhini et al. [33]). Among them,
GFTrust can handle the first two cases, because the unique
design has two desirable properties, incentive compatibility
(Douceur and Moscibroda [34]) and Sybil tolerance (Viswa-
nath et al. [35]). We consider two types of misbehavior in
the interactions between a service provider (d) and a cus-
tomer (s, u, etc.) in an OSN: (1) d wants to gain more profits
but he provides bad services; (2) d tries to false praise him-
self by making Sybils.

Let d be a service provider, u be a current customer, and s
be a potential customer. Let P ðtðs; dÞÞ be the probability that
s will choose d’s service, when the trust value from s to d is
tðs; dÞ. Let tðs; v1; . . . ; vn; dÞ be the trust that is received
through path ðs; v1; . . . ; vn; dÞ, and Dtðs; dÞ represents the
increment of tðs; dÞ. Let r be the meta-return (e.g. volunta-
rism, achievement incentive, economic return) of d after he
has serviced a customer, and R ¼ P ðtðs; dÞÞ � r be the
expected return of d, from potential customer s.

We assume P ðtÞ / t, i.e., it is proportional to the trust
value. We also assume P ðtÞ > > P ð0Þ, when t > 0. In real-
ity, P may even exponentially increase with t. P ð0Þ is the
probability that a customer s will randomly select a service
provider d, without knowing its reputation. We suppose
each normal user will provide honest feedback. If d pro-
vides good service for u, tðu; dÞ > 0; otherwise, tðu; dÞ ¼ 0.
In addition, service providers are rational and selfish. They
want to get more returns. They will not provide bad service
if there are no benefits.

Property 1 (Social incentive compatibility). GFTrust is social
incentive compatible in that it can provide nodes with increas-
ing expected value in response to increased contribution.

Proof. Consider the scenario that d serves u, and s is a friend
of u, who thus is a potential customer of d. We examine
the expected return R of d. Since R ¼ P ðtðs; dÞÞ � r, we
focus on how the trust value of tðs; dÞ will change. The
following two cases may happen: (1) d provides good
service to u; (2) d does not provide good service to u.

In case (1), u will give a good reputation tðu; dÞ on the
direct edge to d. If s did not have trust in d before, we
represent it as tðs; dÞ ¼ 0. Then, the increment of trust
will be Dtðs; dÞ ¼ tðs; u; dÞ. Or, if s had known d before,
with trust tðs; dÞ > 0. Now, s can revise his trust in d
through the new short path ðs; u; dÞ. In both conditions,

we have Dtðs; dÞ � 0. In case (2), u will not give a good
reputation to d. Therefore, Dtðs; dÞ � 0. Since P ðtÞ is pro-
portional to t, the expected return for d is better in case
(1). Therefore, the service provider d has the incentive to
provide good service. tu

Property 2 (Sybil tolerance). GFTrust is Sybil tolerant in that
a service provider cannot increase its benefits by creating mul-
tiple identities to false praise himself.

Proof. A service provider d may create new identities and
put them into the network to false praise himself, if this
will help to increase his expected return R. However, the
design of GFTrust makes the Sybil attack unprofitable.

Assume d creates a new identity d0, and provides service
to uwith identity d0. Therefore, the new trusted pathwill be
ðs; u; d0; dÞ (Fig. 9). When compared with the case without
Sybil attack, the newly added trusted path will be ðs; u; dÞ
(Fig. 8a). Due to the setting of node leakage, we
have tðs; u; dÞ � tðs; u; d0; dÞ, then, P ðtðs; u; dÞÞ > P ðtðs;
u; d0; dÞÞ, whichwill lead to a larger expected return. There-
fore, d has no incentive to conduct a Sybil attack. tu
It is worth noting that, there is another possible scenario

of Sybil attack, where identity d0 was inserted at the same
distance from u. We take it as a different Sybil attack that is
beyond our discussion. We can even take d0 in this scenario
as branch service providers, whose behaviors could be
deemed as normal behaviors.

7 EXPERIMENTAL EVALUATION

We evaluate the performance of GFTrust in two real social
network data sets, Epinions and Advogato (the results in
Advogato are displayed in Appendix B, available in the
online supplemental material). The two data sets are cho-
sen, because they are published data sets that have the
ground truth of direct trust values (tru [36]), and they are
among the most often-used data sets for evaluating trust
prediction performance (e.g., Massa and Avesani [27], Jiang
et al. [5], Levien [10], Yao et al. [37]).

The goals of experiments are to (1) compare the effective-
ness of GFTrust with other trust evaluation strategies, (2)
examine the effects of four leakage functions and other fac-
tors, including the maximum path length and the trust
threshold, and (3) check in which scenarios GFTrust can
provide a correct prediction.

7.1 Experimental Design

7.1.1 Evaluation Technique

We use a standard evaluation technique: leave one out
(Kohavi [38]). If there is an edge between two nodes (say s

Fig. 8. Expected return of d as a server, s as a potential customer, u as a
current customer: (a) d provides good service; (b) d provides bad
service.
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and d), that edge is masked. That is to say, the masked value
is the ground truth value available from the data set. Next,
trust from s to d is calculated through algorithms based on
the trusted graph. Then, we compare the calculated value
with the masked value.

7.1.2 Data Set and Preprocess

We use a real trust network data set of Epinions (www.
epinions.com). It is an online community web site where
users can write reviews and rate other users’ reviews. We
use the technique in (Richardson et al. [20]) to transform the
trust values in Epinions to be continuous in [0,1], and we
use the same subset of Epinions as in (Jiang et al. [5]), which
has 3,168 nodes and 51,888 edges.

7.1.3 Evaluation Metrics

We consider the metric of trust prediction accuracy, which
represents the ability to predict whether a user will be
trusted or not, and has been commonly used (e.g., Jiang et
al. [5], Massa and Avesani [27]).

� Mean Error.
P jtc � tdj=D, where tc is the calculated

trust, td is the direct trust (i.e., the ground truth or
the expressed trust), and D is the total number
of edges whose trust can be predicted.

� Precision. At \Bt=Bt, where At is the number of
edges in which s trusts d directly, and Bt is the num-
ber of edges in which s trusts d by the algorithm.

� Recall. At \Bt=At.
� FScore. 2�Recall�Precision/(Recall + Precision).
Here, Mean Error is a quantity used to measure how

close the predictions are to the direct trust values (i.e., the
ground truth or the expressed trust); a smaller Mean Error
indicates a higher prediction accuracy. Precision is the frac-
tion of users who are predicted to be trusted, and are really
trusted ones (i.e., the ground truth). Recall is the fraction of
users who are really trusted, and are subsequently success-
fully predicted. A higher Precision and Recall indicates a
higher prediction accuracy. The FScore metric is used to
measure the accuracy using Recall and Precision jointly.

We also consider the metric of connection coverage, which is
the proportion of edges that have short paths between its pair
of nodes (thus their trust can be predicted) in all the edges.

7.1.4 Methods for Comparison

In the experiments, we mainly consider the reliability model
for comparison, since both the reliability model and
GFTrust consider the two challenges of path dependence
and trust decay.

In the reliability model, the trust value from incoming
neighbors (NinðdÞ) to d is the direct trust (i.e., the ground

truth or the expressed trust), and the trust value from source
s to the nodes inNinðdÞ is taken as the reliability of the direct
trust. Moreover, trust propagation calculates the reliability
of a trusted path. Two commonly used methods are Multi
and Min. Multi takes the product of trust values in all edges.
Min takes the minimum trust value in a path. Trust aggre-
gation among nodes in NinðdÞ calculates the final trust
value. Two commonly used aggregation functions are
MaxT and WAveT. MaxT takes the trust value of the most
reliable incoming neighbor. WAveT takes the weighted
average value of all incoming neighbors. Table 2 shows the
equations of trust propagation and aggregation.

We implement five other trust prediction strategies:
AveR-MaxT, AveR-WAveT, MaxR-MaxT, MaxR-WAveT,
and SWTrust� (Jiang et al. [5]). If there are multiple paths
from s to a node in NinðdÞ, AveR will take the average path
weight as the reliability, while MaxR will take the maxi-
mum one. SWTrust� is an algorithm which makes use of the
idea of TidalTrust (Golbeck [2]), and takes the weighted
average trust value of all shortest and strongest paths. We
set trust threshold Th 2 ½0:5; 0:9�, and max length L 2 ½2; 6�
for experiments.

7.2 Experimental Results in Epinions

7.2.1 The Effects of Different Strategies

Table 3 and Fig. 10 show the comparison of accuracy in Epi-
nions. It indicates that GFTrust has better performance than
other strategies: (1) its FScore is higher, with the improve-
ment being 27.16 percent when L ¼ 6; and (2) its Mean Error
is lower, with the improvement being 23.72 percent when
L ¼ 6.

7.2.2 The Effects of Leakage Functions

We conduct experiments with the four leakage functions
in Fig. 3. Some representative results are presented in
Fig. 11. The upper four figures demonstrate the effects of
uniform leakage, while the other four figures correspond to
non-uniform leakage. We gain some findings:

TABLE 2
The Basic Operations in the Reliability Model

Operation Method Equation Condition

Propagation Multi tpðs; vnÞ ¼
Q

tðvi; vjÞ eðvi; vjÞ 2 p
Min tpðs; vnÞ ¼ minftðvi; vjÞg

Aggregation MaxT tðs; dÞ ¼ tðvj; dÞ; vj
is most reliable

vj 2 NinðdÞ

WAveT tðs; dÞ ¼P
tðs; vjÞ � tðvj; dÞ=P
tðs; vjÞ

Fig. 9. Expected return of d as a server, s as a potential customer, u as a
current customer, and dmade a Sybil.

TABLE 3
Accuracy in Epinions, L ¼ 4, Th ¼ 0:5, leakage ¼ 0

Method Mean Error Recall Precision FScore

AveR-MaxT 0.3174 0.5385 0.4903 0.5132
AveR-WAveT 0.2639 0.5342 0.5165 0.5252
MaxR-MaxT 0.3105 0.5641 0.5019 0.5312
MaxR-WAveT 0.2641 0.5342 0.5144 0.5241
SWTrust* 0.3336 0.5556 0.5019 0.5274
GFTrust 0.2478 0.9872 0.4863 0.6516
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1) The leakage has more positive effects on the Mean
Error than on the FScore. E.g., the Mean Error is
decreased significantly in Fig. 11b, while the FScore
remains relatively stable in Figs. 11a and 11c.

2) The effects are of great difference in different settings
of L and Th. The changes are sharp with respect to
trust threshold Th, andmuch smootherwith respect to
maximum length L. The reason is that the increase of
Th takes more of an effect on the available paths, i.e.,
less pathswill be taken as trustful if we set a higher Th.

3) When the leakage is large enough, the accuracy
(either FScore or Mean Error) begins to be reduced.
E.g., when the leakage is larger than 0.06, the FScore
is decreased in Fig. 11c, and the Mean Error is
increased in Fig. 11d. Therefore, the leakage cannot
be too large. In fact, when we set leak ¼ 0:22 or even
larger, the prediction accuracy is reduced sharply.

4) The effects of non-uniform leakage are even more
various with different settings. As shown in Figs. 11e
and 11g, the FScore of GFTrust with non-uniform
leakage is almost the same with or even lower than
GFTrust(0) (i.e., no leakage); meanwhile, Figs. 11f
and 11h show that the Mean Error with leakage is
lower than that without leakage. In addition, within
all the three leakage functions in Eqs. (2), (3), and (4),
the last one, polynomial leakage, performs the best.

7.2.3 The Effects of Max Length

If the max length is large, then there will be more inter-
mediate nodes from s to d. Fig. 12a shows that the

coverages are increased with increasing L, especially
when L changes from 2 to 3; the increase is not signifi-
cant when L changes from 3 to 6. In Epinions, a larger
max length leads to little increase of accuracy, as shown
in Figs. 10a, 10b, 11a, and 11b. Similar to the coverage,
the gap is larger when L changes from 2 to 3 than from
3 to 6. We analyze the reason, and find that there are
few paths when L is too small. Although there do exist
paths between some pairs of nodes, the number of these
paths is fewer.

7.2.4 The Effects of Trust Threshold

Figs. 10c, 10d, 11c, 11d show the accuracy with respect to the
trust threshold. During the increase of Th (from 0.5 to 0.9),
the FScore decreases sharply, especially when Th � 0:6. We
analyze the reason, and find that, as Th increases, fewer
paths will be trusted (due to the decrease of the coverage, as
shown in Fig. 12b), which means less evidence can be used
to evaluate trust.

Fig. 10. The accuracy in Epinions.

Fig. 11. The accuracy of GFTrust with leakage in Epinions.

Fig. 12. The coverage in Epinions.
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7.2.5 Scenarios of Prediction

Besides testing the above impact factors, we also want to
analyze in which conditions GFTrust can make a correct or
incorrect decision. We delved into the meta-results, and
obtained the following findings. For the pairs of nodes being
considered: (1) In the case that GFTrust gives a higher trust
than the direct trust, there are usually several short trusted
paths between them, the length of which is L � 4. In fact,
only less than three paths are used, which is consistent with
Observation 3. (2) On the contrary, in the case that GFTrust
gives a lower trust than the direct trust, it usually happens
when there are no short, trusted paths. We summarize two
such cases: (a) There are several paths, but all the paths are
long, and thus, too many intermediate nodes cause too
much leakage; (b) there are not enough paths to send all the
initial flow.

These findings verify the incentive property of GFTrust.
Users (service providers) usually want to get high trust,
which can eventually help them get more returns. Then, it is
a wise decision to provide good services for more custom-
ers. Only in this way can new short and trusted paths be
created from their friends (potential customers) to a service
provider.

7.3 Summary of Experiments

The experimental results validate that GFTrust is effective in
improving the trust prediction accuracy, and verify its incen-
tive property. The FScore is higher than that using other
methods, and the Mean Error is lower due to the proper set-
ting of the leakage. Among all the four leakage functions, the
polynomial leakage performs the best in Epinions.

8 CONCLUSION AND FUTURE WORK

With the popularity of services and applications in OSNs,
the trust issues gain more attention both from service
customers and providers. Improving the trust evaluation
accuracy will help enhance both the customer experience
and the service quality. Due to its high clustering, the path
dependence phenomenon is more common in OSNs.
Although some trust models have been proposed, the two
challenges of path dependence during aggregation and trust
decay through propagation have not been well addressed.

Recognizing the similarity between trust propagation
and network flow, we design a generalized flow-based trust
evaluation scheme, GFTrust. We make use of the nature of
flow to deal with trusted path dependence, and model trust
decay with node leakage. We analyze the unique advan-
tages of GFTrust, and conduct extensive experiments with
real social network data sets. The results validate the effec-
tiveness of GFTrust: the use of flow and the setting of leak-
age improve the trust prediction accuracy significantly.

GFTrust is the first to address both challenges of path
dependence and trust decay, in the domain of trust evalua-
tion in OSNs. It is also the first to introduce the modified
generalized flow model into a trust evaluation system. The
unique design makes it able to solve the two challenges,
save the normalization process, and bear two good proper-
ties of social incentive compatibility and Sybil tolerance. In
addition, setting the initial trust value as 1 makes GFTrust
generous to the newcomers. However, even when we are

generous at the beginning, possible Sybil users can only
conduct limited malicious behavior. On the other hand,
because GFTrust is Sybil-tolerant, it can thus be friendly to
newcomers.

Currently, the node leakage functions are designed
intuitively. We let the leakage be associated with the dis-
tance, and be a type of proportion leakage. In future
work, we will improve the design, and also try the
approach of fixed value leakage.
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