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Abstract—The Internet of Things (IoT) is expected to be over-
populated by a very large number of objects, with intensive
interactions, heterogeneous communications, and millions of ser-
vices. Consequently, scalability issues will arise from the search
of the right object that can provide the desired service. A new
paradigm known as Social Internet of Things (SIoT) has been
introduced and proposes the integration of social networking con-
cepts into the Internet of Things. The underneath idea is that every
object can look for the desired service using its friendships, in a
distributed manner, with only local information. In the SIoT it is
very important to set appropriate rules in the objects to select the
right friends as these impact the performance of services devel-
oped on top of this social network. In this work, we addressed
this issue by analyzing possible strategies for the benefit of over-
all network navigability. We first propose five heuristics, which are
based on local network properties and that are expected to have an
impact on the overall network structure. We then perform exten-
sive experiments, which are intended to analyze the performance
in terms of giant components, average degree of connections, local
clustering, and average path length. Unexpectedly, we discovered
that minimizing the local clustering in the network allowed for
achieving the best results in terms of average path length. We have
conducted further analysis to understand the potential causes,
which have been found to be linked to the number of hubs in the
network.

Index Terms—Internet of Things (IoT), navigability, search
engine, Social Internet of Things (SIoT), social networks.

I. INTRODUCTION

T HE Internet of Things (IoT) integrates a large number
of heterogeneous and pervasive objects that continu-

ously generate information about the physical world. Most of
this information is available through standard Web browsers
and several platforms already offer application-programming
interfaces (APIs) for accessing to sensors and actuators.
Accordingly, the IoT technologies make possible to provide
new services to end-users in disparate fields, from the environ-
ment monitoring to the industrial plants running, from the city
management to the house management.

As explained in [1], the search of each specific service
provided by the devices in the IoT represents a crucial chal-
lenge: the number of objects connected to the network is
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increasing exponentially, leading to an enormous searching
space. According to [2], by 2015 RFID devices alone will reach
hundreds of billions. The network traffic, both in terms of the
number of accesses to the devices and of the number of queries
received by the search engines, will soon become too large to
be managed efficiently by the existing platforms. Additionally,
nowadays the interaction model is based on humans looking for
information provided by objects (human–object interaction),
but in the near-future this model will quickly shift to the object–
object interaction, where objects will look for others to provide
composite services for the benefit of the humans, increasing
the interaction complexity. Consequently, scalability issues will
arise from the search of the right object that can provide the
desired service.

In this context, several approaches for real-time search have
been proposed, such as those described in [3] and [4]. A com-
mon feature is that these engines are based on centralized
systems and, as such, cannot scale properly with the number
of devices or/and the number of queries.

To cope with scalability issues of centralized systems, a new
paradigm known as Social Internet of Things (SIoT) has been
introduced [5]. SIoT proposes the integration of social network-
ing concepts into the IoT solutions. In the SIoT, every node
is an object capable of establishing social relationships with
other things in an autonomous way according to rules set by
the owner.

A SIoT network is based on the idea that every object can
look for the desired service by using its relationships, query-
ing its friends and the friends of its friends in a distributed
manner, in order to guarantee an efficient and scalable dis-
covery of objects and services following the same principles
that characterize the social networks for humans. The assump-
tion that a SIoT network will be navigable is based on the
principle of the sociologist Stanley Milgram about the small-
world phenomenon. This paradigm refers to the existence of
short chains of acquaintances among individual in societies [6];
starting from Milgram’s experiment, Kleinberg concluded that
there are structural clues that help people to find a short path
efficiently even without a global knowledge of a network [7].

According to this paradigm, each object has to store and
manage the information related to the friendships, implement
the search functions, and eventually employ additional tools
such as the trustworthiness relationship module to evaluate the
reliability of each friend. Clearly, the number of relationships
affects the memory consumption, the use of computational
power and battery, and the efficacy of the service search opera-
tions. The friendships usefulness varies from friend to friend
and then which object to promote as a friend among the
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potential candidates is the a key aspect for the overall system
performance. It results that the selection of the friendships is
key for a successful deployment of the SIoT.

Even if social-related measures have been used to exploit the
influence of a node, to the best of our knowledge, this is the first
time they are used to select a set of nodes in a SIoT scenario.
This issue has been addressed in [8], of which this paper is an
extension. Specifically, we have analyzed possible strategies to
be implemented by each node when adding new friends taking
into account the impact on the network navigability. The major
contributions of the paper are as follows.

1) We proposed five heuristics, which are based on local
network properties: neighborhood degree and local clus-
tering. These heuristics are used to rank the nodes in
decreasing order and choose the ones that maximize the
chosen heuristic. The performance has then been ana-
lyzed in terms of global network navigability, i.e., routing
is performed by assuming that each object has a view
about the global social network topology. From simu-
lations, it resulted that the approach reaching the best
results is the one when objects select friends (or substi-
tute old friends) so that on average the resulting friends
have a low local neighbor degree.

2) We analyzed how the proposed strategies behave when
the routing is performed by each object only exploiting
local information about their friends, namely their
degree. In this way, each node is not obliged to have the
local network topology, reducing the routing complexity.
Unexpectedly, it has been discovered that minimizing the
local clustering in the network allowed to achieving the
best results in terms of average path length, and identified
the concentration of hubs as the motivation of this
discovery. Accordingly, we proposed a new methodology
to dynamically adjust the number of friends allowed per
object on the basis of the number of hubs in the network,
so that the degree distribution is kept closer to a power
law distribution. In this way, we are able to guarantee
local network navigability at the limited expenses of the
need of a central server monitoring the number of hubs
in the network.

This paper is organized as follows. In Section II, we present
the scenario of the SIoT and provide a quick survey of the
solutions for the search of services in the IoT. In Section III,
we introduce the key aspects of network navigability and the
strategies for link selection, whereas Section IV presents the
experimental evaluation. In Section V, we show the differences
between global and local navigability, whereas Section VI
draws the final remarks.

II. BACKGROUND

A. SIoT

The idea of using social networking elements in the IoT to
allow objects to autonomously establish social relationships is
gaining popularity in the last years. The driving motivation is
that a social-oriented approach is expected to boost the dis-
covery, selection, and composition of services and information
provided by distributed objects and networks that have access
to the physical world [9]–[12].

Without losing the generality, in this paper, we refer to
the SIoT model proposed in [5] (we use the acronym SIoT
to refer to it). According to this model, a set of forms of
socialization among objects are foreseen. The parental object
relationship (POR) is defined among similar objects, built in
the same period by the same manufacturer (the role of family is
played by the production batch). Moreover, objects can estab-
lish colocation object relationship (CLOR) and cowork object
relationship (CWOR), like humans do when they share personal
(e.g., cohabitation) or public (e.g., work) experiences. A fur-
ther type of relationship is defined for objects owned by the
same user (mobile phones, game consoles, etc.) that is named
ownership object relationship (OOR). The last relationship is
established when objects come into contact, sporadically or
continuously, for reasons purely related to relations among their
owners (e.g., devices/sensors belonging to friends); it is named
social object relationship (SOR). These relationships are cre-
ated and updated on the basis of the objects’ features (such
as type, computational power, mobility capabilities, and brand)
and activities (frequency in meeting the other objects, mainly).

B. Service Search in IoT

In this section, we provide some examples of the existing
solutions for service search in IoT context, in order to highlight
existing problems. Wang et al. [13] and Yap et al. [4] cope with
the large number of real-world entities by using a hierarchy of
mediators: the ones in the lower level are responsible for groups
of sensors in geographical areas, while the single mediator on
the top level maintains an aggregated view of the entire net-
work. These approaches are not scalable in case of frequent data
and network changes whereas work well in case of pseudostatic
metadata.

In [3], Ostermaier et al. propose a centralized system where
objects are contacted based on a prediction model that calcu-
lates the probability of matching the query. In this way, the
search engine does not need to contact all the sensors leading
to good scalability with the number of objects; nevertheless,
it is not scalable with the network traffic, since the number of
possible results is significantly larger than the number of actual
results, so a lot of sensors are contacted for no reason.

III. REFERENCE SCENARIO

A. Distributed Search in the IoT

In the same way, the search of contents of different kinds,
such as videos and web pages, is one of the most popular
services on the Internet, the search of data from sensors and
real-world entities is expected to be a major service in the IoT
in the near future. However, the huge number of objects and the
frequent changes in their data put a great stress on the service
search.

In the SIoT, the objects inherit some capabilities of the
humans and mimic their behavior when looking for new friends
or services [11]. Indeed, the relationships devised for the SIoT
follow the ones studied in sociological and anthropology fields,
such as [14] and [15], since the owner sets the rules for their
creation. The object then creates and manages several kinds of
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Fig. 1. Decentralized search.

relationships and uses them to navigate the network, looking for
services. The object asks its friends if they can provide a partic-
ular service or if they “know,” i.e., if they have any connections
to, nodes that can provide it.

Fig. 1 provides a simple example of a SIoT network, where
links represent friendship ties while the bold line is the best
route for node 1 to reach the requested service. In this net-
work, when node 1 needs a particular service, it does not send a
request to a centralized search engine, but it uses its own friend-
ships to look for, in a decentralized manner, a node with the
desired service, by contacting its friends and the friends of its
friends. In this scenario, we aim to evaluate the impact of sev-
eral strategies for link selection in order to select an optimal
set of friendships to limit the use of computational resources
needed for the search operations.

B. Key Aspects of Network Navigability

In the past years, the problem of network navigability has
widely been studied. As defined by Kleinberg [16], a network
is navigable if it “contains short paths among all (or most) pairs
of nodes.” Several independent works, such as [17] and [18],
formally describe the condition for navigability: all, or the most
of, the nodes must be connected, i.e., a giant component must
exist in the network, and the effective diameter must be low. In
other words, the greatest distance between any pairs of nodes
should not exceed log2(N), where N is the number of nodes in
the network.

When each node has full knowledge of the global network
connectivity, finding short communication paths is merely a
matter of distributed computation. However, this solution is
not practical since there should be a centralized entity, which
would have to handle the requests from all the objects, or the
nodes themselves have to communicate and exchange informa-
tion among each other; either way, a huge amount of traffic
would be generated.

Nevertheless, starting from the Milgram experiment [6],
Kleinberg concluded that there are structural clues that can help
people to find a short path efficiently even without a global
knowledge of a network [7], [19]. This means that there are
properties in social networks that make decentralized search
possible. Let us suppose to have a network as represented in
Fig. 1, where node 1 wants to get access to the information
owned by node 10 (node 1 does not know where the information
is located); obviously the optimum path leads through nodes 5

and 7. However, node 1 has three possible paths to choose from
and only knows few information about its neighbors: the prop-
erty that will guide node 1 to select node 5 as a next hop is that
node 5 has a high degree of centrality, i.e., it has many con-
nections. As such, node 5 represents then a network hub, i.e.,
a node that is connected to many other nodes. The ability for
a node to quickly reach a network hub is assured by the exis-
tence of network clusters where nodes are highly interlinked:
this characteristic is assured with high value of the local clus-
tering coefficient, described by Watts and Strogatz [20], and is
calculated for each node in a network. It measures how close
the neighbors of a node are to being a clique, i.e., a complete
graph, and it is calculated as follows:

Clocal(n) =
2 ∗ en

kn ∗ (kn − 1)
(1)

where kn represents the number of neighbors of the node n and
en is the number of edges among the neighbors.

Still, node 5 needs some additional hints in order to choose
node 7 over node 6, since both of them have the same degree.
This characteristic is the node similarity, an external property to
the network, derived from some additional information about
the nodes. In the SIoT, node similarity will depend on the
particular service requested and on the types of relationships
involved.

The problem of global network navigability is then shifted
to the problem of local network navigability, where neighbor-
ing nodes engage in negotiation to create, keep, or discard their
relations in order to create network hubs and clusters.

C. Selection of Network Links

As described in Section II-A, objects can create, through the
mimic of their owner’s behavior, several types of relationships.
Other types of friendships could be added in the future, leav-
ing to the node the hard work to cope with a huge number of
connections. To make the service search process more efficient
and scalable, we propose five heuristics to help the nodes in the
process of selection of the best set of friends.

At first, a node accepts all the friendship requests until it
reaches the maximum number of connections allowed Nmax.
This parameter is intended to limit the computational capabili-
ties a node needs to resolve a service search request. Then, to
manage any further request, a node sorts all the friendships and
the new request based on one of the following strategies.

1) A node refuses any new request of friendships so that the
connections are static.

2) A node sorts its friends in decreasing order of their
degree, with the aim to maximize the number of nodes it
can reach through its friends, i.e., to maximize the average
degree of its friends.

3) A node sorts its friends in increasing order of their degree,
with the aim to minimize the number of nodes it can reach
through its friends, i.e., to minimize the average degree of
its friends.

4) A node sorts its friends in decreasing order of their com-
mon friends, with the aim to maximize its own local
cluster coefficient.
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Fig. 2. Selection of network links.

5) A node sorts its friends in increasing order of their com-
mon friends, with the aim to minimize its own local
cluster coefficient.

From the so-constructed rank list, a node accepts as its
friends only the first Nmax nodes. If the friendship with a
node is already active then nothing happens; otherwise, a new
friendship is created and the node with the lowest value is
discarded.

Let us consider a network example, as shown in Fig. 2,
where the maximum number of connections is set to Nmax = 5
and let us suppose that node 2 sends a friendship request to
node 1 (dashed line). Since node 1 has already reached Nmax

connections, the decision on this request will depend on the
implemented strategy. If node 1 implements strategy 1, it will
simply refuse the request; with strategy 2, node 1 checks the
degree of all its friends and of node 2 and then it terminates the
relationship with node 4, which has only one more friend, in
order to accept the request from node 2 (three friends). In the
same way, using strategy 3, node 1 terminates the relation with
node 6, which has Nmax connections, and accepts the request.
With strategy 4, node 1 compares the common friends among
its friends and with the requester node and discards the node 3
with which it has no common friends. In a similar way, with
strategy 5, node 1 discards the relation with node 5 to which it
has the highest number of common friends.

IV. EXPERIMENTAL EVALUATION

A. Simulation Setup

With this simulation analysis, we want to study the impact
of each of the proposed strategies on the objects’ network
navigability.

To analyze the navigability of a SIoT network, we would
need information about the requests of establishing new rela-
tionships the objects would receive on the basis of their profile,
settings, and movements. We would need this information for
huge numbers of real objects. Even if some platforms already
exist that implement the SIoT paradigm, such as [21], this
data is not available to date as real applications have not been
deployed yet. For this reason, we had to adopt an alternative
solution to test our heuristics as follows.

1) We analyze a social network of humans.

TABLE I
PARAMETERS OF BRIGHTKITE, SIoT NETWORK, AND

BARABÁSI–ALBERT MODEL

Fig. 3. Degree distribution for Brightkite and SIoT.

2) From this, we extract the information needed to build the
social network of objects.

3) In the next stage, we extract the characteristics of this net-
work and use these to run a model that generates synthetic
networks with similar properties.

4) We apply the strategies described previously and analyze
the results.

For the first step, we relied on the real dataset of the location-
based online social network Brightkite obtained from the
Stanford Large Network Dataset Collection [22]. This dataset
consists of more than 58k nodes and more than 200k edges, so
in order to better analyze its properties and compare them to
synthetic data, we consider only the nodes enclosed between
Atlanta and Boston for a total of approximately 12k nodes and
40k nodes. However, the output of the Brightkite dataset is a
trace of the position of humans and of their relationships; since
we are interested in the relationships of the objects, we have
extended it as follows (step 2): starting from the scaled net-
work, we suppose that every person carries at least one smart
object, e.g., a smartphone, so when they get in touch with their
friends their objects also come into contact and have then the
possibility to create a SOR. In a similar way, we also simulate
the creation of CWOR and CLOR. The resulting SIoT network
has around 14.5k nodes and 67k edges. The parameters of the
two networks, obtained from Gephi [23], are shown in Table I,
whereas the node distribution is shown in Fig. 3 for Brightkite
(red) and SIoT (blue) networks.

Both networks comply with the condition for network
navigability: at global level, there is a giant component and
the average path length is low; at local level, we can observe
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Fig. 4. Giant component for all the strategies.

how the nodes are highly interlinked, due to the high values of
the clustering coefficients, and the networks have a scale-free
degree distribution thus indicating the existence of hubs.

Moreover, it is important to point out that even if the SIoT
is expected to have a shorter average path length with respect
to classical social networks, this does not happen since the new
relationships are due to CLORs and CWORs that are indeed
short range; however, for the same reason, it is possible to
observe a 50% increment of the average local clustering.

To generate and analyze similar networks, we rely on the
Barabási–Albert model [3], which is able to generate scale-
free networks based on preferential attachment. Starting with a
small number of nodes, at each step, it adds a new node with
m edges (m is a parameter for the model) linked to nodes,
which are already part of the system. The probability pi that
a new node will be connected to an existing node i depends
on its degree ki, so that pi = ki/(

∑
j kj) leading to the name

preferential attachment. The results of this model, using 15k
nodes, connecting each node to m = 5 other nodes and aver-
aged over 5 runs, are shown in Table I, and it can be observed
that it represents a good approximation for the real scenario.

B. Simulation Results

This section describes the simulation results in terms of
giant component, average degree of connections, local cluster-
ing, and average path length for all the heuristics described
previously. Due to their complexity, we decided to run the
simulations considering a maximum number of connections for
a node equals to Nmax = 50, 30, 10 friends. The results show
this approximation is adequate to understand the behavior of
the network.

Fig. 4 shows the percentage of the giant component for all
strategies. It is important to note that if we try to minimize
the neighborhood degree or the local clustering, we can always
achieve a giant component, which includes all nodes. This hap-
pens due to the fact that, when a node with Nmax connections
receives a friendship request from a low connected node, it will
always accept it to the detriment of a node with higher connec-
tivity, which has high probability to remain connected to the
network. Moreover, we can observe that when using the strat-
egy 1, 2, or 4, the dimension of the giant component naturally
decreases with the reduction of the Nmax value, thus making

Fig. 5. Average degree for all the strategies.

Fig. 6. Local cluster coefficient for all the strategies.

the network not fully navigable. In the case of using the strat-
egy 2, a node connected to other nodes with Nmax friends will
not accept any other relation request, similarly to a node in a
near-clique in strategy 4. Furthermore, we also want to point
out that with strategies 2 and 4, a node cannot refuse or dis-
card relationships if this action is going to isolate a node; in this
way, we can achieve larger giant component and we do not have
isolated nodes but at least isolated couples of nodes.

From Fig. 5, we can observe how the average degree changes
with different strategies. Strategy 3 tries to equalize the number
of friendships between the nodes, resulting in a higher num-
ber of relationships in the network and consequently a higher
average degree. Similarly, strategy 5 discards the nodes with
higher local cluster coefficient, to connect with nodes with low
values. Yet, since the local cluster coefficient is not directly con-
nected to the number of friends, the average degree is lower
than in strategy 3. Strategy 2 achieves the lowest average degree
due to the fact that the resulting network has a core of high
degree nodes, with Nmax friendships, and highly intercon-
nected between themselves. These nodes hardly accept any new
friendship, leaving many nodes with a low degree.

Fig. 6 shows the local cluster coefficient. Strategies 4 and
5 exhibit the highest and lowest values, respectively, since they
are designed to achieve these results. Strategy 1 has a high value
due to the triad formation step in the model and to the fact that
there is not further rearrangement of relationships after these
has been created; this effect is even stronger when the number
of maximum connections is decreasing. Strategy 2 achieves a
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Fig. 7. Average path length for all the strategies with global knowledge of the
network.

higher value than the model since the core nodes in the net-
work are highly interconnected. It is important to point out the
behavior of the local clustering coefficient for strategy 3: it has
a lower value than the model and decreases with Nmax. This is
a result of the equalization of the number of friendships, lead-
ing to a high average degree and easily destroying the triad
formation step in the model.

V. GLOBAL VERSUS LOCAL NAVIGABILITY

In this section, we show how the different strategies impact
on the navigability of the network both at global and local
levels.

Fig. 7 shows the average path length when the nodes have
global knowledge of the network. This means that every node
is able to find the best path to reach its destination. In particular,
we can observe that for Nmax set to 50 friends all the strategies
perform around the same; however, if we reduce the number
of friends allowed, some differences emerge: strategies 3 and 5
provide shorter paths than the others. This is due to the fact that
these strategies manage to create many long distance relation-
ships. On the other hand, strategy 4 has the worst performance
for the exact opposite reason: nodes are too close to create a
clique, i.e., a subset of nodes with a full mesh topology, and
have difficulties reaching other nodes; similar reasons also hold
for strategies 1 and 2.

However, as we said in Section III-B, we are interested in
local navigability, i.e., in the ability of each node to reach the
destination making use of only local information. To this, we
consider the following straightforward local routing approach.
The scenario is of object A that wishes to communicate with
node B. The first task is to check whether it has a direct con-
nection with it, i.e., B is among its friends. If not, A asks to its
friends with the highest connectivity degree, say X, to find a
route to B. X then repeats the process till B is reached. Fig. 8
shows the results, in terms of average path length, when the
nodes only exploit local knowledge of the network. This figure
shows that in the network generated with the Barabási–Albert
model, without applying any of the proposed strategies, the
average number of hops is around 7.5, whereas the best strat-
egy needs an average of around 32 hops to reach the destination
when we consider Nmax equals to 50. This value is unthinkable

Fig. 8. Average path length for all the strategies with local knowledge of the
network.

if applied to a real network; however, these simulations do not
take into account three fundamental aspects.

1) We have considered all the possible pairs of nodes to be
uniformly distributed over the network; however, it has
been proved that friends share similar interests (bringing
to the homophily phenomenon [24]), so that it is highly
probable to find another node in the friends list or in the
friend of a friend (FOAF) list, thus reducing the average
path length among all the pairs of nodes.

2) We have not considered node similarity for the discov-
ery operations: indeed, in our simulations, nodes try to
reach their destination using only information about the
degree of their neighbors. However, external properties
could be used to select the right nodes (among the avail-
able friends) to which ask for the desired service. One
of these properties is the profile of the friend involved,
its trustworthiness [25], and the type of relationship that
links it to the requester.

3) We have not discussed about delivery of the service:
Depending on how the SIoT model is implemented,
the service can be delivered either directly relying on
the communication network (nonoverlay structure) or
through the friends that discovered the service, i.e., the
social networks are used to transmit the service on top of
the existing transport network (overlay network). In the
latter case, the average path length is still an important
indicator; however, a longer path does not necessar-
ily mean a higher end-to-end delay, since the delay is
influenced by several factors such as the congestion of
the nodes.

The analysis of the average path length is quite surpris-
ing also for another reason. As we expected, when Nmax is
equal to 50 friends, the best strategies are the second and the
fourth, which try to maximize the parameters for local naviga-
bility, namely the degree and the local clustering coefficient,
respectively. But, if we decrease Nmax, the best strategy
becomes the number 5, in complete contrast with Kleinberg’s
findings, as it tries to minimize the local clustering. To under-
stand this behavior, we analyze the degree distribution of the
network, as shown in Fig. 9 for strategy 2; we analyze only
this strategy for simplicity but the same considerations hold
for the others as well. The red + mark shows the behavior of
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Fig. 9. Degree distribution for different value of Nmax.

the network without any limit for the number of friendships,
whereas the green square, the blue diamond, and the purple
star refer to the case of Nmax set to 50, 30, and 10 friends,
respectively.

Without any strategies to select the friendship, the degree
distribution resembles a perfect power law. If we set a maxi-
mum number of friendships, we can notice two different effects
that make the distribution deviates from a power law. 1) There
are a certain number of nodes with few connections, less than
four, that have more difficulties to reach the rest of the network:
the lower the Nmax the greater the number of isolated nodes.
2) There are a lot of nodes that reach the maximum number of
friends allowed: once again, the lower the Nmax the greater the
number of nodes with Nmax connections. With Nmax equals to
10, the degree distribution is not a power law anymore, while in
the other scenarios, it still follows a power law for the interval
[5, (Nmax − 1)].

In particular, this last aspect deeply impacts on the naviga-
bility of the network. When a node has to choose which other
node deliver a message to, its choice is driven by the degree
of its neighbors: if the networks has too many hubs with the
same degree, the nodes have no clues to select the next hop. For
this reason, when we reduce Nmax, the properties for local nav-
igability no longer apply and strategies that perform better at
global level start to perform efficiently even at local level. As a
result of this analysis, we have introduced a variant in the strate-
gies so that Nmax varies during the network life based on two
different aspects: the total number of nodes in the network and
the number of nodes that actually reach Nmax friends; in other
words, we want to monitor the percentage of hubs in the net-
works. To this, we need to constantly know both the number of
nodes in the network and how many nodes have already reached
Nmax connections. These values are related to global statistics,
but can be easily computed by the server; in the SIoT scenario,
objects continuously communicate with the server in order to
update their profile, send the data, look for information, and so
on and then have the possibility to retrieve these statistics.

In particular, Nmax increases of 10% when

there are x% of N nodes in the network with at
least y% of Nmax friends.

So that x represents the maximum percentage of hubs in
the network, whereas y represents the threshold for a node to

TABLE II
HUBS PERCENTAGE FOR ALL THE STRATEGIES WITH

DIFFERENT THRESHOLD

Fig. 10. Average path length for different values of the maximum percentage
of hubs in the network.

become a hub. It is then possible to regularly check the behavior
of the network through the setting of these two parameters and
modify them to directly adjust the navigability of the network.

We then studied the behavior of the networks obtained with
the Barabási–Albert model, with or without applying the pro-
posed strategies, to understand when a node can be considered
a hub and how many hubs are necessary in a network to maxi-
mize network navigability in terms of the average path length.
Table II presents the best combinations x–y for the different
strategies, considering only the scenario where Nmax is set
to 50 friends, which is the only scenario where Kleinberg’s
findings still hold; for the network without any strategies, we
take into account a maximum number of friends equals to 110,
which represents the intersection of the power law with the
degree axis.

If we consider the “no limit” scenario, it is clear that the
number of hubs required for the network to be navigable is
really low, less than 1%. Moreover, if we relax the condition for
a node to become a hub, namely we lower y, the concentration
of hubs in the network rapidly increases. As expected, strate-
gies 3 and 5 have the lowest number of hubs since their goal is
to distribuite connections among all the nodes, while the aim of
strategy 2 is to maximize the connections of a nodes and then it
has naturally the highest concentration of hubs.

We then decided to analyze the behavior of the network con-
sidering only strategies 2 and 5, because, as proved in Fig. 8,
they show the best performance in terms of average path length
when using only local information when Nmax is set to 50 or
lower than 30 nodes, respectively.

Fig. 10 shows the average path length for different values of
the maximum percentage of hubs x in the network. By reducing
the number of hubs, the performance of the network increases
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Fig. 11. Maximum number of friends reached for different values of the
maximum percentage of hubs in the network.

as suggested by Kleinberg. However, the choice of the best
strategy is still an important issue: strategy 2 outperforms strat-
egy 5 even with a higher threshold y. In general, the lower the
percentage of hubs or the threshold for a node to be a hub,
the lower the average path length. If we relax these parame-
ters too much, we reach the scenario “no limit.” On the other
hand, if they are set with too stringent values, we fall again in
the scenarios with a fixed Nmax.

Finally, we present the maximum number of friends reached
by a node for several combinations x and y in Fig. 11. We
can observe that, even if strategy 2 has the lowest average
path length, the hubs created using this strategy reached a
higher number of friends with respect to the one obtained
using strategy 5. However, in this case, the threshold value
has a greater impact on the creation of hubs highly connected.
To avoid this problem, we could allow only nodes with high
computation capabilities, such as vehicles or smart devices, to
become hubs.

VI. CONCLUSION

This paper has addressed the issue of link selection in the
SIoT, where objects establish friendship links each other cre-
ating a social network of objects. We first analyzed network
navigability in SIoT networks through simulations, as it is
important for service discovery; second, we proposed some
heuristics for local link selection that have different impact
in the network structure in terms of giant component, average
degree, and local clustering. As a result, when the network has
too many hubs, selecting the friends that minimize the local
neighbor degree is the approach that allows for reaching the
best global network navigability. However, all these approaches
have a bad local navigability, suggesting the adoption of more
powerful friendship selection strategies. We then proposed an
approach to dynamically adjust the threshold in the number of
connections on the basis of the number of hubs in the network.
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