
CloudArmor: Supporting Reputation-Based
Trust Management for Cloud Services

Talal H. Noor, Quan Z. Sheng,Member, IEEE, Lina Yao,Member, IEEE,

Schahram Dustdar, Senior Member, IEEE, and Anne H.H. Ngu

Abstract—Trust management is one of the most challenging issues for the adoption and growth of cloud computing. The highly

dynamic, distributed, and non-transparent nature of cloud services introduces several challenging issues such as privacy, security,

and availability. Preserving consumers’ privacy is not an easy task due to the sensitive information involved in the interactions between

consumers and the trust management service. Protecting cloud services against their malicious users (e.g., such users might give

misleading feedback to disadvantage a particular cloud service) is a difficult problem. Guaranteeing the availability of the trust

management service is another significant challenge because of the dynamic nature of cloud environments. In this article, we describe

the design and implementation of CloudArmor, a reputation-based trust management framework that provides a set of functionalities to

deliver trust as a service (TaaS), which includes i) a novel protocol to prove the credibility of trust feedbacks and preserve users’

privacy, ii) an adaptive and robust credibility model for measuring the credibility of trust feedbacks to protect cloud services from

malicious users and to compare the trustworthiness of cloud services, and iii) an availability model to manage the availability of the

decentralized implementation of the trust management service. The feasibility and benefits of our approach have been validated by a

prototype and experimental studies using a collection of real-world trust feedbacks on cloud services.

Index Terms—Cloud computing, trust management, reputation, credibility, credentials, security, privacy, availability

Ç

1 INTRODUCTION

THE highly dynamic, distributed, and non-transparent
nature of cloud services make the trust management in

cloud environments a significant challenge [1], [2], [3], [4].
According to researchers at Berkeley [5], trust and security
are ranked one of the top 10 obstacles for the adoption of
cloud computing. Indeed, service-level agreements (SLAs)
alone are inadequate to establish trust between cloud con-
sumers and providers because of its unclear and inconsis-
tent clauses [6].

Consumers’ feedback is a good source to assess the over-
all trustworthiness of cloud services. Several researchers
have recognized the significance of trust management and
proposed solutions to assess and manage trust based on
feedbacks collected from participants [6], [7], [8], [9]. In real-
ity, it is not unusual that a cloud service experiences mali-
cious behaviors (e.g., collusion or Sybil attacks) from its
users [6], [10]. This paper focuses on improving trust
management in cloud environments by proposing novel
ways to ensure the credibility of trust feedbacks. In

particular, we distinguish the following key issues of the
trust management in cloud environments:

� Consumers’ privacy. The adoption of cloud computing
raise privacy concerns [11]. Consumers can have
dynamic interactions with cloud providers, which
may involve sensitive information. There are several
cases of privacy breaches such as leaks of sensitive
information (e.g., date of birth and address) or
behavioral information (e.g., with whom the con-
sumer interacted, the kind of cloud services the con-
sumer showed interest, etc.). Undoubtedly, services
which involve consumers’ data (e.g., interaction his-
tories) should preserve their privacy [12].

� Cloud services protection. It is not unusual that a cloud
service experiences attacks from its users. Attackers
can disadvantage a cloud service by giving multiple
misleading feedbacks (i.e., collusion attacks) or by
creating several accounts (i.e., Sybil attacks). Indeed,
the detection of such malicious behaviors poses sev-
eral challenges. First, new users join the cloud envi-
ronment and old users leave around the clock. This
consumer dynamism makes the detection of mali-
cious behaviors (e.g., feedback collusion) a signifi-
cant challenge. Second, users may have multiple
accounts for a particular cloud service, which makes
it difficult to detect Sybil attacks [13]. Finally, it is
difficult to predict when malicious behaviors occur
(i.e., strategic vs. occasional behaviors) [14].

� Trust management service’s (TMS) availability. A trust
management service provides an interface between
users and cloud services for effective trust manage-
ment. However, guaranteeing the availability of
TMS is a difficult problem due to the unpredictable

� T.H. Noor is with the College of Computer Science and Engineering,
Taibah University, Yanbu, Medinah 46421-7143, Saudi Arabia.
E-mail: tnoor@taibahu.edu.sa.

� Q.Z. Sheng and L. Yao are with the School of Computer Science, The
University of Adelaide, Adelaide SA 5005, Australia.
E-mail: qsheng@cs.adelaide.edu.au, lina.yao@adelaide.edu.au.

� S. Dustdar is with the Distributed Systems Group, Vienna University of
Technology, Austria. E-mail: dustdar@infosys.tuwien.ac.at.

� A.H.H. Ngu is with the Department of Computer Science, Texas State
University, San Marcos, TX. E-mail: angu@txstate.edu.

Manuscript received 15 Apr. 2014; revised 19 Dec. 2014; accepted 23 Feb.
2015. Date of publication 3 Mar. 2015; date of current version 20 Jan. 2016.
Recommended for acceptance by A. Mellouk.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2408613

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016 367

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

number of users and the highly dynamic nature of
the cloud environment [6], [7], [10]. Approaches that
require understanding of users’ interests and capa-
bilities through similarity measurements [15] or
operational availability measurements [16] (i.e.,
uptime to the total time) are inappropriate in cloud
environments. TMS should be adaptive and highly
scalable to be functional in cloud environments.

In this paper, we overview the design and the implemen-
tation of CLOud consUmers creDibility Assessment & tRust
manageMent of clOud seRvices (CloudArmor): a frame-
work for reputation-based trust management in cloud envi-
ronments. In CloudArmor, trust is delivered as a service
(TaaS) where TMS spans several distributed nodes to man-
age feedbacks in a decentralized way. CloudArmor exploits
techniques to identify credible feedbacks from malicious
ones. In a nutshell, the salient features of CloudArmor are:

� Zero-knowledge credibility proof protocol (ZKC2P). We
introduce ZKC2P that not only preserves the con-
sumers’ privacy, but also enables the TMS to prove
the credibility of a particular consumer’s feedback.
We propose that the identity management service
(IdM) can help TMS in measuring the credibility of
trust feedbacks without breaching consumers’ pri-
vacy. Anonymization techniques are exploited to
protect users from privacy breaches in users’ identity
or interactions.

� A credibility model. The credibility of feedbacks plays
an important role in the trust management service’s
performance. Therefore, we propose several metrics
for the feedback collusion detection including the Feed-
back Density and Occasional Feedback Collusion. These
metrics distinguish misleading feedbacks from mali-
cious users. It also has the ability to detect strategic
and occasional behaviors of collusion attacks (i.e.,
attackerswho intend tomanipulate the trust results by
giving multiple trust feedbacks to a certain cloud ser-
vice in a long or short period of time). In addition, we
propose several metrics for the Sybil attacks detection
including the multi-identity recognition and occasional

sybil attacks. These metrics allow TMS to identify mis-
leading feedbacks fromSybil attacks.

� An availability model.High availability is an important
requirement to the trust management service. Thus,
we propose to spread several distributed nodes to
manage feedbacks given by users in a decentralized
way. Load balancing techniques are exploited to
share the workload, thereby always maintaining a
desired availability level. The number of TMS nodes
is determined through an operational power metric.
Replication techniques are exploited to minimize the
impact of inoperable TMS instances. The number
of replicas for each node is determined through a
replication determination metric that we introduce.
This metric exploits particle filtering techniques to
precisely predict the availability of each node.

The remainder of the paper is organized as follows.
Section 2 briefly presents the design of CloudArmor
framework. Section 3 introduces the design of the Zero-
Knowledge Credibility Proof Protocol, assumptions and
attack models. Section 4 and Section 5 describe the details of
our credibility model and availability model respectively.
Section 6 reports the implementation of CloudArmor and
the results of experimental evaluations. Finally, Section 7
overviews the related work and Section 8 provides some
concluding remarks.

2 THE CLOUDARMOR FRAMEWORK

The CloudArmor framework is based on the Service Ori-
ented Architecture (SOA), which delivers trust as a service.
SOA and web services are one of the most important
enabling technologies for cloud computing in the sense that
resources (e.g., infrastructures, platforms, and software) are
exposed in clouds as services [17], [18]. In particular, the
trust management service spans several distributed nodes
that expose interfaces so that users can give their feedbacks
or inquire the trust results. Fig. 1 depicts the framework,
which consists of three different layers, namely the Cloud
Service Provider Layer, the Trust Management Service Layer,
and the Cloud Service Consumer Layer.

Fig. 1. Architecture of the cloudarmor trust management framework.

368 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

The cloud service provider layer. This layer consists of dif-
ferent cloud service providers who offer one or several
cloud services, i.e., Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), and Software as a Service (SaaS),
publicly on the web (more details about cloud services mod-
els and designs can be found in [19]). These cloud services
are accessible through web portals and indexed on web
search engines such as Google, Yahoo, and Baidu. Interac-
tions for this layer are considered as cloud service interaction
with users and TMS, and cloud services advertisements where
providers are able to advertise their services on the web.

The trust management service layer. This layer consists of
several distributed TMS nodes which are hosted in multiple
cloud environments in different geographical areas. These
TMS nodes expose interfaces so that users can give their
feedback or inquire the trust results in a decentralized way.
Interactions for this layer include: i) cloud service interaction
with cloud service providers, ii) service advertisement to
advertise the trust as a service to users through the Internet,
iii) cloud service discovery through the Internet to allow
users to assess the trust of new cloud services, and iv) Zero-
knowledge credibility proof protocol interactions enabling TMS
to prove the credibility of a particular consumer’s feedback
(details in Section 3).

The cloud service consumer layer. Finally, this layer consists
of different users who use cloud services. For example, a
new startup that has limited funding can consume cloud
services (e.g., hosting their services in Amazon S3). Interac-
tions for this layer include: i) service discovery where users
are able to discover new cloud services and other services
through the Internet, ii) trust and service interactions where
users are able to give their feedback or retrieve the trust
results of a particular cloud service, and iii) registration
where users establish their identity through registering their
credentials in IdM before using TMS.

Our framework also exploits a web crawling approach
for automatic cloud services discovery, where cloud serv-
ices are automatically discovered on the Internet and stored
in a cloud services repository. Moreover, our framework con-
tains an identity management service (see Fig. 1) which is
responsible for the registrationwhere users register their cre-
dentials before using TMS and proving the credibility of a
particular consumer’s feedback through ZKC2P.

3 ZERO-KNOWLEDGE CREDIBILITY

PROOF PROTOCOL

Since there is a strong relation between trust and identifica-
tion as emphasized in [20], we propose to use the Identity
Management Service to help TMS in measuring the credibility
of a consumer’s feedback. However, processing the IdM
information can breach the privacy of users. One way
to preserve privacy is to use cryptographic encryption tech-
niques. However, there is no efficient way to process
encrypted data [11]. Another way is to use anonymization
techniques to process the IdM information without breach-
ing the privacy of users. Clearly, there is a trade-off between
high anonymity and utility. Full anonymization means bet-
ter privacy, while full utility results in no privacy protection
(e.g., using a de-identification anonymization technique can
still leak sensitive information through linking attacks [21]).

Thus, we propose a Zero-Knowledge Credibility Proof
Protocol to allow TMS to process IdM’s information (i.e., cre-
dentials) using the Multi-Identity Recognition factor (see
details in Section 4.2). In other words, TMS will prove the
users’ feedback credibility without knowing the users’ cre-
dentials. TMS processes credentials without including the
sensitive information. Instead, anonymized information is
used via consistent hashing (e.g., sha-256). The anonymiza-
tion process covers all the credentials’ attributes except the
Timestamps attribute.

3.1 Identity Management Service

Since trust and identification are closely related, as
highlighted by David and Jaquet in [20], we believe that
IdM can facilitate TMS in the detection of Sybil attacks
against cloud services without breaching the privacy of
users. When users attempt to use TMS for the first time,
TMS requires them to register their credentials at the trust
identity registry in IdM to establish their identities. The
trust identity registry stores an identity record represented
by a tuple I ¼ ðC; Ca; T iÞ for each user. C is the user’s pri-
mary identity (e.g., user name). Ca represents a set of
credentials’ attributes (e.g., passwords, postal address, and
IP address) and T i represents the user’s registration time in
TMS. More details on how IdM facilitates TMS in the detec-
tion of Sybil attacks can be found in Section 4.2.

3.2 Trust Management Service

In a typical interaction of the reputation-based TMS, a user
either gives feedback regarding the trustworthiness of a
particular cloud service or requests the trust assessment of
the service.1 From users’ feedback, the trust behavior of a
cloud service is actually a collection of invocation history
records, represented by a tuple H = (C, S, F , T f), where C is
the user’s primary identity, S is the cloud service’s identity,
and F is a set of Quality of Service (QoS) feedbacks (i.e., the
feedback represent several QoS parameters including avail-
ability, security, response time, accessibility, price). Each
trust feedback in F is represented in numerical form with
the range of [0, 1], where 0, 1, and 0.5 means negative, posi-
tive, and neutral feedback respectively. T f is the timestamps
when the trust feedbacks are given. Whenever a user c
requests a trust assessment for cloud service s, TMS calcu-
lates the trust result, denoted as T rðsÞ, from the collected
trust feedbacks as follows:

T rðsÞ ¼
PjVðsÞj

c¼1 Fðc; sÞ � Crðc; s; t0; tÞ
jVðsÞj � x � Ctðs; t0; tÞð Þ; (1)

where VðsÞ denotes the trust feedbacks given to cloud
service s and jVðsÞj represents the total number of trust
feedbacks. Fðc; sÞ are trust feedbacks from the c th user
weighted by the credibility aggregated weights Crðc; s; t0; tÞ
to allow TMS to dilute the influence of those misleading
feedbacks from attacks. Fðc; sÞ is held in the invocation his-
tory record h and updated in the corresponding TMS.
Ctðs; t0; tÞ is the rate of trust result changes in a period of
time that allows TMS to adjust trust results for cloud

1. We assume a transaction-based feedback where all feedbacks are
held in TMS

NOOR ET AL.: CLOUDARMOR: SUPPORTING REPUTATION-BASED TRUST MANAGEMENT FOR CLOUD SERVICES 369

services that have been affected by malicious behaviors. x is
the normalized weight factor for the rate of changes of trust
results which increase the adaptability of the model. More
details on how to calculate Crðc; s; t0; tÞ and Ctðs; t0; tÞ are
described in Section 4.

3.3 Assumptions and Attack Models

In this paper, we assume that TMS is handled by a trusted
third party. We also assume that TMS communications are
secure because securing communications is not the focus of
this paper. Attacks such as Man-In-The-Middle (MITM) is
therefore beyond the scope of this work. We consider the
following types of attacks:

� Collusion attacks. Also known as collusive malicious
feedback behaviors, such attacks occur when several
vicious users collaborate together to give numerous
misleading feedbacks to increase the trust result of
cloud services (i.e., a self-promoting attack [22]) or to
decrease the trust result of cloud services (i.e., a slan-
dering attack [23]). This type of malicious behavior
can occur in a non-collusive way where a particular
malicious user gives multiple misleading feedbacks to
conduct a self-promoting attack or a slandering attack.

� Sybil attacks. Such an attack arises when malicious
users exploit multiple identities [13], [22] to give
numerous misleading feedbacks (e.g., producing a
large number of transactions by creating multiple
virtual machines for a short period of time to leave
fake feedbacks) for a self-promoting or slandering
attack. It is interesting to note that attackers can also
use multiple identities to disguise their negative his-
torical trust records (i.e., whitewashing attacks [24]).

4 THE CREDIBILITY MODEL

Our proposed credibility model is designed for i) the
Feedback Collusion Detection including the feedback density
and occasional feedback collusion, and ii) the Sybil Attacks
Detection including the multi-identity recognition and occa-
sional Sybil attacks.

4.1 Feedback Collusion Detection

4.1.1 Feedback Density

Malicious users may give numerous fake feedbacks
to manipulate trust results for cloud services (i.e., Self-
promoting and Slandering attacks). Some researchers suggest
that the number of trusted feedbacks can help users to over-
come such manipulation where the number of trusted feed-
backs gives the evaluator a hint in determining the feedback
credibility [25]. However, the number of feedbacks is not
enough in determining the credibility of trust feedbacks.
For instance, suppose there are two different cloud services
sx and sy and the aggregated trust feedbacks of both cloud
services are high (i.e., sx has 89 percent positive feedbacks
from 150 feedbacks, sy has 92 percent positive feedbacks
from 150 feedbacks). Intuitively, users should proceed with
the cloud service that has the higher aggregated trust feed-
backs (e.g., sy in our case). However, a Self-promoting attack
might have been performed on cloud service sy, which
means sx should have been selected instead.

To overcome this problem, we introduce the concept of
feedback density to support the determination of credible
trust feedbacks. Specifically, we consider the total number
of users who give trust feedbacks to a particular cloud ser-
vice as the feedback mass, the total number of trust feedbacks
given to the cloud service as the feedback volume. The feed-
back volume is influenced by the feedback volume collusion
factor which is controlled by a specified volume collusion
threshold. This factor regulates the multiple trust feedbacks
extent that could collude the overall trusted feedback vol-
ume. For instance, if the volume collusion threshold is set to
15 feedbacks, any user c who gives more than 15 feedbacks
is considered to be suspicious of involving in a feedback
volume collusion. The feedback density of a certain cloud
service s, DðsÞ, is calculated as follows:

DðsÞ ¼ MðsÞ
jVðsÞj � LðsÞ ; (2)

where MðsÞ denotes the total number of users who give
feedback to cloud service s (i.e., the feedback mass). jVðsÞj
represents the total number of feedbacks given to cloud ser-
vice s (i.e., the feedback volume). LðsÞ represents the feed-
back volume collusion factor, calculated as follows:

LðsÞ ¼ 1 þ
X

h2VðsÞ

XjVcðc;sÞj

c¼1

P
jVcðc;sÞj>evðsÞ jVcðc; sÞj

jVðsÞj

 !0
@

1
A: (3)

This factor is calculated as the ratio of the number of feed-
back given by users jVcðc; sÞj who give feedbacks more than
the specified volume collusion threshold evðsÞ over the total
number of trust feedbacks received by the cloud service
jVðsÞj. The idea is to reduce the value of the multiple feed-
backs which are given from the same user.

For instance, consider the two cloud services in the previ-
ous example, sx and sy where sx has 89 percent and sy has
92 percent positive feedbacks, from 150 feedbacks. Assume
that the Feedback Mass of sx is higher than sy (e.g., MðxÞ ¼
20 andMðyÞ ¼ 5) and the total number of trust feedbacks of
the two services is jVcðc; xÞj ¼ 60 and jVcðc; yÞj ¼ 136 feed-
backs respectively. We further assume that the volume col-
lusion threshold ev is set to 10 feedbacks. According to
Equation (2), the Feedback Density of sx is higher than sy (i.e.,
DðxÞ ¼ 0:0953 and DðyÞ ¼ 0:0175). In other words, the
higher the Feedback Density, the more credible are the aggre-
gated feedbacks.

4.1.2 Occasional Feedback Collusion

Since collusion attacks against cloud services occur sporadi-
cally [14], we consider time as an important factor in
detecting occasional and periodic collusion attacks (i.e.,
periodicity). In other words, we consider the total number
of trust feedbacks jVðsÞj given to cloud service s during a
period of time ½t0; t�. A sudden change in the feedback
behavior indicates likely an occasional feedback collusion
because the change of the number of trust feedbacks given
to a cloud service happen abruptly in a short period of time.

To detect such behavior, we measure the percentage of
occasional change in the total number of feedbacks among
the whole feedback behavior (i.e., users’ behavior in giving

370 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

feedbacks for a certain cloud service). The occasional feed-
back collusion factorOfðs; t0; tÞ of cloud service s in a period
of time ½t0; t�, is calculated as follows:

Ofðs; t0; tÞ ¼ 1�

R t
t0
jVðs; tÞjdt

� �
�

R t
t0
Dfðs; tÞdt

� �
R t
t0
jVðs; tÞjdt

0
@

1
A

where Dfðs; tÞ ¼
Cm jVðs; tÞjð Þ if jVðs; tÞj �

Cm jVðs; tÞjð Þ
jVðs; tÞj otherwise;

8><
>:

(4)

where the first part of the numerator represents the whole
area under the curvewhich represents the feedback behavior
for the cloud service s (i.e., a

S
a0, b

S
b0 and c

S
c0 in Fig. 2).

The second part of the numerator represents the intersection
between the area under the curve and the area under the
cumulative mean of the total number of trust feedbacks (i.e.,
the area a0

S
b0
S

c0 in Fig. 2). Cm jVðs; tÞjð Þ represents the
mean of all points in the total number of trust feedbacks and
up to the last element because the mean is dynamic and
changes from time to time. The denominator represents the
whole area under the curve. As a result, the occasional collu-
sion attacks detection is based on measuring the occasional
change in the total number of trust feedbacks in a period of
time. The higher the occasional change in the total number of
trust feedbacks, the more likely that the cloud service has
been affected by an occasional collusion attack.

4.2 Sybil Attacks Detection

4.2.1 Multi-Identity Recognition

Since users have to register their credentials at the Trust
Identity Registry, we believe that Multi-Identity Recognition is
applicable by comparing the values of users’ credential
attributes from the identity records I . The main goal of this
factor is to protect cloud services from malicious users who
use multiple identities (i.e., Sybil attacks) to manipulate the
trust results. In a typical Trust Identity Registry, the entire
identity records I are represented as a list of m users’ pri-
mary identities Cp ¼ fp1; p2; . . . ; pmg (e.g., user name) and a
list of n credentials’ attributes Ca ¼ fa1; a2; . . . ; ang (e.g.,
passwords, postal address, IP address, computer name). In
other words, the entire Cp � Ca (Consumer’s Primary
Identity-Credentials’ Attributes) Matrix, denoted as IM,
covers all users who registered their credentials in TMS.
The credential attribute value for a particular consumer vc;t
is stored in TMS without including credentials with sensi-
tive information using the ZKC2P (see Section 3).

We argue that TMS can identify patterns in users’ anony-
mous credentials. Malicious users can use similar credentials
in different identity records I . Thus, we translate IM to the
Multi-Identity Recognition Matrix, denoted as MIRM, which
similarly covers the entire identity records I represented as
the entire Cp � Ca matrix. However, the value for a particular
consumer qc;t in the new matrix represents the frequency of
the credential attribute value for the same particular con-
sumer vc;t in the same credential attribute (i.e., attribute at).
The frequency of a particular credential attribute value vc;t,
denoted as qc;t, is calculated as the number of times of
appearance (denoted asAp) that the credential value appears
in the tth credential attribute normalized by the total number
of identity records (i.e., the length of at) as follows:

qc;t ¼
Pc¼m

c¼1 Apðvc;tÞ
� �
jatj

; (5)

Then, the Multi-Identity Recognition factor Mid is calculated
as the sum of frequencies of each credential attribute value
for a particular consumer normalized by the total number
of identity record as follows:

MidðcÞ ¼ 1�
Xt¼n

t¼1

qc;t

 !
; (6)

where the sum of qc;t represents the similar credentials dis-
tributed over different identity records I and MidðcÞ repre-
sents the opposite (i.e., at least that the consumer has fairly
unique credentials).

4.2.2 Occasional Sybil Attacks

Malicious users may manipulate trust results to disadvan-
tage particular cloud services by creating multiple accounts
and giving misleading feedbacks in a short period of time
(i.e., Sybil attacks). To overcome the occasional Sybil attacks,
we consider the total number of established identities jIðsÞj
for users who give feedbacks to cloud service s during a
period of time ½t0; t�. The sudden changes in the total num-
ber of established identities indicates a possible occasional
Sybil attack. To detect such behavior, we measure the per-
centage of occasional change in the total number of estab-
lished identities among the whole identity behavior (i.e., all
established identities for users who gave feedback to a par-
ticular cloud service). Similarly, the occasional Sybil attacks
factor Oiðs; t0; tÞ of cloud service s in a period of time ½t0; t�,
is calculated as follows:

Oiðs; t0; tÞ ¼ 1�

R t
t0
jIðs; tÞjdt

� �
�

R t
t0
Diðs; tÞdt

� �
R t
t0
jIðs; tÞj dt

0
@

1
A

where Diðs; tÞ ¼
Cm jIðs; tÞjð Þ if jIðs; tÞj �

Cm jIðs; tÞjð Þ
jIðs; tÞj otherwise:

8><
>:

(7)

4.3 Feedback Credibility

Based on the proposed credibility metrics, TMS dilutes the
influence of those misleading feedbacks by assigning the
credibility aggregated weights Crðc; s; t0; tÞ to each trust

Fig. 2. Occasional attacks detection.

NOOR ET AL.: CLOUDARMOR: SUPPORTING REPUTATION-BASED TRUST MANAGEMENT FOR CLOUD SERVICES 371

feedback as shown in Equation (1). Crðc; s; t0; tÞ is calculated
as follows:

Crðc; s; t0; tÞ ¼
1

�
� r � DðsÞ þ f � Ofðs; t0; tÞ
�

þ V �MidðcÞ þ i � Oiðs; t0; tÞÞ;
(8)

where r and DðsÞ denote the Feedback Density factor’s nor-
malized weight and the factor’s value respectively. f and
Ofðs; t0; tÞ denote the parameter of the occasional feedback
collusion factor and the factor’s value respectively. V
denotes the Multi-identity Recognition normalized weight
and MidðcÞ denotes the factor’s value. i denotes the occa-
sional Sybil attacks’ normalized weight and Oiðs; t0; tÞ
denotes the factor’s value. � represents the number of factors
used to calculate Crðc; s; t0; tÞ. If only feedback density is con-
sidered, �will be 1. If all credibility factors are considered, �
will be 4. All themetrics of the credibilitymodel complement
each other in detecting malicious behaviors and their influ-
ence can be adjusted using the abovementioned parameters.

4.4 Change Rate of Trust Results

To allow TMS to adjust trust results for cloud services that
have been affected by malicious behaviors, we introduce an
additional factor called the change rate of trust results. The
idea behind this factor is to compensate the affected cloud
services by the same percentage of damage in the trust
results. Given Conðs; t0Þ the conventional model (i.e., calcu-
lating the trust results without considering the proposed
approach) for cloud service s in a previous time instance,
Conðs; tÞ the conventional model for the same cloud service
calculated in a more recent time instance, the credibility
aggregated weights Crðc; s; t0; tÞ, and etðsÞ the attacks per-
centage threshold. The change rate of trust results factor
Ctðs; t0; tÞ is calculated as follows:

Ctðs; t0; tÞ ¼

Conðs;t0Þ
Conðs;tÞ þ 1 if Conðs; tÞ < Conðs; t0Þ

and
1� Crðc; s; t0; tÞ � etðsÞ

0 otherwise;

8>>>><
>>>>:

(9)

where Conðs;t0Þ
Conðs;tÞ represents the change rate of trust results for

cloud service s during a period of time ½t0; t�. The idea
behind adding 1 to this ratio is to increase the trust result
for the affected cloud services. The change rate of trust
results will only be used if the conventional model in the
more recent time instance is less than the conventional
model in the previous time instance and the attacks percent-
age during the same period of time ½t0; t� (i.e., 1� Cr
ðc; s; t0; tÞ) is larger or equal to the attacks percentage thresh-
old. For instance, if the conventional model in the current
time for cloud service a is less than the conventional model
10 days ago, a will not be rewarded because the attacks per-
centage is less than the attacks percentage threshold (e.g.,
1� Crðc; a; t0; tÞ ¼ 20% and etðaÞ ¼ 30%).

The change rate of trust results is designed to limit the
rewards to cloud services that are affected by slandering
attacks (i.e., cloud services that have decreased trust results)
because TMS can dilute the increased trust results from self-
promoting attacks using the credibility factors (i.e., Cr

ðc; a; t0; tÞ). The adaptive change rate of trust results factor
can be used to assign different weights using x the normal-
ized weight factor as shown in Equation (1).

5 THE AVAILABILITY MODEL

Guaranteeing the availability of the trust management ser-
vice is a significant challenge due to the unpredictable num-
ber of invocation requests that TMS has to handle at a time,
as well as the dynamic nature of the cloud environments. In
CloudArmor, we propose an availability model, which
considers several factors including the operational power to
allow TMS nodes to share the workload and replication deter-
mination to minimize the failure of a node hosting TMS
instance. These factors are used to spread several distrib-
uted TMS nodes to manage trust feedbacks given by users
in a decentralized way.

5.1 Operational Power

In our approach, we propose to spread TMS nodes over var-
ious clouds and dynamically direct requests to the appro-
priate TMS node (e.g., with lower workload), so that its
desired availability level can be always maintained. It is cru-
cial to develop a mechanism that helps determine the opti-
mal number of TMS nodes because more nodes residing at
various clouds means higher overhead (e.g., cost and
resource consumption such as bandwidth and storage
space) while lower number of nodes means less availability.
To exploit the load balancing technique, we propose that
each node hosting a TMS instance reports its operational
power. The operational power factor compares the work-
load for a particular TMS node with the average workload
of all TMS nodes. The operational power for a particular
TMS node, OpðstmsÞ, is calculated as the mean of the euclid-
ean distance (i.e., to measure the distance between a particu-
lar TMS node workload and the mean of the workload of all
TMS nodes) and the TMS node workload (i.e., the percent-
age of trust feedbacks handled by this node) as follows:

OpðstmsÞ ¼
1

2
�

ffi
VðstmsÞ
VðalltmsÞ

� VðmeantmsÞ
VðalltmsÞ

� �2
s0

@
þ VðstmsÞ

VðalltmsÞ

�
;

(10)

where the first part of the equation represents the euclidean
distance between the workload of node stms and the average
workload of all nodes where VðmeantmsÞ denotes the mean
of feedbacks handled by all nodes. The second part of the
equation represents the ratio of feedbacks handled by a par-
ticular node VðstmsÞ over the total number of feedbacks han-
dled by all nodes VðalltmsÞ.

Based on the operational power factor, TMS uses the
workload threshold ewðstmsÞ to automatically adjust the
number of nodes N tms that host TMS instances by creating
extra instances to maintain a desired workload for each TMS
node. The number of nodesN tms is adjusted as follows:

N tms ¼
N tms þ 1 if OpðstmsÞ � ewðstmsÞ

or N tms < 1
N tms otherwise:

8<
: (11)

372 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

5.2 Replication Determination

In CloudArmor, we propose to exploit replication techni-
ques to minimize the possibility of the crashing of a node
hosting a TMS instance (e.g., overload) to ensure that users
can give trust feedbacks or request a trust assessment for
cloud services. Replication allows TMS instance to recover
any lost data during the down time from its replica. In par-
ticular, we propose a particle filtering approach to precisely
predict the availability of each node hosting a TMS instance
which then will be used to determine the optimal number
of the TMS instance’s replicas. To predict the availability of
each node, we model the TMS instance as an instantaneous
(or point) availability.

To predict the availability of each node, TMS instance’s
availability is modeled using the point availability model
[26]. The point availability probability is denoted as

Aðstms; tÞ ¼ 1� F ðtÞ þ
Z t

0

mðxÞð1� F ðt� xÞÞdx (12)

where 1� F ðtÞ denotes the probability of no failure in
ð0; t�, mðxÞdx denotes the probability that any renewal
points in interval ðx; xþ dx�, and 1� F ðt� xÞ represents
the probability that no further failure occurs in ðx; t�. This
availability function is a function of the time parameter
and can be estimated for different time points. In our
work, the failure free density follows the exponential dis-
tribution and the renewal density function follows the

exponential distribution in time domain, fðtÞ ¼ �e��t,
and mðtÞ ¼ me�mt. It is not easy to observe the pattern of
Aðstms; tÞ. We therefore conduct the Laplace transform of
Equation (12) as below

Aðstms; sÞ ¼
1� fðsÞ

sð1� fðsÞmðsÞÞ ¼
sþ m

sðsþ mþ �Þ (13)

where fðsÞ and mðsÞ are the Laplace transforms of the fail-
ure-free and renewal density functions. Equation (13) in
time domain can be obtained using

Aðstms; tÞ ¼ 1� �

m
ð1� e�mtÞ: (14)

For more technical details, interested readers can refer
to [26].

To this point, we can model the TMS instance’s availabil-
ity prediction problem via defining the state function and
measurement function respectively by using

zðtþ 1Þ ¼ Aðstms; tÞ þ �z

yðtþ 1Þ ¼ zðtþ 1Þ þ �y

where �z �Nð0; s2
zÞ; �y � Nð0; s2

yÞ:
(15)

We use the particle filtering technique to estimate and
track the availability. A particle filter is a probabilistic
approximation algorithm implementing a Bayes filter and
a sequential Monte Carlo method [27]. It maintains a
probability distribution for the estimated availability at
time t, representing the belief of the TMS instance’s avail-
ability at that time.

We initialize a uniformly distributed sample set repre-
senting TMS instance’s availability state. We assign each

sample a same weight w. When the availability changes, the
particle filter will calculate next availability by adjusting and
normalizing each sample’s weight. These samples’ weights
are proportional to the observation likelihood pðyjzÞ. The
particle filters randomly draw samples from the current sam-
ple set whose probability can be given by the weights. Then
we can apply the particle filters to estimate the possible next
availability state for each new particle. The prediction and
update steps will keep going until convergence.

We calculate the weight distribution by considering
the bias resulted from the routing information between
users and TMS instances (e.g., routing-hops between the
user and the instances or whether user and TMS instan-
ces are in the same IP address segment). The Sequential
Importance Sampling (SIS) algorithm consists of recursive
propagation of the weights and support points as each
measurement is received sequentially. To tackle the
degeneracy problem, we adopt a more advanced algo-
rithm with resampling [28]. It has less time complexity
and minimizes the Monte-Carlo variation. The overall
particle filtering based estimation methodology is sum-
marized in Algorithm 1.

Algorithm 1. Particle Filtering based Algorithm

1. Initialization: compute the weight distribution DwðAðstmsÞÞ
according to prior knowledge on replicas, e.g., the IP address
of server hosting replicas etc.
2. Generation: generate the particle set and assign the particle
set containing N particles

� generate initial particle set P0 which has N particles,
P0 ¼ ðp0;0; p0;1; :::p0;N�1Þ and distribute them in a uni-

form distribution in the initial stage. Particle
p0;k ¼ ðAðstmsÞ0;k; weight0;kÞ

� assign weight to the particles according to our weight
distribution DwðAðstmsÞÞ.

3. Resampling:
� Resample N particles from the particle set from a

particle set Pt using weights of each particles.
� generate new particle set Ptþ1 and assign weight

according to DwðAðstmsÞÞ
4. Estimation: predict new availability of the particle set Pt

based on availability function Aðstms; tÞ.
5. Update:

� recalculate the weight of Pt based on measurement

m, wt;k ¼
Q
ðDwðAðstmsÞt;kÞÞð 1ffiffiffiffi

2p
p

sy
Þexpð� dAðstmsÞ2t;k

2s2y
Þ,

where dA ðstmsÞk ¼ mAðstmsÞ � AðstmsÞt;k
� calculate current availability by mean value of pt

ðAðstmsÞtÞ
6. Go to step 3 and iteration until convergence

Based on the predicted availability of the TMS instance
Aðstms; tÞ, the availability threshold denoted as ea that
ranges from 0 to 1 and the total number of stms replicas
denoted r are calculated. The desired goal of the replication
is to ensure that at least one replica is available, represented
in the following formula:

eaðstmsÞ < Aðstms; tÞrðstmsÞ; (16)

NOOR ET AL.: CLOUDARMOR: SUPPORTING REPUTATION-BASED TRUST MANAGEMENT FOR CLOUD SERVICES 373

where Aðstms; tÞrðstmsÞ represents the probability of at least
one TMS instance’s replica is available. As a result, the
optimal number of TMS instance’s replicas can be calcu-
lated as follows:

rðstmsÞ > logAðstms;tÞðeaðstmsÞÞ (17)

5.3 Trust Result Caching

Due to the fact that several credibility factors are consid-
ered in CloudArmor when computing the trust result for
a particular cloud service, it would be odd if the TMS
instance retrieves all trust feedbacks given to a particular
cloud service and computes the trust result every time it
receives a trust assessment request from a user. Instead
we propose to cache the trust results and the credibility
weights based on the number of new trust feedbacks to
avoid unnecessary trust result computations. The caching
process is controlled by two thresholds: one for users
eCacheðcÞ and one for cloud services eCacheðsÞ. If the TMS
instance receives a trust assessment request from a user,
it should use the trust result in the cache as much as pos-
sible, instead of computing the trust result from scratch.
The TMS instance updates the cache based on the num-
ber of new trust feedbacks (i.e., since the last update)
given by a particular consumer jVcðc; sÞjCache and the
number of new trust feedbacks given to a particular
cloud service jVðsÞjCache. The caching process is briefly
shown in Algorithm 2.

Algorithm 2. Trust Results & Credibility Weights Cach-
ing Algorithm

Input: s,Output: T rðsÞ
Count jVcðc; sÞjCache /*TMS instance counts the total number of
new trust feedbacks given by a particular consumer*/
if jVcðc; sÞjCache � eCacheðcÞ then /*TMS determines whether a
recalculation is required for credibility factors related to the
consumer*/

Compute J ðcÞ; Compute BðcÞ
ComputeMidðcÞ; Compute Crðc; sÞ

end if
Count jVðsÞjCache /*TMS instance counts the total number of
new trust feedbacks given to a particular cloud service*/
if jVðsÞjCache � eCacheðsÞ then /*TMS determines whether a
recalculation is required for credibility factors related to the
cloud service including the trust result*/

Compute DðsÞ; Compute Crðc; sÞ
Compute T rðsÞ

end if

5.4 Instances Management

In CloudArmor, we propose that one TMS instance acts as
the main instance while the rest instances act as normal
instances. The main instance is responsible for the optimal
number of nodes estimation, feedbacks reallocation, trust
result caching (consumer side), availability of each node
prediction, and TMS instance replication. Normal instances
are responsible for trust assessment and feedback storage,
the trust result caching (cloud service side), and frequency
table update. Algorithm 3 shows the brief process on how
TMS instances are managed.

Algorithm 3. Instances Management Algorithm

1. Initialization: tmsidð0Þ computes OpðstmsÞ for all trust man-
agement service nodes if any

2. Generation: tmsidð0Þ estimates N tms and generates addi-
tional trust management service nodes if required

3. Prediction: tmsidð0Þ predicts new availability of all trust
management service nodes Aðstms; tÞ using Algorithm 1

4. Replication: tmsidð0Þ determines rðstmsÞ, and generate repli-
cas for each trust management service node

5. Caching: tmsidð0Þ starts caching trust results (consumer side)
and tmsidðsÞ start caching trust results (cloud service side)
using Algorithm 2

6. Update: All tmsidðsÞ update the frequency table

7. Check Workload 1: tmsidð0Þ checks whether ewðstmsÞ is trig-
gered by any tmsidðsÞ before reallocation
if OpðstmsÞ � ewðstmsÞ and VðstmsÞ � VðmeantmsÞ then

go to next step
else

go to step 3

end if

8. Reallocation:

� tmsidð0Þ asks tmsidðsÞ which triggered ewðstmsÞ to reallo-
cate all trust feedbacks of the cloud service that has the
lowest jVðsÞj to another tmsidðsÞ that has the lowest
VðstmsÞ

� perform step 6

9. Check Workload 2: tmsidð0Þ computes OpðstmsÞ for all trust
management service nodes and checks whether ewðstmsÞ is trig-
gered for any tmsidðsÞ after reallocation
if OpðstmsÞ � ewðstmsÞ and VðstmsÞ � VðmeantmsÞ then

go to step 2
else

go to step 3
end if

Unlike previous work such as [8] where all invocation
history records for a certain client is mapped to a particular
TMS instance (e.g., all feedback given to a certain cloud ser-
vice in our case), in our approach, each TMS instance is
responsible for feedbacks given to a set of cloud services
and updates the frequency table. The frequency table shows
which TMS instance is responsible for which cloud service
and how many feedbacks it has handled. Example 1 illus-
trates how feedbacks can be reallocated from one TMS
instance to a different instance. In this example, there are
three TMS instances and the workload threshold ewðstmsÞ is
set to 50 percent. TMS instance tmsidð1Þ triggers the thresh-
old, therefore according to Algorithm 3, the trust feedbacks
for the cloud service (2) are reallocated to tmsidð2Þ, which
has the lowest feedbacks.

6 IMPLEMENTATION AND EXPERIMENTAL

EVALUATION

In this section, we report the implementation and experi-
mental results in validating the proposed approach. Our
implementation and experiments were developed to vali-
date and study the performance of both the credibility
model and the availability model.

374 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

Example 1: Reallocation (ewðstmsÞ = 50%)

Frequency Table Before Reallocation (Step 1)
(tmsidð1Þ, jVð1Þj: 200, jVð2Þj: 150, jVð3Þj: 195)
(tmsidð2Þ, jVð4Þj: 30, jVð5Þj: 20, jVð6Þj: 45)
(tmsidð3Þ, jVð7Þj: 90, jVð8Þj: 35, jVð9Þj: 95)
Check Workload (Step 2)
(tmsidð1Þ, Opð1tmsÞ: 0.617)
(tmsidð2Þ, Opð2tmsÞ: 0.278)
(tmsidð3Þ, Opð3tmsÞ: 0.205)
Frequency Table After Reallocation (Step 3)
(tmsidð1Þ, jVð1Þj: 200, jVð3Þj: 195)
(tmsidð2Þ, jVð2Þj: 150, jVð4Þj: 30, jVð5Þj: 20, jVð6Þj: 45)
(tmsidð3Þ, jVð7Þj: 90, jVð8Þj: 35, jVð9Þj: 95)

6.1 System Implementation

The trust management service’s implementation is part of our
large research project, named CloudArmor,2 which offers a
platform for reputation-based trust management of cloud
services [9], [29], [30], [31]. The platform provides an environ-
ment where users can give feedback and request trust assess-
ment for a particular cloud service. Specifically, the trust
management service consists of two main components: the
Trust Data Provisioning and the Trust Assessment Function.

The trust data provisioning. This component is responsible
for collecting cloud services and trust information. We
developed the Cloud Services Crawler module based on the
Open Source web Crawler for Java (crawler4j3) and
extended it to allow the platform to automatically discover
cloud services on the Internet. We implemented a set of
functionalities to simplify the crawling process and made
the crawled data more comprehensive (e.g., addSeeds(),
selectCrawlingDomain(), addCrawlingTime()). In
addition, we developed the Trust Feedbacks Collector module
to collect feedbacks directly from users in the form of his-
tory records and stored them in the Trust Feedbacks Database.
Indeed, users typically have to establish their identities for
the first time they attempt to use the platform through regis-
tering their credentials at the Identity Management Service
which stores the credentials in the Trust Identity Registry.
Moreover, we developed the Identity Info Collector module
to collect the total number of established identities among
the whole identity behavior (i.e., all established identities
for users who gave feedbacks to a particular cloud service).

The trust assessment function. This function is responsible
for handling trust assessment requests from users where
the trustworthiness of cloud services are compared and the
factors of trust feedbacks are calculated (i.e., the credibility
factors). We developed the Factors Calculator for attacks
detection based on a set of factors (more details on how the
credibility factors are calculated can be found in Section 4).
Moreover, we developed the Trust Assessor to compare the
trustworthiness of cloud services through requesting the
aggregated factors weights from the Factors Calculator to
weigh feedbacks and then calculate the mean of all feed-
backs given to each cloud service. The trust results for each
cloud service and the factors’ weights for trust feedbacks
are stored in the Trust Results and Factors Weights Storage.

6.2 Experimental Evaluation

We particularly focused on validating and studying the
robustness of the proposed credibility model against differ-
ent malicious behaviors, namely collusion and Sybil attacks
under several behaviors, as well as the performance of our
availability model.

6.3 Credibility Model Experiments

We tested our credibility model using real-world trust feed-
backs on cloud services. In particular, we crawled several
review websites such as cloud-computing.findtheb-

est.com, cloudstorageprovidersreviews.com, and
CloudHostingReviewer.com, and where users give
their feedbacks on cloud services that they have used. The
collected data is represented in a tuple H where the feed-
back represents several QoS parameters as mentioned ear-
lier in Section 3.2 and augmented with a set of credentials
for each corresponding consumer. We managed to collect
10,076 feedbacks given by 6,982 users to 113 real-world
cloud services. The collected dataset has been released to
the research community via the project website.

For experimental purposes, the collected data was
divided into six groups of cloud services, three of which
were used to validate the credibility model against collusion
attacks, and the other three groups were used to validate the
model against Sybil attacks where each group consists of
100 users. Each cloud service group was used to represent a
different attacking behavior model, namely: Waves, Uniform
and Peaks as shown in Fig. 3. The behavior models represent
the total number of malicious feedbacks introduced in a par-
ticular time instance (e.g., jVðsÞj ¼ 60 malicious feedbacks
when T f ¼ 40, Fig. 3a) when experimenting against collu-
sion attacks. The behavior models also represent the total
number of identities established by attackers in a period of
time (e.g., jIðsÞj ¼ 78 malicious identities when T i ¼ 20,
Fig. 3c) where one malicious feedback is introduced per
identity when experimenting against Sybil attacks. In collu-
sion attacks, we simulated malicious feedback to increase
trust results of cloud services (i.e., self-promoting attack)
while in Sybil attacks we simulated malicious feedback to
decrease trust results (i.e., slandering attack). To evaluate
the robustness of our credibility model with respect to

Fig. 3. Attacking behavior models.

2. http://cs.adelaide.edu.au/�cloudarmor
3. http://code.google.com/p/crawler4j/

NOOR ET AL.: CLOUDARMOR: SUPPORTING REPUTATION-BASED TRUST MANAGEMENT FOR CLOUD SERVICES 375

malicious behaviors (i.e., collusion and Sybil attacks), we
used two experimental settings: I) measuring the robustness
of the credibility model with a conventional model
Conðs; t0; tÞ (i.e., turning Crðc; s; t0; tÞ to 1 for all trust feed-
backs), and II) measuring the performance of our model
using two measures namely precision (i.e., howwell TMS did
in detecting attacks) and recall (i.e., how many detected
attacks are actual attacks). In our experiments, TMS started
rewarding cloud services that had been affected bymalicious
behaviors when the attacks percentage reached 25 percent
(i.e., etðsÞ ¼ 25%), so the rewarding process would occur
only when there was a significant damage in the trust result.

We conducted 12 experiments where six of which were
conducted to evaluate the robustness of our credibility
model against collusion attacks and the rest for Sybil
attacks. Each experiment is denoted by a letter from A to F,
as shown in Table 1.

6.3.1 Robustness Against Collusion Attacks

For the collusion attacks, we simulated malicious users to
increase trust results of cloud services (i.e., self-promoting
attack) by giving feedback with the range of [0.8, 1.0]. Fig. 4
depicts the analysis of six experiments which were con-
ducted to evaluate the robustness of our model with respect
to collusion attacks. In Figs. 4A, 4B, and 4C show the trust
result for experimental setting I, while A0, B0, and C0 depict
the results for experimental setting II.

We note that the closer to 100 the time instance is, the
higher the trust results are when when the trust is calculated
using the conventional model. This happens because mali-
cious users are giving misleading feedback to increase the
trust result for the cloud service. On the other hand, the trust
results show nearly no change when calculated using the
proposed credibility model (Figs. 4A, 4B, and 4C). This
demonstrates that our credibility model is sensitive to collu-
sion attacks and is able to detect such malicious behaviors.
In addition, we can make an interesting observation that our
credibility model gives the best results in precision when
the Uniform behavior model is used (i.e., 0.51, see Fig. 4B0),
while the highest recall score is recorded when the Waves
behavior model is used (i.e., merely 0.9, see Fig. 4A0). Over-
all, recall scores are fairly high when all behavior models are
used which indicate that most of the detected attacks are
actual attacks. This means that our model can successfully
detect collusion attacks (i.e., whether the attack is strategic
such as inWaves and Uniform behavior models or occasional
such as in the Peaks behavior model) and TMS is able to
dilute the increased trust results from self-promoting attacks
using the proposed credibility factors.

6.3.2 Robustness Against Sybil Attacks

For the Sybil attacks experiments, we simulated malicious
users to decrease trust results of cloud services (i.e., slander-
ing attack) by establishing multiple identities and giving
one malicious feedback with the range of [0, 0.2] per iden-
tity. Fig. 5 depicts the analysis of six experiments which
were conducted to evaluate the robustness of our model
with respect to Sybil attacks. In Figs. 5D, 5E, and 5F show
the trust results for experimental setting I, while D0, E0, and
F 0 depict the results for experimental setting II.

From Fig. 5, we can observe that trust results obtained by
using the conventional model decrease when the time
instance becomes closer to 100. This is because of malicious
users who are giving misleading feedback to decrease the
trust result for the cloud service. On the other hand, trust
results obtained by using our proposed credibility model
are higher than the ones obtained by using the conventional
model (Figs. 5D, 5E, and 5F). This is because the cloud ser-
vice was rewarded when the attacks occurred. We also can
see some sharp drops in trust results obtained by consider-
ing our credibility model where the highest number of
drops is recorded when the Peaks behavior model is used
(i.e., we can see 5 drops in Fig. 5F which actually matches
the drops in the Peaks behavior model in Fig. 3c). This hap-
pens because TMS will only reward the affected cloud serv-
ices if the percentage of attacks during the same period of
time has reached the threshold (i.e., which is set to 25 per-
cent in this case). This means that TMS has rewarded the
affected cloud service using the change rate of trust results
factor. Moreover, from Figs. 5D0, 5E0, and 5F 0, we can see
that our credibility model gives the best results in precision

TABLE 1
Behavior Experimental Design

Malicious
Behaviors

Experimental
Setting

Waves Uniform Peaks

Collusion I A B C
Attacks II A0 B0 C0

Sybil I D E F
Attacks II D0 E0 F 0

Fig. 4. Robustness against collusion attacks.

376 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

when the Waves behavior model is used (i.e., 0.47, see
Fig. 4D0), while the highest recall score is recorded when the
Uniform behavior model is used (i.e., 0.75, see Fig. 4A0). This
indicates that our model can successfully detect Sybil attacks
(i.e., either strategic attacks such as in Waves and Uniform
behavior models or occasional attacks such as in the Peaks
behavior model) and TMS is able to reward the affected
cloud service using the change rate of trust results factor.

6.4 Availability Model Experiments

We tested our availability model using the same dataset we
collected to validate the credibility model. However, for the
availability experiments, we focused on validating the avail-
ability prediction accuracy, trust results caching accuracy,
and reallocation performance of the availability model (i.e., to
validate the three proposed algorithms including Particle Fil-
tering based Algorithm, Trust Results & Credibility Weights
CachingAlgorithm, and InstancesManagementAlgorithm).

6.4.1 Availability Prediction Accuracy

To measure the prediction accuracy of the availability
model, we simulated 500 nodes hosting TMS instances and
set the failure probability for the nodes as 3.5 percent, which
complies with the findings in [32]. The motivation of this
experiment is to study the estimation accuracy of our
approach. We simulated TMS nodes’ availability fluctuation
and tracked their fluctuation of availability for 100 time
steps (each time step counted as an epoch). The actual avail-
ability of TMS nodes and corresponding estimated avail-
ability using our particle filter approach were collected and
compared. Fig. 6a shows the result of one particular TMS

node. From the figure, we can see that the estimated avail-
ability is very close to the actual availability of the TMS
node. This means that our approach works well in tracing
and predicting the availability of TMS nodes.

6.4.2 Trust Results Caching Accuracy

To measure the caching accuracy of the availability model,
we varied the caching threshold to identify the optimal
number of new trust feedbacks that TMS received to recal-
culate the trust result for a particular cloud service without
having a significant error in the trust results. The trust result
caching accuracy is measured by estimating the root-mean-
square error (RMSE) (denoted caching error) of the esti-
mated trust result and the actual trust result of a particular
cloud service. The lower the RMSE value means the higher
accuracy in the trust result caching. Fig. 6b shows the trust
result caching accuracy of one particular cloud service.
From the figure, we can see that the caching error increases
almost linearly when the caching threshold increases. The
results allow us to choose the optimal caching threshold
based on an acceptable caching error rate. For example, if
10 percent is an acceptable error margin, the caching thresh-
old can be set to 50 feedbacks. It is worth mentioning that
the caching error was measured on real users’ feedbacks on
real-world cloud services.

6.4.3 Reallocation Performance

To validate the reallocation performance of the availability
model, we used two experimental settings: I) comparing the
number of TMS nodes when using the reallocation of trust
feedbacks and without reallocation while increasing the
number of feedbacks (i.e., when the workload threshold
ewðstmsÞ ¼ 25%); II) comparing the number of TMS nodes
when using the reallocation of trust feedbacks and without
reallocation while varying ewðstms). The lower the number
of TMS nodes, the more cost efficient TMS is. Fig. 7a shows
the results of experimental settings I. We can observe that
the total number of TMS nodes when using the reallocation

Fig. 5. Robustness against sybil attacks.

Fig. 6. Availability prediction and caching accuracy.

Fig. 7. Reallocation performance.

NOOR ET AL.: CLOUDARMOR: SUPPORTING REPUTATION-BASED TRUST MANAGEMENT FOR CLOUD SERVICES 377

of trust feedbacks technique is fairly low and more stable
than the total number of TMS nodes when reallocation is
not used (i.e., even when the total number of feedbacks is
high). Fig. 7b shows the results of experimental settings II.
From the figure, we can see that the higher the workload
threshold the lower the number of TMS nodes. However,
the number of TMS nodes when using the reallocation of
trust feedbacks technique is lower than the number of TMS
nodes when reallocation is not considered. This means that
our approach has advantages in minimizing the bandwidth
cost by reducing the total number of TMS nodes.

7 RELATED WORK

Over the past few years, trust management has been a hot
topic in the area of cloud computing [10], [14], [33]. Some of
the research efforts use policy-based trust management
techniques. For example, Ko et al. [34] propose TrustCloud
framework for accountability and trust in cloud computing.
In particular, TrustCloud consists of five layers including
workflow, data, system, policies and laws, and regulations
layers to address accountability in the cloud environment.
All of these layers maintain the cloud accountability life
cycle which consists of seven phases including policy plan-
ning, sense and trace, logging, safe-keeping of logs, report-
ing and replaying, auditing, and optimizing and rectifying.
Brandic et al. [7] propose a novel approach for compliance
management in cloud environments to establish trust
between different parties. The approach is developed using
a centralized architecture and uses compliant management
technique to establish trust between cloud service users and
cloud service providers. Unlike previous works that use
policy-based trust management techniques, we assess the
trustworthiness of a cloud service using reputation-based
trust management techniques. Reputation represents a high
influence that cloud service users have over the trust man-
agement system [35], especially that the opinions of the vari-
ous cloud service users can dramatically influence the
reputation of a cloud service either positively or negatively.

Some research efforts also consider the reputation-based
trust management techniques. For instance, Habib et al. [6]
propose a multi-faceted trust management (TM) system
architecture for cloud computing to help the cloud service
users to identify trustworthy cloud service providers. In par-
ticular, the architecture models uncertainty of trust informa-
tion collected from multiple sources using a set of quality of
service attributes such as security, latency, availability, and
customer support. The architecture combines two different
trust management techniques including reputation and
recommendation where operators (e.g., AND, OR, and
FUSION) are used. Hwang and Li [4] propose a security
aware cloud architecture that assesses the trust for both
cloud service providers and cloud service users. To assess
the trustworthiness of cloud service providers, the authors
propose the trust negotiation approach and the data coloring
(integration) using fuzzy logic techniques. To assess the
trustworthiness of cloud service users, they develop the
Distributed-Hash-Table (DHT)-based trust-overlay net-
works among several data centers to deploy a reputation-
based trust management technique. Unlike previous works
which do not consider the problem of unpredictable

reputation attacks against cloud services, we present a credi-
bility model that not only detects the misleading trust feed-
backs from collusion and Sybil attacks, but also has the
ability to adaptively adjust the trust results for cloud serv-
ices that have been affected bymalicious behaviors.

8 CONCLUSION

Given the highly dynamic, distributed, and non-transparent
nature of cloud services, managing and establishing trust
between cloud service users and cloud services remains a
significant challenge. Cloud service users’ feedback is a
good source to assess the overall trustworthiness of
cloud services. However, malicious users may collaborate
together to i) disadvantage a cloud service by giving multi-
ple misleading trust feedbacks (i.e., collusion attacks) or ii)
trick users into trusting cloud services that are not trustwor-
thy by creating several accounts and giving misleading trust
feedbacks (i.e., Sybil attacks). In this paper, we have pre-
sented novel techniques that help in detecting reputation-
based attacks and allowing users to effectively identify
trustworthy cloud services. In particular, we introduce a
credibility model that not only identifies misleading trust
feedbacks from collusion attacks but also detects Sybil
attacks no matter these attacks take place in a long or short
period of time (i.e., strategic or occasional attacks respec-
tively). We also develop an availability model that main-
tains the trust management service at a desired level. We
have collected a large number of consumer’s trust feedbacks
given on real-world cloud services (i.e., over 10,000 records)
to evaluate our proposed techniques. The experimental
results demonstrate the applicability of our approach and
show the capability of detecting such malicious behaviors.

There are a few directions for our future work. We plan

to combine different trust management techniques such as
reputation and recommendation to increase the trust results

accuracy. Performance optimization of the trust manage-

ment service is another focus of our future research work.

ACKNOWLEDGMENTS

Talal H. Noor’s work was supported by King Abdullah’s
Postgraduate Scholarships, the Ministry of Higher Educa-
tion: Kingdom of Saudi Arabia. Quan Z. Sheng’s work has
been partially supported by Australian Research Council
(ARC) Discovery Grant DP140100104 and FT140101247. The
authors would like to thank the anonymous reviewers for
their valuable feedback on this work. Talal H. Noor is the
corresponding author.

REFERENCES

[1] S. M. Khan and K. W. Hamlen, “Hatman: Intra-cloud trust man-
agement for Hadoop,” in Proc. 5th Int. Conf. Cloud Comput., 2012,
pp. 494–501.

[2] S. Pearson, “Privacy, security and trust in cloud computing,”
in Privacy and Security for Cloud Computing, ser. Computer Com-
munications and Networks. New York, NY, USA: Springer, 2013,
pp. 3–42.

[3] J. Huang and D. M. Nicol, “Trust mechanisms for cloud
computing,” J. Cloud Comput., vol. 2, no. 1, pp. 1–14, 2013.

[4] K. Hwang and D. Li, “Trusted cloud computing with secure
resources and data coloring,” IEEE Internet Comput., vol. 14, no. 5,
pp. 14–22, Sep./Oct. 2010.

378 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “A view of cloud computing,” Commun. ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[6] S. Habib, S. Ries, and M. Muhlhauser, “Towards a trust manage-
ment system for cloud computing,” in Proc. 10th Int. Conf. Trust,
Security Privacy Comput. Commun., 2011, pp. 933–939.

[7] I. Brandic, S. Dustdar, T. Anstett, D. Schumm, F. Leymann, and R.
Konrad, “Compliant cloud computing (C3): Architecture and lan-
guage support for user-driven compliance management in
clouds,” in Proc. 3rd Int. Conf. Cloud Comput., 2010, pp. 244–251.

[8] W. Conner, A. Iyengar, T. Mikalsen, I. Rouvellou, and K.
Nahrstedt, “A trust management framework for service-oriented
environments,” in Proc. 18th Int. Conf. World Wide Web, 2009,
pp. 891–900.

[9] T. H. Noor, Q. Z. Sheng, and A. Alfazi, “Reputation attacks
detection for effective trust assessment of cloud services,” in Proc.
12th Int. Conf. Trust, Security Privacy Comput. Commun., 2013,
pp. 469–476.

[10] T. H. Noor, Q. Z. Sheng, S. Zeadally, and J. Yu, “Trust manage-
ment of services in cloud environments: Obstacles and solutions,”
ACM Comput. Surv., vol. 46, no. 1, pp. 12:1–12:30, 2013.

[11] S. Pearson and A. Benameur, “Privacy, security and trust issues
arising from cloud computing,” in Proc. 2nd Int. Conf. Cloud
Comput., 2010, pp. 693–702.

[12] E. Bertino, F. Paci, R. Ferrini, and N. Shang, “Privacy-preserving
digital identity management for cloud computing,” IEEE Data
Eng. Bull, vol. 32, no. 1, pp. 21–27, Mar. 2009.

[13] E. Friedman, P. Resnick, and R. Sami, “Manipulation-resistant
reputation systems,” in Algorithmic Game Theory. New York, USA:
Cambridge Univ. Press, 2007, pp. 677–697.

[14] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Comput., vol. 16, no. 1, pp. 69–73, Jan./Feb.
2012.

[15] F. Skopik, D. Schall, and S. Dustdar, “Start trusting strangers?
bootstrapping and prediction of trust,” in Proc. 10th Int. Conf. Web
Inf. Syst. Eng., 2009, pp. 275–289.

[16] H. Guo, J. Huai, Y. Li, and T. Deng, “KAF: Kalman filter based
adaptive maintenance for dependability of composite services,”
in Proc. 20th Int. Conf. Adv. Inf. Syst. Eng., 2008, pp. 328–342.

[17] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and
challenges,” in Proc. IEEE 24th Int. Conf. Adv. Inf. Netw. Appl.,
2010, pp. 27–33.

[18] Y. Wei and M. B. Blake, “Service-oriented computing and cloud
computing: Challenges and opportunities,” IEEE Internet Comput.,
vol. 14, no. 6, pp. 72–75, Nov./Dec. 2010.

[19] P. Mell and T. Grance. (2011, Sep.). The NIST definition of
cloud computing [Online]. Available: http://csrc.nist.gov/
publications/drafts/800-145/Draft-SP-800-145_cloud-definition.
pdf

[20] O. David and C. Jaquet. (2009, Jun.). Trust and identification in the
light of virtual persons pp. 1–103 [Online]. Available: http://
www.fidis.net/resources/deliverables/identity-of-identity/

[21] B. Fung, K. Wang, R. Chen, and P. Yu, “Privacy-preserving data
publishing: A survey of recent developments,” ACM Comput.
Surv., vol. 42, no. 4, pp. 1–53, 2010.

[22] J. R. Douceur, “The sybil attack,” in Proc. Revised Papers 1st Int.
Workshop Peer-to-Peer Syst., 2002, pp. 251–260.

[23] S. Ba and P. Pavlou, “Evidence of the effect of trust building tech-
nology in electronic markets: Price premiums and buyer behav-
ior,”MIS Quart., vol. 26, no. 3, pp. 243–268, 2002.

[24] K. Lai, M. Feldman, I. Stoica, and J. Chuang, “Incentives for coop-
eration in peer-to-peer networks,” in Proc. 1st Workshop Economics
Peer-to-Peer Syst., 2003, pp. 631–660.

[25] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based trust
for peer-to-peer electronic communities,” IEEE Trans. Knowl. Data
Eng., vol. 16, no. 7, pp. 843–857, Jul. 2004.

[26] A. Birolini, Reliability Engineering: Theory and Practice. New York,
NY, USA: Springer, 2010.

[27] L. Yao and Q. Z. Sheng, “Particle filtering based availability pre-
diction for web services,” in Proc. 9th Int. Conf. Service-Oriented
Comput., 2011, pp. 566–573.

[28] S. Maskell and N. Gordon, “A tutorial on particle filters for on-line
nonlinear/non-gaussian Bayesian tracking,” in Proc. Target Track-
ing: Algorithms Appl. (Ref. No. 2001/174), 2001, pp. 2/1–2/15.

[29] T. H. Noor and Q. Z. Sheng, “Trust as a service: A framework for
trust management in cloud environments,” in Proc. 12th Int. Conf.
Web Inf. Syst. Eng., 2011, pp. 314–321.

[30] T. H. Noor, Q. Z. Sheng, A. H. Ngu, A. Alfazi, and J. Law,
“CloudArmor: A platform for credibility-based trust management
of cloud services,” in Proc. 22nd ACM Conf. Inf. Knowl. Manage.,
2013, pp. 2509–2512.

[31] T. Noor and Q. Z. Sheng, “Credibility-based trust management
for services in cloud environments,” in Proc. 9th Int. Conf. Service-
Oriented Comput., 2011, pp. 328–343.

[32] S. M. Kim and M.-C. Rosu, “A survey of public web services,”
in Proc. Int. Conf. World Wide Web Alternate Track Papers Posters,
2004, pp. 312–313.

[33] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and
defense techniques for reputation systems,” ACM Comput. Surv.,
vol. 42, no. 1, pp. 1–31, 2009.

[34] R. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg,
L. Qianhui, and L. B. Sung, “TrustCloud: A framework for
accountability and trust in cloud computing,” in Proc. IEEE World
Congr. Services, 2011, pp. 584–588.

[35] C. Dellarocas, “The digitization of word of mouth: Promise and
challenges of online feedback mechanisms,” Manage. Sci., vol. 49,
no. 10, pp. 1407–1424, 2003.

Talal H. Noor received the PhD degree in
computer science from the University of Ade-
laide, Australia. He is an assistant professor at
the College of Computer Science and Engineer-
ing, Taibah University, Yanbu, Saudi Arabia. His
research interests include cloud computing,
service-oriented computing, security and privacy,
and trust management.

Quan Z. Sheng received the BE degree from
Beihang University, and the PhD degree in com-
puter science from the University of New South
Wales. He is an associate professor and head of
the Advanced Web Technologies Group, School
of Computer Science, University of Adelaide. His
research interests include web technologies,
distributed computing, web of things, big data
analytics, and pervasive computing. He received
the ARC Future Fellowship in 2014, Chris
Wallace Award for Outstanding Research Contri-

bution in 2012, and Microsoft Research Fellowship in 2003. He is the
author of more than 190 publications. He is a member of the IEEE.

Lina Yao received the BE degree from
Shandong University. She received the PhD and
MSc degrees, both in computer science, from the
University of Adelaide. She is currently a PostDoc
and an associate lecturer at the School of
Computer Science, University of Adelaide. Her
research interests include web mining, internet of
things, ubiquitous computing, and service ori-
ented computing. She is a member of the IEEE.

NOOR ET AL.: CLOUDARMOR: SUPPORTING REPUTATION-BASED TRUST MANAGEMENT FOR CLOUD SERVICES 379

Schahram Dustdar is a full professor of
computer science (Informatics) with a focus on
internet technologies heading the Distributed
Systems Group, Vienna University of Technol-
ogy. He is a member of the Academia Europaea:
The Academy of Europe, Informatics Section
(since 2013). He received the ACM Distinguished
Scientist Award (2009) and the IBM Faculty
Award (2012). He is an associate editor of IEEE
Transactions on Services Computing, ACM
Transactions on the Web, and ACM Transactions

on Internet Technology and on the editorial board of IEEE Internet Com-
puting. He is the editor-in-chief of Computing (an SCI-ranked journal of
Springer). He is a senior member of the IEEE.

Anne H.H. Ngu is currently a full professor with
the Department of Computer Science, Texas
State University-San Marcos. From 1992 to
2000, she worked as a senior lecturer in the
School of Computer Science and Engineering,
University of New South Wales (UNSW),
Australia. She has held research scientist posi-
tions with Telecordia Technologies and Micro-
electonics and Computer Technology (MCC).
She was a summer faculty scholar at Lawrence
Livermore National Laboratory from 2003 to

2006. Her main research interests are in large-scale discovery and inte-
gration of information services, scientific and business process automa-
tion, agent systems and Internet of Things.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

380 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

