Trustworthy Parking Communities: Helping Your Neighbor to Find a Space

Julian Timpner, Student Member, IEEE, Dominik Schurmann, € Student Member, IEEE, and Lars Wolf, Member, IEEE

IEEE Transactions on Dependable and Secure Computing, vol. 13, no. 1, 2016, pp. 120-132.

Presenter: Xuchao Zhang, Lijing Wang 2/2/2017

Outline

- Introduction
- Related Work
- Parking Community Concept
- Attack Scenarios
- Implementation
- Discussion
- Simulation
- Conclusion

Motivation

Drive back Home

Find a parking lot is extremely hard in city

Trustworthy Parking Communities: Helping to find a parking space

Related Work

- Vehicular Network Fundamentals
 - > ECC cryptographic fundamentals
 - ECIES (Elliptic Curve Integrated Encryption Scheme) ECC variant using asynchronous communication
- Self-organizing Trust Models
 - Entity Oriented modeling the trustworthiness of nodes only
 - > Data Oriented modeling the trustworthiness of data only

Drawback: Only ephemeral trust in data, no long-term trust relationships between nodes

> Hybrid Models – model trustworthiness of nodes, use the result to evaluate the data

Contribution: First work of hybrid trust model with inherently trusted nodes and no additional infrastructure support

Related Work(cont.)

- Key Management
 - > PKI (Public Key Infrastructure) key generated by nodes; verified by additional CAs
 - Identity-based cryptography (IBC) key pairs are generated and stored by a central trusted authority.

Tradeoff: PKI achieves a limited form of anonymity, while IBC has advantage of binding keys to identifies without certificates.

Parking Community: Operate on a more abstract level and can choose most appropriate choice per use case.

- Creating a Community
- > A community is defined by the tuple

$$egin{aligned} c &= \langle \langle pk, sk
angle, au, \sigma
angle, ext{with} \ & au : \mathcal{A}
ightarrow \mathcal{ID}, \ & \sigma : ID_c
ightarrow \{r, s\}. \end{aligned}$$

Encoding pk_c directly as a vehicle's community ID, id_c .

(a) Collecting IDs via neighbor discovery with physical verification and establishing a trust anchor

- Querying
 - Scenario: When driving back home, previously collected IDs for A_h will be queried.
 - Cryptographically signed with h's private key sk_h.

(b) Encrypted and signed query/response for a free spot via geocast

- Response
 - ➤ Each vehicle v with $id_v \in ID_h$ that is located in A_h (includes id_1, id_2, id_4) can decrypt the query
 - The response consists of an estimate e

 $e = \begin{cases} 1 & \text{if a space is available} \\ -1 & \text{if no space is available.} \end{cases}$

Estimate: use on-board sensor system

Encrypt responses using the source ID src of the message.

(b) Encrypted and signed query/response for a free spot via geocast

- Rating
 - For each community vehicle v, the originator keeps a count of correct and incorrect estimates: r_v and s_v
 - Reputation rating

$$\begin{aligned} \operatorname{Rep}_{v}(r_{v},s_{v}) &= E(\varphi(p|r_{v},s_{v})) \\ &= \frac{r_{v}+1}{r_{v}+s_{v}+2}, \end{aligned} \qquad \begin{array}{l} \text{Beta Reputation Function:} \\ \varphi(p|r,s) &= \frac{\Gamma(r+s+2)}{\Gamma(r+1)\Gamma(s+1)} p^{r}(1-p)^{s} \end{aligned}$$

Likelihood of a free parking spot

$$\omega = \frac{\sum_{i}^{n} (Rep_{i}(r_{i}, s_{i}) \cdot e_{i})}{n}$$

Threshold:
$$\omega_{thresh}=0$$

- Prioritization
- Receiving vehicles can prioritize incoming queries based on the reputation rating of the originator.
- Vehicles receiving a query will typically favor community members over non-member requests to save resources, e.g., computing power.

No reputation rating for non-members, so lowest priority.

- Robustness
- Problem: If vehicle density is sparse, there might not be sufficient vehicles in a destination area.
- Non-members are able to respond to the query to increase the robustness of the protocol.
- Signing but not encrypting queries also allows vehicles to query for parking spots in irregularly or newly visited locations.

Sybil attacks become possible!!

Attack Scenarios

- Impersonation
- As message is encrypted, an attacker need to generate a private key corresponding to an existing public key.
- In case of an ECC based protocol, the success probability is 1/2²⁵⁶. So the attack is considered infeasible.
- Sybil Attack
- Propose a trust on first use (TOFU) model to verify the existence of an actual vehicle for each identity used for answering parking spot queries.

In a Sybil attack, the attacker subverts the reputation system of a peer-to-peer network by creating a large number of pseudonymous identities, using them to gain a disproportionately large influence.

Attack Scenarios

- Interception of Parking Spot Availability
- Without being part of the community, intercepted information is of no value for eavesdropping adversaries.
- Denial of Service
- An attacker could try to exhaust available resource of a parking vehicle by querying many many many many times.
- Responders can decide to only answer queries originating from reputable members of their own parking community.

Attack Scenarios

- Location Tracking
- Using a Key Derivation Function (KDF) to change pseudonyms regularly but in a deterministic and reproducible way for members of the parking community.
- > A common secret is shared besides the ID during neighbor discovery.
- The secret as well as the last valid pseudonym ID are input parameters to the KDF for computing the new ID.
- The dedicated pseudonym can be change once per day to provide a mean for anonymity and location privacy.

Implementation

- On top of existing networking stacks, implement a prototype by extending IBR-DTN, to provide integration of:
 - ECDSA and ECIES
 - \circ key management for ECC keys
 - $\circ \quad \text{encoding public keys as IDs} \\$
 - trust rating model
- DTN: delay-tolerant networking
 - \circ ID endpoint identifier (EID)
 - Messages bundles

Implementation

- Crypto libraries
 - Crypto++
- Bundle Security Protocol
 - Signature scheme: ECDSA
 - Encryption scheme: ECIES
 - \circ ~ Only generate one key pair for signing and encrypting
 - \circ $\;$ Advs. only one public key needs to be encoded as an EID, resulting in short EIDs $\;$

Implementation

- Key management
 - Each community's $eid_c \in EID_r$ is derived from its public key pk according to: Ο
 - 0 $eid_c := 'sec: //' \parallel base64url(pk).$
 - base64url() corresponds to URL-safe Base64 encoding; Ο
 - 'sec' is a new URI scheme indicating the SSP consists of the encoded public key instead of the Ο typical node part and optional client/application specific parts
 - An ECC public key is 32b long. Base64 uses four characters to represent 3b, thus the length of n Ο bytes encoded in Base64 is:
 - 0

- $len_{ssp}(n) = \left\lceil \frac{n}{2} \right\rceil \cdot 4.$
- The SSP consumes 44b without the application/client specific part. Ο

Discussion

- A comparison of key and trust management schemes from the literature
 - \circ $\;$ Certificate-based schemes:
 - **PKI** Public Key Infrastructure
 - IBC Identity-Based Cryptography
 - **HIBC** Hierarchical Identity-Based Cryptography
 - Incentive-based schemes: (protect against selfish behavior)
 - Barter-based
 - Credit-based
 - Virtual bank (Bank)
 - Self organizing (SO)
 - Reputation-based

TABLE 1 Comparison of Key and Trust Management Approaches

Property	Parking Com.	Key Management			Credit/Reputation	
		PKI ^a	IBC^b	$HIBC^{c}$	Bank ^d	SO^e
No TTP Required	\checkmark	×	×	×	×	√(setup)
Revocation/Expiry	\checkmark	\checkmark	$\sqrt{(expiry)}$	$\sqrt{(expiry)}$	-	-
Anonymity	_ g	$\sqrt{/\mathbf{x}^f}$	×	$\sqrt{(limited)}$	×	×
Confidentiality	V/X	\checkmark	\checkmark	\checkmark	-	-
Integrity and Authenticity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Forward Secrecy	<i>g</i>	\checkmark	$\sqrt{(limited)}$	$\sqrt{(limited)}$		
No Physical Encounters Required Required Network Connectivity Protocol Complexity	× sparse medium	√ high low	√ medium low	√ medium low	√ medium medium	√ sparse high
No Single Point of Failure	\checkmark	×	×	\checkmark	×	\checkmark
Protects against Impersonation	\checkmark	\checkmark	\checkmark	\checkmark	_	-
Protects against Sybil Attacks	V/X	\checkmark	\checkmark	\checkmark	_	-
Protects against Selfish Behavior	\checkmark	×	×	×	\checkmark	\checkmark

^a PKI schemes with traditional (X.509) or pseudonym certificates [1]

^b IBC schemes: [20]

^c HIBC schemes: [19], [21], [22], [24]

^d Credit schemes, virtual bank: [49], [50], [51]

^e Credit schemes, self organizing: [52]

 $f \checkmark$ (limited): pseudonym certificates [1]; X: X.509 certificates

⁹ Depending on underlying key management

 \sqrt{X} Only true for specific scenarios/proposed protocols

-Not part of this scheme's objectives.

Discussion

- In summary, parking communities:
 - Does not require a security infrastructure to retrieve trust ratings
 - \circ Offers protection against impersonation attacks despite its distributed design
 - \circ Provides trust anchor concept to mitigate Sybil attacks
 - \circ Allows prioritization on require/response messages to protect against selfish behaviour
 - Is a lightweight approach that integrates aspects from the wide range of existing architectures creating a novel approach for highly decentralized scenarios

Simulation

- The ONE Working Day Movement Model
 - \circ $\;$ Helsinki, Finland: area size is 7,000 x 8,500 $\rm m^2$
 - \circ Over 1,000 nodes (regular vehicles), 25% malicious nodes
 - Transmit range: 100m
 - Home zone radii: 300m
- Probability of a free spot in the home zone (the ground truth) is : 0.5
- Probability of malicious nodes lie: $\psi = 0.5$
- Initial reputation rating: 0.5
- Computing a weighted consensus: ω
- Simulating 8 full days
- Repeating 10 times

- After five days, 50% of communities have 2 to 4 members
- Values increase day by day
- Small communities remote/isolated areas
- Large communities densely populated areas (e.g. district A)
- Max community size: 24

Fig. 3. Parking Community sizes.

- From day 3 on, vehicles receive average two responses
- 25% of vehicles received more responses, up to 15
- Max number of responses: 23

Fig. 4. Number of responses received per day.

- Decentralized model
- Computing reputation *Rep(r,s)*
- Continually increases over the time
- Uprated quickly
- Large variance on the last day

- Remains at 0.5 on average, with some outliers
- Malicious nodes arbitrarily lie or tell the truth (with $\psi=0.5$)

(b) Reputation ratings for malicious nodes per day

• $\psi = 0.5$ vs. $\psi = 0.85$

Malicious vehicles can clearly be identified and are downrated significantly from day 2 on.

(b) Reputation ratings for malicious nodes per day

Fig. 6. Reputation for malicious nodes, $\psi = 0.85$.

- Correct decision:
 - A spot is free and $\omega \ge \omega_{thresh} = 0$
 - No spot is available and $\omega < \omega_{thresh} = 0$
- The rate of correct decisions increases over time
- Good values are achieved after only a few days, showing feasibility of the approach

Conclusion

- Parking community:
 - A novel trust management, without reliance on a central TTP for retrieving trust ratings
 - **Trust anchors** enable signed and encrypted request-response communication in disrupted environments
 - Based on high-performance state-of-the-art encryption and signature algorithms, in particular ECC, as well as a well-understood mathematical trust rating model
- Outstandings:
 - Provided protection against impersonation and Sybil attacks utilizing trust anchors and physical verification
 - Implemented in open-source IBR-DTN
 - \circ ~ Compared with existing key and trust management schemes
 - \circ Simulated with the ONE

Thanks!