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Towards Trustworthy Multi-Cloud Services Communities:
A Trust-based Hedonic Coalitional Game
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Abstract—The prominence of cloud computing led to unprecedented proliferation in the number of Web services deployed in cloud
data centers. In parallel, service communities have gained recently increasing interest due to their ability to facilitate discovery,
composition, and resource scaling in large-scale services’ markets. The problem is that traditional community formation models may
work well when all services reside in a single cloud but cannot support a multi-cloud environment. Particularly, these models overlook
having malicious services that misbehave to illegally maximize their benefits and that arises from grouping together services owned by
different providers. Besides, they rely on a centralized architecture whereby a central entity regulates the community formation; which
contradicts with the distributed nature of cloud-based services. In this paper, we propose a three-fold solution that includes: trust
establishment framework that is resilient to collusion attacks that occur to mislead trust results; bootstrapping mechanism that
capitalizes on the endorsement concept in online social networks to assign initial trust values; and trust-based hedonic coalitional
game that enables services to distributively form trustworthy multi-cloud communities. Experiments conducted on a real-life dataset
demonstrate that our model minimizes the number of malicious services compared to three state-of-the-art cloud federations and
service communities models.

Index Terms—Cloud Computing; trust; malicious service; game theory; services community; cloud federation; social network;
bootstrapping.
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1 INTRODUCTION

T HE advent of cloud computing has led to a rapid increase in the
number of Web services that are deployed in cloud data centers.

Practically, cloud providers have tendency to publish their computing
services as Web services to keep up with the industry standards such as
WSDL, SOAP, UDDI, and RESTful Web services [1]. Although this
increase has the advantage of expanding the user’s choice set, it entails
several challenges related to the discovery, composition, and QoS
management issues. In fact, discovering the relevant services among
hundreds or even thousands of services offering the same functionality
becomes a challenging task for cloud users. Similarly, selecting the
appropriate services to participate in composition sequences in the
cloud is becoming of combinatorial complexity. Moreover, the highly
competitive market imposed by the large number of services that
offer various functional/non-functional properties induces a contin-
uous dilemma for service providers between delivering high-quality
services and affording their associated operational costs. On the other
hand, the demands for cloud-based services is expected to increase
in such a way that makes providers’ available resources insufficient
to deal with [2]. This raises the need for providers to reshape
their business strategies in order to upgrade their resource scaling
capabilities. Communities of Web services [3] provide an effective
platform for addressing the aforementioned challenges. The idea is to
group services sharing same domain of interest or functionality into a
set of homogenous clusters. This has the advantages of (1) facilitating
the discovery of services by enhancing their visibility towards users;
(2) reducing the complexity of building composition sequences in
the cloud by localizing the selection process; and (3) improving the
QoS management by overcoming the problem of limited resources;
particularly at the Infrastructure-as-a-Service (IaaS) layer [4].
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1.1 Problem Definition
Several services’ community formation models have been proposed in
the literature [3], [5], [6], [7], [8]. Although these models may work
well when services reside in the same data center, they are unable to
support multi-cloud communities formation. Nonetheless, cooperation
between services from different clouds is often needed. In fact, besides
the aforementioned benefits of the traditional services’ communities,
multi-cloud services’ communities provide additional benefits for both
providers and customers. Practically, such an architecture increases
the flexibility of providers in managing clients’ requests and meeting
the Service-Level Agreement (SLA) requirements by allowing them
to move workloads from one provider’s site to another, when needed,
in a seamless manner. It allows as well to break down the customer’s
data at the bit level in order to enable its parallel processing by service
instances sharing the same application logic but residing at different
clouds. Besides optimizing latency and throughput via enabling the
assignment of the requests to the most appropriate Virtual Machines
(VMs) at each provider’s site, protecting the privacy and security of
the data is an additional motivation for customers to favor such a
model, where each provider can be aware of only a small part of the
data [9]. As a tangible example, allowing users to toggle between Bing
or Google Maps in a visualization Web site would, besides improving
the service’s availability, enhance the user’s experience by allowing
him to select the service that he feels more familiar with 1.

The main limitation that makes the existing community formation
models inappropriate for a multi-cloud environment is mainly their
reliance on a centralized architecture whereby a central third-party
called master [6] is responsible for managing the formation, member-
ship, and security issues in the community. However, the distributed
nature of cloud-based services plays against the existence of such a
central entity. Practically, the fact that Web services are deployed in
data centers that are located in disparate parts of the World means
that these services are managed by different parties and are owned by
different providers. Therefore, finding a common third party that is
trusted by all providers and that can manage all these services is quite

1. http://www.jonasson.org/maps
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challenging. Back to the previous example of grouping Google and
Bing in one community, finding a common master for that community
is difficult since Bing is owned by Microsoft and Google Maps
is owned by Google that are from the geographical point of view
separate and from the economic point of view competitors; which
makes the decision about the master problematic.

Federated cloud [10] offers a practical platform for joining to-
gether services from different clouds for better resource scaling based
on providers’ agreement. Despite their effectiveness for resource
scaling, cloud federations are unable to handle the composition and
discovery issues due to the fact that they operate at the provider’s
(not service) level and focus solely on the IaaS cloud services’
layer. Moreover, both traditional community formation and cloud
federation models rely on a honest adversary model wherein all
services/providers are assumed to be trustworthy. However, in such
a multilateral environment whereby multiple clouds and providers
are involved, malicious services are likely to exist. Practically, these
malicious services may misbehave by unilaterally deviating either
from their agreements with other services upon community/federation
formation or from the SLAs made with users, with the aim of
saving resources and/or gaining advantage over other services. Such
malicious services can be referred to as passive malicious services.
Unlike the active malicious services that launch active attacks (e.g.,
Denial of Service) to harm other parties, passive malicious services
misbehave to illegally maximize their own benefits.

1.2 Contributions

Trust is evolving as one of the hottest, yet challenging, topics in
cloud computing [11]. The importance of trust arises mainly because
of the unclear, inconsistent, and often uncommitted clauses of the
official contracts such as SLAs [12]. A main challenge that encounters
trust is how to ascertain the credibility of the trust relationships in
the presence of collusion attacks in which attackers collude to give
misleading judgments. The purpose of attackers in such a type of
attacks is to either promote or demote some other services and deceive
hence the trust result. Moreover, assigning initial trust values for
the newly deployed services having no past interactions, known as
trust bootstrapping, is a major challenge that encounters any trust
establishment mechanism. Although many trust frameworks [12],
[13], [14] can be found in the literature in the domains of cloud
computing and Service-Oriented Computing (SOC), most of these
approaches focus solely on one particular issue (particularly the trust
aggregation) and ignore some other important issues that encounter
any trust framework. In this work, we propose a comprehensive trust
framework called DEBT (Discovery, Establishment, and Bootstrap-
ping Trust) that provides a stepwise guide for services to build trust re-
lationships starting from discovering services and collecting feedback,
down to bootstrapping new services and aggregating feedback in a
collusion-resistant manner. Each step in the proposed trust framework
is designed to work both effectively and efficiently, while bridging
the gap of the state-of-the-art trust problems. DEBT is designed in a
fully distributed manner that eliminates the need for any central entity
to regulate the different steps of the trust framework. Specifically, we
model trust as a private relationship between each pair of services
rather than a public measure. For example, if service S1 trusts another
service S2 with a belief degree of b, it is not necessary that another
service S3 would trust S2 with the same belief b.

Based on DEBT, we design a trust-based hedonic coalitional game
with nontransferable utility that aims to find the optimal coalition
partition that minimizes the number of malicious members. Hedonic
games are a type of coalitional games in which players have prefer-
ences over the coalitions that they may be member of and the utility
of any player in a certain coalition depends solely on the identity
of the members of that coalition regardless of how other services

are structured. Although hedonic games have been already used in
similar settings [2], [15], our work is the first that employs the hedonic
coalitional game in conjunction with the notion of trust for security
purposes in the domain of SOC. Moreover, our work is the first in
this domain that considers a fully and effectively hedonic setting
in the formulation of the utility function. Specifically, the existing
approaches satisfy only some of the requirements of hedonic games,
namely the use of preference relations for building coalitions and the
fact that the utility of any player in a given coalition depends only on
the members of that coalition. However, the utility functions used in
all these approaches are formulated in such a way to be transferable
among players, which contradicts with the definition of hedonic games
that are subsets of non-transferable utility games [16]. Moreover, the
essence of hedonic games, by which the term hedonic is inspired,
relies on the idea that players seek to enjoy each other’s partnership,
apart from numeric considerations. Therefore, we believe that trust
is the best candidate to be used for formulating the non-transferable
utility function without contradicting with the spirit of hedonic games.
Summarizing, the main contributions of this paper are:
• Proposing a polynomial-time services discovery algorithm that

enables services to inquire about each other’s behavior based on
the concept of tagging in online social networks.

• Proposing a trust aggregation technique that uses the Dempster-
Shafer [17] theory of evidence and advances a credibility update
mechanism to ensure obtaining trust results that are resilient to
the collusion attacks even when attackers are the majority.

• Proposing a trust bootstrapping mechanism that combines the
concept of endorsement in online social networks with the
decision tree classification technique to assign initial trust values
for the newly deployed services.

• Modeling the multi-cloud community formation problem as a
trust-based hedonic coalition formation game and proposing a
relevant algorithm that converges to a final Nash-stable and
individually stable coalition partition of services.

The performance of the proposed game is analyzed both theoretically
and experimentally using a real-life cloud services dataset obtained
from the CloudHarmony service2. Simulation results show that the
proposed game is able to produce trustworthy communities that
minimize the number of malicious members, while improving their
overall performance in terms of availability, throughput, and response
time compared to three state-of-the-art cloud federation and services
community formation models.

2 RELATED WORK

In this section, we provide a literature review on the concepts of Web
Services Communities and Cloud Federations.

2.1 Communities of Web Services

The concept of community has been extensively investigated in the
context of Web services. In [18], the authors envisaged communities
as service containers that share functionally-similar services. The aim
is to facilitate the composition processes when the number of services
is large. Maamar et al. [3] proposed a hierarchical architecture for such
communities that has become later a common trend for this concept.
In this architecture, a central entity called master is responsible for
administrating the operations of the slave services. In [6], Medjahed et
al. considered communities as ontological entities providing generic
functions for a set of functionally-similar services. These functions
may be customized later based on the underlying purposes. All of
the aforementioned approaches focus on the composition process
optimization and ignore the incentives that would encourage services

2. http://cloudharmony.com/
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to form communities. In [7], Liu et al. investigated a coalitional game
for the community formation while accounting for the incentives of
the services in that process. The worth of the community is evaluated
in terms of price and cost that depend heavily on the availability
provided by the services. In a close work, Khosrowshahi-Asl et al. [8]
proposed a coalitional game to boost the cooperation among services
within communities. The key idea is to guarantee the stability of the
communities in the sense that membership requests to the community
are accepted only if they do not get the utility of the existing members
decreased. In [5], the authors modeled the community formation as
a Stackelberg game that differentiates between services on the basis
of their advertised parameter such as reputation, market share, and
capacity of handling requests.

Overall, the problem of the existing community formation models
is their ineffectiveness in a multi-cloud community formation environ-
ment. On the one hand, they rely on a centralized architecture in which
a central entity coordinates the operations of the community, which
contradicts with the distributed nature of cloud-based services. On
the other hand, they overlook the malicious services in the formation
process whose presence is likely in the multi-cloud environment.

2.2 Cloud Federations
In [10], Rochwerger et al. paved the way for the notion of cloud
federations by introducing the concept of RESERVOIR whose main
goal is to explore the technologies needed to handle the scalability
problem faced by a single provider model. They discussed the notion
of cloud federations wherein providers characterized by large capacity
of computing infrastructure may lease some of their resources to
other providers who lack temporarily for such resources. Goiri et al.
[19] addressed the problem of cloud federations from the perspective
of increasing providers’ profits. They proposed several equations to
help providers decide when to outsource resources to other providers,
when to insource free resources to other providers, and when to
shutdown unused nodes to save power. In [20], Van den Bossche
et al. formulated a Linear Programming model to assist providers
with deciding which workloads to outsource and to which providers
in such a way to maximize the utilization of internal data center,
minimize the cost of running outsourced tasks, and keep up high
QoS constraints. Recently, game theory has been widely used to
address the problem of forming cloud federations. In [21], Niyato
et al. proposed a coalitional game among cloud providers. First, a
stochastic linear programming game model that takes into account the
random internal demand of cloud providers is formulated to analyze
the resource and revenue sharing for a certain group of providers.
Thereafter, a coalitional game that enables cloud providers to form
cooperative groups for resource and revenue sharing is presented. The
objective is to exploit the under-utilized resources when the internal
demand in cloud data centers is less than the capacity of providers.
In [2], Mashayekhy et al. investigated a hedonic coalitional game that
focuses on the cooperation among IaaS services to improve resources
scaling capabilities. The resources considered are provisioned as VM
instances of different types (e.g., small, large, etc.). The objective is
to form the federations that yield the highest profit in terms of cost
and price of the underlying VMs.

Overall, cloud federations focus exclusively on improving the
resource scaling capabilities among IaaS providers. On the other hand,
communities is a more general architecture that supports, in addition
to resource scaling, discovery, marketing and composition facilitation.
Thus, cloud federations may be considered as a subset of services
communities. Besides, the existing cloud federations formation mod-
els overlook the problem of having malicious services/providers that
constitute a serious challenge for the success of such an idea. To
the best of our knowledge, our work is the first that accounts for
the problem of malicious services in both services’ communities and
cloud federations formation scenarios.
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Fig. 2: Social Network Graph: Vertices represent services and edges
represent the interactions among services.

3 SYSTEM MODEL AND ASSUMPTIONS

In this section, we present and discuss the system and attack models.

3.1 System Model

Let S = {S1, ...,Sn} be a finite set of services, where each service
Si ∈ S is characterized by a set of available resources R = {R1, ...,Rn}
(e.g., amount of memory, number of cores, etc.). Let G = (S,E,J)
be a directed social network graph representing the relationships
between these services, where each edge (Si,S j) ∈ E indicates an
interaction between service Si and service S j. Thus, if (Si,S j) /∈E then
services Si and S j had no interaction in common. Each edge (Si,S j) is
associated with a judgement J(Si,S j) 6= J(S j,Si)∈{T,M} that denotes
each service’s judgment on any other service based on their previous
interactions. For example, the judgment pair (S1→ S2 : T,S2→ S1 : M)
between services S1 and S2 in Fig. 2 indicates that S1 rates S2 as
trustworthy, whereas S2 rates S1 as malicious (i.e., J(S1,S2) = T
and J(S2,S1) = M). To decide about this judgement, services use the
following well-known satisfaction metric [22]:

J(Si,S j) =
Sat(Si,S j)

Tot(Si,S j)
, (1)

where Sat(Si,S j) denotes the number of interactions between Si and
S j that Si considers are satisfactory and Tot(Si,S j) denotes the total
number of interactions between Si and S j.

Based on Eq. (1), if J(Si,S j) > β then Si rates S j as trustworthy,
where β is a threshold that is set by each service depending on
the type of the other service(s) being evaluated. For example, the
interactions with an online payment service would be weighted higher
than those of a weather forecasting service. Otherwise, S j would be
rated as malicious. As mentioned earlier, the objective is to form
trusted multi-cloud services communities (Fig. 1a) between services
geographically distributed across multiple cloud data centers using a
distributed trust model. The trust towards a certain service S j is built
by collecting judgments on this service from its direct neighbors N(S j)
in G (i.e., the services that had interacted with S j). To this end, each
service Si holds a fixed number of inquiries it is allowed to make and
denoted by Inq(Si). Initially, all services have an equal amount of this
metric, which is updated later during the trust establishment process
(See Section 4). Since services may be either truthful or collusive in
judging the other services, each pair of services (Si,S j)∈ S has a belief
in credibility (Cr(Si→ S j) = n,Cr(S j→ Si) = m) that represents each
service’s accuracy level in judging the other services, where n and
m are two decimal numbers. Based on the collected judgments, each
service Si builds a belief in trustworthiness denoted by belie f

S j
Si
(T )

and a belief in maliciousness denoted by belie f
S j
Si
(M) for any other

service S j it is interested in forming community with. It’s worth noting
that such a mechanism does not entail any privacy breach as only the
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(b) Methodology

Fig. 1: Model architecture and methodology

value of J(Si,S j) is shared between services without revealing any
sensitive information such as the volume or type of interactions.

The community formation is modeled as a hedonic coalition
formation game, where each coalition C ⊆ S represents a given
community3. Let Π denote the set that partitions services S into non-
empty coalitions and that is referred to as a coalition structure [16].

Definition 1 (Coalition Structure). A coalition structure or partition
is a set of coalitions Π = {C1, ...,CS} that splits the set of services S
into disjoint coalitions such that ∀l 6= l′,Cl ∩C′l = /0 and

⋃l
k=1 Ck = S.

The coalition to which service Si belongs is denoted by CSi
l .

Let USi(Ck) denote the utility of service Si in a certain coalition
Ck ∈ Π. USi(Ck) is obtained by summing up Si’s beliefs in trustwor-
thiness in Ck’s members. Thus, USi(Ck) is computed as follows:

USi(Ck) = ∑
S j∈Ck

belie f
S j
Si
(T ) (2)

The methodology followed in the rest of the paper is depicted in
Fig. 1b.

3.2 Attack Models and Assumptions
Attacks may occur in our model either (1) during trust establishment
and/or (2) during and after communities formation. During trust
establishment, collusion attacks may take place between services to
mislead the results. During and after communities formation, passive
malicious services may misbehave to save their resources and gain
illegal advantage over the other services. At this stage, we consider
only passive attacks in the sense that the malicious services considered
during and after communities formation are assumed to misbehave in
order to increase their own benefits without having a direct intention to
harm the other services and/or communities. Therefore, active attacks
such as Sinkhole and Denial of Service (DoS) are beyond the scope
of this work. In particular, we consider the following types of attacks:
• Collusion Attacks. Such attacks occur when several malignant

services collaborate together to give misleading judgments either
to increase the trust score of some services (i.e., a promoting
attack) or to decrease the trust score of some other services
(i.e., a slandering attack). Note that this type of attacks cannot
occur in a non-collusive way in the sense that a single malicious
service cannot submit multiple misleading judgements to conduct
promoting attack and/or slandering attacks as judgments are
given upon request in our trust framework.

• Passive Attacks. Such attacks occur when passive malicious ser-
vices cheat about their available resources and/or QoS potential

3. In the rest of the paper, the terms coalition and community are used
interchangeably.

during communities’ formation in order to increase their chances
of being grouped into powerful communities. After communities
are formed, these malicious services would renege on their
agreements with both services and clients by benefiting from the
other services’ resources (e.g., physical computing infrastructure)
and refraining from sharing their own resources to dedicate them
for their own workload.

4 THE DEBT TRUST FRAMEWORK

In this section, we present the details of our proposed trust framework.

4.1 Service Discovery

Algorithm 1: Services Discovery Algorithm
1: Input: Source node src
2: Input: Destination node d
3: Output: Set of direct neighbors of d, N(d).
4: procedure SERVICEDISCOVERY
5: s = src
6: Create an empty tag instance t = 〈〉
7: for each not explored node y ∈ N(s) do
8: Mark y as explored
9: if s /∈ t

10: Append s to t
11: end if
12: Append y to t
13: if (y,d) ∈ E then
14: send t to src
15: empty the tag instance
16: else
17: s = y
18: end if
19: if all y ∈ N(S) are explored then
20: s = src
21: end if
22: end for
23: Append the last element of the tag instance to N(d)
24: return N(d)
25: end procedure

In order to establish trust between services in the social network
(Fig. 2), judgments should be collected first. Therefore, we propose a
discovery algorithm that allows services to inquire about each other
from their direct neighbors (i.e., the services that had dealt with).
The proposed algorithm capitalizes on the concept of tagging in
online social networks (e.g., facebook, LinkedIn) to explore the direct
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neighbors of a certain service. The basic idea is to keep tagging or
nominating intermediate services until identifying all the reachable
direct neighbors of the intended service. Let us consider the case of
service s that asks service x about its judgment on service d. If x has
a direct interaction (i.e., edge) with d, it reports its judgment directly
to s. Otherwise, it tags its neighbors that had such an interaction (if
any) or those that may introduce s to some other services that had
such an interaction with d. The details of the algorithm are explained
in Algorithm 1. The inputs of the algorithm are a source node src (the
service that inquires about another service) and a destination node d
(the service about which judgements are being collected) in a social
network graph (lines 1-2). The output of the algorithm is the set of
all reachable direct neighbors of d (line 3). The algorithm creates an
empty tag instance (line 6) and loops over the direct neighbors of the
source node one by one and marks them as explored (lines 7− 8).
This has the advantage of avoiding the revisit of any already visited
node. Each explored neighbor gets appended to the tag instance (lines
9-12). If the neighbor has a direct edge with the destination service d,
then the tag instance is directly returned to the source node and the
tag instance is emptied to start a new tagging process (lines 13-15).
Otherwise, the algorithm loops recursively over the “neighbors of the
neighbors” and adds them to the tag instance in case they have a direct
edge with d. This is done by recursively assigning each neighbor the
role of the source node (line 17). This process stops at the level of
a node that reports either a judgement to the source node or reports
neither a judgement nor a tag instance. Thus, each tag instance can be
considered as a sequence of services 〈Si,Si+1, ...,Sn〉 starting from a
direct neighbor Si of a certain requestor service S0 and leading to one
or more neighbor(s) (i.e., Si+1,..., Sn) of a destination service Sn+1.

The motivations for the services to be socially active are three-
fold. First, this improves their ability to select the suitable partners
to collaborate with based on their previous experience; particularly
in case of compositions. In fact, the overall quality of a composite
service is influenced by the quality offered by each single service in
that composition. Therefore, each service is interested in selecting the
appropriate partners in such a way that allows it maintaining a good
record among other services offering similar functionalities. Second,
by maintaining networks of contacts, the service may learn about
the non-functional properties of its peers to adjust its performance
accordingly in such a way that increases its competitiveness in the
market. Third, participating in the tagging process increases the
number of inquiries that each service can make from other services,
which increases hence the chances of the service in participating in
further communities. Thus, if the service is repeatedly not available
for tagging, then it will end up being unable to participate in further
communities (See Section 4.2).

As a practical example of why keeping track of neighbors is
useful for both services and users, suppose that Bob wants to get the
travel and accommodation options from Paris to New York, translate
the information from English to French, and send it by SMS to his
friend Alain. To this end, Bob uses a composition of FlightBooking
service F1, HotelReservation service H1, Translation service T 1, and
Messaging service M1. Suppose also that Bob wants to get the travel
and accommodation options from Montreal to New York and send
this information by email to another friend Alex. To do so, Bob uses
a composition of FlightBooking service F1, HotelReservation service
H1, and Email service E1. Here, Bob is using the combination of the
FlightBooking service F1 and HotelReservation service H1 for the
second time without having an idea about how this combination has
performed in the first transaction. However, if F1 has kept track of
its previous interaction with H1, then it could have advised Bob not
use H1 for the second time because of a previous bad performance
and moreover it could have tagged another hotel reservation service
H2 to be used instead. Since end-users deal with composite services
as a monolithic entity, Bob would refrain from using F1 in the future

although the performance trouble came from H1. Thus, keeping track
of the interactions with the other services could have saved F1 from
being replaced by another service and could have made Bob enjoy
high-quality transactions.

As for the complexity of Algorithm 1, the algorithm is a variation
of the Breadth-First Search (BFS) strategy [23] in graph theory. There-
fore, the computational complexity of Algorithm 1 is O(|S|+ |E|)
since the worst case would be when all the vertices and edges have
to be visited exactly once, where |S| is the number of services in
the social network graph and |E| denotes the number of interactions
between them. The storage overhead of the algorithm is O(|S|) since
the worst case occurs when all the services would need to be held in
the tag instance.

4.2 Trust Establishment

Having discussed the discovery algorithm in the previous section,
the next step is to establish the trust relationships between services.
As mentioned earlier, trust is constructed by collecting judgments
about services based on their previous interactions. This trend for
establishing trust is very common in the field of trust and reputation
and is referred to as recommendation-based or feedback-based trust
establishment mechanism [24]. The power of this mechanism stems
from its ability to produce meaningful judgements by considering
the opinions of multiple parties. Nonetheless, several challenges en-
counter such a mechanism in the real-world scenarios [24]. Practically,
services may be tempted to engage in some collusion scenarios and
provide dishonest judgments, which leads to misleading trust results.
Moreover, these services usually tend to refrain from revealing their
opinions lack of incentives for doing so, which leads to meaningless
or biased computations of the aggregate trust value. To tackle these
problems, we propose (1) an aggregation model for the collected
judgments that is able to overcome the collusion attacks even when
attackers are the majority, and (2) an incentive model for the services
to motivate them to participate in the trust establishment process.

That is, the aggregation technique should take into account the
existence of colluding services. Therefore, simplistic combination
techniques such as averaging and majority voting are unsuitable for
the considered problem. To address this challenge, we propose an
aggregation technique based on the Dempster-Shafer theory of evi-
dence. Dempster-Shafer [25] is a mathematical theory that combines
evidences from independent sources to come up with a degree of belief
regarding a certain hypothesis. Dempster-Shafer is well-suited for the
considered problem for two main reasons [17]: (1) unlike the Bayesian
approach that demands complete knowledge of both prior and con-
ditional probabilities, Dempster-Shafer can represent uncertainty or
lack of complete knowledge, and (2) it provides a powerful rule for
combining observations from multiple (possibly unreliable) parties.
The first property is important to guarantee the fairness in the trust
aggregation process as some services may misbehave due to some out
of control circumstances (e.g., problems in the physical infrastructure
they are hosted on) and not as a result of some malicious behavior. For
example, in Dempster-Shafer, if a service A confirms that service B is
trustworthy with probability p, it does not follow that B is malicious
with probability 1− p as is the case in the Bayesian inference.
Hence, A would have p degree of belief in the trustworthiness of
B and 0 degree of belief in B’s maliciousness. The second property
is important to prevent colluding services from misleading the final
aggregate trust value. It is worth noting that Dempster-Shafer has
been already used for trust establishment in multi-agent systems [26],
[27]. The difference between these approaches and our approach is
that the latter requires no threshold for deciding whether to trust
another agent or not. Besides, we propose in our model a credibility
update function and link the credibility scores of the services with the
number of inquiries that they are allowed to make with the aim of
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encouraging services to participate in the trust establishment process
and provide truthful judgments. Moreover, in the referred approaches
if no information about the newcomer agents may be obtained then
these agents are deemed to have no reputation at all, which may end
up overlooking these agents in future community formation processes
in the presence of other well-reputable agents. To handle this issue,
we propose in the next section a bootstrapping mechanism to assign
initial trust values for such services.

The proposed aggregation technique works as follows. Let
Ω = {T,M,U} denote a set consisting of three hypotheses. T denotes
that a certain service X is trustworthy; M denotes that X is malicious;
and U denotes that X is either trustworthy or untrustworthy to
express the uncertainty or partial knowledge in the decisions. The
basic probability assignment (bpa) of a service S in judging another
service S′, denoted by mS′

S , defines a mapping function of the set Ω

to a real-valued interval bounded by 0 and 1, i.e., mS′
S : Ω 7−→ [0,1].

In our framework, the bpa for a certain hypothesis is equal to the
credibility score believed on the service giving the judgement. In
other words, suppose that service S is asked by service q to judge
another service S′, where q has a belief in S’s credibility equal to
α . Assume that S claims that S′ is trustworthy, then the bpa’s of S
would be: mS′

S (T ) = α , mS′
S (M) = 0, and mS′

S (U) = 1−α . On the
other hand, if S reports that S′ is malicious, then the bpa’s of S would
be: mS′

S (T ) = 0, mS′
S (M) = α , and mS′

S (U) = 1−α . It is worth noting
that, throughout the paper, when S′ is unique or understood from
the context, we simplify by writing mS and when both S and S′ are
understood from the context, we simply write m. To aggregate the
different evidences (i.e., bpa’s), a belief function is used. The belief
function represents the total bpa’s supporting a given hypothesis H
and maps H to a real-valued number between 0 and 1. The belief
function of service S in service S′ regarding a certain hypothesis
H (where H = T,M, and U respectively) after inquiring two other
services 1 and 2 is given as follows:

belS′
S (T ) = m1(T )⊕m2(T ) =

1
K
[m1(T )m2(T )+m1(T )m2(U)+m1(U)m2(T )]

(3)

belS′
S (M) = m1(M)⊕m2(M) =

1
K
[m1(M)m2(M)+m1(M)m2(U)+m1(U)m2(M)]

(4)

belS′
S (U) = m1(U)⊕m2(U) =

1
K
[m1(U)m2(U)] (5)

where:
K = ∑

h∩h′= /0
m1(h)m2(h′) (6)

Thus, the problem is turned into computing the beliefs in trustwor-
thiness belS′

S (T ) and maliciousness belS′
S (M) of service S in service S′.

Theorem 1. The proposed aggregation technique overcomes the col-
lusion attacks even when attackers are the majority, if the credibility
scores of the truthful raters are higher than those of colluding raters.

Proof. For simplicity and without loss of generality, suppose that
three services A, B, and C are asked by service S to judge an-
other service D. Assume that D is trustworthy and that services
A and C collude together to demote D by claiming the contrary,
whereas B is truthful and reports that D is trustworthy. Assume as
well that the credibility scores of A, B, and C believed by S are
Cr(S→ A) = α

2 , Cr(S→ B) = α , and Cr(S→ C) = α

3 respectively
such that Cr(S→B)>Cr(S→A)>Cr(S→C). As mentioned earlier,
A and C claim unjustly that D is malicious whereas A reports that D is
trustworthy. Thus, the bpa’s of the three services are given as follows:

• Service A: mA(T ) = 0, mA(M) = α

2 , and mA(U) = 1− α

2 .
• Service B: mB(T ) = α , mB(M) = 0, and mB(U) = 1−α .
• Service C: mC(T ) = 0, mC(M) = α

3 , and mC(U) = 1− α

3 .

The theorem may be proved by contradiction. Thus, assuming
that the theorem does not hold, we should get that S’s belief in D’s
maliciousness is higher than its belief in D’s trustworthiness based
on the judgments of the colluding services A and C and that are the
majority, i.e.,

belD
S (M)> belD

S (T ) (*)

Let’s start by combining the bpa’s of A and B as per Table 1.

Table 1: Combination of the bpa’s of services A and B

A
B

mB(T ) = α mB(M) = 0 mB(U) = 1−α

mA(T ) = 0 0 0 0
mA(M) = α

2
α2

2 0 α−α2

2

mA(U) = 1− α

2
2α−α2

2 0 α2−3α+2
2

Note that the cell values in Table 1 are obtained by multiplying the
corresponding rows and columns. Now, let’s compute the combined
beliefs of services A and B.
• K = mA(T )mB(T ) + mA(T )mB(U) + mA(U)mB(T ) + mA(M)mB(M) +

mA(M)mB(U)+mA(U)mB(M)+mA(U)mB(U) = −α2+2
2 .

We abuse the notation of the function m and define mAB(T ),
mAB(M), and mAB(U) as follows:

• mAB(T ) = mA(T ) ⊕ mB(T ) = 1/K[mA(T )mB(T ) + mA(T )mB(U) +

mA(U)mB(T )] = −2α2+4α

−2α2+4 .

• mAB(M) = mA(M) ⊕ mB(M) = 1/K[mA(M)mB(M) + mA(M)mB(U) +

mA(U)mB(M)] = −2α2+2α

−2α2+4 .

• mAB(U) = mA(U)⊕mB(U) = 1/K[mA(U)mB(U)] = 2α2−6α+4
−2α2+4 .

Then, we combine in Table 2 the combined belief of services A
and B with the bpa of service C. By computing the combined beliefs

Table 2: Combination of services A and B’s belief with the bpa of C

AB
C

mC(T ) = 0 mC(M) = α

3 mC(U) = 1− α

3

mAB(T ) = −2α2+4α

−2α2+4 0 −2α3+4α2

−6α2+12
2α3−10α2+12α

−6α2+12

mAB(M) = −2α2+2α

−2α2+4 0 −2α3+2α2

−6α2+12
2α3−8α2+6α

−6α2+12

mAB(U) = 2α2−6α+4
−2α2+4 0 2α3−6α2+4α

−6α2+12
−2α3+12α2−22α+12

−6α2+12

of services A, B, and C, we get:
• K = 2α3−10α2+12

−6α2+12 .

• mAB(T )⊕mC(T ) = −12α5+60α4−48α3−120α2+144α

−12α5+60α4+24α3−192α2+144 .

• mAB(M)⊕mC(M) = −12α5+72α4−36α3−144α2+120α

−12α5+60α4+24α3−192α2+144 .

• mAB(U)⊕mC(U) = 12α5−72α4+108α3+72α2−264α+144
−12α5+60α4+24α3−192α2+144 .

We have that ∑x∈{T,M,U}mAB(x) ⊕ mC(x) = 1 and mAB(T ) ⊕
mC(T ) > mAB(M)⊕ mC(M) for every 0 < α ≤ 1; meaning that
belD

S (T ) > belD
S (M) for every 0 < α ≤ 1, which contradicts with

(*). Thus, S’s belief in D’s trustworthiness exceeds its belief in D’s
maliciousness although the majority of raters (i.e., A and C) colluded
to state the contrary. Generally speaking, the proposed aggregation
technique overcomes the collusion attacks even when attackers are
the majority if and only if (1) the credibility values are between 0 and
1, and (2) the credibility scores of the trustworthy raters are higher
than those of colluding ones. Formally, let:
• VT : denote the set of truthful services participating in the judge-

ment process.
• VC: denote the set of colluding services participating in the

judgement process.
• V : denote the set of services participating in the judgement

process, i.e., V =VT ∪VC.
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The proposed aggregation technique overcomes the collusion attacks
even when attackers are the majority, i.e., |VC |≥|VT | if and only if:

∀v ∈V, 0 <Cr(v)≤ 1 (7)

∀ t ∈ VT and c ∈ VC, Cr(t) > Cr(c) (8)

Obviously, the performance of the aggregation technique depends
heavily on the credibility scores assigned to the services. Thus,
maintaining healthy values of this metric is a building block for
achieving truthful decisions. Therefore, the credibility metric should
be updated continuously to ensure that truthful services always hold
higher credibility scores than those of colluding ones. That is, the
credibility scores of the services that report truthful judgments should
be promoted and those of the colluding services should be demoted by
the service requesting the judgement after each aggregation process.
Eq. (9) depicts the credibility update function for each service x after
having participating in judging service y in favor of service s.

Cr(s→ x) =

{
min(1,Cr(s→ x)+ |Z−Cr(s→ x)|), if C 1∣∣Cr(s→ x)−min(belie f y

s (T ),belie f y
s (M))

∣∣ , if C 2
(9)

where Z = max(belie f y
s (T ),belie f y

s (M)) and C1 and C2 are two
conditions such that:

C 1. J(x,y) ∈ {T} & belie f y
s (T ) > belie f y

s (M) or J(x,y) ∈
{M} & belie f y

s (T )< belie f y
s (M)

C 2. J(x,y) ∈ {T} & belie f y
s (T ) < belie f y

s (M) or J(x,y) ∈
{M} & belie f y

s (T )> belie f y
s (M)

The intuition behind Eq. (9) is that truthful services whose
judgments agree with the winner belief receive a reward that is equal
to the difference between their current credibility scores and the value
of that belief. For the untruthful services whose judgments disagree
with the winner belief, they undergo a decrease in their credibility
scores that is equal to the value of the loser belief. The idea is to
avoid harsh punishments in one round of aggregation. In this way,
only the services that repeatedly report misleading judgments will get
their credibility scores drastically decreased.

Finally, services should receive rewards for their participation in
both the services discovery and trust aggregation processes. This re-
ward is important to motivate further participation from these services.
To this end, we link the number of inquiries that a service is allowed
to make about other services with its credibility score and the number
of tags it has made and consequently its level of participation in the
trust framework. The reward function is given by Eq. (10), where x is
a given service being rewarded by service s for which it has provided
judgement, Inq(x→ s) denotes the total number of inquiry requests
that x is allowed to make from s, |Tags(x→ s)| denotes the number
of neighbors tagged by x in favor of S, and 1 represents a fixed reward
for x for providing its own judgment.

Inq(x→ s) = Inq(x→ s)+(|Tags(x→ s)|+d|Tags(x→ s)|×Cr(s→ x)e+1)
(10)

In this way, services would tend to contribute in the trust frame-
work in order to increase their total number of inquiry requests that
they can make and be able hence to participate in the coalition forma-
tion process. Moreover, by linking the number of possible inquiries
with the credibility scores of the services, we are encouraging services
to provide truthful judgment in order to increase their credibility
scores and increase hence their share of inquiry requests. Over the
time, colluding services will get their number of possible inquiry
requests drained, which makes them unable to participate in further
coalition formation processes.

4.3 Trust Bootstrapping

Trust bootstrapping, i.e., assessing trust for newly deployed Web
services, is a major issue that encounters our trust framework as
no historical information about newcomers may be available. For
example, when a service is initially registered in a cloud datacenter,
no service has interacted with it and hence there is no record of its
former behavior. As a result, its initial trust cannot be evaluated, which
may lead to overlook this service in the future coalition formation
processes. Therefore, a mechanism to allocate initial trust values for
newly deployed services in the absence of historical information about
their past behavior is needed.

The existing bootstrapping mechanisms in the SOC domain can be
classified into three main categories [28]: (1) Default-value-based, (2)
punishment-based, and (3) adaptive mechanisms. The first approach
assigns a default trust value for all new services. A self-evident
drawback that encounters this approach is that it can arbitrarily
favor either the already existing services or the newly deployed
ones. Specifically, if the assigned default trust value is low, newly
deployed services will be overlooked in the future coalition formation
processes. On the other hand, if the assigned default trust value is
high, newcomer services are favored over existing services that may
have interacted and strived to achieve their trust values. This motivates
malicious providers to continuously publish new identities to clear
the past bad trust history of their services and gain high trust scores
(a.k.a white-washing). As a remedy to white-washing, the punishment
strategy proposes to assign low initial trust values for the newcomer
services. In this way, however, the new services are disadvantaged
since they will have no chance to make interactions and gain trust. In
the adaptive strategy, the newcomer service is bootstrapped based on
the rate of maliciousness in the community in which it registers. More
specifically, this strategy assumes a community-based architecture in
which a community groups a number of services sharing the same
functionality to simplify the bootstrapping process. When a new
service is registered in a certain community, it gets a trust value based
on the rate of maliciousness in that community. However, the problem
with this strategy is that it still allows malicious services to benefit
from a low rate of maliciousness by leaving the network and rejoining
again to obtain higher trust scores.

In this paper, we propose a bootstrapping mechanism, based on the
concept of endorsement in online social networks, that is resilient to
white-washing. As mentioned earlier, each service maintains a dataset
that records its previous interactions with several services having
different functional and non-functional specifications. Whenever a
request from service i to bootstrap a new service j is received, the
services that are interested in the request train a decision tree classifier
on their datasets to predict an initial trust value for j. A decision tree
is a classification technique that recursively and repeatedly partitions
the training set into subsets based on an attribute value test until all
the samples at a given node belong to the same class or until splitting
adds no more value to the classifications. Test attributes are selected
based on some heuristic or statistical measure (e.g., information gain)
that determines their relative importance in discriminating between
classes being learned. Unlike some other classification techniques
such as support vector machines and neural networks that entail high
time and space complexity, the main advantages that make decision
tree suitable for our bootstrapping problem are mainly its intuitive
simplicity and computational time and space efficiency [29], which is
important for resource-constrained nodes such as Web services.

The decision tree classifier analyzes services’ training dataset that
contains properties and specifications for some existing services (e.g.,
provider’s name, deployment country, etc.) and learns the patterns
of the data by pairing each set of inputs with the expected output
(e.g., the judgment on the services). To create the training and test
sets, bootstrappers use the k-fold cross-validation with k = γ , where γ
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represents the number of folds. In this method, the dataset is split into
k subsets, each of which is used each time as test set and the other k−1
subsets are merged together to compose the training set. The accuracy
is then computed by averaging the error across all the k trials. This
method has the advantage of reducing the bias of the classification
results on the way based on which data is being divided due to the
fact that each data point will be part of the test set exactly once
and part of the training set k−1 times. Obviously, the computational
complexity of this method grows as the size of k increases. Thus, the
choice of γ would vary from one service to another depending on
the available resources that each bootstrapper decides to dedicate to
the bootstrapping process. Bootstrappers use the learned classifier to
predict an initial judgment for the services being bootstrapped. Based
on the classification results, each service may endorse the underlying
services either positively or negatively. Nonetheless, this does not
constitutes the final judgement. In fact, judgements from all boot-
strappers are aggregated again by the bootstrapping requestor using
Dempster-Shafer as described in the previous section to come up with
a combined belief that is resilient to unreliable endorsements from
colluding bootstrappers. Note that the results of the aggregation are
not influenced by the number of bootstrappers even when this number
is minimal since Dempster-Shafer is independent from the number
of incoming observations. The extremely worst cases in this regard
would be when only one service participates in the bootstrapping
process or even no service is able to participate. In the former case,
the requestor may rely on the opinion of the bootstrapper without
having to use Dempster-Shafer for aggregation. In the latter case, the
requestor may bow to reality and use random guessing or default-
value-based techniques. It’s worth signaling that the bootstrapping
process is voluntary for bootstrappers in the sense that each service
has the right to decide whether to train its classifier or not after each
inquiry request received based on its available resources and whether
to endorse services or not based on the underlying accuracy. This
aspect is important to guarantee the fairness for both bootstrapper
and bootstrapped services. In fact, after training the classifier and
computing classifications’ accuracy, some services may notice that
they have no sufficient accuracy to make judgments lack of similarity
between the properties of the services that they had dealt with and the
services being bootstrapped. Therefore, these services are better off
refraining from submitting inaccurate endorsements.

Finally, the credibility scores of the bootstrappers are updated
by the bootstrapping requestor according to Eq. (9). The credibility
update has two main advantages. On the one hand, it motivates the
services having high levels of classification accuracy to participate in
the bootstrapping mechanism to get their credibility scores increased.
On the other hand, it demotivates the malicious services from submit-
ting false endorsements to illegally promote some services or demote
some other services and exclude them from future competitions.

4.4 Illustrative Example

In this section, we discuss an illustrative example to show how
our proposed trust framework works practically. Consider the social
network graph in Fig. 2 and assume that service S1 wants to establish a
trust relationship toward service S5. To do so, it has first to discover all
of S5’s reachable direct neighbors using Algorithm 1. Thus, it creates
an empty tag instance t (line 6), contacts its one-edge away neighbors
S2 and S3 one by one, and marks them as explored for the current tag
instance (line 8). Starting with S2, this latter gets appended directly
to the tag instance (i.e., t = 〈S2〉) (line 12) and checks whether it
does have a direct edge with S5 (line 13). Since this is not the case,
the algorithm recursively assigns the role of the source node to S2 in
lieu of S1 (line 17) to start inquiring its direct neighbor S7 about S5.
S7 gets marked as explored, gets appended to the tag instance (i.e.,
t = 〈S2,S7〉), and checks whether it does have a direct edge with S5.

As this is the case, then the tag instance t = 〈S2,S7〉 is returned to S1
through the path S7→ S2→ S1 (line 14) and set to empty to restart the
tagging process (line 15). Since all of S2’s direct neighbors have been
explored (lines 19-21), the algorithm moves to S1’s second neighbor
S3. S3 gets appended to the empty tag instance (i.e., t = 〈S3〉) and starts
inquiring its direct neighbors S4 and S6 one by one. Starting with S4,
the node gets appended to t (i.e., t = 〈S3,S4〉) and gets marked as
explored. It check then whether it does have a direct edge with S5.
Since such an edge exists, the tag instance t = 〈S3,S4〉 is returned to
S1 through the path S4 → S3 → S1 and the tag instance is emptied
again. Since not all of S3’s direct neighbors have been explored yet,
the algorithm moves to S3’s second direct neighbor S6 and repeats
the same process that took place with S4, where the tag instance
t = 〈S3,S6〉 gets returned to S1 through the path S6→ S3→ S1. Since
all of S3’s direct neighbors have been explored now, the algorithm
moves to checks for any additional neighbor of S1 and stops after
noticing that all the neighbors of S1 have been explored. In this
example, only 5 services (i.e., S2, S3, S4, S6, S7) out of 7 and 8 edges
(i.e., S1↔ S2, S1↔ S3, S2↔ S7, S7↔ S5, S3↔ S4, S3↔ S6, S4↔ S5,
S6↔ S5) out of 9 have been explored. Therefore, the time complexity
of the tagging process is linear in the number of services and edges in
the social network graph thanks to the fact that each service and edge
will be visited once in the worst case. In the example as well, 3 paths
having each a size of 2 are returned in tagging instances; so in total
2×3 = 6 services are stored. This confirms that the space complexity,
in its turn, is linear in the number of services.

As a second step, S1 has to aggregate the judgments of S5’s direct
neighbors, namely S4, S6, and S7. Ostensibly, all of these three services
would report that S5 is trustworthy as depicted in Fig. 2. However,
assume that S4 and S6 decide to collude and perform a slandering
attack against S5 by claiming both that this latter is malicious. As
explained before, the judgement of each service is weighted based on
its credibility score. Thus, the beliefs of the three services would be:
• Service S4: mS4(T ) = 0, mS4(M) = 0.34, and mS4(U) = 0.66.
• Service S6: mS6(T ) = 0, mS6(M) = 0.23, and mS6(U) = 0.77.
• Service S7: mS7(T ) = 0.9, mS7(M) = 0, and mS7(U) = 0.1.
First, let’s combine the beliefs of the services S4 and S7. The

details are explained in Table 3.

Table 3: Combination of S4 and S7’s beliefs

S4

S7 mS7(T ) = 0.9 mS7(M) = 0 mS7(U) = 0.1

mS4(T ) = 0 0 0 0
mS4(M) = 0.34 0.306 0 0.034
mS4(U) = 0.66 0.594 0 0.066

• K = mS4 (T )mS7 (T ) + mS4 (T )mS7 (U) + mS4 (U)mS7 (T ) +
mS4 (M)mS7 (M)+mS4 (M)mS7 (U)+mS4 (U)mS7 (M)+mS4 (U)mS7 (U) =
0.694.

• mS4 (T ) ⊕ mS7 (T ) = 1/K[mS4 (T )mS7 (T ) + mS4 (T )mS7 (U) +
mS4 (U)mS7 (T )] =

0.594
0.694 = 0.856.

• mS4 (M) ⊕ mS7 (M) = 1/K[mS4 (M)mS7 (M) + mS4 (M)mS7 (U) +
mS4 (U)mS7 (M)] = 0.034

0.694 = 0.049.
• mS4 (U)⊕mS4 (U) = 1/K[mS4 (U)mS7 (U)] = 0.066

0.694 = 0.095.

Then, we combine in Table 4 the combined beliefs of S4 and S7 with
the beliefs of S6.

Table 4: Combining S4 and S7’s combined beliefs with the beliefs of S6

S6

S4S7 mS4S7(T ) = 0.856 mS4S7(M) = 0.049 mS4S7(T ) = 0.856 = 0.095

mS6(T ) = 0 0 0 0
mS6(M) = 0.23 0.19688 0.01127 0.02185
mS6(T ) = 0.77 0.65912 0.03773 0.07315

• K = 0.8031277.
• belS5

S1
(T ) = mS4S7 (T )⊕mS6 (T ) = 0.821.

• belS5
S1
(M) = mS4S7 (M)⊕mS6 (M) = 0.088.
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• belS5
S1
(U) = mS4S7 (U)⊕mS6 (U) = 0.091.

Thus, S1’s belief in S5’s trustworthiness is still high (i.e., 0.821)
although the majority of services colluded to claim the contrary.

Having computed the beliefs in S5, S1 should now update its
credibility beliefs towards the services that have participated in the
trust establishment process. Based on Eq. (9), S1’s credibility belief to-
wards S4 would decrease to become: Cr(S1→ S4) = |0.34−0.088|=
0.252 as its judgment does not agree with the computed belief.
Similarly, S1’s credibility belief towards S6 would decrease down
to: Cr(S1 → S6) = |0.23−0.088| = 0.142. On the other hand, the
credibility towards the truthtelling service S7 would increase up to:
Cr(S1 → S7) = 0.9+ |0.821−0.9| = 0.979. As a reward for tagging
neighbors, S2 (assuming that it was able to make one inquiry from
S1 before the tagging), that has tagged one of its neighbors to S1,
gets the number of inquiries it is able to make from S1 increased
up to Inq(S2 → S1) = 1 + (1 + d1 ∗ 0.6e) + 1 = 4 as per Eq. (10).
S3 (assuming that it was able to make one inquiry from S1 before
the tagging), that has tagged two of its neighbors to S1, gets the
number of inquiries it is able to make from S1 increased up to
Inq(S3→ S1) = 1+(2+ d2∗0.7e)+1 = 6.

5 TRUST-BASED HEDONIC COALITIONAL GAME

In this section, we model the problem of forming trusted multi-cloud
communities as a hedonic coalitional game with non-transferable
utility, propose the appropriate preference function, and analyse the
properties of the game.

5.1 Game Formulation

A coalitional game is a game-theoretical model that analyzes the
interactions among players when they gather into groups. The output
of the coalitional game is a partition of the players’ set into coalitions.
For the proposed game, the players are the services that seek to
form multi-cloud communities. The objective is to form trusted
communities wherein the number of malicious members is minimal.
Coalitional games may be either cohesive or non-cohesive games. In
cohesive games, the motivation for coalescing is extreme [30]. That
is, the formation of the single coalition that includes all the players
referred to as grand coalition is the best for all the players. In such
situations, the grand coalition can yield outcomes that are at least
as attractive for every player as those realizable by any partition of
the players into sub-coalitions. In contrary, non-cohesive games are
interested in studying situations wherein forming the grand coalition
is costly for the players. Thus, the objective of non-cohesive games
is to generate a set of disjoint coalitions. This type of games is often
referred to as coalition formation game.

Property 1. The proposed game is a coalition formation game.

As mentioned earlier, the objective is to form trusted multi-cloud
coalitions in which the number of malicious members is minimal. Ob-
viously, the probability of encountering malicious services increases
as the size of the coalitions increases. In other words, the grand
coalition entails grouping all the trustworthy and malicious services
together into a single coalition. Therefore, the objective of this paper
is to produce a set of disjoint coalitions instead of forming the grand
coalition. Thus, the proposed game is a coalition formation game.

Coalitional games may be differentiated as well based on the
utility that they assign to each coalition. Specifically, coalitional
games may be either of Transferable Utility (TU) or Non-Transferable
Utility (NTU). In TU games, the utility associated with each coalition
of players worth the same for all the players who, as a result, can
distribute and transfer this utility (e.g., money). In contrary, NTU
games assume that the utility of the coalitions is non-distributable nor
transferrable (e.g., happiness).

Property 2. The proposed coalitional game is an NTU game.

The utility of each service in a certain coalition is obtained by
summing up the service’s beliefs in trustworthiness in each of the
coalition’s members (Eq. (2)). Apparently, the belief in trustworthi-
ness is a social relationship in which an agent assigns a probability
about another agent’s future behavior [24]. That is, trust cannot be
neither distributed nor transferred among services. Therefore, the
proposed game is an NTU game.

A hedonic game is a special case of NTU games in which players
have preferences over the coalitions that they may join and the utility
of any player in a certain coalition depends exclusively on the identity
of the members in that coalition regardless of how other services
are structured. In simple words, the term hedonic comes from the idea
that players seek to enjoy each other’s partnership, apart from numeric
considerations. Therefore, we believe that hedonic games are the best
type of coalitional games that can model the trust relationships among
services. More specifically, a hedonic game is a subclass of coalitional
games that satisfies the two following requirements [16]:

Condition 1. A coalition formation game is hedonic if:
1) The utility of any player in a given coalition depends only on the

members of that coalition.
2) The players have preferences over the set of possible coalitions

and coalitions form based on these preference relationships.

Property 3. The proposed coalitional game is hedonic.

In our game, the utility of the services in a certain coalition is
obtained by summing up the service’s beliefs in trustworthiness in
each of the coalition’s members (Eq. (2)). Thus, the utility of services
in a given coalition is solely dependent on the members of that
coalition, which satisfies the first condition. For the second condition,
we will formally define in the rest of this section the preference
function that enables services to build preference relations between
coalitions and compare them during the coalition formation process.
Before discussing the preference function, let’s define first the concept
of preference relation [16].

Definition 2 (Preference Relation). For every service Si ∈ N, a
preference relation (≥Si)Si∈S⊆N is a complete, reflexive, and transitive
binary relation over the set of all possible coalitions that Si may join.
Cl ≥Si C′l means that service Si prefers to be a member of coalition Cl
over being a member of C′l or at least Si prefers to be a member of
both coalitions equally. Cl >Si C′l denotes that Si strictly prefers to be
part of Cl over being part of C′l .

Based on the definition of preference relation, the preference
function of the services can be defined as follows:

Cl ≥si C′l ⇔ PSi(Cl)≥ PSi(C
′
l), (11)

where Cl ⊆ N and C′l ⊆ N are any two coalitions that service Si is
member of and PSi : 2N 7−→R is a preference function for any service
Si such that:

PSi(C) =


−∞, if a ∈C & belie f a

Si
(T )< belie f a

Si
(M)

0, if C ∈ hSi(t)
USi(C), otherwise,

(12)

where hSi(t) represents the history set of service Si at time t. The
history set hSi(t) contains the coalitions that service Si has already
joined and left at any time t ′ < t before the formation of the current
coalition structure Π(t). The main intuition behind the preference
function PSi defined in Eq. (12) is to allow each service Si to choose the
coalition that maximizes its belief in trustworthiness, while avoiding
the coalitions that Si believes contain malicious members. Particularly,
the service Si assigns a minimum preference (i.e.,−∞) to any coalition
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Algorithm 2: Hedonic Coalition Formation Algorithm
1: Input: Initial partition of services Π(t) at time t
2: Output: Final coalition structure Π∗(t f ) at time t f
3: procedure COALITIONFORMATION
4: Initialize t = 0, Π(t) = {C1(t), ...,CS(t)}, hSi(t) =CSi

k (t)
5: repeat
6: repeat
7: for each service Si ∈Π(t) do
8: Select a coalition Cl ∈Π(t)\CSi

k (t)∪{ /0}
9: for each service S j ∈Cl do

10: if Si has no previous interactions then
11: Request bootstrapping for S j
12: else
13: Run Algorithm 1 to get N(S j)

14: Compute belie f
S j
Si
(T )

15: end if
16: end for
17: Compute belie f Cl

Si
(T ) and belie f Cl

Si
(M)

18: Compare PSi(Cl(t)∪{Si}) and PSi(C
Si
k (t))

19: if Cl(t)∪{Si}>Si CSi
k (t)

20: Leave Ck, i.e, Ck(t) =Ck(t)\{Si}
21: Join Cl , i.e., Cl(t) =Cl(t)∪{Si}
22: Update history, i.e., hSi(t) = hSi(t)∪{Cl}
23: else
24: Π(t +1) = Π(t)
25: end if
26: end for
27: t = t +1
28: until no change in the partition happens.
29: until ε elapses
30: Π∗(t f )

∗ = Π(t)
31: return Π∗(t f )
32: end procedure

that contains a member that Si believes is malicious (i.e., a ∈ C &
belie f a

Si
(T )< belie f a

Si
(U)). This condition is important to avoid being

grouped with any malicious service in the same coalition. Moreover,
the service avoids rejoining any previously visited coalition as long as
its members do not change. This may be considered as a basic learning
process and is important to reduce the complexity of the coalition
formation process since the already visited coalitions are excluded
from the choice set of the services [31]. Otherwise, the service
prefers the coalition that maximizes its utility and that represents
its belief in trustworthiness in the coalition’s members (Eq. (2)).
In this situation, the preference relation is determined by comparing
the service’s beliefs in trustworthiness for each pair of coalitions.
In summary, services prefer the coalitions that contain no malicious
members (based on their beliefs), those that have not been visited and
left yet, and those that maximize the belief in trustworthiness.

5.2 Hedonic Coalition Formation Algorithm
To achieve the solution of the game, we propose in this section a
distributed hedonic coalition formation algorithm that enables services
to make decisions about which coalitions to join in such a way
to minimize the number of malicious services in the final coalition
structure. The algorithm is depicted in Algorithm 2.

Algorithm 2 works as follows. The algorithm takes as input an
initial partition of services at a certain time t (line 1) and outputs
the final coalition structure obtained after applying the trust-based
hedonic coalition formation algorithm (line 2). First, the time t is
initialized along with the initial partition of services at that time
Π(t) and the history set of each service Si belonging to that partition

(line 4). The algorithm repeats the following steps. Each service Si
in the initial partition selects a given coalition Cl (line 8). For each
member of Cl , if the member is newly deployed and having no past
interactions, Si makes a request to bootstrap it (line 11); otherwise
it runs the discovery algorithm described in Algorithm 1 to discover
the member’s direct neighbors (line 13). Thereafter, it computes the
beliefs in trustworthiness and maliciousness for that member using
Eq. (3) and Eq. (4) respectively (line 17). Si uses then the preference
function defined in Eq. (12) to determine the preference order between
its current coalition and the selected coalition (line 18). If the utility
of Si in the new coalition Cl(t)∪{Si} exceeds its utility in the current
coalition CSi

k (t) (line 19), then it leaves the current coalition (line 20),
joins the new coalition (line 21), and updates its history set by adding
the newly joined coalition to it (line 22). Otherwise, the partition of
services remains unchanged (line 24). This process continues until
converging to a Nash-stable coalition structure, i.e., the case where
no service prefers to leave its current coalition and join another one
(line 28). Note that the whole process is repeated periodically after
a certain fixed period of time ε (line 29) to capture the changes that
may occur in the partition; especially the dynamism in the services’
trust values, arrival of new services, and leave of existing services.

For the computational complexity of Algorithm 2, the main
complexity lies in the switch operations, i.e., the process of finding
the next coalition to join (lines 7-18). The computational complexity
of performing a switch operation is O(Π), where Π is the coalition
partition consisting of the disjoint coalitions of services. The worst
case would be when each service acts alone in a singleton coalition
as it implies that the number of coalitions in the coalition structure is
exactly the number of services, i.e., |Π|= |S|.

5.3 Analysis of the Trust-based Hedonic Game

In this section, we analyze the properties of the proposed hedonic
game. In particular, we analyze the convergence of the proposed
coalition formation algorithm to a final solution and some stability
concepts of the generated coalitions. Before starting the analysis, let’s
highlight some useful definitions and properties [16].

Definition 3 (Nash Stability). A partition Π is Nash-stable if no
player in Π has incentive to leave its current coalition and move to
any other coalition (possibly empty) in such a way that makes the
coalition structure to change, assuming that the other coalitions remain
unchanged, i.e., ∀i ∈ N,CSi

k ≥i Cl ∪{i} for all Cl ∈Π.

In other words, a coalition structure Π is Nash-stable if (1) there
exists no service Si that prefers to leave its current coalition CSi

k ∈ Π

and act alone by forming its singleton coalition {Si}, and (2) there
exists no service Si that has incentive leave its current coalition CSi

k ∈
Π and join any other coalition Cl ∈ Π in such a way that makes the
coalition structure to change.

Definition 4 (Individual Stability). A partition Π is individually
stable if no player in Π can benefit by moving from its current
coalition to another coalition without making the members of the
latter coalition worse off, i.e., @i ∈ N and Cl ∈ Π∪ { /0} such that
Cl ∪{i}>i CSi

k and Cl ∪{i} ≥ j Cl , ∀ j ∈Cl .

In simple words, a coalitional structure Π is individually stable
if there exists no coalition Cl ∈ Π that a service Si prefers over its
current coalition CSi

k ∈Π without making its members worse off.

Property 4. The number of coalition structures for N services is finite
and given by DN , where DN represents the Nth Bell number and is
computed as follows:

DN =
N−1

∑
i=0

(
N−1

i

)
·Di for N ≥ 1 and D0 = 1 (13)
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Now, let’s move to the analysis of the proposed coalition formation
algorithm’s properties; particularly the three common properties of
hedonic games: convergence to a final coalition structure, Nash-
stability, and individual stability. It’s worth noting that the method-
ology followed in the analysis is inspired by that presented in [31].

Theorem 2. Algorithm 2 converges to a final coalition structure
Π∗(t f ) consisting of a number of disjoint coalitions.

Proof. The proof involves showing that the algorithm leads to distinct
coalitions from time t to time t + 1 and that the number of coalition
structures is finite. Given any initial partition Π(t) of services at time t,
Algorithm 2 switches the partition at hand Π(t) into another partition
Π(t + 1) at time t + 1 > t and so on until reaching the final partition
Π∗(t f ). Moreover, the preference function defined in Eq. (12) states
that services will not revisit any coalition that has been already visited
and left. Thus, any switch operation done in Algorithm 2 leads to a
new partition that has not been visited yet. Given this property and the
fact that the number of coalition structures is finite as per Property 4,
we can conclude that the number of switch operations is finite and that
the switch operation always leads to a final partition Π∗(t f ). Hence,
Algorithm 2 always converges to a final coalition structure comprising
a number of disjoint services coalitions.

Theorem 3. Algorithm 2 converges to a Nash-stable coalition struc-
ture Π∗(t f ).

Proof. The theorem may be proved by contradiction. Assume that
the final coalition structure Π∗(t f ) is not Nash-stable. Then, there
exists a service Si that prefers to leave its current coalition CSi

k (t f )
and join another coalition Cl(t f ) at time t f (i.e., Cl(t f )∪ {Si} >Si

CSi
k (t f )). Consequently, the coalition structure Π∗(t f ) changes to a

new coalition structure Π∗∗(t f ) such that Π∗∗(t f ) 6= Π∗(t f ), which
contradicts with Theorem 2. Hence, we can conclude that Algorithm
2 always converges to a Nash-stable coalition structure Π∗(t f ).

Theorem 4. Algorithm 2 converges to an individually stable coalition
structure Π∗(t f ).

Proof. It has been proven that every Nash-stable coalition structure is
also individually stable [16]. Since Algorithm 2 converges to a Nash-
stable coalition structure as per Theorem 3, Algorithm 2 converges
also to an individually stable coalition structure.

6 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first explain the experimental setup used to perform
our simulations and then study the performance of the trust-based he-
donic coalition formation game by means of simulation experiments.

6.1 Experimental Setup
We implement our framework in a 64-bit Windows 7 environment
on a machine equipped with an Intel Core i7-4790 CPU 3.60 GHz
Processor and 16 GB RAM. Throughout simulations, we vary the
percentage of malicious services from 0% to 50% and compare our
model with three benchmarks: (1) Availability-based Coalition For-
mation [7], (2) QoS-based Coalition Formation [8], and (3) Hedonic
Cloud Federations [2]. The Availability-based Coalition Formation
considers the availability of the services as a building block in the
community formation process. The QoS-based Coalition Formation
considers, in addition to availability, several QoS metrics such as
throughput and response time in the community formation process.
The Hedonic Cloud Federations considers the prices and costs of the
services (i.e., VMs) to formulate the utility function. The compari-
son is possible since all these approaches are based on a coalition
formation algorithm. MATLAB has been used as a simulation tool to
implement the different algorithms, where service instances have been

modeled as objects; each of which having a set of QoS parameters.
The QoS values such as promised and monitored availability are ob-
tained from the CloudHarmony dataset 4, which contains information
about services owned by well-known providers such as Amazon Web
Services and Agile Cloud. The dataset comprises 53 different services
operating in different parts of the world and 187 different activities for
these services. The availability of the services has been studied during
a period of a whole month and the average availability is recorded.
During coalitions formation, the malicious services are considered
as those that deviate from the SLA clauses. In particular, the initial
decision on whether a certain service is trustworthy or not (i.e.,
before applying the proposed aggregation technique) is obtained by
comparing the promised availability with the monitored availability.
After coalitions are formed, the malicious services are considered
those that refuse to share their needed resources with the coalition
colleagues. To make our experiments fair with the Hedonic Cloud
Federations model [2], which uses different parameters from ours (i.e.,
price and cost of VMs) and a small number of providers (i.e., eight
providers), we have selected a subset of eight AmazonEC2 services
(the same type of services used in [2]) from the used dataset, assigned
them the same prices and costs used in [2] and that are publicly
available5, and run independent simulations from the ones used to
compare with the other two models.

6.2 Experimental Results
First, we study in Fig. 3 the percentage of malicious services that
exist in the final coalition structure w.r.t the percentage of malicious
services that existed in the initial partition of services. In other words,
the aim is to study how effective is each of the compared models
in avoiding the malicious services during communities’ formation.
Fig. 3a shows that the percentage of malicious services in the final
partition keeps increasing in the availability-based, QoS-based, and
our trust-based hedonic coalition formation models with the increase
in their percentage in the initial partition. However, the trust-based
coalition formation model is more resilient to that increase and is able
to reduce the percentage of malicious services up to 30% compared
to the other models. The reason is that our model takes into account
the trust relationships among services in the preference function (Eq.
(11)) of the hedonic game used during the coalition formation process
and is able as well to overcome the collusion attacks that may affect
the trust establishment results as per Theorem 1. On the other hand,
the percentage of malicious services in the other two models turns
out to be high. The reason is that although these models take into
account some QoS metrics in the community formation, the declared
metrics may not be consistent with the actual metrics in case of
passive malicious misbehavior. Moreover, Fig. 3b reveals that our
trust-based model outperforms the hedonic cloud federations model
in terms of minimizing the percentage of malicious members. It is
worth noticing that the hedonic cloud federations model entails higher
percentage of malicious members than both the availability-based and
QoS-based models. The reason is that the former, contrary to the
other two models, focuses solely on the prices and costs of services
and disregards totally both the performance and security perspectives.
Overall, we can conclude that if we allow services to rationally select
their coalitions without considering their trust relationships, these
services may have incentives to structure themselves into coalitions
consisting of a large number of malicious services.

Next, we test the performance of the generated communities for
a period spanning over more than 3 days (i.e., 260,000 iterations)
and compute the average availability, response time, and throughput;
where each single iteration represents a second. At each iteration,
we assign 1000 requests for every community; meaning that each

4. http://cloudharmony.com/
5. http://aws.amazon.com/ec2/pricing/
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(a) Trust-based vs. Availability-based and QoS-based models
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(b) Trust-based vs. Hedonic cloud federations models

Fig. 3: Percentage of malicious services: Our trust-based model minimizes the number of malicious services
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(a) Communities’ Availability
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(b) Communities’ response time
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(c) Communities’ throughput

Fig. 4: Our model improves the availability, response time, and throughput compared to the Availability-based and QoS-based models
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(a) Communities’ availability

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Percentage of Malicious Services (%)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

 

 

Hedonic Cloud Federations

Trust-based Hedonic Coalition Formation

(b) Communities’ response time
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(c) Communities’ throughput

Fig. 5: Our model improves the availability, response time, and throughput compared to the Hedonic Cloud Federations model

community receives 1000 requests per second, which is realistic to a
large degree. The malicious services at this stage are those that benefit
from the resources of the other community colleagues but refuse to
share their needed resources with them. Figs. 4 and 5 studies how
effective are the formed coalitions in terms of availability, response
time, and throughput. Availability depicts the time period in which a
community of services is ready for use and is obtained by dividing
the number of performed requests by the total number of received
requests. Fig. 4a shows that in the absence of malicious services in
the initial partition, the availability-based coalition formation model
outperforms the other two model by achieving an availability per-
centage of ≈ 100%. This result is expected since this model takes
the availability as a sole factor for forming communities. However,
starting from 10% of malicious services, our model outperforms
both the availability-based and QoS-based models whose performance
begins to decrease drastically. This is due to the fact that our trust-
based model minimizes the percentage of malicious services in the
final partition as per Fig. 3a. Practically, the increase in the number of
malicious services that refrain from sharing their resources when these
resources are needed leads to an increase in the number of unfulfilled
requests. Similarly, Fig. 5a reveals that our model outperforms the
hedonic cloud federations model in terms of availability for the same

above-discussed arguments.
Figs. 4b and 5b studies how effective are the formed coalitions in

terms of response time. Response time represents the time between
the submission of the request and the receipt of the response, which
incudes both service time and wait time. Fig. 4b reveals that our
trust-based model yields much less response time compared to the
availability-based and QoS-based models in the presence of malicious
services. Similarly, Fig. 5b shows that our model outperforms the
hedonic cloud federations model in terms of response time. This
is also due to the fact that our trust-based model minimizes the
percentage of malicious services in the final partition as per Fig.
3. Practically, the increase in the number of malicious services that
refuse to share their needed resources entails additional wait time to
find alternative non-malicious services and offering the same type of
resources, which augments consequently the whole response time.

Figs. 4c and 5c study the performance of the produced coalitions in
terms of throughput. Throughput describes the number of requests that
coalitions can handle in a given time. For our simulations, we measure
the throughput per second. Fig. 4c reveals that our trust-based model
yields much higher throughput compared to the other two models in
the presence of malicious services. Similarly, Fig. 5c shows that our
model outperforms the hedonic cloud federations model in terms of
throughput. Obviously, the improvement in terms of throughput is a
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Fig. 6: Average Coalition Size: Our trust-based model achieves coalitions of less size

natural result of the improvement in terms of response time.
Fig. 6 measures the average coalitions size w.r.t. the increase in

the percentage of malicious services in the initial partition. Fig. 6a
reveals that our trust-based model generates coalitions of smaller size
than those generated by the availability-based and QoS-based models.
Moreover, Fig. 6b shows that the size of the coalitions produced by
our trust-based model is smaller than that of the coalitions produced
by the hedonic cloud federations model. The intuition behind this
result is that coalitions of smaller sizes are able to reduce the number
of malicious services. In other words, the size difference between
our model and the other models may be thought of as the malicious
services that our model excludes from the coalition structure. Thus,
we can conclude that our model produces a network of large number
of small disjoint coalitions.

Finally, we study the effectiveness of the proposed trust boot-
strapping mechanism in providing accurate initial trust values. To this
end, we train a decision tree classifier on our dataset using the 10-
fold cross-validation model. The dataset consists of four attributes:
Service Provider, Operation Country, Promised Availability, and
Status. The first attribute denotes the service provider’s name,
Operation Country denotes the country in which the service was
used, Promised Availability denotes the availability promised for
this service in the SLA contract, and Status denotes the status of
the service either trusted or not. The relative importance of the
promised availability attribute is reported to be 0% since usually all
providers tend to promise optimal availability (i.e., 100%), compared
to 100% for the service provider name’s attribute and 64.1% for the
deployment country attribute. The classifications resulted initially in
a tree consisting of 9 leaves. In order to guarantee the accuracy of the
classifier and minimize the overfitting, we measure, plot, and compare
in Fig. 7a the cross-validation and resubstitution errors on several
subsets of the original tree in order to find the optimal pruning level
that best classifies the new data (other than the training set). For a
decision tree consisting of 9 leaves (i.e., the initially obtained tree),
Fig. 7a shows that the resubstitution error is significantly less than
the cross-validation error, which indicates that the tree in its current
form overfits the training dataset (i.e., although the tree classifies the
training dataset well, its structure is sensitive to this specific training
set in such a way that its performance would decrease when used
on new data). The Fig. reveals as well that the resubstitution error
is excessively optimistic in the sense that this rate is continuously
decreasing as the size of the tree increases. On the other hand, the
cross-validation error rate decreases initially with the increase in the
tree size but begins to increase beyond a certain point. Therefore, the
optimal tree size that best performs on the new data is that with with
the smallest cross-validation error, which is 3 in our case (Fig. 7a).

Fig. 7b and Fig. 7c represent the Receiver Operating Characteristic
(ROC) curves [32] generated by the classifier, where sensitivity mea-
sures the proportion of positives that are correctly classified as such
(a.k.a true positive rate) and specificity measures the proportion of

negatives that are correctly classified as such (a.k.a true negative rate).
Thus, 1− specificity means the proportion of positives that are mis-
classified as negatives (i.e., false positive rate). Fig. 7b measures the
accuracy of the bootstrapping mechanism in classifying the malicious
services as such. Thus, sensitivity means in this figure the percentage
of malicious services that are correctly classified as malicious and
1−specificity means the percentage of malicious services that are
correctly misclassified as trustworthy. On the contrary, Fig. 7c mea-
sures the accuracy of the bootstrapping mechanism in classifying the
trustworthy services as such. Thus, sensitivity means in this figure the
percentage of trustworthy services correctly classified as trustworthy,
whereas 1−specificity means the percentage of trustworthy services
that are misclassified as malicious. The best possible classification
model would yield 100% sensitivity (no false negatives) and 100%
specificity (no false positives); thus a point whose coordinates are (0,
1). The dashed diagonal line represents a fully random guess (Fig.
7). By carefully inspecting both Fig. 7b and Fig. 7c, we can notice
that the sensitivity and specificity measures are nearly optimal in our
bootstrapping mechanism. The overall classifier’s accuracy is quanti-
fied in terms of Area Under the Curve (AUC) [32], where a value of 1
represents a perfect test and a value of 0.5 represents a worthless test.
Figs. 7b and 7c reveal that our bootstrapping mechanism yields high
AUC values up to 0.972 in both Figs.

7 CONCLUSION

Services’ communities provide an effective solution to the discovery,
composition, and resources scaling problems. The existing community
formation models can support only a single cloud model but are
ineffective when services are distributed across several data centers
since they rely on centralized architecture and overlook the prob-
lem of encountering malicious services. In this paper, we proposed
a comprehensive trust framework that allows services to establish
credible trust relationships in the presence of collusion attacks in
which attackers collude to mislead the trust results. We discussed as
well a trust bootstrapping mechanism that capitalizes on the concept
of endorsement in online social networks to assign initial trust values
for the newly deployed services. Thereafter, we designed a trust-based
hedonic coalitional game that is able to form trusted multi-cloud ser-
vices’ communities and proposed a relevant algorithm that converges
to a stable coalition structure. Simulation experiments conducted on
a real cloud dataset revealed that our proposed game minimizes the
number of malicious services in the final coalition structure up to
30% compared to three state-of-the-art cloud federations and service
communities formation models. Moreover, our game improves the
performance of the formed communities in terms of availability,
response time, and throughput. Besides, the proposed bootstrapping
mechanism yields high accuracy levels up to 97.2%.
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(c) Accuracy in classifying trustworthy services

Fig. 7: Bootstrapping accuracy: Our bootstrapping mechanism achieves high accuracy rate
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