
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 11, NOVEMBER 2015 2381

Trust Enhanced Cryptographic Role-Based Access
Control for Secure Cloud Data Storage

Lan Zhou, Vijay Varadharajan, and Michael Hitchens

Abstract— Cloud data storage has provided significant benefits
by allowing users to store massive amount of data on demand
in a cost-effective manner. To protect the privacy of data stored
in the cloud, cryptographic role-based access control (RBAC)
schemes have been developed to ensure that the data can only be
accessed by those who are allowed by access policies. However,
these cryptographic approaches do not address the issues of
trust. In this paper, we propose trust models to reason about
and to improve the security for stored data in cloud storage
systems that use cryptographic RBAC schemes. The trust models
provide an approach for the owners and roles to determine
the trustworthiness of individual roles and users, respectively,
in the RBAC system. The proposed trust models consider role
inheritance and hierarchy in the evaluation of trustworthiness
of roles. We present a design of a trust-based cloud storage
system, which shows how the trust models can be integrated
into a system that uses cryptographic RBAC schemes. We have
also considered practical application scenarios and illustrated
how the trust evaluations can be used to reduce the risks and
to enhance the quality of decision making by data owners and
roles of cloud storage service.

Index Terms— Role-based access control, trust model, crypto-
graphic RBAC, secure cloud data storage.

I. INTRODUCTION

THERE has been a rapid growing trend in the recent times
in using online services. A major benefit of using online

services is that users can store their data online and access it
from anywhere. However, many online service providers do
not have the capacity to store large amount of users’ data due
to high maintenance cost and complexity. Cloud services such
as cloud storage services are providing solutions to address
these issues with the ability to store and manage increasing
amount of users’ data stored online. Online service providers
can outsource users’ data to the public cloud while focusing on
the service quality. Since a public cloud is an open platform,
and can be subjected to malicious attacks from both insiders
and outsiders, this has raised several security issues such as
how to control and prevent unauthorised access to data stored
in the cloud; this also applies to cloud providers themselves

Manuscript received February 8, 2015; revised June 10, 2015; accepted
June 30, 2015. Date of publication July 13, 2015; date of current version
September 15, 2015. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. H. Vicky Zhao.

The authors are with the Advanced Cyber Security Research
Centre, Department of Computing, Macquarie University, Sydney, NSW 2109,
Australia (e-mail: lan.zhou@mq.edu.au; vijay.varadharajan@mq.edu.au;
michael.hitchens@mq.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2015.2455952

as the owners of the data may not wish the cloud providers to
view or access its content.

One approach to protect the privacy of the data stored in the
cloud is using access controls. Many access control models
have been proposed over the years in the literature. In this
context, role-based access control (RBAC) is a well-known
access control model which can help to simplify security
management especially in large-scale systems. In RBAC, roles
are used to associate users with permissions on resources.
Users are assigned roles and permissions are allocated to roles
instead of individual users; only users who have been granted
membership to roles can access the permissions associated
with the roles and hence can access the resources. Since being
first formalised in the 1990’s [1], RBAC has been widely used
in many systems to provide users with flexible controls over
the access to their data. The RBAC model was extended and
updated in 1996 [9], and the RBAC standard was proposed
in 2000 [10].

In traditional systems, access control policies are usually
specified and enforced by a central authority who has admin-
istrative control over all the resources in the system. However
in a distributed system such as a cloud, there may not exist
such a central authority as the data may be stored in distributed
data centres which cannot be under the control of a single
authority. In some cases though the access control policies
may be specified by the cloud provider authority itself in a
centralised way, there could be multiple authorities to enforce
these access policies distributed throughout the cloud system.
Therefore there would be a need to trust these authorities to
specify correctly the access control policies and enforce them
properly.

In a cloud data storage system, the data owners would wish
to specify the policies as to who can access their data and the
cloud providers are required to correctly enforce the policies
that the data owners have specified. In order to enforce the
specified access control policies before putting the data onto
the cloud, the data owners can encrypt the data in the way that
only users that the owners wished to allow as specified in the
access control policies are able to decrypt and access the data.
Several cryptographic schemes, such as the schemes in [2]–[6],
have been developed to enforce access policies on outsourced
data. These schemes combine cryptographic techniques and
access control to protect the privacy of the data in an out-
sourced environment. The paper [6] specifically addressed the
security issue of RBAC in cloud systems and proposes a
new scheme called Role-based Encryption (RBE). It is worth
noting that the security of a RBAC system using one of these

1556-6013 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2382 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 11, NOVEMBER 2015

schemes is under the assumption that the authorised users
and roles behave in a trusted manner so they do not breach
the RBAC policies. However, in a cloud storage system that
uses RBAC to control the access to the data, an authorised user
of the system may leak the data in the cloud to unauthorised
users; or an authorised user may be excluded from accessing
the permissions of the role that have been legitimately assigned
to the user by a malicious administrator of the system. Such
issues rely on trust aspects in these systems.

In some cryptographic RBAC schemes, roles and their
users are managed by administrators who hold the mas-
ter secrets of the systems. All the administration tasks in
these schemes are centralised. Therefore, if a data owner
wants to know if a RBAC system is secure, she or he only
needs to determine the trustworthiness of the administrator
of the system. However large-scale RBAC systems may have
hundred or even thousands of roles and hundreds of thousands
of users and permissions. In such cases, it is impractical to
centralise the task of managing these users and permissions,
and their relationships with the roles in a small team of security
administrators. In the RBE scheme proposed in the paper [6],
the users management can be decentralised to individual roles;
that is, the administrators only manage the roles and the
relationship among them while the roles have the flexibility
in specifying the user memberships themselves. In this paper,
we consider trust models for cloud storage systems that are
using cryptographic RBAC schemes like the RBE scheme,
where each individual role can manage their user memberships
without the need of involving the administrators. We believe
this case is more general and can be used in large-scale
RBAC systems. In such systems, data owners will need to
consider the trust of the roles with whom they wish to interact
instead of the administrator of the system.

In such a cloud storage system using cryptographic
RBAC schemes, it would be helpful if a data owner could
determine whether or not a role in the system is trusted before
interacting with it in order to prevent malicious roles or users
from accessing his or her private data. When the data owner
evaluates the trust value of a role, she or he will only proceed
with encrypting data to the role if the trust value of the role is
above a certain trust threshold (this threshold being set by the
data owner). Though the bad behaviour of a role will result
in its low trust value, malicious users in the role could also
bring down the trust value of the role. Therefore, roles will
also need to consider the trust of users so that only users with
good behaviour will be granted the role membership if the
roles wish to keep their reputations.

A. Contributions of This Paper

The main contributions of this paper are trust models
for securing data storage in cloud storage systems that are
using cryptographic RBAC schemes. Though there exists
many works on trust models in RBAC, none of these works
consider the trust for users on the RBAC system itself. The
proposed trust models address the missing aspect of trust in
cryptographic RBAC schemes to secure data storage in the
cloud, and can provide better protection of stored data than
using cryptographic approaches alone. The paper proposes

trust models to assist (i) the data owners to evaluate the trust
on the roles in a RBAC system and use this trust evaluation
to decide whether to store their encrypted data in the cloud
for a particular role, and (ii) the roles to evaluate the trust
on the users in the RBAC system and use this trust in the
decision to grant the membership to a user. We refer to these
trust models as Owner-Role RBAC and Role-User RBAC trust
models respectively.

These trust models can not only prevent the owners from
interacting with roles which have bad historical behaviour in
terms of poor track record in carrying out their functions
properly, but also assist the roles to identify the malicious
users who caused bad impacts on the roles’ trustworthiness.
This can in turn be used to reduce the risks associated with
interacting with the RBAC system for the owners and help
roles to keep the RBAC system authentic.

Another important contribution of this paper is that the
proposed trust models take into account role inheritance. Since
our trust models are for cloud storage systems dealing with
hierarchical RBAC schemes, the trustworthiness of a role
is also affected by the historical behaviour of its ancestor
roles and/or descendent roles (if a role A inherits all the
permissions that a role B has, then we say role A is a ancestor
role of role B, and role B is a descendent role of role A).
Similarly the trustworthiness of a user is also affected by his
or her historical behaviour in other roles in the RBAC system.
Hence in our trust evaluation, we take into account the impact
of role hierarchy and inheritance on the trustworthiness of
the roles and users. As far as we are aware, this is the
first time such a trust model for RBAC system taking into
account role inheritance has been proposed. We also present
the architecture of a trust-based cloud storage system which
integrates the trust models in a cryptographic RBAC system.
Moreover, we describe the relevance of the trust models by
considering practical application scenarios and illustrating how
the trust evaluations can be used to enhance the quality of
decision making by data owners and roles of cloud storage
service.

The paper is organised as follows. Section II reviews
relevant preliminary knowledge that is needed for the design
of our trust models. Section III describes the trust issues
in a cryptographic RBAC system and discusses the trust
requirements for data owners and roles (and role managers).
The formal Owner-Role and Role-User RBAC trust models
are presented in Section IV and Section V respectively. The
architecture for our secure cloud storage system is presented
in Section VI. In Section VII, we illustrate how our trust
models can be used in a cloud service application to enhance
the quality of security decision making. Section VIII discusses
some relevant related works and compares them with our
proposed trust models. Section IX concludes the paper.

II. PRELIMINARIES

A. Experience-Based Trust

Trust has played a foundational role in security for a
long period of time. Most experience-based trust systems
derive the trustworthiness of an entity from both its own

ZHOU et al.: TRUST ENHANCED CRYPTOGRAPHIC RBAC FOR SECURE CLOUD DATA STORAGE 2383

experience and the feedback on the transactions provided by
other entities which have had interactions with the entity
concerned in the past. Let us consider a simple example of
such a system. When a client c finishes a transaction with a
service provider p, c gives a feedback as either “positive” or
“negative” depending on whether or not c is satisfied with the
transaction. The feedback record is of the form f = (c, p, b, t)
where b represents the binary value of the feedback and
t is the timestamp when the transaction took place. This
record f is uploaded by the client to a trust central repository.
When another client wants to evaluate the trustworthiness of
the service provider p (assuming this client does not have
any previous experience with the provider), first it obtains
the collection of feedback records Hist (p) = { f1, . . . , fn}
from the central repository, where n is the total number
of the feedbacks about p that have been uploaded to the
central repository; Hist (p) represents the feedbacks that all
the clients have made to the service provider p. By adding
up the total number of each different type of feedback, the
client gets an evidence tuple (p, r, s) where r represents the
total number of “positive” feedbacks appeared in the collection
Hist (p), and s is the total number of “negative” feedbacks in
Hist (p). Then the client makes the decision whether or not to
continue the transaction with the service provider p based on
whether this tuple exceeds a certain threshold; this threshold
is dependent on the context of the application at hand.

Many approaches have been proposed that use probabilistic
models to evaluate the trust based on the evidence tuple which
contains the number of “positive” and “negative” transactions
in which the given entity has been involved. Perhaps the most
common probabilistic model is the one based on Bayesian
trust using a beta probability distribution function [22]–[24].
The beta family of distributions is a collection of continuous
probability density functions defined over the interval [0, 1].
Suppose a beta distribution used for a parameter θ is
defined as

P(θ) = �(α + β)

�(α)�(β)
θα−1(1 − θ)β−1

where α and β are two parameters controlling the distribution
of the parameter θ , and 0 ≤ θ ≤ 1, α > 0, β > 0. Assume
X = {x1, . . . , xn} is the collection of the feedback from the
past n transactions, and X has r “positive” feedbacks and s
“negative” feedbacks. Then the likelihood function can be
defined as

P(X |θ) =
∏n

i=1
P(xi |θ) = θ r (1 − θ)s

The posterior distribution P(θ |X) is proportional to the
multiplication of the prior P(θ) and the likelihood func-
tion P(X |θ), and we then have

P(θ |X) = P(X |θ)P(θ)

P(X)

= �(r + α + s + β)

�(r + α)�(s + β)
θ r+α−1(1 − θ)s+β−1

Now let xi+1 be the possible feedback of the next
transaction. The probability that xi+1 is a “positive” feedback

given the transaction history X can be represented as

P(xi+1|X) =
∫ 1

0
dθ P(xi+1|θ)P(θ |X)

=
∫ 1

0
dθ θ P(θ |X)

= E(θ |X)

Then we write the probability that the next transaction will
be a “good” one as follows:

E(r, s) = P(xi+1|X) = E(θ |X) = r + α

r + α + s + β
(1)

Using Equation 1, the client can derive the probability that
the next transaction with the provider will be positive from
the transaction history of the provider. Most Bayesian trust
systems assume that the parameters α = β = 1. Some
other approaches allows the parameters α and β to be chosen
depending on the system context.

B. Role-Based Encryption

A cryptographic RBAC scheme integrates encryption
scheme with RBAC model to enforce the access control
policies in an untrusted environment. This approach allows
data to be encrypted in the way that the ciphertext can only be
decrypted by those which are allowed by the access policies.
A hierarchical cryptographic access control scheme [11] was
proposed in 1983. Because of the similarity in structures
between hierarchical access control and RBAC, a hierarchical
cryptographic access control scheme can be easily trans-
formed into a cryptographic RBAC scheme. The problem
of access control for securely outsourcing data using cryp-
tographic techniques was first considered in [12]. Several
cryptographic access control approaches have been investi-
gated in [2], [13], and [14] to address the problem of secure
data access and cost effective key management in distributed
environments. Among the cryptographic RBAC schemes in
the literature, role-based encryption (RBE) schemes [6], [8]
have achieved many superior characteristics compared to other
solutions in terms of efficiency and flexibility.1

In this section, we review several concepts in RBE schemes
and briefly describe how it works to assist understanding our
proposed trust models. We first describe four types of entities
which are involved in a RBE scheme.

• SA, the system administrator of the system. It generates
the system parameters and issues all the necessary cre-
dentials. In addition, this administrator manages the role
hierarchy structure for the RBAC system.

• RM is a role manager who manages the user membership
of a role. In systems where there are a small number of
users, the SA can act as the role manager to manage
the user membership of each role to keep the systems
compact. However, in large-scale systems, it is almost

1There are also attempts of using attribute-based encryption (ABE) schemes
to enforce RBAC policies in outsourcing environment. However, those
approaches are less flexible in user management compared to RBE schemes,
such as that the revocation of a user may result in a key update of all the
other users of the same role.

2384 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 11, NOVEMBER 2015

Fig. 1. RBAC Example.

impractical for a single party to manage all the users and
permissions. Therefore, having separate role managers
can make the user management tasks more flexible and
efficient.

• Users are the parties who want to access and decrypt the
stored data. Each user is required to be authenticated by
the SA and issued a credential, which is associated with
the identity of the user, upon successful authentication.

• Owners are the parties who possess data and want to store
the encrypted data in the cloud for other users to access.
Owners define role-based access policies to specify who
can access their data.

Now we use a general RBAC example to illustrate a
RBE scheme and explain how it supports the role inheritance
in decryption.

Let us first look at the RBAC example shown in Fig. 1.
Four roles are created in a hierarchical structure. The role R2
inherits from R3 and R4, and R1 inherits from R2. Assume
that all the required algorithms in the RBE scheme have been
executed properly to setup the system parameters. We first look
at the case where an owner wants to encrypt a message M to
the role R3. The inputs of the RBE encryption are the system
public keys pk and the role public parameters pubR3

of R3,
and the output of the algorithm is the ciphertext tuple C .

Assume that the role R1 has a set of user members
{U1, U2, U3}, and the user U1 wants to access the message M .
Since R1 inherits from R2, and hence inherits from R3,
the user U1 is allowed by the policy to access M . Then
U1 can execute RBE decryption algorithm to recover the
message M , and the inputs of the algorithm are pk, the role
public parameters pubR1

, the user decryption key dkU1 and
the ciphertext C . The algorithm outputs the message M if the
decryption key dkU1 that U1 holds is valid.

Note that users of any role in the set of R3’s ancestor
role, {R1, R2, R3}, can decrypt M , and the users do not
need to know the role to which the message was encrypted.
Only the role public parameters of the role to which they
belong are required in the decryption. From the above briefly
described example, we can see how a RBE scheme supports
role inheritance in the data decryption.

As mentioned above, security of a RBAC system using a
cryptographic approach such as a RBE scheme to protect data
privacy is under the assumption that all the entities behave in

a trusted manner so they do not breach the RBAC policies,
which is not always true in real world systems. For example,
in a cloud storage system that uses RBAC to control the access
to the data, an authorised user of the system may leak data
to unauthorised users; or an authorised user may be excluded
by a malicious administrator of the system from accessing the
permissions of the role that have been legitimately assigned to
the user. Such issues relate to aspects of trust in these systems.

III. TRUST ISSUES IN USING CRYPTOGRAPHIC

RBAC SCHEMES IN SECURE CLOUD STORAGE

By using cryptographic RBAC schemes in cloud storage
systems, a data owner can encrypt the data to a role, and
only the users who have been granted the membership to the
role or the ancestor role of that role can decrypt the data.
In this paper, we assume that the data owners and users reside
outside this role system infrastructure (where the roles are
being administered). Hence the issues to consider are how
the data owners can decide whether or not to trust the role
managers in the system and how the role managers can decide
whether and how much to trust the users in the system. Owners
consider the trust of role managers in order to ensure that
their data is secure after being assigned to the roles, and role
managers consider the trust of users so that users with negative
behaviours are excluded from the roles, which in turn makes
owners trust these roles. In this section, we discuss the trust
issues that need to be considered by the data owners and role
managers of a cryptographic RBAC system.

A. Data Owners’ Trust in Role Managers

In a cloud storage system, owners are the parties who want
to share the data. When they encrypt their data to the roles
(in an RBAC system), they need to determine the trustworthi-
ness of the role managers to reduce the risks of unauthorised
parties accessing their data. For instance, a data owner may
choose not to encrypt the data to a specific role if the role
manager is found to have “bad” behaviour histories. Let us
now consider some of the key requirements that the owner
must consider in determining whether a role manager should
be trusted or not. From the owner’s perspective, a trusted role
manager should meet the following requirements.
• Requirement 1 (The Role Manager Should Grant Member-

ship to Users Who Are Qualified for That Role): When a
data owner encrypts her or his data to a role, the intention of
the owner is to allow the data to be decrypted by the users
who are qualified to be in that role. Therefore, the qualified
users should have the access to the data. The violation of
this requirement is detected by checking whether or not
the qualified users can decrypt the data. Not granting the
membership to a qualified user is therefore considered as a
bad behaviour of a role.

• Requirement 2 (The Role Manager Should Not Grant Mem-
bership to Users Who Are Not Qualified to That Role):
Another requirement expected by a data owner is to prevent
unqualified users from accessing the permissions to decrypt
the data stored in the cloud. A trusted role manager should
only grant membership to a user when the qualifications of

ZHOU et al.: TRUST ENHANCED CRYPTOGRAPHIC RBAC FOR SECURE CLOUD DATA STORAGE 2385

the user are verified. Granting membership to an unqualified
user is therefore considered as a bad behaviour.

• Requirement 3 (The Qualified Users in a Role Should
Not Leak the Data to Unqualified Users): Even if a role
manager grants membership only to the qualified users,
it is possible that a qualified user may leak the data
to unqualified users. For example, consider the situation
whereby a user, who is allowed to access the private
information that an owner has stored in the cloud, leaks it to
another user to whom the owner does not want to reveal the
information. The violation of this requirement is detected
if it is found that an unqualified user has knowledge of
the data. It may or may not be possible to discover this
situation. In general, we assume that it is not possible to
track down the user who leaks the data; this implies that
all the users in that role will need to be under suspicion
when such a data leak is detected.
In a hierarchical RBAC system, a role can inherit permis-
sions from other roles. The users of a role have access to
the data encrypted to any of its descendant roles. When
a leakage is detected in the data encrypted to one of
the descendant roles of a role, the users of this role are
also under suspicion as they have the potential ability
to cause the leakage. Therefore, when an owner wants
to determine the trustworthiness of a role manager, the
behaviour histories of role managers of descendant roles
of this role need to be taken into account in the evaluation,
as the users in this role could be the cause of the leakage
of its descendant roles’ data which are not reflected in the
behaviour history of the role manager of this role.

• Requirement 4 (The Role Managers of Ancestor Roles of
the Role Under Consideration Should Be Trusted): Since
a role’s permissions are inherited by all its ancestor roles,
when an owner encrypts data to a role, all its ancestor roles
also have access to the data. So the data owners need to
consider the trustworthiness of not only the role to which
they want to encrypt the data, but also of all the ancestor
roles of this role, as encrypting data to this role is equivalent
to encrypting data to any of the ancestor roles of this role.

B. Role Managers’ Trust in Data Users

Since roles have the role managers to manage their user
memberships, it is role managers’ responsibility to build up
their own reputation. Therefore it is important for each role
manager to be able to evaluate the trustworthiness of users.
Role managers can exclude malicious users from the roles; so
these users would not affect the trustworthiness of the roles.
The ability to evaluate the trust of users is also useful when a
user wants to join the role. The role manager can determine the
trustworthiness of the new user and decide whether or not to
grant the membership to that user. The proper management
of users can result in a good behaviour history for a role
manager, which in turn affects the owners’ decisions on the
role manager. From the role managers’ perspective, a trusted
user should meet the following requirements.

• Requirement 1 (The User Should Not Be Involved in the
Event of Leaking Resources of the Role): When a leak

of data is detected, we assume that the role manager can
track which users have accessed the data but the role
manager does not know who leaked the data. Here we
say that a user is involved in leaking data if the data
was found to be leaked, and this user has accessed the
data before the leaking is detected. A user who has been
involved in the leaking event m times will be considered
less trusted than the user who has been involved in the
leaking n times if m > n.

• Requirement 2 (The User Should Be Considered as
Trusted by Role Managers of Any Role of Which the User
Is or Was a Member): A user may belong to different
roles in a RBAC system. Therefore, the role managers
of some other roles to which the user belongs may also
hold trust opinions on the user. A trusted user is supposed
to act consistently in different roles. Though a user may
behave well in one role, she or he will still be considered
untrusted if she or he has bad behaviours in the other
roles. The trust opinions of the role managers of other
roles on a user can support the evaluation of the user’s
trustworthiness. A role manager who does not have any
trust records in regards to a user (e.g. when a new user
requests to join the role) will still be able to determine
the trust of the user.

IV. OWNER-ROLE RBAC TRUST MODEL

In this section, we consider the owner trust models for
RBAC systems. We define three entities in our models, namely
Owner, User and Role. Owner is the entity who owns the data
and stores it in an encrypted form in the cloud, and User is the
entity who wishes to access the data from the cloud. Role is
the entity that associates users with the access to owners’ data,
and each role manages the user membership of itself. When
we refer to Role in such a context we imply role managers.
Then we present an example to illustrate how the behaviour
histories of roles in the RBAC system affect the trust of a
particular role that a user wants to interact with.

A. Trust Model

Now we give the formal definition of the Owner-Role RBAC
Trust Model.

Definition 1 (Interaction): From an owner’s perspective, an
interaction is a transaction whereby an owner encrypts data to
a role, and the role gives the access to the data to qualified
users.

A successful interaction is an interaction where only
qualified users in the role to which data is encrypted or
users in the ancestor roles of the role have accessed the
data. An unsuccessful interaction is an interaction where an
unqualified user has accessed the data. We define two types
of unsuccessful interactions.

User Management Failure: User management failure is an
unsuccessful interaction caused by a role who did not
manage the user membership properly; that is, the role
did not grant the membership to users even when the
users have qualified for the role, or the role manager has
granted the membership to unqualified users.

2386 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 11, NOVEMBER 2015

User Behaviour Failure: User behaviour failure is an unsuc-
cessful interaction where the data is leaked to unqualified
users. When an owner detects that its data has been
accessed by unqualified users, the owner may or may not
know which qualified user(s) has leaked the data. Here
we define User Behaviour Failure as such an unsuccessful
interaction where the owner does not know which user
has leaked the data. If the owner knows who has leaked
the data, we consider this unsuccessful interaction as User
Management Failure.

Definition 2 (Trust Vector): We define a trust vector to
represent the behaviour history of a role as

v = (r, sM , sB)

In this trust vector, r is the value related to successful interac-
tions, sM is the value related to the User Management Failure
of the role, and sB is the value related to User Behaviour
Failure.

By using the function E in Equation 1, we define the trust
function T (v) that represents the trust value derived from the
trust vector v as

T (v) = E(r, sM + sB)

In order to assist owners to collect feedbacks from other
owners, we assume that there exists a central repository in the
system to collect the ratings on all the interactions between
owners and roles. The feedbacks are available to the owners.

Definition 3 (Interaction History): We define the interaction
history derived from these ratings of a role R as

HistO(R) = {H R
1 , H R

2 , · · · , H R
n }

Each entry H R
i in HistO(R) is defined as a pair of

parameters H R
i = 〈I Di , vi,R 〉, where vi,R = (r, sM , sB) is

a trust vector that represents the trust record of interactions
that the owner I Di has had with the role R. r is the number
of I Di ’s positive feedbacks on the interactions with R, sM is
the number of negative feedbacks on the interactions with R
due to the User Management Failure, and sB is the number
of negative feedbacks due to the User Behaviour Failure.

Assume that an owner I Di has assigned a resource
to the role R. The central repository will increase r in
vi,R = (r, sM , sB) by 1. However, if the owner later reports
a leak of this resource, the central repository will decrease r
by 1 first. Then depending on the failure type, the central
repository will increase sM by 1 if the owner knows who has
leaked the resource, or increase sB by 1 if the owner does not
know.

In section III-A, we have discussed the trust requirements
that an owner should consider when deciding whether or not to
trust a role. From that discussion, we see that the factors which
can affect the owners’ decision come from the interaction
history of the role with whom owners have interacted as well
as its ancestor roles and descendant roles. When an owner
evaluates the trust of a role R, the owner needs to consider
the following different trust classes.

Individual Trust: Individual trust is a belief that is derived
directly from the interaction history of the role R.

When computing the trust of the role R, an owner obtains
the interaction history HistO(R) of the role R from the central
repository. Assume wo is the weight that the owner I Dk

assigns to the feedbacks from other owners. The individual
trust value of the role R is computed as

TO(R)D = T (vD
k,R), vD

k,R = vk,R + wo

∑n

i=1,i �=k
vi,R

The trust vector vD
k,R in this equation is a combination of

all the trust vectors in HistO(R) with regard to the role R
considering the weighting for the ones from other owners.

The weight wo used in calculating the trust is a positive
number indicating the importance of other owners’ interaction
history in the trust evaluation. Depending on the design of the
system, the weight can be chosen from the range [0, 1] where
the number 1 means that the trust records from all the owners
will be considered as the same important and the number 0
means that other owners’ feedback will not be considered in
evaluating the trust of a role. Although it is possible to choose
a weight wo > 1, it makes little sense to an owner that others’
opinions are more important than that of herself or himself.

Inheritance Trust: Inheritance trust is a belief that is derived
from the interaction history of other roles that have inheritance
relationships with the role.

First we consider the inheritance trust where only the
interaction history of the descendant roles is included. When
an owner detects a User Behaviour Failure with a descendant
role Rd of a role R, the feedback that the owner provided
should not only be applied to that descendant role Rd , but
should also affect the trust of R (as users belonging to the
role R also have the access to owner’s data assigned to Rd

and hence are under suspicion of causing an unsuccessful
interaction). Therefore, while evaluating the trust of R, the
interaction history from all its descendant roles including Rd

needs to be considered.
Assume a role R has m immediate descendant

roles {R1, · · · , Rm}, and we define a weight vector
wRi = (wR

Ri
, 0, wR

Ri
) is the system specified weight

between R and Ri . We define the second element of wRi as
zero because the User Management Failure is not considered
in inheritance trust. We denote the number of users that have
been included in the role Ri as nRi , and the total number
of users that have been included in the role Ri and all its
ancestor roles as NRi . Here we assume that the probability
that each user violates the trust requirement is the same. The
inheritance trust value derived from the descendant roles is
computed as

TO(R)I = T (v I
k,R),

v I
k,R = nR

∑m

i=1
[(v

D
k,Ri

NRi

+ v I
k,Ri

nRi

),wRi]

where [v,w] := vT w is the usual dot product on Z
3
q .

The weight wRi in computing the Inheritance Trust is
a positive number indicating the importance of trust values
inherited from other roles. In most cases, the system may
use the same weight for all the inheritance relationships.
If a system wishes to consider the inheritance relationships
of some roles more important than those of other roles,

ZHOU et al.: TRUST ENHANCED CRYPTOGRAPHIC RBAC FOR SECURE CLOUD DATA STORAGE 2387

Fig. 2. Hierarchical RBAC Example I.

our trust model can support that by allowing the system to
specify different weight for individual inheritance. Similarly
to the weight used in the Individual Trust, a system can
choose the weight wR

Ri
∈ [0, 1]. Choosing the weight 1

means that all the trust values derived from role inheri-
tance will have the same importance. Choosing the weight 0
means that the inheritance will not be considered in the trust
evaluation.

Combination Trust: To combine these two types of trusts
together, we define a combination trust function for a role R
as TO(R). Assume that w ∈ [0, 1] is the weight of the
inheritance trust. The trust is first computed as follows:

TO(R)C = (1 − w) · TO(R)D + w · TO(R)I

In this equation, the smaller the weight w is, the less important
the inheritance trust is considered. If a system does not want
to consider the inheritance trust, the weight w will be chosen
as 0.

Consider the scenario where the combination trust of a role
is higher than the trust value of one of its ancestor roles.
Then the owners will trust this role at the same level as its
ancestor role which has a lower trust value, as the users of
its ancestor role have the same level of access as the users
in this role. So the combination trust of the role will be the
minimum value of the trust of this role and the trust of all its
ancestor roles. Assume the role R has m immediate ancestor
roles {R1, · · · , Rm}. Then the combination trust is amended
to be the following:

TO(R) = min(TO(R)C , TO(R1), · · · , TO(Rm))

B. Example

In this section, we look at a few examples of trust evalu-
ation based on feedback from different sources. From these
examples, we discuss how the trust value of a particular role
is affected by different components in the system.

1) Feedback of Different Roles: First we use an example
to show how the owners’ trust in a role is affected by the
feedbacks for different roles in a RBAC system. In this
example, we consider all the bad feedbacks as User Behaviour
Failure, as our intention is to show how the role hierarchy
affects the trust value of roles. Consider the role hierarchy
example shown in Fig. 2.

Fig. 3. Trust Values with Feedback on Different Roles.

In Fig. 2, the role R1 inherits from role R2 and role R3,
and the role R2 inherits from R4 and R5. For simplicity, let
us assume that the number of users in all these roles are the
same. We set the weight between every two roles and the
weight of other owners’ feedbacks to 1; that is, the weight
vector for each role is defined as w

Ri
Ri+1

= (1, 0, 1), i ∈ [1, 5),
and wo = (1, 1, 1). When an owner wants to encrypt data to
the role R2, she or he will need to evaluate the trust value
of R2 to decide whether it is safe to give access to the data
to R2. In Fig. 3, we show the trust values of R2 when only
different individual roles in the RBAC system have feedbacks.
For example, the curve for R1, G F P = 75% shows the trust
values of R2 when only R1 in the RBAC system has feedbacks,
and 75% of these feedbacks are positive.

When the good feedbacks percentage is 75%, the trust value
for R2 goes up with increasing number of feedbacks. When
the feedbacks are only given for R1, the increase in the trust
value is the fastest. This is because all the feedbacks are
used in the calculation of the individual trust of R1, and the
combination trust of R1 is not affected by other roles as there
is no feedback for others. Since R2 has neither individual
trust nor inheritance trust, its combination trust is the minimal
value among the set which contains the trust value of R1
only. Therefore, it has the highest value as it is calculated
based on all the feedbacks in which the positive ones are
in the majority. When the feedbacks are only provided for R4,
the increase in the trust value is the slowest. This is because
the feedbacks used in the calculation of the inheritance trust
of R2 has been averaged over three roles, R1, R2, and R4,
and only 1/3 of the feedbacks are considered in calculating the
trust value of R2. We see that the trust value of R2 increases
slightly faster when the feedbacks are only provided for R3.
This is because the population in two roles is less than that
in three roles, and 1/2 of the feedbacks are considered in
the calculation of R2’s trust value. This is analogous to the
case where R2 has more feedbacks where the positive ones
are in the majority. When the feedbacks are only provided
for R2, we see that the curve overlaps with the trust value
where the feedbacks are only for R3. Since R2 and R3 have
the same population in this example, the feedbacks for R2

2388 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 11, NOVEMBER 2015

Fig. 4. Trust Values for R2 with Role Inheritance. (a) Feedback on R1. (b) Feedback on R5.

and those for R3 have the same impact on the trust value
of R1. When not considering R1, R2 has a higher trust value
as the value is based on all the feedbacks. However, taking the
lowest trust value among R2 and all its ancestor roles makes
R2’s trust value the same as the one when feedbacks are only
for R3.

2) Role Inheritance: When the good feedbacks percentage
is 25%, the trust value for R2 goes down with the increasing
number of feedbacks. When the feedbacks were only provided
for R1, the decrease in the trust value is the fastest. Similar
to the above, this is because all the feedbacks have been used
in the calculation of R1’s trust value which in turn becomes
the trust value of R2, and the majority of these feedbacks are
negative. When the feedbacks are only provided for R4, the
decrease in the trust value is the slowest. This is because the
feedbacks used in the calculation of the inheritance trust has
been averaged by three roles, R1, R2, and R4. We also see that
the trust value decreases slightly faster when the feedbacks
are only for R3 because more feedbacks whose majority are
negative are used in calculating R2’s trust value. When the
feedbacks are only provided for R2, we see that the curve
overlaps with the trust value when feedbacks are only for R1
instead of R3. Since the feedbacks for R2 and those for R3
have the same impact on the trust value of R1, the trust value of
R1 is the same as when the feedbacks are for R3. However, the
unamended combination value of R2 is the same as R1’s trust
value (the same as the trust value of R2) when the feedbacks
are only for R1 as they both are calculated based on the same
amount of feedbacks. This trust value is lower than that of the
role R1, and is used as the amended trust value of R2.

From Fig. 3, we see that the feedbacks for different roles
in the system have different impact on the trust value of R2.
Firstly, the feedbacks on ancestor roles have the most signifi-
cant impacts on the trust of a role. Secondly, the more users
have access to a role’s data, the less impact the feedbacks for
the role will have on each role that the users belong to.

Next we use an example to illustrate how the owners’
trust in a role is affected by the inheritance relationship in
a RBAC system. In this example, we use the same role

hierarchy example shown in Fig. 2. We assume that each role
has the same amount of User Behaviour Failure as the User
Management Failure and each of R1, R2, R5 has 100 users.
We set the G F P of R2 to 60%.

In Fig. 4a we show the trust value for R2 when R1
has different feedback from owners. For example, the curve
for R1, G F P = 80% shows the trust values of R2 when R1
has 80% positive feedback, while R2 having 60% positive
feedback. The curve for Direct T rust shows the trust values
for R2 when the trust records of R1 is not considered when
evaluating the trust of R2.

When the good feedback percentage of R1 is 80%, the trust
values for R2 remain the same, whether the feedback of R1
is considered or not. The result shows that the feedback of
ancestor roles will not have impact on the trust of the role if
the ancestor roles are considered more trusted. However, when
the good feedback percentage of R1 is 20%, the trust values
of R2 drop rapidly less than that for Direct Trust . This is
because the users of R1 have the same level of access to the
data assigned to R2 as the users in R2, and a malicious user
in R1 can leak the data assigned to R2. Therefore the owners
will trust R2 at the same level as R1 if R1 is less trusted
than R2. This would not be captured if the role inheritance is
not considered.

Then we look at the impact of R5’s feedback on the trust
of R2. In Fig. 4b we show the trust value for R2 when R5
has different feedback from owners. For example, the curve
for R5, G F P = 80% shows the trust values of R2 when R5
has 80% positive feedback, while R2 having 60% positive
feedback. The curve for Direct Trust still shows the trust
values for R2 when the trust records of R5 is not considered
when evaluating the trust of R2.

When the good feedback percentage of R5 is 80%, the trust
values for R2 are slightly more than that of Direct Trust .
This is because the User Behaviour Failure of R5 is related
to R2; the more trusted R2 is, the less User Behaviour Failure
R4 and R5 will have. So higher G F P of R5, that is less User
Behaviour Failure, implicitly indicates that R2 is more trusted.
Therefore the trust values for R2 increase slightly when the

ZHOU et al.: TRUST ENHANCED CRYPTOGRAPHIC RBAC FOR SECURE CLOUD DATA STORAGE 2389

Fig. 5. Trust Values for Different Number of Users.

feedback of R5 is taken into account when evaluating the trust
of R2. When the good feedback percentage of R5 is 20%,
the trust values for R2 decrease gradually as the number of
feedback increases. The result shows that the User Behaviour
Failure of R5 results in suspicion of data leakage on users in
R2, and hence cause low trust values of R2. But the inheritance
trust has limited impact on the trust of R2 as that is only
a portion of the trust evaluation which is controlled by the
weight w. In this example, the weight w is set to 0.45. This
is different from the example with feedback on R1 where the
trust value for R2 is dominated by the trust records of R1
when G F P of R1 is lower than that of R2.

In the examples of role inheritance, we see the importance of
using the trust model that considering the role inheritance rela-
tionship when evaluating the trust. Suppose the trust threshold
of the system is set to 0.5, without considering the trust records
of other roles, the role R2 would be evaluated as trusted as
its Direct Trust is always above the threshold. However,
when R1 or R5 are untrusted as shown in the examples, still
evaluating R2 as trusted will put owners in risk when they want
to assigned data to the role R2. The result of the examples
shows that this problem can be addressed by rectifying the
trust values for R2 using our trust model.

3) Number of Users: Last we use an example to show how
the owners’ trust in a role is affected by the number of users
of the role. We use the same role hierarchy example shown
in Fig. 2. We assume that R1 does not have any feedback
and R2, R5 has the same amount of User Behaviour Failure as
the User Management Failure. We set the G F P of R2 to 60%
and each of R1, R5 has 100 users.

In Fig. 5 we show the trust value for R2 when the number
of users in R2 changes. The curve for Combination Trust
shows the trust values of R2 when inheritance trust is taken
into account. The curve for Direct T rust shows the trust
values for R2 when only the trust records of R2 is used
in evaluating the trust of R2, and it is used for comparison
purpose in this example.

The result shows that the more users that R2 has, the more
impact it will have from the inheritance trust. This is because
the trust model assumes that all the users will have equal
suspicion when the system could not track the user who has

caused the leak of data. Then the suspicion of each user will
be aggregated for each role to reflect the trustworthiness of
the role as a whole. Therefore, the more users in R2 implies
the more suspicion that R2 has when there are User Behaviour
Failure in its descendant roles.

For all the above examples, the results show that our
owners’ trust model is useful in assisting owners to determine
properly the trust of roles in RBAC systems.

V. ROLE-USER RBAC TRUST MODEL

Since the trustworthiness of a role is primarily determined
by the behaviour of users of the role, it is important for the
role to ensure that only users with good behaviour are granted
membership. If roles do not have a way to evaluate the trust
of their users, it would be difficult for them to distinguish
the malicious users from those with good behaviours. In this
section, we present a trust model for roles’ trust in users as
an extension of the owners’ trust model on roles. This trust
model aims to assist a role to determine the trust of users who
belong to the role or want to join the role.

Roles can use this model to periodically check and revoke
the memberships from users whose trust values are below the
preset threshold. This trust model can also be used by roles
to determine the trust value of a new user requesting to join;
the request from the users whose trust values are below the
threshold will be rejected.

A. Trust Model

In this subsection, we give the formal definition of the roles’
trust in users.

Definition 4 (Trust Vector): Since there is no interaction
between the roles and users, we define a trust vector to
represent directly the behaviour history of a user as follows:

v = (h, s)

In the trust vector, h is the total number of resources that
have been assigned to the role, and s is the value related to
the leaking events that the user was involved in. Recall that
we say that a user is involved in a leaking event of a resource
if the resource has been found to be leaked, and this user has
accessed the resource before the leaking was detected.

Using the function E in Equation 1, we define the trust
function T (v) that represents the trust value derived from the
trust vector v as

T (v) = E(h − s, s)

Definition 5 (Trust Records): We assume that there exists
a central repository in the system that collects and stores the
behaviour histories of users provided by roles of which the
user was a member. We define the trust record provided by a
set R of n roles as

HistR(U) = {H U
1 , H U

2 , · · · , H U
n }

Each entry H U
i in Hist (U) is defined as a pair of parame-

ters, H U
i = 〈Ri , vi,U 〉 where vi,U = (h, s) is a trust vector

that represents the trust record of the user U when she or he
is the member of the role Ri . h is the number of resources

2390 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 11, NOVEMBER 2015

that have been assigned to Ri when U is the member of the
role Ri , and s is the number of leaks related to Ri that U was
involved in when U is the member of Ri .

We assume that a role Rk currently has a set U of n users.
When a new user joins, Rk will create a trust vector for the
user in the central repository. The vector is initialised as (h, 0)
where h is the current number of resources that have been
assigned to the role.

When a new resource is assigned to Rk , Rk will update the
trust records (H U1

k , H U2
k , · · · , H Un

k) in the central repository
by increasing h in each vector by 1. When a leak is detected
by or reported to the role Rk , Rk tracks the set of users who
have accessed the leaked resource, and increases the value s
in trust vectors of this set of users by 1.

Since a role can inherit from another role in RBAC systems,
besides updating the trust records maintained by Rk , Rk will
need to notify all its ancestor roles about the leak, and all the
ancestor roles of Rk will update their trust records for their
users in the same way that Rk does.

Next we define the trust function used in the model.
Direct Trust: Direct trust of a role on a user U is the belief

that is derived directly from trust records of the user U from
the role itself.

When a role Rk wishes to evaluate the trust value of a
user U , it first obtains the trust record HistR(U) of the user
from the central repository. Taking as input the trust record
H U

k maintained by Rk itself, the direct trust value can be
computed as follows:

TR(U)D = T (vk,U)

Recommended Trust: Recommended trust is the belief that
is derived from the trust records of the user from other roles
in the system.

Assume there are n roles {R1, · · · , Rn} who have provided
the trust records for the user. The recommended trust value of
the user from the perspective of the role Rk is computed as

TR(U)R = T (vR
k,U), vR

k,U =
∑n

i=1,i �=k
vi,U

Combination Trust: To combine these two types of trust
together, we define a combination trust function for a user
U as TR(U). Assume that w ∈ [0, 1] is the weight of the
recommended trust. The trust value is computed as

TR(U) = (1 − w) · TR(U)D + w · TR(U)R

In this equation, the smaller the weight w is, the less important
the recommended trust is considered. If a system does not
want to consider the recommended trust, the weight w will be
chosen as 0.

This trust value is evaluated based on all the trust records
in HistR(U) considering the weighting for the trust records
from other roles.

B. Example

In this section, we look at a few examples of trust evalu-
ation based on feedback from different sources. From these
examples, we discuss how the trust value of a particular role
is affected by different components in the system.

Fig. 6. Hierarchical RBAC Example II.

Fig. 7. Trust Values for Users Evaluated by R2.

1) Trust in Different Users: First let us consider an example
to illustrate how a role’s trust in users is related to role(s) that
users belong to in a RBAC system. In this example, we assume
that we do not know whether these users are the causes of the
bad feedbacks. Consider the role hierarchy example shown
in Fig. 6.

In Fig. 6, the role R1 inherits from role R2 and role R3,
the users U1 and U2 are the members of the role R2 and R3
respectively, and the user U3 is the member of both the role
R2 and R3. For simplicity, let us assume that the number of
resources assigned to all the roles are the same, and users’
feedbacks are from the role(s) to which they belong. For
example, U2’s feedback is provided only by R3 while U3 is
getting feedbacks from both R2 and R3. In Fig. 7, we show
the trust values for these users U1, U2, and U3 evaluated from
the role R2’s perspective.

When the users’ good feedbacks percentage is 75%, the
trust values for the users are increasing. The increase in the
trust value for U2 is slowest because the weight of feedbacks
from other roles is low where w = 0.25. The trust value
for U1 increases faster as the weight for the direct trust in
this example is more than that of the recommended trust. The
trust value for U3 increases the fastest as this user receives
good feedbacks from both roles R2 and R3 and the combined
value is higher than any one of them. When the users’ good
feedbacks percentage is 25%, the trust values for the users are
decreasing. The decrease in the trust value for U2 is slowest
because the weight for feedbacks from other roles is low. The
trust value for U1 decreases faster as the weight for the direct

ZHOU et al.: TRUST ENHANCED CRYPTOGRAPHIC RBAC FOR SECURE CLOUD DATA STORAGE 2391

Fig. 8. Trust Values for U3 Evaluated by R2.

trust is more than that for the recommended trust. The trust
value for U3 decreases the fastest as this user receives bad
feedbacks from both roles R2 and R3.

From Fig. 7, we see that the feedbacks for users in different
roles result in a different trust value when R2 evaluates the
trust of these users. When a user has good trust records in
other roles only, the role will trust the user less than another
user who has the same trust record in the role itself. A user
who has good trust records in both this role and other roles
will be trusted the most among the three users.

2) Combination Trust: Then we use an example to show
how the roles’ trust in a user is affected by the feedback from
other roles in the system. We use the same role hierarchy
example shown in Fig. 6. We set the G F P of R2 to 60%.

In Fig. 8 we show the trust value for U3 evaluated by R2
when the G F P from R3 on U3 changes. For example, the
curve for R3, G F P = 70% shows the trust values of U3 when
the G F P from R3 is 70% and the G F P from R2 is 60%.
The curve for Direct Trust shows the trust values for U3
when only the trust records from R2 is used in evaluating
the trust of U3, and it is used for comparison purpose in this
example.

As shown in Fig. 8, when the G F P for the feedback from
R3 is higher than that from R2, that is R3 has more positive
feedback on U3 than R2 has, the trust values for U3 are higher
than that evaluated using the feedback from R2 alone. When
the G F P from R3 is 10%, the trust values for U3 are less
than that for Direct T rust . Assume that the system has set
the threshold to 0.5, without taking into account the feedback
from R3, R2 would consider U3 as trusted. However, by using
feedback from both R2 and R3 in evaluating the trust of U3,
U3 will be rated as untrusted.

These results show that our roles’ trust model is intuitive.
Hence it is useful in assisting roles to determine properly the
trust of users in RBAC systems.

VI. ARCHITECTURE

In this section, we present the design of a secure cloud
storage system combining the trust models for RBAC proposed
in section IV and V with a cryptographic RBAC system.
This architecture provides a practical solution in building a

Fig. 9. Architecture for Using Owners’ Trust Models in a Cryptographic
RBAC System.

reliable and trusted RBAC system while retaining the use
of cryptographic techniques. We have developed a prototype
implementation of this architecture and used it in carrying out
our experimental analysis.

A. System Overview

Consider the system architecture shown in Fig. 9. Since
our trust models are based on cryptographic RBAC schemes,
our system contains all the entities that a cryptographic
RBAC scheme has, which include an administrator, roles,
users, and owners. The administrator is the certificate authority
of the RBAC system. The administrator generates the system
parameters and issues all the necessary credentials. In addition,
the administrator manages the role hierarchical structure of the
system. To put a role into the role hierarchical structure, the
administrator needs to compute the parameters for the role.
These parameters represent the position of the role in the
role hierarchy. They are stored in the cloud, and are available
publicly. Roles are the entities that associate users and owners
together. Each role has its own role parameters which defines
the user membership. These role parameters are stored in the
cloud, and a role needs to update them in the cloud when
updating the user membership of the role. Owners are the
parties who possess the data and want to store the encrypted
data in the cloud for other users to access. Owners specify
who can access the data in terms of role-based policies. In the
RBAC model, they are the parties who manage the relationship
between permissions and roles. An owner can be a user within
the organisation or an external party who wants to send data
to users in the organisation. In this architecture, we consider
an owner to be a logically separate component even though
a user can be an owner and vice versa. Users are the parties
who wish to acquire certain data from the cloud. When a user
wishes to access stored data in the cloud, she or he first sends
the request to the cloud, and decrypts the data upon receiving
the response from the cloud.

In addition to these four entities in a basic crypto-
graphic RBAC scheme, our trust-enhanced cryptographic
RBAC system integrates an extra trust management system,
which consists of five components. Next, we describe the
details of these components.

2392 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 11, NOVEMBER 2015

1) Central Repository: In our trust models, all the
interaction histories and trust records related to roles and users
are stored in a central repository. The central repository is
used to keep records of all these interaction histories and
trust records which are used by the Trust Decision Engine
(described as below) in evaluating the trust value of roles and
users. Any entity that is residing outside the trust management
system is not able to access the central repository.

2) Role Behaviour Auditor: In order to protect the integrity
of the feedbacks on roles, a role behaviour auditor collects the
feedbacks for roles from owners. The role behaviour auditor
needs to ensure that an owner who uploads feedback is autho-
rised. All the valid feedbacks will be forwarded to the central
repository, and invalid feedbacks will be discarded. Besides
the feedbacks from owners, the role behaviour auditor also
collects information about data assignment to roles. Owners
need to inform the role behaviour auditor when they encrypt
data to roles. The auditor will update the central repository
with the number of resources that have been assigned to the
roles.

3) User Behaviour Auditor: A user behaviour auditor is an
entity to collect the feedbacks on users’ behaviour. However,
unlike the role behaviour auditor, the user behaviour auditor
listens on two channels for feedbacks. One is from the roles
who may report the leakage of data, and another is from
the user behaviour monitor which reports the access histories
of users to the stored data in the cloud. This auditor will
determine whether a user is involved in the leakage of data,
and update the user trust records in the central repository if
the user has accessed the leaked data.

4) User Behaviour Monitor: A user behaviour monitor acts
as a proxy server between users and the cloud. It only monitors
and forwards the users’ requests to access stored data in cloud.
When a user wants to access a resource, she or he does not
send the request to the cloud directly. Instead, the request is
sent to the user behaviour monitor, and the user behaviour
monitor will forward the request to the cloud. The monitor
will inform the user behaviour auditor the information about
which user has accessed which resources.

5) Trust Decision Engine: The trust decision engine is the
entity which evaluates the trust of roles for owners and the
trust of users for roles. The trust decision engine takes as input
the interaction histories or trust records stored in the central
repository, and outputs the trust value of a particular role or
user.

B. System Workflow

All the entities in the system are connected through different
communication channels which are labelled with numbers in
Fig. 9. We explain how the system works by describing the
information flow through these channels.

First, the administrator initialises the system and specifies
the role hierarchy of the system. The generated system para-
meters are uploaded to the cloud via channel 1. Roles grant the
membership to users, and upload role parameters to the cloud
via channel 2. Owners encrypt and upload data to the cloud
via channel 3. When a user wants to access a resource stored
in the cloud, she or he first sends the access request to the

user behaviour monitor via channel 4, and the user behaviour
monitor forwards the request to the cloud through channel 5.
The cloud then communicates with the user as in a normal
cryptographic RBAC scheme. The monitor also sends the user
behaviour auditor the information about the user identity and
the resource identity via channel 6.

When an owner wants to encrypt a resource to a role in
the RBAC system, she or he requests for the trust evaluation
on the role to the trust management system. Then the trust
value of the role will be returned to the owner through the
channel 13. If the owner believes that the role is trusted, she
or he then encrypts and uploads the resource to the cloud via
channel 3. The owner also notifies the role behaviour auditor
about the identity of the resource in the cloud and the role to
whom the resource is encrypted. The auditor then updates the
number of the resources that have been assigned to this role
in the central repository via channel 10. When an owner has
found a leak in her or his resource to unauthorised users, she
or he then provides feedback on the role to whom the resource
is encrypted to the role behaviour auditor through channel 9.
Once the role behaviour auditor verifies that the feedback is
from an authorised owner, it will forward the feedback to the
central repository.

When a negative feedback of a role has been raised by an
owner because of the leak of a resource, the role will send
the identity of the resource to the user behaviour auditor via
channel 7. The auditor then updates the trust records of users,
who have accessed this resource, in the central repository via
channel 8. The role can ask the trust management system
about the trust evaluation for a user at any time, and the trust
value will be returned by the trust decision engine through
channel 12. Upon receiving the trust values for users from the
trust decision engine, a role can update the role parameters
that represent the user membership in the cloud via channel 2
if there exist malicious users whose role memberships need to
be revoked.

VII. APPLICATION SCENARIO

Finally, we consider an application scenario based on a
digital library system to illustrate how our proposed trust
models can enhance the quality of decision making. Assume
that the digital library system uses an external cloud storage
platform to store all the resources, and publishers are allowed
to share their digital resources such as books, magazines,
and other types of publications on this platform. A party can
subscribe to the publisher for particular resources in order to
access the resources stored in the cloud, and the subscription
to a publisher needs to be authorised by the publisher. The
publisher may reject the subscription request for reasons such
as the party is not reliable in paying the subscription or the
party has the potential to leak the resources to unauthorised
parties.

Now assume that there is an organisation with several
branches in different geographical locations and each branch
consists of several departments. When employees need to
access the digital resources stored in the cloud, the relevant
department or the branch (where the employee works) can
subscribe to the publisher. Let us assume that the organisation

ZHOU et al.: TRUST ENHANCED CRYPTOGRAPHIC RBAC FOR SECURE CLOUD DATA STORAGE 2393

Fig. 10. Digital Library System Example.

uses a RBAC system to control the access to resources, and
the role hierarchy is shown in Fig. 10.

In this example, the organisation consists of two branches
B1 and B2, and each branch has two departments M D1 and
P D1, M D2 and P D2 respectively. Assume that the head office
has two head departments M D and P D which manage the
relevant departments in both branches. Recall that a role can
inherit from other roles in the RBAC system. For example,
when P D has subscribed to a resource from a publisher, both
P D1 and P D2 will have access to the resource. Similarly, a
resource subscribed by the role O RG can be accessed by all
the roles in the system.

By using a cryptographic RBAC scheme in this system,
a publisher is able to encrypt the resource to the branch or
department (who subscribes to the resource) and store it in
the cloud so that the employees who work in the branch or
department can access it. There is an assumption that these
employees are trusted and will not redistribute resources of
the publisher to employees who are not in that branch or
department. However, it is possible that an employee leaks
the content of a resource to others. Therefore, the publishers
will need a trust system to assist them in identifying the
roles who have malicious users, and hence avoid accepting
the subscriptions from them.

Let us now consider how our trust model can be used in
this system to assist the publishers (owners). Assume that
no publisher has ever interacted with the role P D1, P D2,
and now a publisher wishes to evaluate the trust of them.
We also assume that B1, M D1 and P D1 are the same as
B2, M D2 and P D2 in terms of the number of employees and
percentage of good feedbacks for B1 is higher than that for B2.
Since the trust of the role is affected by descendant roles in
our model, the publisher will get the result where the role
P D1 is more trusted than P D2. This result aligns to the fact
that if the branch B1 is more trusted than the branch B2, then
the department P D1 of the branch B1 will also be considered
more trusted than the department P D2 of the branch B2.

Now assume that the role O RG only has good feedback;
that is, the resources the role O RG has subscribed have never
been leaked. Since the trust value of a role is taken from the
minimum value of the trust value for all its ancestor roles,
when a publisher evaluates the trust of the role O RG, its
trust value may be low if the good feedback percentage for
B2 is low. This is because employees in the role B2 inherit
permissions from the role O RG, and employees in this branch

could potentially leak the resources. Without using the trust
model, the role O RG may be considered as trusted as it has
no negative feedback. However, if the role O RG is allowed to
subscribed to a resource, the resource owner has the risk that
the users in B2 may leak the resource to unauthorised users.

Again we assume that the role M D1 has only good feed-
back; that is, the resources the role M D1 has subscribed have
never been leaked. Consider the extreme case where all the
feedback that the role B1 has is User Behaviour Failure which
means that the system could not determine who has caused the
leakage of the resources that role B1 has subscribed. Without
using the trust model, the role M D1 may be rated as trusted
as it has no negative feedback. However, because the system
does not know which user(s) leaked the resources B1 has
subscribed, it can be the user(s) in the role B1, or it can be the
user(s) in the role M D1 as all the users in M D1 have access
to the leaked resources. There is a risk if the malicious user
is in M D1, allowing M D1 to subscribe additional resources
may cause the leakage of more data.

On the other hand, when the role B2 realises that its trust
value is low, it may decide to warn or exclude potential
malicious users. Then our roles’ RBAC trust model can be
useful to assist roles in identifying the potential malicious
users. Our trust model allows the trust for employees in B2
to be evaluated based on the feedbacks from all the roles in
the organisation. That is, if an employee was working in the
branch B1 and relocated to B2 recently, the feedbacks on the
user from B1 when the user was working in B1 is also taken
into account when B2 determines the trustworthiness of the
user.

From this digital library system example, we see that our
trust model can be used in the cloud storage system using cryp-
tographic RBAC schemes where role managers themselves
have the flexibility in managing the user membership.

VIII. RELATED WORKS

There have only been some related works which
have addressed only trust on users in RBAC systems.
Chakraborty and Ray [25] proposed a trust model for RBAC
system which considers users’ trust by assigning trust levels
to users. These trust levels are based on a number of factors
such as user credentials, user behaviour history and recom-
mendations from other users. Trust levels are then mapped
to roles. In [26], a trust model for RBAC was introduced
which evaluates the trust in users based on user behaviours
and context, in a context-aware access control model. Another
trust model was discussed in [27] which also uses trust level to
determine the access privileges of users. All these trust models
only consider the trust of users in a RBAC system. None of
these works address the trust for data owners on the RBAC
system itself thereby determining the trust of the roles in the
RBAC system with which they want to interact. The trust for
data owners is critical in cloud storage systems which has been
addressed in this paper.

As an extension of the owners’ RBAC trust model, our
trust models have also addressed the roles’ trust on users.
The existing works [25], [27] control the access privileges
of a user depending on his or her trust level. The differences

2394 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 11, NOVEMBER 2015

between our model and the existing ones is that our roles’
trust model works in the RBAC systems which use crypto-
graphic RBAC schemes. That is, our models take into account
cryptographic operations and the access privilege to decrypt
the data stored in the cloud, which none of the existing works
address.

IX. CONCLUSION

In this paper, we have addressed trust issues in crypto-
graphic RBAC systems for securing data storage in a cloud
environment. The paper has proposed trust models for owners
and roles in RBAC systems which are using cryptographic
RBAC schemes to secure stored data. These trust models
assist owners and roles to create flexible access policies, and
cryptographic RBAC schemes ensure that these policies are
enforced in the cloud. The trust models enable the owners
and roles to determine the trustworthiness of individual roles
and users in the RBAC system respectively. They allow the
data owners to use the trust evaluation to decide whether or
not to store their encrypted data in the cloud for a particular
role. The models also enable the role managers to use the
trust evaluation in their decision to grant the membership
to a particular user. Another significant contribution of this
paper is that the proposed trust models take into account role
inheritance and hierarchy in the evaluation of trustworthiness
of roles. As far as we are aware, this is the first time such
a trust model for role-based access control system taking
into account role inheritance has been proposed. We designed
the architecture of a trust-based cloud storage system which
has shown how the trust models can be integrated into a
system that uses cryptographic RBAC schemes. We have also
described the application of the trust models by considering a
practical scenario and illustrating how the trust evaluations can
be used to reduce the risks and enhance the quality of decision
making by data owners and role managers of the cloud storage
service.

REFERENCES

[1] D. F. Ferraiolo and D. R. Kuhn, “Role-based access controls,” in Proc.
15th NIST-NCSC Nat. Comput. Secur. Conf., Oct. 1992, pp. 554–563.

[2] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “A data outsourcing architecture combining
cryptography and access control,” in Proc. CSAW, Nov. 2007,
pp. 63–69.

[3] S. D. C. D. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Over-encryption: Management of access control evolution
on outsourced data,” in Proc. VLDB, Sep. 2007, pp. 123–134.

[4] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in Proc. IEEE
INFOCOM, Mar. 2010, pp. 1–9.

[5] Y. Zhu, H.-X. Hu, G.-J. Ahn, H.-X. Wang, and S.-B. Wang, “Provably
secure role-based encryption with revocation mechanism,” J. Comput.
Sci. Technol., vol. 26, no. 4, pp. 697–710, Jul. 2011.

[6] L. Zhou, V. Varadharajan, and M. Hitchens, “Enforcing role-based
access control for secure data storage in the cloud,” Comput. J., vol. 54,
no. 10, pp. 1675–1687, Oct. 2011.

[7] L. Zhou, V. Varadharajan, and M. Hitchens, “Integrating trust with
cryptographic role-based access control for secure cloud data storage,”
in Proc. IEEE TrustCom, Jul. 2013, pp. 560–569.

[8] L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-
based access control on encrypted data in cloud storage,” IEEE
Trans. Inf. Forensics Security, vol. 8, no. 12, pp. 1947–1960,
Dec. 2013.

[9] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman,
“Role-based access control models,” IEEE Comput., vol. 29, no. 2,
pp. 38–47, Feb. 1996.

[10] R. Sandhu, D. Ferraiolo, and D. Kuhn, “The NIST model for role-
based access control: Towards a unified standard,” in Proc. RBAC, 2000,
pp. 47–63.

[11] S. G. Akl and P. D. Taylor, “Cryptographic solution to a problem of
access control in a hierarchy,” ACM Trans. Comput. Syst., vol. 1, no. 3,
pp. 239–248, Aug. 1983.

[12] G. Miklau and D. Suciu, “Controlling access to published data using
cryptography,” in Proc. VLDB, 2003, pp. 898–909.

[13] M. J. Atallah, K. B. Frikken, and M. Blanton, “Dynamic and efficient
key management for access hierarchies,” in Proc. CCS, Nov. 2005,
pp. 190–202.

[14] H. R. Hassen, A. Bouabdallah, H. Bettahar, and Y. Challal, “Key
management for content access control in a hierarchy,” Comput. Netw.,
vol. 51, no. 11, pp. 3197–3219, Aug. 2007.

[15] Trusted Computer System Evaluation Criteria, Dept. Defense,
Alexandria, VA, USA, Dec. 1985.

[16] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust
management,” in Proc. IEEE Symp. Secur. Privacy, May 1996,
pp. 164–173.

[17] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The
keynote trust-management system version 2,” Internet Soc., Network
Working Group, Tech. Rep. RFC2704, 1999.

[18] R. Yahalom, B. Klein, and T. Beth, “Trust relationships in secure
systems—A distributed authentication perspective,” in Proc. IEEE Symp.
Res. Secur. Privacy, May 1993, pp. 150–164.

[19] B. Yu and M. P. Singh, “A social mechanism of reputation management
in electronic communities,” in Proc. CIA Workshop Cooperat. Inf.
Agents, 2000, pp. 154–165.

[20] A. Jøsang and S. L. Presti, “Analysing the relationship between risk and
trust,” in Proc. iTrust, 2004, pp. 135–145.

[21] A. Jøsang, “A logic for uncertain probabilities,” Int. J. Uncertainty,
Fuzziness Knowl.-Based Syst., vol. 9, no. 3, pp. 279–311,
Jun. 2001.

[22] L. Mui, M. Mohtashemi, C. Ang, P. Szolovits, and A. Halberstadt, “Rat-
ings in distributed systems: A Bayesian approach,” in Proc. Workshop
Inf. Technol. Syst., 2001, pp. 1–7.

[23] A. Jøsang and R. Ismail, “The beta reputation system,” in Proc. 15th
Bled Conf. Electron. Commerce, 2002, pp. 2502–2511.

[24] L. Mui, M. Mohtashemi, and A. Halberstadt, “A computational model
of trust and reputation for E-businesses,” in Proc. HICSS, 2002,
p. 188.

[25] S. Chakraborty and I. Ray, “TrustBAC: Integrating trust relationships
into the RBAC model for access control in open systems,” in Proc.
SACMAT, Jun. 2006, pp. 49–58.

[26] F. Feng, C. Lin, D. Peng, and J. Li, “A trust and context based access
control model for distributed systems,” in Proc. HPCC, Sep. 2008,
pp. 629–634.

[27] M. Toahchoodee, R. Abdunabi, I. Ray, and I. Ray, “A trust-based access
control model for pervasive computing applications,” in Proc. DBSec,
vol. 5645., Jul. 2009, pp. 307–314.

Lan Zhou received the Ph.D. degree from
Macquarie University, and the M.Sc. degree in
computer science from the University of
Wollongong. He is currently an Honorary
Associate with the Department of Computing,
Macquarie University. His research interests include
role-based access control, secure cloud storage, trust
management systems, secure credential systems,
and key agreement protocols.

ZHOU et al.: TRUST ENHANCED CRYPTOGRAPHIC RBAC FOR SECURE CLOUD DATA STORAGE 2395

Vijay Varadharajan is currently a Microsoft
Chair Professor of Innovation in Computing with
Macquarie University. He is also the Director of
Advanced Cyber Security Research Centre. He has
authored over 380 papers in international journals
and conferences, has coauthored and edited
ten books on security, networks and distributed
systems, and holds three patents. His current areas
of research interest include secure distributed
systems, trusted computing, Internet security, cloud
computing, and mobile and wireless security. He is

a fellow of the British Computer Society, the IEE, U.K. (FIEE), the Institute
of Mathematics and Applications, U.K. (FIMA), the Australian Institute
of Engineers (FIEAust), and the Australian Computer Society (FACS).
He has been on the Editorial Board of several journals, including the IEEE
TRANSACTIONS IN DEPENDABLE AND SECURE COMPUTING, the IEEE
TRANSACTIONS ON CLOUD COMPUTING, the IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, and the ACM Transactions in
Information Systems Security.

Michael Hitchens received the bachelor’s
(Hons.) degree in mathematics and the Ph.D. degree
in computer science. He is currently the Associate
Dean of Quality and Standards with the Faculty of
Science, Macquarie University. He is part of the
Department of Computing, where he is a member
of the Advanced Cyber Security Research Centre
and the Virtual and Interactive Simulations of
Reality Research Group. His research interests
include access control, security protocols, trust in
distributed systems, and game design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

