
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

On effectiveness of AI-based misbehavior detection in medical IoT

Hamid Al-Hamadi a,∗, Ing-Ray Chen b, Ding-Chau Wang c, Abdullah Almutairid
a Computer Science Department, Kuwait University, Kuwait
b Computer Science Department, Virginia Tech, United States
c Information Management Department, Southern Taiwan University of Science and Technology, Taiwan
d Information Science Department, Kuwait University, Kuwait

a r t i c l e i n f o

Keywords:
Misbehavior detection
Learning
AI
IoT
Hypoglycemia
CSII

 a b s t r a c t

Artificial Intelligence (AI) classification techniques are pivotal for misbehavior detection in the Internet of Things
(IoT), but their potential for severe failure poses a risk in safety-critical applications. This work introduces a novel
statistical methodology to evaluate the operational readiness of these AI systems by quantitatively forecasting
their effectiveness throughout the learning process. The significance of our methodology lies in its ability to
provide predictive insights into an AI detector’s performance, enabling a system architect to make data-driven
decisions about deployment. We use two lightweight statistical analysis methods: one to model device compliance
and forecast the detector’s false negative probability (𝑝𝑓𝑛) of missing a malicious device and its false positive
probability (𝑝𝑓𝑝) of misidentifying a benign one, and another to model the learning curve and predict the future
misclassification rate. This framework allows a designer to determine precisely when a system has been trained
sufficiently to meet predefined safety and reliability targets. We demonstrate the feasibility of our approach on
an artificial pancreas system with a smart Continuous Subcutaneous Insulin Infusion (CSII) device, confirming
the effective and predictable detection of sophisticated attacks.

1. Introduction

AI classification techniques with learning capabilities play a pivotal
role in modern misbehavior detection systems, particularly in identi-
fying malicious IoT devices within cyber-physical systems (CPS). This
paper proposes a methodology for evaluating the effectiveness of AI-
based misbehavior detection systems equipped with learning capabili-
ties. Our design is based on a self-monitoring module residing within a
medical IoT device embedded in a medical CPS [1], or within an un-
manned aerial vehicle in a drone CPS [2]. The responsibility of such a
self-monitoring module is to monitor an embedded IoT device and de-
tect if the embedded IoT device is malicious. It executes misbehavior
detection code and monitors the embedded device. To prevent the case
in which the self-monitor module itself is compromised, a secure com-
putation space (e.g., [3,4]) is used for the monitor code. This ensures
the execution of the misbehavior detection code by the self-monitoring
module in a secure computation space, even in the case of the operat-
ing kernel of the embedded IoT device being compromised. The monitor
code executed by the self-monitoring module is based on AI classifica-
tion methods with learning capability deriving from machine learning
such as a random forest (RF) [5] for classifying if the embedded device

∗ Corresponding author.
 E-mail addresses: hamid@cs.ku.edu.kw (H. Al-Hamadi), irchen@vt.edu (I.-R. Chen), dcwang@stust.edu.tw (D.-C. Wang), abdullah.almutairi@ku.edu.kw (A.
Almutairi).

is malicious. After monitoring and collecting data, the self-monitoring
module performs data analysis to arrive at the conclusion that the device
(being monitored on) is malicious or not. A common problem with AI-
based systems is that, despite producing mostly correct outputs, some-
times they can severely fail. When a bad node is classified as a good
node, it incurs a false negative. On the other hand, when it classifies a
good node as a bad node, it incurs a false positive. The typical design
goal is to minimize the false negative probability while satisfying the
maximum false positive probability requirement.

In this work, we focus on understanding and evaluating the impact of
learning capabilities in AI-based misbehavior detection systems within
CPSs. Specifically, we address the key question of how the learning capa-
bility of AI-based classification methods can be quantified and how this
learning affects the effectiveness of detecting misbehavior in CPSs. To
answer this, we propose a methodology to assess and quantify the learn-
ing effect while analyzing its influence on the performance of AI-based
misbehavior detection systems in CPSs. Traditional AI metrics (e.g. ac-
curacy, precision, recall, etc) also show how well the model learned
by quantifying its performance. However, the novelty of our method is
that it is a probabilistic model that models the entire spectrum of an AI-
based misbehavior detection system behavior. It predicts how the model

https://doi.org/10.1016/j.future.2025.108162
Received 7 May 2025; Received in revised form 14 August 2025; Accepted 21 September 2025

Future Generation Computer Systems 176 (2026) 108162

Available online 23 September 2025
0167-739X/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0002-2982-9416

p_{fn}

p_{fp}

p_{fn}

p_{fp}

p_{fn}

p_{fp}

P_{fn}

$\lambda (t)$

P_e

a

b

a

b

a

b

a, b

P_a

P_a

P_a

c

c

c

c

c

y_1

y_2

$\dots $

y_p

b

$c=1$

$c=0$

y_1

y_2

$\dots $

y_p

p

b

c_i

c

i

(c_1, c_2, c_3, c_n)

n

n

$G(\cdot)=Beta(\alpha , \beta)$

$G(a)$

$0 \ge a \ge 1$

\begin {equation}\label {G} G(a) = {\displaystyle {\int _0^a}~ { {\Gamma (\alpha + \beta)} \over {\Gamma (\alpha) \Gamma (\beta)} } x^{\alpha -1} (1-x)^{\beta -1}~dx }\end {equation}

X

\begin {equation}\label {E} E[X] = {\displaystyle {\int _0^1}~x~ { {\Gamma (\alpha + \beta)} \over {\Gamma (\alpha) \Gamma (\beta)} } x^{\alpha -1} (1-x)^{\beta -1}~dx } = \frac {\alpha }{\alpha + \beta }\end {equation}

$\alpha $

$\beta $

(c_1, c_2, c_3, c_n)

\begin {equation*}{ { n { \partial {\Gamma (\hat { \alpha } + \hat { \beta })} \over \partial \hat { \alpha }} } \over { \Gamma (\hat { \alpha } + \hat { \beta })} } - { {n { \partial {\Gamma (\hat { \alpha })} \over \partial \hat { \alpha }} } \over { \Gamma (\hat { \alpha })} } + \sum _{i=1}^n \log c_i = 0\end {equation*}

\begin {equation}\label {alpha_and_beta} { {n {\partial {\Gamma (\hat { \alpha } + \hat { \beta })} \over \partial \hat { \beta }}} \over {\Gamma (\hat { \alpha } + \hat { \beta })} } - {{n {\partial { \Gamma (\hat { \beta })} \over \partial \hat { \beta }}} \over {\Gamma (\hat { \alpha })} } + \sum _{i=1}^n \log (1-c_i) = 0\end {equation}

\begin {equation*}{ \partial {\Gamma (\hat { \alpha } + \hat { \beta })} \over \partial \hat { \alpha }} = \int _0^\infty (\log x) x^{\hat { \alpha } + \hat { \beta } - 1} e^{- x} dx.\end {equation*}

$Beta (\beta)$

$\alpha $

$\beta (1-x)^{\beta -1}$

$0 \le x \le 1$

$\beta $

\begin {equation}\label {Beta} \hat {\beta } ~=~ { n \over {\displaystyle {\sum _{i=1}^n} \log ({1 \over {1-c_i} }) } }\end {equation}

p_{fn}

p_{fp}

X_b

$G(\cdot)=Beta (\beta)$

C_T

\begin {equation}\label {pfn} p_{fn} = pr\{X_b > C_T\} = 1 - G(C_T)\end {equation}

X_g

$G(\cdot)=Beta (\beta)$

C_T

\begin {equation}\label {pfp} p_{fp} = pr\{X_g \le C_T\} = G(C_T)\end {equation}

p_{fn}

p_{fp}

n

(c_1, c_2, c_3, c_n)

(c_1, c_2, c_3, c_n)

$G(\cdot)=Beta (\beta)$

p_{fn}

p_{fp}

p_{fn}

p_{fp}

p_{fn}

p_{fp}

(c_1, c_2, c_3, c_n)

$G(\cdot)=Beta (\beta)$

$1-G(C_T)$

C_T

$G(C_T)$

C_T

$\lambda $

t

$\lambda $

\begin {equation}\label {lambda5} \lambda = \frac {\lambda _0} {\lambda _0 \theta t + 1}\end {equation}

$\lambda _0$

$\theta $

p

$(0,x_{p}]$

p

x

$y_{l}(l=1,2,...,p)$

$(0,x_{l}]$

$(t_1, t_2, ..., t_N)$

t_i

i

N

p

$\lambda _0$

$\hat {\lambda _0}$

$\theta $

$\hat {\theta }$

$\phi =\lambda _0\theta $

\begin {align}&\begin {gathered} {{{\partial }L}\over {{\partial }{\phi }}}= \sum _{i=1}^p y_i\;' \Biggl \{ {{{{x_i}\over {{\phi {x_i}+1}}}} - {{{x_{i-1}}\over {{\phi {x_i}+1}}}} \over {ln({\phi {x_i}+1)} - ln({\phi {x_{i-1}}+1)}} }\Biggl \}\\ - {{y_p}{x_p} \over {(\phi {x_p}+1}) ln {(\phi {x_p}+1})} =0 \end {gathered} \label {Xeqn8-8}\\ &\hat {\theta } = {1 \over {y_p}} ln{({{\hat {\phi }}x_p}+ 1)} \label {Xeqn9-9}\\ & \hat {{\lambda }_0} = {\hat {\phi } \over \hat {\theta }} \label {Xeqn10-10}\end {align}

$\lambda $

\begin {equation}\label {lambda} \lambda = \frac {\hat {\lambda _0}} {\hat {\lambda _0} \hat {\theta }t_t + 1}\end {equation}

t_t

n

P_{a}

P_{a}

$\mu $

$\sigma ^2$

$\sigma ^2$

$\sigma ^2$

$\sigma ^2$

p_{fn}

p_{fp}

p_{fn}

p_{fp}

n

(c_1, c_2, c_3, c_n)

(c_1, c_2, c_3, c_n)

$G(\cdot)=Beta (\beta)$

p_{fn}

p_{fp}

$(t_1, t_2, ..., t_N)$

y

p

$\lambda $

t_t

n

$\lambda $

p_{fn}

p_{fp}

C_T

$\lambda $

p_{fn}

p_{fp}

$\lambda $

p_{fn}

p_{fp}

$\theta $

$\lambda $

t

$\theta $

$\theta $

$\theta $

$1-p_{fn}$

p_{fp}

p_{fn}

p_{fp}

C_T

C_T

p_{fn}

p_{fp}

p_{fn}

p_{fp}

p_{fp}

p_{fn}

p_{fp}

p_{fn}

p_{fp}

p_{fp}

p_{fn}

p_{fn}

p_{fn}

p_{fn}

p_{fp}

f_{1}

$\lambda $

$\lambda $

$\lambda $

p_{fn}

$\lambda $

p_{a}

$P_{a}=0.5$

$P_{a}=0.2$

P_{fn}

$t=100$

P_{fn}

P_{fn}

P_{fn}

$\bar {c}$

C_T

$G(\cdot)$

$t=100$

$P_{fn} \approx 0.8$

$Pr\{c > C_T\}$

c

C_T

$G(\cdot)$

P_{fn}

$p=1$

$\delta =0.001$

$\lambda _{val}(t)$

$\lambda _{best}$

$\delta $

$\lambda _{val}(t) \geq \lambda _{best} - \delta $

$t=2000$

$t=3182$

$t \approx 54,091$

$t=1200$

$t=1060$

$\lambda $

$P_{fn} \approx 0.8$

$t=100$

p_{fn}

https://orcid.org/0000-0003-4706-4856
mailto:hamid@cs.ku.edu.kw
mailto:irchen@vt.edu
mailto:dcwang@stust.edu.tw
mailto:abdullah.almutairi@ku.edu.kw
https://doi.org/10.1016/j.future.2025.108162
https://doi.org/10.1016/j.future.2025.108162

H. Al-Hamadi et al.

performance will improve over time and when learning will level off.
This allows the system designer to make a data-driven decision about
when to stop the training and deploy the device. We propose two
lightweight statistical analysis methods to analyze (1) behavior data
collected from monitoring the embedded IoT device and (2) outputs
generated from the module itself (e.g., yes/no outputs for misbehavior
classification). The first statistical analysis method is for quantifying the
compliance degree of an IoT device to assess the system’s effectiveness,
specifically by computing its false negative probability (𝑝𝑓𝑛), the risk
of failing to detect a malicious device, and its false positive probability
(𝑝𝑓𝑝), the risk of incorrectly flagging a compliant one. The second sta-
tistical analysis method is for quantifying the learning capability of the
AI detection method, with the objective of estimating the frequency at
which a false positive or a false negative will happen. The end result is a
methodology allowing us to quantify the learning capability and analyze
its effect on the effectiveness of AI-based misbehavior detection systems.
We demonstrate the effectiveness of misbehavior detection code with a
self-monitoring module residing in a Continuous Subcutaneous Insulin
Infusion (CSII) device embedded within an artificial pancreas system
[6] for Type 1 Diabetes (T1D) patients where a constant dosage of in-
sulin infusion is required to maintain a healthy blood glucose level [7].
We test our methodology with a popular AI-based classification method,
namely, RF [5] which is known to possess great learning capabilities to
improve classification accuracy. The contributions of the paper are as
follows:

• We propose a probabilistic forecasting framework to evaluate the ef-
fect of learning on the operational readiness of AI-based misbehavior
detectors. This allows a system designer to quantify risk and make
a data-driven decision about when to deploy a system based on its
predicted ability to meet effectiveness requirements (𝑝𝑓𝑛 and 𝑝𝑓𝑝).

• We develop two lightweight statistical methods that enable a sys-
tem designer not only to predict the current 𝑝𝑓𝑛 and 𝑝𝑓𝑝 but also
to forecast the future trajectory of the misclassification rate during
training. This transforms evaluation from a static snapshot into a
dynamic, predictive process.

• We demonstrate, through comparative analysis, the superiority of
our predictive methodology over traditional, reactive techniques like
mean-based thresholding and standard early stopping. Our frame-
work provides actionable, forward-looking insights where other
methods fall short.

• We validate our methodology by applying it to a critical medical use
case–a smart CSII device for T1D patients–and show it can effectively
learn to detect a range of sophisticated attacks, including stealthy
nocturnal patterns.

The remainder of this paper is organized as follows. Section 2 pro-
vides background on CSII devices for T1D patients. Section 3 reviews
existing literature and contextualizes our contributions. Section 4 de-
tails our system architecture, the behavior model for the smart CSII de-
vice, and the various attacker scenarios considered. Section 5 presents
our core statistical methodology for forecasting effectiveness and quan-
tifying the learning process. Section 6 describes the preparation of the
simulated datasets used for evaluation. In Section 7, we present a com-
prehensive performance evaluation, including a validation of our model
and a comparative analysis against baseline techniques. Section 8 dis-
cusses the implications of our findings and acknowledges the study’s
limitations. Finally, Section 9 summarizes the paper and outlines future
research directions.

2. Background of CSII devices for T1D patients in a medical CPS

In this section we provide a general background of Continuous Sub-
cutaneous Insulin Infusion (CSII) devices typically embedded within an
artificial pancreas system [6]. Table 1 lists the notations used in our
proposed work.

Fig. 1. Artificial pancreas system.

The Artificial Pancreas (AP) is an open-loop insulin delivery CPS
which combines an insulin pump CSII device with a Continuous Glu-
cose Monitoring (CGM) device to sense the blood glucose levels subcu-
taneously. The blood glucose measurements from CGM are transmitted
to the insulin pump using radio transmitter followed by infusion of re-
quired insulin by the CSII pump. As illustrated in Fig. 1, an AP typically
consists of a CSII device for insulin infusion, a CGM device for unin-
terrupted glucose monitoring, and a control algorithm to auto-adjust
insulin dosages [8]. As we will see in the Related Work section, many AI-
based control algorithms have been proposed to identify correct insulin
dosages for regulating blood glucose levels according to an individual
patient’s situations.

Most T1D patients rely on CSII devices to help regulate glucose lev-
els between 4.0 and 10.0 mmol/L. If the glucose level falls below 4.0
mmol/L, patients are generally required to consume a carbohydrate-
rich meal/drink to quickly elevate their blood glucose and stop it from
falling further. While this is a plausible solution most of the time, it
is not always feasible, particularly when user interactions are limited,
such as at nighttime. A more realistic solution would be to develop
smart features in CSII devices that can detect continuously when hy-
poglycemia events might occur. Smart algorithms could be deployed
to readjust insulin infusion rates and to develop personalized glycemic
models aimed at simultaneously increasing time-in-target and elimi-
nating hypoglycemia events. Fig. 2 illustrates a scenario, generated by
Ulna [9] which is a development platform for an artificial pancreas,
where a T1D patient is monitored using a CSII device pre-programed
with the algorithm of behavior rules. According to the graph, the algo-
rithm monitors the blood glucose level of the patient for a 24h simu-
lation period and the CSII pump dispenses the required insulin basal
rates. The simulation graph displays meal carbs (red), insulin doses
(blue), and basal rates (yellow dashed line) recorded at 10m intervals.
Insulin is infused to stabilize blood glucose levels and prevent hypo-
glycemia. If glucose is too high, additional insulin is automatically de-
livered via the CSII pump. Misbehaviors, such as incorrect dosage or
failure to adjust insulin based on rapid glucose changes, can endan-
ger the patient. AI algorithms, while mostly accurate, can sometimes
produce incorrect outputs, and attacks on the CSII device may also
cause misbehaviors. This paper introduces a specification-based misbe-
havior detection method applicable to medical CPSs with IoT devices,
demonstrated using CSII devices. Detecting misbehaviors and eliminat-
ing them could prove to be valuable to the patient who uses the CSII
device. In this work, we propose a specification-based misbehavior de-
tection method that can be generally applied in a medical CPS with
embedded IoT devices to identify a malicious IoT device. We exem-
plify the proposed specification-based misbehavior method with CSII
devices.

Future Generation Computer Systems 176 (2026) 108162

2

H. Al-Hamadi et al.

Table 1
Notations.

 Notation Description
𝑝𝑓𝑛 False Negative Probability (probability of failing to detect a malicious device)
𝑝𝑓𝑝 False Positive Probability (probability of incorrectly flagging a compliant device)
𝑐𝑖 The target device’s compliance degree in response to the 𝑖th event
𝐶𝑇 Minimum compliance degree below which the target device is considered malicious when an event occurs
𝑎̂ Maximum likelihood estimate of a model parameter 𝑎
𝑇𝐼𝐷𝑆 Inter-arrival time for event arrivals (i.e., monitoring interval)
𝑡𝑖 Time at which the 𝑖th misclassification output is observed in a testing cycle
𝑛 Number of events (monitoring intervals) to be tested in a testing cycle
𝜃 Improvement parameter for an AI-based IDS with learning capability in a testing cycle
𝜆0 Misclassification output arrival rate at the beginning of a testing cycle
𝑡𝑡 Total time taken for 𝑛 event arrivals in a testing cycle
𝜆 Misclassification output arrival rate estimated at the end of a testing cycle

Fig. 2. Continuous glucose monitoring in a CSII device.

3. Related work

Recent advances in intrusion detection for medical cyber-physical
systems (MCPS), particularly closed-loop insulin delivery systems, have
emphasized adaptive intelligence and explainability. However, many
proposed systems lack mechanisms to quantify learning readiness, con-
vergence, and deployment safety–especially in constrained embedded
environments.

Recent efforts in MCPS security have focused on detecting anoma-
lies in smart medical environments, particularly those involving insulin
pumps and healthcare IoT platforms. A subclass-aware Intrusion Detec-
tion System (IDS) was proposed that leverages Deep Subclass Dispersion
(SDOSVM) to enhance discrimination of abnormal behaviors in medical
IoT traffic. The model, which targets healthcare settings, combines clus-
tering with one-class classification and achieves strong results on the
TON_IoT dataset [10]. While effective at class separation, it lacks any
modeling of time-based classifier convergence or deployment assurance.
An adaptive intrusion detection framework using Bayesian possibilistic
clustering and fuzzy classifier ensembles was introduced to address con-
cept drift and evolving IoT conditions [11]. The system shows strong
adaptability in dynamic environments but does not offer mechanisms
to evaluate classifier readiness or performance stability over time. Re-
ducing false alarms in healthcare environments has also received atten-
tion. Maiga et al. developed a deep learning-based IDS that integrates
probabilistic clustering with human expert input, aiming to boost inter-
pretability while maintaining alert precision [12]. However, their model
does not include trend-aware readiness estimation or predictive statis-
tical tools. In contrast to these systems, our approach provides a time-
aware, behavior-grounded statistical framework for operational readi-
ness monitoring in insulin pumps. Using Beta and Poisson-based dis-
tributions, we model classifier confidence and improvement dynamics,
enabling predictive alerts and safe deployment thresholds.

As IoT deployments increasingly move toward edge and embed-
ded devices, intrusion detection systems are being reimagined for con-
strained platforms. Statistical modeling and cooperative game the-
ory were used by Rocca to improve IDS interpretability via Shap-
ley value decomposition, adding insight into feature contributions and

robustness under adversarial conditions [13]. While the method en-
hances explainability, it does not quantify classifier convergence or
monitor training sufficiency. Benchmarking studies have also ex-
plored resource-constrained deployments. Rizvi et al. evaluated vari-
ous AI-based IDS approaches across different devices, profiling each
model’s computational footprint and latency under constrained environ-
ments [14]. Their results provide deployment insight, but do not exam-
ine learning trajectories or readiness indicators. Real-time inference and
explainability are key goals in recent IDS design. A modular, explainable
IDS designed for edge IoT environments was introduced with the goal of
low-latency operation and modular detection [15]. Although the system
supports explainable detection, it does not estimate when a model has
trained sufficiently or how its trustworthiness evolves. More recently,
Rahman et al. introduced AI2DS, a deep autoencoder-based IDS that
flags anomalies through reconstruction errors and supports real-time
adaptation using only benign traffic during training [16]. Their adap-
tive thresholding mechanism enables lightweight and semi-supervised
intrusion detection, but does not provide pre-deployment safety signals
or quantify learning confidence. Farrukh et al. proposed AIS-NIDS, a self-
sustaining packet-level IDS system that leverages incremental learning
to detect both known and zero-day threats without full retraining [17].
Although it adapts effectively, the system lacks time-aware readiness
metrics or convergence analysis. Unlike the works above, our system not
only supports lightweight deployment but integrates predictive readi-
ness analytics. It enables proactive risk awareness by tracking classifier
behavior over time, which is essential for secure operation in clinical
IoT environments.

Only a few works have attempted to model classifier trust or
readiness using formal statistical tools. A high-throughput, Field-
Programmable Gate Array (FPGA) IDS was developed by Wu and Kondo
that supports continuous learning and adaptive feature compression
for on-device deployment [18]. Their system enables efficient updates
but does not assess whether the model is sufficiently trained or sta-
ble for deployment. Efforts to improve generalization and reduce train-
ing complexity include Zhao et al.’s adaptive-loss and dimensionally
compressed IDS, which shows promising performance across heteroge-
neous IoT scenarios [19]. While learning-efficient, it does not capture

Future Generation Computer Systems 176 (2026) 108162

3

H. Al-Hamadi et al.

behavioral changes or readiness convergence over time. Efficiency-
focused designs like those from Kaushik et al. utilize statistical fea-
ture selection and ensemble learning to enhance robustness and re-
duce training overhead [20]. Although resource-optimized, the ap-
proach lacks monitoring of classifier stability or learning progression.
Tewari et al. proposed a quantized and pruned Convolutional Neural
Network - Bidirectional Long Short-Term Memory (CNN-BiLSTM) ar-
chitecture optimized for embedded systems, capable of preserving ac-
curacy under memory and compute constraints [21]. Their method en-
sures lightweight deployment but does not quantify readiness for oper-
ational safety. Our system fills this gap by integrating Beta-based clas-
sifier confidence analysis and Poisson-modeled learning speed estima-
tion. These statistical tools provide deployment-time insights that com-
plement traditional accuracy-based evaluation, enabling trustworthy AI
deployment in medical IoT devices.

Post-deployment model confidence and behavior calibration have re-
ceived increasing attention in resource-constrained systems. Simeone
and Park propose a conformal calibration framework to provide uncer-
tainty quantification and error detection in wireless environments, en-
abling lightweight, model-agnostic trust monitoring [22]. While their
technique provides offline calibration, it lacks continuous learning as-
sessment or domain-specific behavior analysis. Kebir and Tabia pro-
pose a unified framework combining incremental learning, calibration,
and explainability to handle both resource constraints and concept
drift [23]. While promising, it does not provide operational indicators
tied to statistical change detection. Other efforts leverage generative
modeling or uncertainty sampling to detect drift in unsupervised con-
texts. For instance, Hossain and Waqas use Variational Autoencoders
(VAEs) for detecting sensor drift in IoT devices via latent distribution
shifts [24], while Winter et al. benchmark uncertainty estimation tech-
niques for drift detection without labeled data [25]. Our method con-
tributes a statistical readiness model grounded in behavior tracking and
deployment-time evaluation–integrated into a continuous monitoring
loop suitable for closed-loop medical CPS.

The threat of adversarial manipulation remains a central challenge
for deep learning-based IDS. Adversarial training techniques such as Ad-
versarial Intrusion Detection Training Framework (AIDTF) [26] and Pro-
jected Gradient Descent (PGD)-based defenses [27] improve resilience
but often lack applicability in constrained clinical settings. Nguyen et al.
introduced a Generative Adversarial Network (GAN)-based adversarial
IDS training system augmented by explainability modules to improve
interpretability during attacks [28]. Rashid et al. use semi-supervised
decision trees enhanced with adversarial defense layers to improve de-
tection under blackbox attacks [29]. Güngör et al. develop an adver-
sarial sample selection mechanism for hyperdimensional computing in
constrained IDS, showing improved robustness under low-power con-
straints [30]. In contrast, our work incorporates statistical tracking of
classifier behavior and attack-induced deviations–enabling the detec-
tion of smart attack patterns on insulin dosing. These indicators serve
as early warning signals and strengthen the robustness of medical IDS
under stealthy adversarial scenarios.

Threshold-based anomaly detection, which relies on comparing sta-
tistical metrics against a predefined or dynamic baseline, is a widely
established practice in cybersecurity. For example, recent work in indus-
trial control systems has utilized the mean of network features within
a time window, triggering an alert if a feature deviates beyond a set
threshold [31]. Similarly, in the context of IoT security, researchers have
proposed systems that classify a device as anomalous if the mean of
its recent connection patterns crosses a statistically defined threshold
when compared to its historical profile [32]. This same principle has
been applied to real-time botnet detection, where a device is flagged
as malicious if the average rate of its outgoing packets exceeds a spe-
cific threshold [33]. While these mean-based thresholding techniques
are effective for detecting clear deviations from a norm, they provide a
binary, reactive assessment based on past behavior. In contrast, our pro-
posed methodology advances this approach by providing a probabilistic,

Fig. 3. Overview of the system model.

forward-looking forecast. Instead of a simple binary decision, our model
quantifies the evolving probability of future misbehavior (𝑃𝑓𝑛), enabling
a more quantitative and predictive risk assessment.

Recent efforts to enhance early stopping mechanisms focus primarily
on improving training efficiency and avoiding overfitting, yet lack pre-
dictive capacity. For instance, Paguada et al. propose a generalized early
stopping method based on kernel density estimation to minimize over-
training risk while adapting to nonstationary behavior during model
training [34]. Similarly, Chen et al. introduce a Bayesian optimization
technique that incorporates pseudo-labels to improve hyperparameter
search under early stopping constraints [35]. While these approaches
contribute to training optimization, they do not model future system
behavior or provide probabilistic readiness indicators. In contrast, our
approach estimates the arrival rate of misclassification events and fore-
casts the trajectory of model performance, enabling decisions such as
when to halt training or deploy a system based on quantitative risk as-
sessments.

4. System model

4.1. Overview

Fig. 3 presents the general architecture of the proposed system
model. While our proposed model is generically applicable to IoT de-
vices, we instantiate it in the context of the CSII device. At its core is the
self-monitoring module, which continuously observes the device’s be-
havior by processing events data from its components. Within this mod-
ule, an AI-based classifier evaluates whether the behavior complies with
predefined behavior rules (BRs) and derived attack behavior indicators
(ABIs), introduced in Section 4.2. These behaviors may correspond to
advanced or stealthy attacks under various scenarios, detailed in Sec-
tion 4.3. The classifier generates a compliance score per observation,
which accumulates into a compliance degree history and is then ana-
lyzed statistically, as described in Section 4.4. As detailed in Section 5,
this statistical analysis–via the misbehavior detection (MD) and effect of
learning (EL) components–enables the system to compute the probabili-
ties of misclassifying bad devices as good (PFN) and good devices as bad
(PFP), as well as to estimate the dynamic misclassification arrival rate,
𝜆(𝑡). The proposed method offers predictive insights into device behav-
ior, enables informed early stopping of classifier training, and provides
a readiness metric that enhances both the reliability and intelligence of
IoT device monitoring frameworks.

4.2. Design of smart CSII with misbehavior detection

In this section, we provide the details of misbehavior detection code
in the self-monitoring module that monitors the programmable CSII de-
vice. The CSII device consists of a CGM sensor inserted under the pa-
tient’s skin, that continuously measures the interstitial glucose levels,
which is the glucose found in the fluid between the cells, as shown in
Fig. 4. Subsequently, the CGM sensor transmits the measured glycemic
levels to the receiver end of the CSII device which initiates the neces-
sary insulin infusions through the subcutaneous infusion set. Therefore,
the glycemic levels of the T1D patients are monitored continuously and

Future Generation Computer Systems 176 (2026) 108162

4

H. Al-Hamadi et al.

Table 2
CSII device behavior rules.
 ID Behavior Rule Glycemic Aspect
 BR-1 if 𝐺𝐿 is very-high and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 > 1 then inc-insulin hyperglycemia
 BR-2 if 𝐺𝐿 is very-high and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 < −1 then const-insulin normal glycemia
 BR-3 if 𝐺𝐿 is very-high and −1 ≤ 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 ≤ 1 then inc-insulin hyperglycemia
 BR-4 if 𝐺𝐿 is high and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 > 1 then inc-insulin hyperglycemia
 BR-5 if 𝐺𝐿 is high and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 < −1 then const-insulin normal glycemia
 BR-6 if 𝐺𝐿 is high and −1 ≤ 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 ≤ 1 then const-insulin normal glycemia
 BR-7 if 𝐺𝐿 is medium and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 > 1 then const-insulin normal glycemia
 BR-8 if 𝐺𝐿 is medium and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 < −1 then dec-insulin mild hypoglycemia
 BR-9 if 𝐺𝐿 is medium and −1 ≤ 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 ≤ 1 then dec-insulin mild hypoglycemia
 BR-10 if 𝐺𝐿 is low and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 > 1 then shutoff-insulin hypoglycemia
 BR-11 if 𝐺𝐿 is low and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 < −1 then shutoff-insulin hypoglycemia
 BR-12 if 𝐺𝐿 is low and −1 ≤ 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 ≤ 1 then shutoff-insulin hypoglycemia
 BR-13 if 𝐺𝐿 is very-low and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 > 1 then shutoff-insulin and invoke-alert severe hypoglycemia
 BR-14 if 𝐺𝐿 is very-low and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 < −1 then shutoff-insulin and invoke-alert severe hypoglycemia
 BR-15 if 𝐺𝐿 is very-low and −1 ≤ 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 ≤ 1 then shutoff-insulin and invoke-alert severe hypoglycemia

Fig. 4. CSII device receiving CGM measurements through wireless sensor.

insulin infusion is adjusted based on the requirement, thus preventing
undesirable and dangerous blood sugar variations. This is particularly
helpful in handling the hypoglycemic problems in T1D patients.

Based on the above, we propose a self-monitoring module that per-
forms misbehavior detection at runtime based on a set of pre-defined
rules for characterizing misbehavior of the smart CSII device that moni-
tors the glycemic behavior of the T1D patient. Here, the glycemic behav-
ior over a 30-days rolling window is recorded by a CGM sensor. Our be-
havior rule model characterizes glucose levels into different states: Very
High [14-30 mmol/L], High [9-14 mmol/L], Medium [4-9 mmol/L],
Low [2-4 mmol/L], and Very Low [0-2 mmol/L]. The model also takes
into consideration the gradient of the glucose readings in each state to
decide how to alter insulin infusion. To decide if the basal rate needs
to be changed, the model applies 15 behavior rules (BR-1 to BR-15) as
shown in Table 2 to tweak the rate. If the infusions from the CSII device
deviate from the behavior specifications outlined in the behavior rules
of Table 2, the misbehavior detection system through its self-monitoring
module will detect such misbehaviors irrespective of whether it is caused
by inherent faults associated with AI-based algorithms (i.e., AI fails mis-
erably at times) or malicious attacks. This is done by first converting
the behavior rules to attack indicator actions as shown in Table 3. The
behavior rules set can be converted into the set of attack indicators as
shown in Table 3. Every Attack Behavior Indicator (ABI) is represented
as a conjunctive normal form (CNF) of the (Observation vs Attack Indica-
tion Action) predicate, which is assessed to determine if it yields a value
of (1) true or (0) false. This indicates whether the associated behavior
rule has been violated or not. In the event of all ABI conditions taking
the value of 0, that indicates that not any of the behavior rules are vio-

Table 3
CSII device attack behavior indicators.
 ID Observation Attack Indicators
 ABI-1 if 𝐺𝐿 is very-high and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 > 1 dec-insulin
 ABI-2 if 𝐺𝐿 is very-high and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 < −1 inc-insulin or dec-insulin
 ABI-3 if 𝐺𝐿 is very-high and −1 ≤ 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 ≤ 1 dec-insulin
 ABI-4 if 𝐺𝐿 is high and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 > 1 dec-insulin
 ABI-5 if 𝐺𝐿 is high and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 < −1 inc-insulin or dec-insulin
 ABI-6 if 𝐺𝐿 is high and −1 ≤ 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 ≤ 1 inc-insulin or dec-insulin
 ABI-7 if 𝐺𝐿 is medium and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 > 1 inc-insulin or dec-insulin
 ABI-8 if 𝐺𝐿 is medium and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 < −1 inc-insulin
 ABI-9 if 𝐺𝐿 is medium and −1 ≤ 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 ≤ 1 inc-insulin
 ABI-10 if 𝐺𝐿 is low and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 > 1 inc-insulin
 ABI-11 if 𝐺𝐿 is low and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 < −1 inc-insulin
 ABI-12 if 𝐺𝐿 is low and −1 ≤ 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 ≤ 1 inc-insulin
 ABI-13 if 𝐺𝐿 is very-low and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 > 1 inc-insulin and no-alert
 ABI-14 if 𝐺𝐿 is very-low and 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 < −1 inc-insulin and no-alert
 ABI-15 if 𝐺𝐿 is very-low and −1 ≤ 𝐺𝐿𝑆𝑙𝑜𝑝𝑒 ≤ 1 inc-insulin and no-alert

lated, thus the system is in safe operating mode. However, in the event
of any of the ABI condition taking the value of 1, that indicates that
the matching behavior rule is violated [1]. The self-monitoring mod-
ule identifies all actions that violate behavior rules, ensuring stability
of insulin infusions when the CSII device malfunctions and preventing
dangerous glycemic levels. Misbehaving actions, like incorrect insulin
infusions, can critically alter glycemic levels. For example, normal lev-
els may be disrupted by incorrect dosages, hyperglycemia may worsen
with extra insulin, hypoglycemia can become life-threatening if insulin
is not stopped, and alerts may fail to summon medical help.

The attack behavior indicators in Table 3 are explained as follows: In
the situations of ABI-1, ABI-3 and ABI-4 when the glycemic aspect is hy-
perglycemia, the normal action is to increase insulin dosage whereas the
misbehavior action is to decrease insulin further causing hyperglycemia.
In ABI-2, ABI-5, ABI-6 and ABI-7 when the glycemic aspect is normal
glycemia, there should not be any change in insulin infusion whereas the
misbehavior action is to either increase or decrease the insulin dosage.
In ABI-8, ABI-9, ABI-10, ABI-11 and ABI-12 when the glycemic aspect is
hypoglycemia, the normal action is to decrease or shutoff insulin dosage
whereas the misbehavior action is to increase the insulin dosage, thus
further worsening the hypoglycemic level. In ABI-13, ABI-14 and ABI-
15 when the glycemic aspect is severe hypoglycemia, the potentially
dangerous hypoglycemic level is aggravated if the misbehavior action
is triggered to further increase insulin infusion and prevent alerts from
being invoked.

4.3. Attack scenarios

The environment considered is noisy, resulting in imperfect moni-
toring and occurrence of mis-monitoring probability. Our approach in-

Future Generation Computer Systems 176 (2026) 108162

5

H. Al-Hamadi et al.

volves representing the likelihood of mis-monitoring, 𝑃𝑒, as a variable
that follows a continuous uniform distribution between ’𝑎’ and ’𝑏’. Here,
both ’𝑎’ and ’𝑏’ are real numbers within the [0, 1] range, with ’𝑎’ being
less than or equal to ’𝑏’. Typically, we test three cases: [𝑎, 𝑏] = [0, 10%],
[0, 20%], and [0, 30%], corresponding to low, medium, and high noise
levels, respectively. To demonstrate the resilience of our proposed AI-
based misbehavior detection self-monitoring module against malicious
attacks, we consider a wide variety of attack scenarios. Unlike signature-
based attacks that can be easily detected by IDSs through comparison
against known signature databases, attacks with smart behaviors (e.g.
on-off attacks or opportunistic attacks) are far more difficult to detect
by an IDS [36], and thus in our work we consider a variety of smart at-
tack behaviors. Specifically, we consider four attack scenarios, namely,
Reckless, Random, Insidious and Insidious Nocturnal. The attack behav-
ior indicators of Table 3 are explained for these 4 attack scenarios, as
follows:

1. Reckless
Reckless attacks happen whenever there is an opportunity for the

malicious CSII device to attack, i.e., when any ABI event condition
among the 15 listed in Table 3 is true.

2. Random
Random attacks happen with an attack probability of 𝑃𝑎, when

the malicious CSII device attacks randomly or inconstantly in order
to avoid detection. i.e., when a ABI event condition among the 15
listed in Table 3 is true, the device chooses to attack with probability
𝑃𝑎. We simulate this attack scenario by randomly generating a num-
ber in [0,1] and the malicious CSII device attacks when this number
is below 𝑃𝑎.

3. Insidious
The malicious CSII device remains concealed and launches at-

tacks only under specific ABI event conditions where it aims to max-
imize damage. Among of the 15 ABIs listed in Table 3, ABI-1, ABI-2,
and ABI-3 (associated with very high glycemic levels) as well as ABI-
13, ABI-14, and ABI-15 (linked to dangerously low glycemic levels)
are the most damaging. Consequently, the malicious CSII device, op-
erating in an insidious mode, will attack only when these conditions
are met.

4. Insidious Nocturnal
The malicious CSII device attacks in insidious mode only during

nighttime (i.e., between 8pm and 4am) when the patient is asleep.
This attack is more dangerous than insidious as the patient will not
be aware of the attack

4.4. Assessing compliance degree

Examples of embedded IoT devices in a CPS include sensor, con-
troller or actuators [1,2]. Each IoT device runs on secure trusted hard-
ware [3,4] enabling the associated self-monitoring module using a se-
cure computation space for executing the misbehavior detection code,
even in the case of the operating kernel for the IoT getting compromised.
The self-monitoring module assesses the compliance degree of the IoT
device, 𝑐, such that 𝑐 is 1 if the IoT device is perfectly well-behaved and
0 if the IoT device is misbehaved. An AI classification method such as
RF[5] is used for classifying if the embedded IoT device is malicious.
Since an RF classifier produces only a binary classification output, 𝑐 is
1 if it classifies the IoT device as compliant and 𝑐 is 0 if it classifies the
IoT device as non-compliant. Since the self-monitoring module wakes up
when an event occurs (including a timer event), the monitoring module
collects the value of 𝑐 on an event by event basis. When an event oc-
curs, the self-monitoring module collects event data in the form of (𝑦1,
𝑦2, …, 𝑦𝑝, 𝑏) as input to the classifier and generates an output 𝑐 = 1 if
the IoT device is compliant or 𝑐 = 0 if the IoT device is non-compliant.
Here 𝑦1, 𝑦2, …, 𝑦𝑝 are 𝑝 feature variables as identified by the system
designer in the design phase and observed by the monitoring module in
the testing phase which altogether defines the status of the device and 𝑏

is the behavior/action exhibited by the device when the particular event
occurs.

Let 𝑐𝑖 be the value of 𝑐 collected in the 𝑖th event interval. As a re-
sult, the self-monitoring module collects a compliance degree history
(𝑐1, 𝑐2, 𝑐3,𝑐𝑛) of the IoT device (being monitoring on) over 𝑛 events,
after which the monitor module runs a statistical analysis (to be de-
scribed) to identify if the IoT device is malicious or not. Here 𝑛 is a model
parameter that will be determined by the system designer as the size of
the testing dataset for assessing the effectiveness of the self-monitoring
module (to be discussed in Section 7).

5. Methodology

In this Section, we introduce two statistical analysis techniques for
(1) estimating the false negative probability and false positive probabil-
ity and (2) quantifying the learning capability of AI-based misbehavior
detection code. Fig. 5 shows a high-level overview of how these tech-
niques are applied within the self-monitoring module. These techniques
are probabilistic models that help the designer predict how the model
will improve during training and when the training levels off.

5.1. Misbehavior detection

The compliance degree of an IoT device, monitored by the self-
monitoring module using AI-based detection code, is modeled by a ran-
dom variable X with 𝐺(⋅) = 𝐵𝑒𝑡𝑎(𝛼, 𝛽) distribution. In this model, a value
of 0 signifies complete non-compliance, while a value of 1 represents full
compliance [37,38]. The distribution 𝐺(𝑎), for 0 ≥ 𝑎 ≥ 1, is defined as:

𝐺(𝑎) = ∫

𝑎

0

Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

𝑥𝛼−1(1 − 𝑥)𝛽−1 𝑑𝑥 (1)

and the expected value of 𝑋 is given by

𝐸[𝑋] = ∫

1

0
𝑥

Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

𝑥𝛼−1(1 − 𝑥)𝛽−1 𝑑𝑥 = 𝛼
𝛼 + 𝛽

(2)

Using the method of maximum likelihood, the 𝛼 and 𝛽 parameters are
determined from the compliance degree history (𝑐1, 𝑐2, 𝑐3,𝑐𝑛) through
numerical solutions of the following equations.
𝑛 𝜕Γ(𝛼̂+𝛽)

𝜕𝛼̂

Γ(𝛼̂ + 𝛽)
−

𝑛 𝜕Γ(𝛼̂)
𝜕𝛼̂

Γ(𝛼̂)
+

𝑛
∑

𝑖=1
log 𝑐𝑖 = 0

𝑛 𝜕Γ(𝛼̂+𝛽)
𝜕𝛽

Γ(𝛼̂ + 𝛽)
−

𝑛 𝜕Γ(𝛽)
𝜕𝛽

Γ(𝛼̂)
+

𝑛
∑

𝑖=1
log(1 − 𝑐𝑖) = 0 (3)

where
𝜕Γ(𝛼̂ + 𝛽)

𝜕𝛼̂
= ∫

∞

0
(log 𝑥)𝑥𝛼̂+𝛽−1𝑒−𝑥𝑑𝑥.

This scenario reveals that the run-time complexity is O(nlogn), which is
acceptable for modern IoT devices. For highly resource-limited IoT de-
vices, like sensors, we can model the compliance degree using a random
variable X with a single-parameter 𝐵𝑒𝑡𝑎(𝛽) distribution, setting 𝛼 to 1.
The density function is 𝛽(1 − 𝑥)𝛽−1 for 0 ≤ 𝑥 ≤ 1 and zero otherwise. The
maximum likelihood estimate for 𝛽 can be calculated as:
𝛽 = 𝑛

𝑛
∑

𝑖=1
log(1

1 − 𝑐𝑖
)

(4)

In this case, the observed run-time complexity is O(n).
The method’s effectiveness can be assessed through false negative

and false positive probabilities, represented as 𝑝𝑓𝑛 and 𝑝𝑓𝑝. We use a
simple threshold-based method: if the compliance degree of a malfunc-
tioning IoT device 𝑋𝑏 (following a one-parameter 𝐺(⋅) = 𝐵𝑒𝑡𝑎(𝛽) distri-
bution) is above the system’s minimum compliance threshold 𝐶𝑇 , a false
negative occurs:
𝑝𝑓𝑛 = 𝑝𝑟{𝑋𝑏 > 𝐶𝑇 } = 1 − 𝐺(𝐶𝑇) (5)

Future Generation Computer Systems 176 (2026) 108162

6

H. Al-Hamadi et al.

Fig. 5. The self-monitoring module inside the IoT device.

On the other hand, if the compliance degree of a correctly operating IoT
device 𝑋𝑔 (following a 𝐺(⋅) = 𝐵𝑒𝑡𝑎(𝛽) distribution) is below or equal to
𝐶𝑇 a false positive occurs:
𝑝𝑓𝑝 = 𝑝𝑟{𝑋𝑔 ≤ 𝐶𝑇 } = 𝐺(𝐶𝑇) (6)

During the testing phase for the purpose of estimating the self-
monitoring module’s 𝑝𝑓𝑛 and 𝑝𝑓𝑝, we simulate a “bad” IoT device which
exhibits bad behavior and a “good” IoT device which exhibits good be-
havior in response to events occurring in the system. We then allow
the AI-based detection code to run through 𝑛 monitoring intervals and
collect the “bad” IoT device’s compliance degree history (𝑐1, 𝑐2, 𝑐3,𝑐𝑛)
and the “good” IoT device’s compliance degree history (𝑐1, 𝑐2, 𝑐3,𝑐𝑛)
with which we obtain the one-parameter 𝐺(⋅) = 𝐵𝑒𝑡𝑎(𝛽) distributions for
the “bad” IoT device and the “good” IoT device based on Eq. (4), and
then compute 𝑝𝑓𝑛 and 𝑝𝑓𝑝 based on Eqs. (5) and (6), respectively.

Here we note that the statistical analysis technique discussed above
is proposed to be run at the testing phase for the purpose of estimat-
ing the self-monitoring module’s effectiveness in terms of 𝑝𝑓𝑛 and 𝑝𝑓𝑝.
Once 𝑝𝑓𝑛 and 𝑝𝑓𝑝 calculated satisfy the effectiveness requirement, the
AI-based detection code is released to operational use and will be run at
runtime for misbehavior detection. Specifically, given an IoT device (not
knowing whether it is “bad” or “good” of course), the self-monitoring
module running the AI-based detection code follows the same procedure
as follows: it first collects the compliance degree history (𝑐1, 𝑐2, 𝑐3,𝑐𝑛);
then it obtains the one-parameter 𝐺(⋅) = 𝐵𝑒𝑡𝑎(𝛽) distribution for this IoT
device; and finally it concludes that this IoT device is good with prob-
ability 1 − 𝐺(𝐶𝑇) (since the IoT device’s compliance degree is greater
than 𝐶𝑇) and bad with probability 𝐺(𝐶𝑇) (since the compliance degree
is less than 𝐶𝑇).

5.2. Effect of learning

In this work, we let the self-monitoring module run RF-based mis-
behavior detection code which is capable of learning so that the self-
monitoring module can reduce the rate at which false positives or false
negatives occur (typically due to misclassifications) as it learns from
experiences (e.g., by supervised training during the testing phase). To
quantify the impact of learning, let the misclassification rate, 𝜆, be a
function that decreases monotonically over time 𝑡, thereby illustrating
that the number of misclassification outputs in the self-monitoring mod-
ule decreases over time. In AI systems with learning capabilities, it is
typically observed that the initial phase of learning tends to be more ef-
fective, with the rate of improvement slowing as the system continues to
operate. A feasible solution to model 𝜆 with this feature is by using the
logarithmic Poisson model [39,40] whereby it is assumed that the mis-
classification output arrival rate has a rapid decrease in the beginning
and then smooths out with time. It can be obtained by

𝜆 =
𝜆0

𝜆0𝜃𝑡 + 1
(7)

where the model parameters are 𝜆0 and 𝜃 , referred to as the initial
misclassification output arrival rate and the improvement parameter,

respectively. In our case, these parameters can be estimated using the
method of maximum likelihood by analyzing the number of misclassi-
fications in 𝑝 subintervals during the testing phase. The testing phase
(0, 𝑥𝑝] is partitioned into 𝑝 disjoint subintervals where 𝑥 is the event
number, and let 𝑦𝑙(𝑙 = 1, 2, ..., 𝑝) be the number of misclassifications in
subinterval (0, 𝑥𝑙]. We find the number of misclassifications per inter-
val based on the misclassification historic timestamp data (𝑡1, 𝑡2, ..., 𝑡𝑁)
when the AI-based detection code generates a misclassification error.
In this context, 𝑡𝑖 represents the time at which the 𝑖th misclassification
output is recorded, and 𝑁 signifies the total number of misclassification
outputs occurring within the 𝑝 subintervals during the testing phase.

The maximum likelihood estimates of 𝜆0 (called 𝜆0) and 𝜃 (called
𝜃̂) can be obtained by finding the maximum likelihood estimate of the
product 𝜙 = 𝜆0𝜃 and solving the following equations [40]:

𝜕𝐿
𝜕𝜙

=
𝑝
∑

𝑖=1
𝑦𝑖

′

{ 𝑥𝑖
𝜙𝑥𝑖+1

− 𝑥𝑖−1
𝜙𝑥𝑖+1

𝑙𝑛(𝜙𝑥𝑖 + 1) − 𝑙𝑛(𝜙𝑥𝑖−1 + 1)

}

−
𝑦𝑝𝑥𝑝

(𝜙𝑥𝑝 + 1)𝑙𝑛(𝜙𝑥𝑝 + 1)
= 0

(8)

𝜃̂ = 1
𝑦𝑝

𝑙𝑛(𝜙̂𝑥𝑝 + 1) (9)

𝜆0 =
𝜙̂
𝜃̂

(10)

Here we again note that the self-monitoring module is to be run in
the testing phase for misbehavior detection against the behaviors of the
simulated “bad” and “good” IoT devices, so we know whether the self-
monitoring module incurs a false negative or false positive on an event
by event basis.

Therefore, according to Eq. (7), the misclassification output arrival
rate 𝜆 is given by

𝜆 =
𝜆0

𝜆0𝜃̂𝑡𝑡 + 1
(11)

where 𝑡𝑡 is the time for 𝑛 event arrivals. As can be seen, when the system
spends more time learning from examples in the testing phase, the rate
of misclassification decreases over time but eventually the misclassifi-
cation rate levels off, at which time the system is ready to be released
for operational use. A lower misclassification rate leads to a lower false
negative rate and a lower false positive rate.

6. Preparation of test datasets

This section describes the preparation of test datasets for testing
the performance of the self-monitor misbehavior detection module. We
have used Ulna [9] which is a development platform for artificial pan-
creas. The data is modeled from the real data of 15 patients collected by
Haidar et al[41] and is clinically validated. Ordinary differential equa-
tions (ODE) were used to model the real data and generate the data used
in our work. The model that generates our data was calibrated on real
data and validated by the Ulna platform. We have used the data from

Future Generation Computer Systems 176 (2026) 108162

7

H. Al-Hamadi et al.

this system due to the unavailability of real data and the ability to simu-
late various types of attacks on the CSII device without jeopardizing the
lives of the patients. We have used this system to generate the training
data needed to create the misbehavior detection AI models and to create
the attacks test data. A dataset contains 5-attribute records, as follows:

• Glucose level: The patient’s glucose level.
• Insulin infusion: The total amount of insulin given to a patient.
• Time period: the time period of the day where the reading is from.
The 24h day was divided into six periods.

• Glucose slope: The gradient for the glucose level of the patient. The
gradient is computed from the level of the previous hour.

• Compliance level: A binary target variable that indicates the compli-
ance level of the CSII device in a monitoring interval.

We prepare a test dataset by post-processing data generated by Ulna
which samples the data for the glucose level of type 1 diabetes patients
based on user-specified protocols, including the trial duration (e.g., 60
days), mealtimes (e.g., three meals with carbs ranging between 30 – 65
grams and three snacks ranging between 15 - 25 grams), and onboard in-
sulin levels. The platform generates CSII data for a set of actual patients
and creates simulated data based on their glucose levels. A user devises
a protocol specifying the behavior of a CSII device, i.e., the amount of
insulin infused based on the glucose level (measured in mmol/L) and
other factors. Eventually, we instruct Ulna to generate three simulated
datasets, as follows:

1. Compliant CSII device dataset: This simulated dataset represents a
compliant CSII device whose behavior is as specified in Table 2.

2. Reckless CSII device dataset: This simulated dataset represents a
reckless-attack CSII device whose behavior is as specified in Table 3.

3. Insidious CSII device dataset: This simulated dataset represents an
insidious-attack CSII device.

The sampled dataset generated by the Ulna platform contains a pa-
tient’s glucose level and the insulin infusion of the device based on the
behavior rules specified. The data records are in 10m intervals start-
ing at 7am for 60 days, resulting in a total of 8,908 records for each
patient. We then post-process the simulated datasets generated by Ulna
to extract the five-attribute records as described at the beginning of the
section, as follows:

• Glucose level and insulin infusion: Taken directly from the Ulna
dataset.

• Time period: Taken from the time of day.
• Glucose slope: Computed by the difference between the current glu-
cose level and the glucose level from one hour ago. This cannot be
computed for the first six records of the glucose level, hence they are
removed from the dataset.

• Compliance degree: If the Ulna dataset is the compliant CSII device
test dataset, it will be set to one. Otherwise, it will be set to zero.

Following the post-processing steps described above, the following
five test datasets are generated:

1. Compliant CSII device dataset: created by post-processing Ulna-
generated compliant dataset directly.

2. Reckless attack CSII device dataset: created by post-processing Ulna-
generated reckless dataset directly.

3. Random attack CSII device dataset: Random attacks are simulated
by combining the compliant dataset with the reckless dataset by a
percentage depending on the probability of attack (𝑃𝑎). For example,
if 𝑃𝑎 is 10%, the Random attack dataset will consist of 90% from the
compliant dataset and 10% from the reckless dataset.

4. Insidious attack CSII device dataset: created by post-processing Ulna-
generated insidious dataset directly.

5. Insidious nocturnal attack CSII device dataset: Attacks are simulated
by combining the compliant dataset for the time periods 1-4 [4 am

– 8 pm] with the insidious dataset for the periods 0 [12 am – 4 am]
and 5 [8 pm – 12 pm].

At the end, each dataset contains 71,184 5-attribute records. We simu-
late noises (with respect to a data attribute) as a random variable with
normal distribution with a mean (𝜇) of zero except for the time period
attribute. To simulate multiple levels of noises, we increase the stan-
dard deviation (𝜎2) values corresponding to the level of required noise.
Specifically, low noises have a 𝜎2 of 5, medium noises have a 𝜎2 of 7,
and high noises have a 𝜎2 of 9.

7. Evaluation results

7.1. Model analysis and validation

Without loss of generality, we first apply RF [5] as the underlying AI
technique used by the self-monitoring module to classify if a target CSII
device is misbehaved, as RF is known to have a great learning ability to
improve its classification accuracy. We will show that other AI classifi-
cation methods with learning capability (e.g., Artificial Neural Network
(ANN), k-Nearest Neighbors (KNN), and Gradient Boosting (GB)) can
also be similarly applied with results generating similar trends. Our ex-
perimental environment setup follows the behavior rules in Table 2 with
15 event types continuously occurring in the testing phase. We divide
the first 2,000 data records from the dataset into 10 training sets with
200 data records each. The reason that we separate the training data
into 10 training sets is to analyze the effect of classifier’s learning capa-
bilities on the performance of misbehavior detection. That is, we train
the classifier 10 times, each with combining the training sets and then
measure 𝑝𝑓𝑛 and 𝑝𝑓𝑝 to see the effect of learning on performance.

To measure 𝑝𝑓𝑛 and 𝑝𝑓𝑝 we consider two target CSII devices, one
“good” and one “bad,” whose actions toward an event follow Tables 2
and 3 accordingly. These are sampled using the datasets created in sec-
tion 6. Essentially when an event occurs, the monitoring module col-
lects event data along with the action taken by the target CSII as input
with which the monitoring module classifies if the target CSII as “well-
behaved” (in which case a compliance degree of 1 is assigned) or “misbe-
haved” (in which case a compliance degree of 0 is assigned). Of course,
if the classifier is perfect, it will always classify the “bad” target CSII as
"non-compliant” and the “good” target CSII as “compliant”. However,
like most AI programs, the classifier despite producing correct outputs
mostly, sometimes they can severely fail. After the classifier is trained
with each training set of 200 data records, we let it run through the test-
ing dataset of 14,000 data records (so 𝑛=14,000) and collect the “bad”
IoT device’s compliance degree history (𝑐1, 𝑐2, 𝑐3,𝑐𝑛) and the “good”
IoT device’s compliance degree history (𝑐1, 𝑐2, 𝑐3,𝑐𝑛) so as to obtain
the one-parameter 𝐺(⋅) = 𝐵𝑒𝑡𝑎(𝛽) distributions for the “bad” IoT device
and the “good” IoT device based on Eq. (4), and to compute 𝑝𝑓𝑛 and 𝑝𝑓𝑝
based on Eqs. (5) and (6) respectively. As the classifier goes through the
testing dataset of 14,000 data records, we also collect misclassification
timestamp history (𝑡1, 𝑡2, ..., 𝑡𝑁) at which the classifier makes a misclassi-
fication error. The misclassification timestamp history is used to obtain
the number of misclassifications 𝑦 for all 𝑝 subintervals. This allows us
to compute the misclassification output arrival rate 𝜆 after the classifier
is trained in the current learning testing cycle based on Eq. (11) (with 𝑡𝑡
being the total time of 𝑛=14,000 event arrivals). The procedure above
is repeated 5 times each of which the classifier is trained with 200 events
and tested with 14,000 events.

Table 4 shows the results. There are 5 rows each representing one
cycle of the learning testing procedure. There are three columns show-
ing 𝜆 (the arrival rate of misclassification outputs), 𝑝𝑓𝑛 (false negative
probability) and 𝑝𝑓𝑝 (false positive probability) at the end of a learn-
ing testing cycle. We observe that 𝜆 reduces as time progresses as the
classifier learns from examples. We note that 𝑝𝑓𝑛 and 𝑝𝑓𝑝 also decrease
as time progresses because the classifier makes fewer misclassification
errors as it sees more examples. In particular, the improvement param-

Future Generation Computer Systems 176 (2026) 108162

8

H. Al-Hamadi et al.

Table 4
Effectiveness of self-monitoring module running RF
with no noise measured by 𝜆, 𝑝𝑓𝑛, and 𝑝𝑓𝑝. Note: 𝐶𝑇
is set at 0.75.
 Learning testing Cycle 𝜆 𝑝𝑓𝑛 𝑝𝑓𝑝

 1st 0.004 0.1772 0.1549
 3rd 0.003 0.06 0.1497
 5th 0.0024 0.0477 0.1474
 7th 0.0017 0.0227 0.1465
 9th 0.0014 0.0111 0.1455

Fig. 6. Effect of training dataset size on 𝜃.

Fig. 7. AUROC curves over 3 learning testing cycles for AI-based misbehavior
detection on the CSII Device with a 95% confidence interval.

eter 𝜃 impacts the extent to which learning enhances the system reli-
ability. A more rapidly reducing 𝜆 at the beginning as a function of 𝑡
is a result of a larger 𝜃. This is shown in Fig. 6. The method discussed
here allows one to estimate the value of 𝜃 for a system with learning
capability.

Fig. 7 shows the Area Under Receiver Operating Characteristic (AU-
ROC) curves for four AI-based misbehavior detection methods. The de-
tection rate (1 − 𝑝𝑓𝑛) on the Y coordinate and the false positive rate (𝑝𝑓𝑝)
on the X coordinate. AUROC is commonly employed as a performance
metric to evaluate misbehavior detection methods because it accurately

portrays the tradeoff between 𝑝𝑓𝑛 and 𝑝𝑓𝑝 by adjusting the minimum
compliance degree threshold 𝐶𝑇 such that a higher 𝐶𝑇 (i.e., a higher
bar for good behavior) decreases 𝑝𝑓𝑛 but increases 𝑝𝑓𝑝, and vise versa.
There are three AUROC curves shown in the three subfigures in Fig. 7,
each curve is obtained after the specified training-testing cycle. We can
see that the AUROC improves as the training-testing cycles increase.
The blue shaded area around each curve represents the 95% confidence
interval for each curve. This confidence interval was calculated by the
bootstrapping resampling method. The compliance degree history was
sampled with replacement 1,000 times, and for each resample, the AU-
ROC is computed. The AUROC scores form a distribution that allows
for the estimation of the 95% confidence interval by determining the
appropriate percentiles (2.5th and 97.5th). The confidence intervals for
each curve estimate its variability and show that the AUROC curves dif-
fer and improve as the number of cycles increase. This is the case for
the four AI-based methods in Fig 7(a)–(d).

Fig. 8 shows the effect of the training dataset size on the improve-
ment of 𝑝𝑓𝑝 and 𝑝𝑓𝑛 for the self-monitoring module running the RF clas-
sifier. The X-axis in the three figures represents the size of the training
set and the Y-axis represents the value of 𝑝𝑓𝑝 or 𝑝𝑓𝑛. Here we increase
the number of training datasets to beyond 5 in order to show the effect
(similarly for subsequent tests where applicable). In Fig. 8(a), we see
the effect of the increase of the training set on 𝑝𝑓𝑝 when the AI-based
misbehavior detection code is developed using different ML methods,
including KNN, ANN, RF, and GB. We observe that for all schemes 𝑝𝑓𝑝
monotonically decreases as the size of the training set increases. This
demonstrates that our methodology for building the AI-based detection
code is generally applicable regardless of the AI method used as the
classification scheme for misbehavior detection. Fig. 8(b) shows the ef-
fect of the size of the training set on 𝑝𝑓𝑛 under various attack scenarios.
We observe that 𝑝𝑓𝑛 monotonically decreases as there is increase in the
size of the training set only when the type of attack is a reckless attack.
However, for other types of attacks increasing the training size does not
improve in detecting nodes using these types of attacks. Also, from the
figure we see the difference in 𝑝𝑓𝑛 among the various attack scenar-
ios. We observe that insidious nocturnal attacks have the highest 𝑝𝑓𝑛
since they are the hardest to detect, followed by the insidious critical
attacks, random attacks, and finally reckless attacks. Finally, Fig. 8(c)
focuses only on the RF classifier from Fig. 8(a) which clearly shows the
decrease in 𝑝𝑓𝑝 as the size of the training increases.

Fig. 9 shows the effect of the training size on the RF-based misbe-
havior detection method’s various popular AI metrics such as accuracy,
recall, precision, and the 𝑓1 score. As the training dataset increases, the
method’s detection performance increases across all AI metrics.

Fig. 10 shows the effect of training on 𝜆 under the various AI methods
and various attack scenarios. Fig. 10(a) shows that the 𝜆 decreases for
the different AI methods as the training increases. The arrival rate of
the misclassification decreases as the AI methods is trained on more
examples and becomes more accurate. Fig. 10(b) shows that the arrival
rate of misclassifications among the various attacks is analogous to the
order of values of 𝑝𝑓𝑛 of the attacks, as seen in Fig. 8(b), in the first
training iterations. However, as the iterations increase the 𝜆 drops for
all attacks to the point where they are very similar. This shows that
increasing the training on the RF classifier will allow it to handle all
types of misbehavior regardless of the type of attack.

Fig. 11 shows the AUROC curves under various attack scenarios. We
observe that reckless attacks have the largest area under the curve while
insidious nocturnal attacks have the smallest. This order correctly cor-
responds to the level of difficulty in detecting these attacks. Reckless
attacks are the easiest to detect with the insidious nocturnal being the
hardest to detect.

Fig. 12 shows the AUROC curves under random attacks with the
attack probability in the range of [0.1, 0.3]. We observe that random
attacks with the highest attack probability (𝑃𝑎 = 0.5) have the largest
area under the curve while random attacks with the lowest probability
of attack (𝑃𝑎 = 0.2) have the smallest area . It correctly reflects the trend

Future Generation Computer Systems 176 (2026) 108162

9

H. Al-Hamadi et al.

Fig. 8. Effect of training dataset size on 𝑝𝑓𝑛 and 𝑝𝑓𝑝.

that as the probability of random attacks increases, it is easier to detect
random attacks.

Finally, Fig. 13 shows the AUROC curves under reckless attacks with
varying noise levels. We observe that as the noise level increases, the
probability of monitoring error also increases and consequently, the de-
tection rate also decreases. This also correctly reflects the trend that in
highly noisy environments, the performance of misbehavior detection
will naturally degrade.

Fig. 9. Effect of training dataset size on AI metrics for a Random forest-based
misbehavior detection method on insidious nocturnal dataset.

Fig. 10. Effect of training dataset size on 𝜆.

7.2. Comparative analysis

We compare our proposed methodology against baselines represen-
tative of techniques used in recent works. These include deterministic,
mean-based thresholds for making a binary decision on a node’s sta-
tus (e.g., compliant or non-compliant), a common approach in the lit-
erature [31–33]. Furthermore, we compare against Early Stopping, a

Future Generation Computer Systems 176 (2026) 108162

10

H. Al-Hamadi et al.

Fig. 11. AUROC curves under various attack scenarios.

Fig. 12. AUROC curves under random attacks with the attack probability 𝑝𝑎 in
the range of [0.1, 0.5].

Fig. 13. AUROC curves under different noise levels.

Fig. 14. Illustration of the proposed 𝑃𝑓𝑛 methodology showing (a) the observed
compliance degree history over 170 timepoints; (b) the predicted likelihood of
future compliance, calculated from the full history at t=170; and (c) the evo-
lution of the 𝑃𝑓𝑛 over time, comparing the proposed probabilistic method to a
mean-based baseline.

standard method for determining when to halt model training [34,35].
The following analysis demonstrates how our predictive, probabilistic
model provides more robust and actionable insights than these estab-
lished techniques. We compare our proposed methodology for 𝑃𝑓𝑛 with
that of a mean-based baseline. The distinction between the two methods
is evident when analyzing the system’s state at time 𝑡 = 100, as shown
in Fig. 14. At this point, the baseline approach concludes a 𝑃𝑓𝑛 of 1, as
the cumulative mean compliance, 𝑐, i.e., the False Negative Rate (FNR),
remains greater than the threshold, 𝐶𝑇 . This assessment, however, only
indicates that a threshold has not yet been crossed and provides no in-
sight into the magnitude of the risk. In contrast, the proposed method-
ology, by fitting the historical data to a Beta distribution, 𝐺(⋅), yields a
quantitative probability. At 𝑡 = 100, it calculates a 𝑃𝑓𝑛 ≈ 0.8. This value
represents the probability 𝑃𝑟{𝑐 > 𝐶𝑇 }, quantifying the likelihood that
the device’s compliance degree, 𝑐, will exceed the threshold 𝐶𝑇 . This
probabilistic forecast, derived from modeling the system’s behavior with
the distribution 𝐺(⋅), allows making risk-informed decisions based on a
quantified probability of failure rather than a simple determination of
whether a threshold has been crossed.

The proposed model characterizes uncertain and dynamic device
behavior, whether due to benign reasons or because of deceptive
compliance patterns. It employs an adaptive probabilistic approach, us-
ing a Beta distribution to quantify the uncertainty of the true compli-
ance probability. This model of compliance is dynamically shaped by an
evolving history of discrete events. The resulting probabilistic forecast
of the Probability of False Negative (𝑃𝑓𝑛) offers a significant advantage
over deterministic, mean-based thresholds. It enables earlier detection
of behavioral degradation and facilitates more robust, risk-informed de-
ployment decisions.

Fig. 15 highlights the forecasting advantage of our methodology for
a steadily improving system that has not yet met its performance target.
This is contrasted with Early Stopping, a common technique that halts
training if a validation metric fails to improve. For this experiment, we

Future Generation Computer Systems 176 (2026) 108162

11

H. Al-Hamadi et al.

Fig. 15. Decision-making comparison with Early Stopping.

Fig. 16. Comparative analysis of two AI systems.

set a patience of 𝑝 = 1 interval and a minimum improvement delta of
𝛿 = 0.001. The stopping condition is therefore triggered if the current
misclassification rate, 𝜆𝑣𝑎𝑙(𝑡), is not less than the best-seen rate, 𝜆𝑏𝑒𝑠𝑡,
by at least 𝛿 (i.e., if 𝜆𝑣𝑎𝑙(𝑡) ≥ 𝜆𝑏𝑒𝑠𝑡 − 𝛿). At the decision point of 𝑡 = 2000,
since performance is still consistently improving, this condition is not
met and the rule provides no strategic guidance other than to “CON-
TINUE TRAINING.” It offers no insight into when, or if, the goal will
be reached. In contrast, our proposed methodology provides a clear,
actionable forecast. It predicts the specific time at which the safety tar-
get will be met (𝑡 = 3182) and can also forecast the long-term practical
plateau (𝑡 ≈ 54, 091), enabling proactive project planning and resource
management.

Fig. 16 illustrates the strategic utility of our proposed methodology
by analyzing two AI systems with different misclassification behaviors at
a decision point of 𝑡 = 1200. System A (black line) represents an under-
performing model whose misclassification events cease after 𝑡 = 1060,
indicating that its learning has plateaued. System B (blue line) repre-
sents a successfully learning model whose misclassification events are
initially frequent but become progressively sparser over time. Based on
these distinct historical patterns, our methodology generates two differ-
ent forecasts at the decision point. The forecast for System A shows its
performance curve plateauing above the 1.5% safety target, providing
a clear, early warning signal to HALT development and redesign the
system. In contrast, the forecast for System B shows a clear trajectory
to meeting the safety target, enabling a confident decision to PROCEED
and allocate resources efficiently.

8. Discussion and limitations

Our experimental results demonstrate that the proposed statistical
methodology provides a robust framework for evaluating the opera-
tional readiness of AI-based misbehavior detectors in critical IoT sys-
tems. The analysis in Section 7 confirms two primary benefits: first, the
use of a Beta distribution to model the compliance history yields a con-
tinuous, probabilistic measure that is more informative than a discrete,
deterministic threshold. Second, modeling the learning effect with a log-
arithmic Poisson process enables a predictive forecast of the misclassi-
fication rate, 𝜆, offering actionable insights where traditional training
techniques fall short.

When compared to related research, the advantages of our approach
become evident. The mean-based thresholding techniques, representa-
tive of methods used by Rahman et al. [31], Lopez-Martin et al. [32],
and Sohi et al. [33], provide a reactive assessment of a device’s state. As
shown in Fig. 14, such baselines can only determine if a cumulative aver-
age has crossed a threshold, whereas our probabilistic method quantifies
the underlying risk (𝑃𝑓𝑛 ≈ 0.8 at 𝑡 = 100) even when the mean behavior
appears acceptable. This provides a crucial early warning of degrading
performance. Similarly, our work complements advanced training op-
timization techniques like those proposed by Paguada et al. [34] and
Chen et al. [35]. While their methods improve training efficiency, our
work provides a framework for determining operational readiness based
on a forecast of when performance will stabilize or meet a safety target,
a crucial step for deploying AI in safety-critical systems like the CSII
device. Unlike the majority of IDS research that focuses on final clas-
sification accuracy on benchmark datasets [10,12,14], our work shifts
the focus from static performance metrics to a dynamic analysis of the
learning process, which is essential for the assurance of trustworthy AI
in medical systems.

However, our study has several limitations that open avenues for
future research. First, the evaluation was conducted on a high-fidelity
simulation of a CSII device. While the data is modeled from real pa-
tient behavior, validation on physical, resource-constrained IoT hard-
ware in a clinical or near-clinical setting is a necessary next step to
confirm the real-world efficacy of the framework. Second, the method-
ology’s validity rests on the assumption that the stochastic nature of
device compliance and learning dynamics can be effectively captured
by parametric statistical distributions. While these are well-suited for
the observed behaviors, future work could explore more complex time-
series models [34] or other statistical distributions and uncertainty
modeling techniques [11,22]. Finally, while our analysis included sev-
eral common AI classifiers, the framework should be tested against a
wider range of architectures, such as transformer-based models, to as-
sess its generalizability. Future work will focus on deploying this frame-
work on embedded hardware and extending the statistical models to
support systems that utilize continuous online learning in operational
environments.

The chosen AI methods may also introduce biases. RF can be biased
by its feature splitting mechanism, which can lead to a higher 𝑝𝑓𝑛 if
misbehavior data is sparse and underrepresented in feature subsets, as
observed in our tests with insidious attacks. Similarly, KNN’s distance-
based nature makes it susceptible to noisy data, while ANN and GB can
underfit and introduce bias if their architectures are not sufficiently
complex. Such potential biases can be mitigated by various methods,
including robust data preprocessing, relabeling, and applying regular-
ization during the training process [42].

Furthermore, a high-noise data environment can affect model per-
formance. While we explored this effect by simulating multiple noise
levels, practical mitigation strategies would be important for real-
world deployments. Proven solutions include data augmentation to
enhance input quality [43], using prediction models to replace er-
roneous sensor values [44], or applying noise reduction method-
ologies such as input averaging [45] and clustering-based noise
elimination [46].

Future Generation Computer Systems 176 (2026) 108162

12

H. Al-Hamadi et al.

9. Conclusions

This paper addressed the critical challenge of ensuring the reliability
of learning-enabled AI misbehavior detectors in safety-critical IoT sys-
tems. We introduced a novel statistical framework that shifts the evalu-
ation paradigm from a reactive, static assessment to a proactive, predic-
tive forecast. Our methodology empowers system designers to quantify
the learning process, predict future performance, and make informed,
data-driven decisions about when a system is operationally ready for
deployment.

Through a comprehensive evaluation on a smart CSII medical de-
vice, we demonstrated that our framework not only effectively tracks
improvements in detecting sophisticated attacks but, more importantly,
provides superior, actionable insights compared to traditional thresh-
olding and early-stopping techniques. Future work will focus on several
key directions: using our framework to develop and validate more data-
efficient training strategies; applying it to other diverse IoT domains like
industrial or vehicular systems; extending its support for online learn-
ing models; and performing validation on physical, resource-constrained
hardware.

CRediT authorship contribution statement

Hamid Al-Hamadi: Writing – review & editing, Writing – original
draft, Project administration, Funding acquisition, Conceptualization;
Ing-Ray Chen: Writing – original draft, Supervision, Conceptualization;
Ding-Chau Wang: Writing – review & editing, Supervision; Abdullah
Almutairi: Writing – review & editing, Visualization, Investigation.

Data availability

The data used in this paper is available at https://www.kaggle.com/
datasets/almutairiphd/infuser-rules-raw-data/data.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work was supported and funded by the Kuwait University Re-
search Grant under Grant No. RQ01/19. The authors would like to thank
Mohamed Smaoui, Computer Science Department, Kuwait University,
for providing the simulation platform for Artificial Pancreas algorithms
and related support. The authors would also like to thank the Research
Associate, Anita Philips for her technical contribution, coding, and edit-
ing support in this work.

References

[1] G. Choudhary, P.V. Astillo, I. You, K. Yim, I.R. Chen, J.H. Cho, Lightweight misbe-
havior detection management of embedded IoT devices in medical cyber physical
systems, IEEE Trans. Netw. Serv. Manag. 17 (4) (2020) 2496–2510.

[2] V. Sharma, I. You, K. Yim, I.R. Chen, J.H. Cho, BRIoT: behavior rule specification-
based misbehavior detection for IoT-embedded cyber-physical systems, IEEE Access
7 (1) (2019) 118556–118580.

[3] Y. Chen, W. Sun, N. Zhang, Q. Zheng, W. Lou, Y.T. Hou, Towards efficient fine-
grained access control and trustworthy data processing for remote monitoring ser-
vices in IoT, IEEE Trans. Inf. Forensics Secur. 14 (7) (2019) 1830–1842.

[4] V. Costan, S. Devadas, Intel SGX Explained, 2016, (IACR Cryptology ePrint Archive).
[5] T.K. Ho, Random decision forests, in: Proceedings of 3rd International Conference

on Document Analysis and Recognition, 1995, pp. 278–282.
[6] S. Kapil, R. Saini, S. Wangnoo, S. Dhir, Artificial pancreas system for Type 1

diabetes–challenges and advancements, Explor. Res. Hypothesis Med. 000 (000)
(2020) 1–11. https://doi.org/10.14218/erhm.2020.00028

[7] National Institute of Diabetes and Digestive and Kidney Diseases, Type 1 Di-
abetes - NIDDK, 2023. Accessed: Aug. 13, 2023, https://www.niddk.nih.gov/
health-information/diabetes/overview/what-is-diabetes/type-1-diabetes.

[8] A. Cinar, K. Turksoy, Advances in Artificial Pancreas Systems, Components of an
Artificial Pancreas System, 2018. https://doi.org/10.1007/978-3-319-72245-0-2

[9] M.R. Smaoui, R. Rabasa-Lhoret, A. Haidar, Development platform for artificial pan-
creas algorithms, PLoS ONE 15 (12) (2020) e0243139. https://doi.org/10.1371/
journal.pone.0243139

[10] M. Fouda, R. Ksantini, W. Elmedany, A Novel Intrusion Detection System for In-
ternet of Healthcare Things Based on Deep Subclasses Dispersion Information, IEEE
Internet Things J. (2023) 8395–8407. https://doi.org/10.1109/JIOT.2022.3230694

[11] X. Li, Y. Wang, M. Zhou, W. Li, Bayesian model uncertainty estimation for misbe-
havior detection in IoT, in: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS), ACM, 2022, pp. 167–180. https:
//doi.org/10.1145/3548606.3560597

[12] A.-A. Maiga, E. Ataro, S. Githinji, Intrusion detection with deep learning classi-
fiers: a synergistic approach of probabilistic clustering and human expertise to re-
duce false alarms, IEEE Access 12 (2024) 17836–17858. https://doi.org/10.1109/
ACCESS.2024.3359595

[13] R. Rocca, Integrating statistical methods and game theory for enhanced IoT intrusion
detection, in: 2025 IEEE 22nd Consumer Communications & Networking Conference
(CCNC), 2025, pp. 1–4. https://doi.org/10.1109/CCNC54725.2025.10976112

[14] S. Rizvi, M. Scanlon, J. McGibney, J.W. Sheppard, An evaluation of AI-based
network intrusion detection in resource-constrained environments, in: 2023 IEEE
14th Annual Ubiquitous Computing, Electronics & Mobile Communication Con-
ference (UEMCON), 2023, pp. 275–282. https://doi.org/10.1109/UEMCON59035.
2023.10315971

[15] M. Jin, et al., Poster: towards real-time intrusion detection with explainable AI-Based
Detector, in: Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, 2024. https://doi.org/10.1145/3658644.3691410

[16] M.M. Rahman, M. Nijim, H. Jeong, AI2DS: advanced deep autoencoder-driven
method for secure network intrusion detection, in: 2025 IEEE International Con-
ference on Cyber Security and Resilience (CSR), 2025.

[17] F. Wali, O. Shahid, W. Mahmood, M. Usama, AIS-NIDS: an intelligent and self-
sustaining network intrusion detection system, in: 2024 IEEE International Confer-
ence on Smart Computing (SMARTCOMP), 2024.

[18] S.-P. Wu, D. Kondo, A high-throughput network intrusion detection system with on-
device learning using adaptive feature compression, IEEE Trans. Dependable Secure
Comput. (2024). https://doi.org/10.1109/TDSC.2024.3381345

[19] G.-Y. Zhao, L. Zhang, W.-T. Liu, A novel intrusion detection method based on
lightweight adaptive loss and dimensionality reduction, IEEE Access 10 (2022)
78512–78524. https://doi.org/10.1109/ACCESS.2022.3192385

[20] S. Kaushik, A. Bhardwaj, A. Almogren, S. Bharany, A. Ur Rehman, S. Hussen, H.
Hamam, Robust machine learning based Intrusion detection system using simple
statistical techniques in feature selection, Scientific Reports 15 (1) (2025) 3970.

[21] S. Tewari, D.S. Rawat, Lightweight intrusion detection system for IoT networks using
quantized CNN-BiLSTM architecture, IEEE Trans. Inf. Forensics Secur. (2024). https:
//doi.org/10.1109/TIFS.2024.3387351

[22] O. Simeone, S. Park, M. Zecchin, Conformal calibration: Ensuring the reliability of
black-box ai in wireless systems, (2025) arXiv preprint arXiv:2504.09310.

[23] S. Kebir, K. Tabia, On handling concept drift, calibration and explainability in
non-stationary environments and resources limited contexts, in: ICAART (2), 2024
336–346.

[24] Md. K. Hossain, I. Ahmad, D. Habibi, M. Waqas, Enhancing IoT sensors precision
through sensor drift calibration with variational autoencoder, IEEE Internet Things
J. 12 7 8421–8437 (2025) https://doi.org/10.1109/TIFS.2024.3387351.

[25] J. Winter, H. Kim, S.-H. Lim, An empirical study of uncertainty estimation tech-
niques for drift detection in deep learning-based IDS, in: 2023 ACM Conference on
Computer and Communications Security, 2023.

[26] S. Xiong, Q. Li, Z. Zhang, AIDTF: adversarial training framework for network in-
trusion detection systems, in: Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, 2023.

[27] K. Sauka, G.-Y. Shin, D.-W. Kim, M.-M. Han, Adversarial robust and explainable net-
work intrusion detection systems based on deep learning, Appl. Sci. 12 (13) (2022)
https://www.mdpi.com/2076-3417/12/13/6451.

[28] T.-T. Nguyen, M. Tran, Q.-A. Ha, A robust and trustworthy intrusion detection sys-
tem using GAN-based adversarial training and explainability, in: 2024 ACM Sympo-
sium on Information, Computer and Communications Security, 2024.

[29] T. Rashid, N. Basha, E. Ahmed, A deep learning-based semi-supervised network
intrusion detection system With adversarial defense, in: 2023 IEEE Symposium on
Security and Privacy (SP), 2023.

[30] H. Güngör, B. Aksanli, A2HD: adaptive adversarial training for hyperdimensional
computing in IoT security, in: 2024 IEEE/ACM Design Automation and Test in Eu-
rope Conference (DATE), 2024.

[31] A. Rahman, A.H.M. Sarwar Chowdhury, A.K.M. Bahalul, M. Haque, N. Islam, At-
tack detection in industrial control systems using machine learning, IEEE Access 10
(2022) 45563–45579. https://doi.org/10.1109/ACCESS.2022.3169872

[32] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, An unsupervised method for
anomaly detection in IoT networks based on connection patterns, IEEE Internet
Things J. 10 (10) (2023) 8948–8959. https://doi.org/10.1109/JIOT.2023.3235651

[33] N. Sohi, P. Kaur, J. Singh, Real-time detection of IoT botnet attacks using a hi-
erarchical threshold-based approach, Comput. Secur. 121 (2022) 102839. https:
//doi.org/10.1016/j.cose.2022.102839

[34] I. Paguada, J. Stewart, A. Lyle, H. Medeiros, Robust Early Stopping for Time Se-
ries Forecasting Models Using Predictive Uncertainty, IEEE Trans. Comput. 70 (12)
(2021) 2152–2163. https://doi.org/10.1109/TC.2021.3064767

[35] W. Chen, Z. Wu, J. Xu, Y. Wang, Bayesian optimization based on pseudo labels, in:
2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML),
IEEE, 2022, pp. 217–222. https://doi.org/10.1109/CACML55074.2022.00043

Future Generation Computer Systems 176 (2026) 108162

13

https://www.kaggle.com/datasets/almutairiphd/infuser-rules-raw-data/data
https://www.kaggle.com/datasets/almutairiphd/infuser-rules-raw-data/data
https://doi.org/10.13039/501100004482
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0002
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0002
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0002
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0004
https://doi.org/10.14218/erhm.2020.00028
https://doi.org/10.14218/erhm.2020.00028
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/type-1-diabetes
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/type-1-diabetes
https://doi.org/10.1007/978-3-319-72245-0-2
https://doi.org/10.1007/978-3-319-72245-0-2
https://doi.org/10.1371/journal.pone.0243139
https://doi.org/10.1371/journal.pone.0243139
https://doi.org/10.1371/journal.pone.0243139
https://doi.org/10.1371/journal.pone.0243139
https://doi.org/10.1109/JIOT.2022.3230694
https://doi.org/10.1109/JIOT.2022.3230694
https://doi.org/10.1145/3548606.3560597
https://doi.org/10.1145/3548606.3560597
https://doi.org/10.1145/3548606.3560597
https://doi.org/10.1145/3548606.3560597
https://doi.org/10.1109/ACCESS.2024.3359595
https://doi.org/10.1109/ACCESS.2024.3359595
https://doi.org/10.1109/ACCESS.2024.3359595
https://doi.org/10.1109/ACCESS.2024.3359595
https://doi.org/10.1109/CCNC54725.2025.10976112
https://doi.org/10.1109/CCNC54725.2025.10976112
https://doi.org/10.1109/UEMCON59035.2023.10315971
https://doi.org/10.1109/UEMCON59035.2023.10315971
https://doi.org/10.1109/UEMCON59035.2023.10315971
https://doi.org/10.1109/UEMCON59035.2023.10315971
https://doi.org/10.1145/3658644.3691410
https://doi.org/10.1145/3658644.3691410
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0015
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0015
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0015
https://doi.org/10.1109/TDSC.2024.3381345
https://doi.org/10.1109/TDSC.2024.3381345
https://doi.org/10.1109/ACCESS.2022.3192385
https://doi.org/10.1109/ACCESS.2022.3192385
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0018
https://doi.org/10.1109/TIFS.2024.3387351
https://doi.org/10.1109/TIFS.2024.3387351
https://doi.org/10.1109/TIFS.2024.3387351
https://doi.org/10.1109/TIFS.2024.3387351
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0020
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0020
http://arxiv.org/abs/2504.09310
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0021
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0021
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0021
https://doi.org/10.1109/TIFS.2024.3387351
https://doi.org/10.1109/TIFS.2024.3387351
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0024
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0024
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0024
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0025
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0025
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0025
https://www.mdpi.com/2076-3417/12/13/6451
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0027
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0027
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0027
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0028
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0028
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0028
https://doi.org/10.1109/ACCESS.2022.3169872
https://doi.org/10.1109/ACCESS.2022.3169872
https://doi.org/10.1109/JIOT.2023.3235651
https://doi.org/10.1109/JIOT.2023.3235651
https://doi.org/10.1016/j.cose.2022.102839
https://doi.org/10.1016/j.cose.2022.102839
https://doi.org/10.1016/j.cose.2022.102839
https://doi.org/10.1016/j.cose.2022.102839
https://doi.org/10.1109/TC.2021.3064767
https://doi.org/10.1109/TC.2021.3064767
https://doi.org/10.1109/CACML55074.2022.00043
https://doi.org/10.1109/CACML55074.2022.00043

H. Al-Hamadi et al.

[36] H. Al-Hamadi, I.-R. Chen, D.-C. Wang, M. Almashan, Attack and Defense Strategies
for Intrusion Detection in Autonomous Distributed IoT Systems, IEEE Access (2020).
https://doi.org/10.1109/ACCESS.2020.3023616

[37] R. Mitchell, I.-R. Chen, Behavior-rule based intrusion detection systems for safety
critical smart grid applications, IEEE Trans. Smart Grid 4 (3) (2013) 762–770. https:
//doi.org/10.1109/TSG.2013.2258948

[38] R. Mitchell, I.-R. Chen, Effect of Intrusion Detection and Response on Reliability
of Cyber Physical Systems, IEEE Trans. Rel. 62 (1) (2013) 1–9. https://doi.org/10.
1109/TR.2013.2240891

[39] F.B. Bastani, I.R. Chen, T. Tsao, Reliability of systems with fuzzy-failure criterion,
in: Annu. Rel. Maintainab. Symp., 1994, pp. 442–448.

[40] J.D. Musa, K. Okumoto, A logarithmic poisson execution time model for software
reliability measurement, in: Proc. 7th Int. Conf. Softw. Eng., Orlando, FL, 1984, pp.
230–237.

[41] A. Haidar, et al., Glucose-responsive insulin and glucagon delivery (dual-hormone
artificial pancreas) in adults with type 1 diabetes: a randomized crossover controlled
trial, Cmaj 185 (4) (2013) 297–305.

[42] M. Hort, Z. Chen, J.M. Zhang, M. Harman, F. Sarro, Bias mitigation for machine
learning classifiers: a comprehensive survey, ACM J. Responsible Comput. 1 (2)
(2024) 1–52. https://doi.org/10.1145/3631326

[43] M. Momeny, et al., Learning-to-augment strategy using noisy and denoised data:
Improving generalizability of deep CNN for the detection of COVID-19 in X-ray im-
ages, Comput. Biol. Med. 136 (2021). https://doi.org/10.1016/j.compbiomed.2021.
104704

[44] O. Oleghe, A predictive noise correction methodology for manufacturing process
datasets, J. Big Data 7 (1) (2020). https://doi.org/10.1186/s40537-020-00367-w

[45] S.J. Min, Y.S. Jo, S.J. Kang, Super-resolving methodology for noisy unpaired
datasets, Sensors 22 (20) (2022). https://doi.org/10.3390/s22208003

[46] S.Z. Liu, R.S. Sinha, S.H. Hwang, Clustering-based noise elimination scheme for data
pre-processing for deep learning classifier in fingerprint indoor positioning system,
Sensors 21 (13) (2021). https://doi.org/10.3390/s21134349

Future Generation Computer Systems 176 (2026) 108162

14

https://doi.org/10.1109/ACCESS.2020.3023616
https://doi.org/10.1109/ACCESS.2020.3023616
https://doi.org/10.1109/TSG.2013.2258948
https://doi.org/10.1109/TSG.2013.2258948
https://doi.org/10.1109/TSG.2013.2258948
https://doi.org/10.1109/TSG.2013.2258948
https://doi.org/10.1109/TR.2013.2240891
https://doi.org/10.1109/TR.2013.2240891
https://doi.org/10.1109/TR.2013.2240891
https://doi.org/10.1109/TR.2013.2240891
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0037
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0037
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0038
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0038
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0038
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0039
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0039
http://refhub.elsevier.com/S0167-739X(25)00456-X/sbref0039
https://doi.org/10.1145/3631326
https://doi.org/10.1145/3631326
https://doi.org/10.1016/j.compbiomed.2021.104704
https://doi.org/10.1016/j.compbiomed.2021.104704
https://doi.org/10.1016/j.compbiomed.2021.104704
https://doi.org/10.1016/j.compbiomed.2021.104704
https://doi.org/10.1186/s40537-020-00367-w
https://doi.org/10.1186/s40537-020-00367-w
https://doi.org/10.3390/s22208003
https://doi.org/10.3390/s22208003
https://doi.org/10.3390/s21134349
https://doi.org/10.3390/s21134349

	On effectiveness of AI-based misbehavior detection in medical IoT
	1 Introduction
	2 Background of CSII devices for T1D patients in a medical CPS
	3 Related work
	4 System model
	4.1 Overview
	4.2 Design of smart CSII with misbehavior detection
	4.3 Attack scenarios
	4.4 Assessing compliance degree

	5 Methodology
	5.1 Misbehavior detection
	5.2 Effect of learning

	6 Preparation of test datasets
	7 Evaluation results
	7.1 Model analysis and validation
	7.2 Comparative analysis

	8 Discussion and limitations
	9 Conclusions

