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Abstract—In this paper we analyze the reliability of a ho-
mogeneous wireless sensor network executing a distributed
code attestation protocol with neighbor sensor nodes serving
as code verifiers. By considering the tradeoff between energy
exhaustion vs. security vulnerability for causing sensor node
failures, we identify how often distributed code attestation should
be performed as well as how many neighbor sensors should
serve as code verifiers per attestation event to maximize the
system lifetime without compromising performance. Sensitivity
analysis of the results with respect to critical model parameters
is presented with physical interpretations given.

Index Terms—Wireless sensor networks, distributed code at-
testation, reliability, security, intrusion detection.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) are broadly de-
ployed in many safety-critical applications, such as

health, construction and military, as well as diverse environ-
ments, such as highways, forests and battlefields [5]. Power is
supplied by battery so that energy conservation is crucial in
sensor node (SN) design to prolong the WSN lifetime. A WSN
is frequently deployed in unattended environments making
SNs vulnerable to capture attacks by the adversary (humans or
robots). A captured SN is subject to physical sabotage turning
it into a compromised SN capable of performing attacks.

Among the many methods to cope with inside attackers
in WSNs, software code attestation [1], [2], [6] has received
high attention because of its verifiable and provable semantics.
The basic idea is that the code of a compromised SN would
be different from that of a normal SN. Hence by inspecting
if the code is still the same as what originally was put in, the
system can detect whether the SN has been compromised.

In the literature, existing work on code attestation mostly
focused on the protocol design for performing code attestation,
and verification of the protocol design, e.g., by correctness
proof. In particular, [1] assumed the existence of a trusted
third party capable of verifying if a SN is compromised
through a challenge-response mechanism. To avoid a single
point of failure (the trusted base station), [2] extended central-
ized code attestation to distributed code attestation by using
designated servers or just neighbor SNs to a target SN. The
focus was again on protocol design and correctness proof.
Performance issues, especially in energy conservation to best
tradeoff security failure and prolong lifetime of WSNs with
code attestation, are relatively unattended. To the best of our
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knowledge, only [3] previously addressed performance issues
of centralized code attestation and no prior work has been done
to address performance issues of distributed code attestation.

This paper concerns the effect of distributed code attestation
on the reliability and performance of WSNs, taking into
account both security failure and energy exhaustion failure.
We adopt the Byzantine failure definition that the embedded
WSN fails when more than one third of the SNs are bad nodes
(reporting incorrect sensor data) beyond which there is no
way to have any form of information consistency. Compared
with existing work, the contribution of this work is that
we address reliability and performance issues of distributed
code attestation by identifying operational settings to execute
distributed code attestation such that the WSN lifetime is
maximized without compromising performance.

II. SYSTEM AND PERFORMANCE MODELS

A. System Model and Assumptions

We consider a homogeneous WSN in which SNs are de-
ployed randomly and distributed according to a homogeneous
spatial Poisson process with intensity n/πr2SN where n is the
average neighbor size and rSN is the SN radio range. The
main function of a SN is to report sensing data periodically
to the sink node with the interval time of T through multihop
routing. To cope with compromised nodes, SNs also act as
verifiers if selected to perform distributed code attestation to
their neighbors. With respect to a target SN, only a subset of
its neighbors up to nv SNs will be selected randomly as the
verifiers to conserve energy and to make the approach scalable.
We adopt a randomization strategy in selecting nv neighbors
as the verifiers every time code attestation is performed, so the
adversaries will not have specific targets to perform attacks.
Due to potential imperfection of code attestation protocol
design [6] or software bugs, a verifier may misdiagnose a
good SN as a bad SN with a false positive probability Pfp,
and misidentify a bad SN as a good node with a false negative
probability Pfn.

The code attestation event overlaps with the sensing and
reporting event with probability q. That is, every SN will be
attested with probability q in a sensing and reporting cycle.
By this way, we control how often code attestation is to be
performed for the purpose of energy conservation. We consider
a delay reporting design, that is, at the beginning of each
interval, a SN first allows code attestation to perform (if it
is a target node) before it reports its current sensing readings.
After nv verifiers each independently perform code attestation
toward a target SN, they perform majority voting to determine
if the target SN is compromised. We assume persistent attacks
by a compromised node. That is, when acting as a verifier, a
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bad node will perform the following attacks: (a) Bad-mouthing
attacks: it always votes “no” to a good node to increase the
false positive probability of this good node being misidentified
as a bad node; and (b) Good-mouthing attacks: it always
votes “yes” to another bad node to increase the false negative
probability of this bad node being undetected by the system.

We assume that a SN is compromised through capture,
that is, it is captured by humans/robots after which its code
is tampered and it is converted into a bad node. Since all
nodes have an equal chance of being captured as they are
being deployed randomly in the WSN operational area, the
node compromise time may be considered as i.i.d. with a
distribution function Fc(t) as input which provides knowledge
about the environment hostility. When a SN is diagnosed as
compromised (whether a true negative or a false positive),
the SN is recovered with probability Pr depending on its
accessibility to a sink node with code reload capability.

All SNs each have an initial energy level E. The energy
being consumed for sensor reading and reporting (to the sink
node), packet routing, running code attestation (as a target
SN), sending/receiving challenge/response messages for code
verification (as a target SN or a verifier), and recovery (if
diagnosed as compromised) are Es, ER, Ec, Ev and Er, re-
spectively, which can be calculated based on knowledge about
the protocol design and the wireless bandwidth available.

B. Performance Model

We first derive the false positive probability PDCA
fp and

false negative probability PDCA
fn as a result of distributed code

attestation based on voting in Equations 1 and 2. We use the
notation n for the number of neighbors per node initially,
nv for the number of verifiers, nm for the majority of the
verifiers, nb(t) for the number of bad SNs out of n at time
t, and ng(t) for the number of good SNs out of n at time t,
with nb(t)+ng(t) = n. Below we explain Equation 2 for the
false negative probability at time t below. Equation 1 for the
false positive probability can be explained similarly. A false
negative results when more than the majority of the verifiers
vote the target node (which is a bad SN) as a good node.
The first term in Equation 2 accounts for the case in which
more than 1/2 of the verifiers selected from the neighbors
are bad SNs who will perform good-mouthing attacks by
always voting “yes” to this bad node to increase the chance
of this bad node being undetected. Here the denominator is
the total number of combinations to select nv verifiers out of
n neighbor nodes, and the numerator is the total number of
combinations to select at least nm bad verifiers out of nb(t)
nodes and the remaining good verifiers out of ng(t) nodes.
The second term accounts for the case in which more than
1/2 of the verifiers selected from the neighbors are good SNs

but unfortunately some of these good nodes mistakenly miss
the target SN as a good node with probability Pfn, resulting
in more than 1/2 of the verifiers (some of those may be bad
SNs) voting “yes” for the target node. Here the denominator is
again the total number of combinations to select nv verifiers
out of n neighbor nodes, and the numerator is the total number
of combinations to select i bad verifiers not exceeding the
majority nm, j good verifiers who diagnose incorrectly with
i+ j ≥ nm, and the remaining nv − i− j good verifiers who
diagnose correctly.

To use Equations 1 and 2, we need to know ng(t) and nb(t).
The probability that a SN is compromised at time t, given that
it was a good node at time t− T , is given by:

FT = 1− P{X > t|X > t− T } (3)

= 1− P{X > t,X > t− T }
P{X > t− T } = 1− 1− Fc(t)

1− Fc(t− T )

The number of good neighbor SNs, ng(t), needed in Equa-
tions 1 and 2 is equal to ng(t−T ) minus the number of newly
compromised nodes over T , i.e.,

ng(t) = ng(t− T )− FT × ng(t− T ) (4)

On the other hand, the number of bad neighbor SNs at time
t is given by:

nb(t) = nb(t− T ) + FT × ng(t− T ) (5)

Note that ng(t) and nb(t) obtained above are good and bad
neighbor SN populations before code attestation is performed.
Thus, plugging ng(t) and nb(t) into Equations 1 and 2 will
allow us to obtain PDCA

fp and PDCA
fn at discrete sensing

interval time points, i.e., t = iT with i = 1, 2, etc. Because
code attestation is being performed only with probability q,
and nodes recovery is being performed only with probability
Pr, the bad and good neighbor SN populations are adjusted
only when code attestation and recovery are performed. That
is,

n∗
g(t) = ng(t) + q × nb(t)× (1 − PDCA

fn (t)) × Pr (6)

n∗
b(t) = nb(t)− q × nb(t)× (1 − PDCA

fn (t)) × Pr (7)

where n∗
g(t) and n∗

b(t) are good and bad node populations
after code attestation. Next we calculate the probability that
a SN is diagnosed as compromised at time t. There are two
possible ways by which a SN is diagnosed as compromised.
The first case is that the SN is compromised and it is correctly
identified as a bad SN with probability 1−PDCA

fn . The second
case is that the SN is not compromised and it is incorrectly
misidentified as a bad SN with probability PDCA

fp . Hence, the
probability that a SN is diagnosed as compromised at time t
is given by:

θ(t) = Pb(t)× (1− PDCA
fn (t)) + Pg(t)× PDCA

fp (t) (8)
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Here Pb(t) is the probability of the SN being a bad node
and Pg(t) is the probability of the SN being a good node
at time t prior to code attestation being performed. Because
of node homogeneity, we can calculate Pb(t) = nb(t)/n and
Pg(t) = ng(t)/n, with ng(t) and nb(t) defined by Equations 4
and 5, respectively. A SN will consume energy as a target node
with probability q in every sensing period T . If this happens,
nv × (Ec+Ev) energy would be consumed because there are
nv verifiers with which it must communicate to execute the
challenge-response procedure. Thus, on average q×nv×(Ec+
Ev) energy will be consumed in a sensing interval. Further,
it may be diagnosed as compromised with probability θ(t)
in which case with probability Pr additional Er energy is
necessary for code recovery. This will consume q × θ(t) ×
Pr ×Er energy on average in a sensing interval. In a sensing
period there will be on average n × q target SNs in a SN’s
neighborhood needing it to serve as a verifier with probability
nv/n. This consumes n×q×(nv/n)×Ev more energy. Lastly,
A SN will consume Es energy for sensing and reporting in
every sensing period T and will also consume about (n/4)×
ER energy for forwarding packets from about n/4 neighbors
who are located in the bottom left quadrant relative to the sink
node, assuming geographic routing. Summarizing above, the
amount of energy consumed by a SN in an interval [t, t+T ],
denoted by Eu(t), is given by:

Eu(t) = Es +
nER

4
+ q[nv(Ec + Ev) + θ(t)PrEr + nvEv] (9)

Consequently, a SN will exhaust its energy after Nq sensing
and reporting periods, with Nq given by:

E =

Nq∑
i=1

Eu(t = iT ) (10)

Let Rq(t) denote the probability that a SN returns valid
sensing readings in the sensing and reporting interval [t, t+T ],
which is exactly the same as the probability that the node is a
good node at time t when it returns sensor readings. Because
of node homogeneity, Rq(t) can be computed by:

Rq(t) = n∗
g(t)/n (11)

In Equation 11 we use n∗
g(t) as given by Equation 6 to

account for our delay reporting strategy, i.e., sensing/reporting
is performed after code attestation (if it is invoked) in a sensing
interval. We follow the Byzantine system failure definition
that if more than 1/3 of the SNs fail then the WSN fails. Let
Rs(t) denote the probability that the WSN is still healthy (i.e.,
with at least 2/3 of the SNs bring healthy) in the sensing and
reporting interval [t, t+T ]. We make use of Rq(t) in Equation
11 to compute Rs(t) as:

Rs(t) =

N∑
i=2/3N

N !

i!(N − i)!
(Rq(t))

i(1−Rq(t))
N−i (12)

The Mean Time to Failure (MTTF) of the WSN, denoted
by Ls, hence can be calculated by:

Ls =

∫ NqT

0

Rs(t)dt ≈
Nq∑
i=1

T ×Rs(t = iT ) (13)

In the above formulation, we have used Nq×T as the upper
bound to account for the maximum lifetime of the WSN due
to energy exhaustion.

III. NUMERICAL RESULTS AND ANALYSIS

A. Environment Setup

We consider a WSN rapidly deployed in a hostile military
environment for motion sensing. Mobile soldiers equipped
with communication devices acting as mobile sink nodes are
able to receive sensing reports regarding motions for combat
advantages. The average number of neighbor SNs (n) is 15.
The initial energy E = 2.5 joules of each SN is high enough
to sustain at least 2-3 days of operations. The bandwidth
is 250 Kbps. The transmission energy consumption rate of
Crossbow Mica2 motes is 82.33 mJ/s [4] and the reception
energy consumption rate is 50 nJ/bit. Therefore, the energy
consumption for sensing and reporting, Es, assuming 256
bits of sensing data, is about 256 × 82.33/(250 × 103) ≈
0.084 mJ. The energy consumption for routing a packet,
ER, involves both reception and retransmission and is about
0.084 mJ+ 256× 50× 10−6 ≈ 0.096mJ. The computational
power consumption rate is 50 mJ/s, the CPU power of a sensor
node is 10 MIPs, and the code length is 2000 instructions
[4]. Therefore, the energy consumption of a target SN for
performing code attestation, Ec, is about 2000 × 50/(10 ×
106) = 0.01mJ. Code verification involves a verifier and
a target SN exchanging a challenge/response pair. Assume
that a challenge/response packet length is 8 bytes. Hence, the
energy consumed for sending/receiving a challenge/response
pair, Ev , is about 8× 8× 82.33/(250× 103) + 8× 8× 50×
10−6 ≈ 0.024 mJ. A recovery process involves reloading
and checking the integrity of the code. The code size is
2KB. The energy consumed for code checking is the same
as Ec above. So the energy consumption Er for recovery is
2K×8× 50× 10−6+0.01 ≈ 0.82 mJ. The node false positive
and false negative probabilities are small for code attestation
after formal verification of the protocol design and testing
before deployment. A range of 1-2% is reasonable and we set
it to 1.5% in the paper. The sensing and reporting interval T
is 1 min as dictated by the combat mission. The code recovery
probability Pr is assumed to be 0.75. We consider Fc(t) being
an exponential distribution function with capture rate λc in
the range of once per 10 minutes to once per 30 minutes,
such that FT = 1 − eλcT following Equation 3. The per-
hop packet delay is computed by (TRTS + TCTS)/p + TD

where TRTS = 38 × 8/(250 × 103) ≈ 1.22 msec is the
time to transmit a RTS packet based on DSSS, TCTS =
44 × 8/(250 × 103) ≈ 1.41 msec is the time to transmit a
CTS packet, TD = 256/(250 × 103) ≈ 1.03 msec is the
time for a SN to transmit a sensor report packet, and p =
e−(n−1)×μ×(TRTS+TCTS) is the probability other n − 1 SNs
within radio range not transmitting during TRTS +TCTS and
thus 1/p is the number of trials before a SN clears the channel
for transmission based on RTS/CTS. Here μ is the packet rate
per SN computed as (1+n/4+q×2×nv+q×θ(t)×Pr)×1/T
accounting for reporting, routing, code attestation, and code
recovery activities during [t, t+ T ] time interval.
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Fig. 1: WSN Lifetime Ls vs. q with
varying nv .
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Fig. 2: WSN Lifetime Ls vs. q with
varying λc.
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Fig. 4: Hop Delay vs. q with varying nv.

B. Results

We summarize the major findings of the paper through 4
figures. Figure 1 shows the WSN lifetime Ls vs. q (probability
of code attestation invocation in a cycle) with varying nv (the
number of verifiers for a target SN being attested) in the range
of 3 to 7. The capture rate λc is set to once per 20 minutes to
isolate its effect. We first observe that there exists an optimal
q at which the WSN lifetime is maximized due to the tradeoff
of energy consumption vs. reliability gain. Furthermore, the
optimal q increases as nv decreases. This is due to the fact
that if we use fewer verifiers (i.e., a smaller nv), we have to
compensate it with a higher code attestation rate (i.e., a higher
q) to be able to detect compromised SNs effectively. We also
observe that using fewer verifiers (nv = 3) results in the best
WSN reliability because in this setting, energy conservation
by using fewer verifiers outweighs reliability gain by using
more verifiers to prolong the system lifetime.

Figure 2 shows the WSN lifetime Ls vs. q with varying λc

(node compromise rate) in the range of once per 10 minutes
to once per 30 minutes. The number of verifiers nv is set to
7 to isolate out its effect. We again observe that there exists
an optimal q value at which the WSN lifetime is maximized.
Furthermore, the optimal q value increases as λc increases.
The reason is that as λc increases, SNs are more likely to
be compromised, so the system will have to increase the code
attestation frequency (i.e., a higher q) to avoid security failure.

Figure 3 vividly displays how the system-level false neg-
ative probability PDCA

fn evolves over time under a given q
value. It confirms that a minimum q level exists (e.g., 0.1)
below which PDCA

fn is 1 (i.e., not being able to detect any
bad node) because when q is too small (code attestation is
not done frequently), there are simply too many bad nodes
in the system, and because of bad node collusion (through
good mouthing attacks during voting), the system-level false

negative probability is 1. On the other hand, when q is greater
than this minimum threshold, PDCA

fn converges to a constant
value approaching zero as q increases. The tradeoff between

energy consumption vs. reliability gain is manifested by the
fact that there is a diminishing return in PDCA

fn as q increases
further. For example when q = 0.4, PDCA

fn is 4% but when
q = 1.0, PDCA

fn only improves to 1%. The effect of q on the
system-level false positive probability PDCA

fp is similar and
not repeated here.

Finally, Figure 4 summarizes the impact of code attesta-
tion to performance measured by packet delay. As q or nv

increases, the packet collision probability increases due to
increased traffic with code attestation and recovery. Conse-
quently, the per-hop packet delay also increases. The most
striking conclusion is that excessive code attestation (e.g.,
q = 1 or nv = 7) hurts not only the system lifetime but also
the system performance and there exists an optimal setting
(e.g., q = 0.4 and nv = 3) under which the system lifetime is
maximized without sacrificing performance.

IV. CONCLUSION

By means of a novel probability model, we discovered
the optimal operational settings for running distributed code
attestation, including how often code attestation should be
invoked (the q parameter) and how many neighbor verifiers
should be used per code attestation event (the nv parameter),
so that the embedded WSN lifetime is maximized without
sacrificing performance. In the future, we plan to extend the
research to consider adversaries which can perform strategic
capture, random or opportunistic attacks to elude detection.
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