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Abstract—Smart farms, as a way for better productivity and
efficiency, have yet to be thoroughly studied for their service
quality amid cyber threats. This work introduces a proactive
security approach, Moving Target Defense (MTD), to the smart
farm system to proactively address diverse cyber threats. Specif-
ically, we develop an energy-aware MTD, termed eMTD, using
port hopping for a sustainable smart farm network. Leveraging
deep reinforcement learning (DRL), we identify the optimal
MTD strategy capable of ensuring high monitoring quality of
animal conditions and sufficient energy levels for solar-powered
sensors on the farm. Our experiments demonstrate a significant
improvement by approximately 15% in monitoring quality and
remaining energy compared to other schemes.

Index Terms—Smart farm, moving target defense, port hop-
ping, deep reinforcement learning, energy-aware.

I. INTRODUCTION

As smart farming systems have been adopted extensively
in agriculture industries, the efficiency, security, and cost of
such smart systems have become more critical. Solar-powered
sensor-based animal monitoring systems offer an energy-
efficient solution for cost reduction on farms. Leveraging
sensors, IoT, edge computing, and cloud technologies [1], the
monitoring systems play a pivotal role. However, current smart
farm research overlooks attack-resilient, energy-adaptive sys-
tems vital for sustainability, especially in energy-constrained
or fluctuating environments prone to cyberattacks.

Given the limited energy from solar cells, maintaining
sensor functionality during cyber attacks is crucial. We aim
to develop an energy-aware moving target defense (MTD)
strategy based on port hopping. This approach maximizes
monitoring quality while ensuring adequate energy levels
for sensor tasks. The proposed MTD aims to determine the
optimal time to adjust service ports in smart farm networks.

This work makes the following key contributions:

« We are the first to design an energy-aware MTD for solar-
powered sensor-based smart farm systems to ensure system
performance despite cyberattacks and energy fluctuations.

« We utilize deep reinforcement learning (DRL) algo-
rithms [20, 25] to determine the optimal defense strategy
for solar-powered sensors. We aim to maximize monitoring
quality while preserving energy levels. We compare our
DRL-based MTD with other rule-based MTD and non-MTD
solutions to highlight its effectiveness.

o We rigorously validate the robustness and efficacy of our
proposed DRL agents through comprehensive experimen-
tation with real datasets [3]. Our results demonstrate that
the proposed MTD outperforms other counterparts by about
15% in monitoring quality and energy sustainability.

II. RELATED WORK

Smart farms boost agricultural productivity by monitoring
animal conditions and the environment, leveraging Internet-
of-Things (IoT) and edge cloud computing. Yet, increased
connectivity poses risks like Denial-of-Service (DoS) and data
transit attacks [23, 32]. Ferrag et al. [9] outlined cyber threats
in IToT-based agriculture and proposed solutions leveraging
blockchain technology. Gayathri et al. [10] introduced access
control rules and MTD techniques within the Amazon Web
Services framework to counter IoT attacks in smart environ-
ments. El-Ghamry et al. [6] introduced a convolutional neural
network (CNN)-based detection system to mitigate the associ-
ated threat. Furthermore, Eldosouky et al. [7] mathematically
analyzed and mitigated the impact of GPS spoofing attacks on
unmanned aerial vehicles (UAVs). Seo et al. [26] presented the
drone-based defensive deception game framework to reduce
the potential attack surface and security vulnerabilities of
drone systems. Woo et al. [30] introduced Controller Area
Network (CAN) ID shuffling to mitigate security vulnerabili-
ties in vehicular systems.

Cyber defense in network operations and management sys-
tems (NOMS) is indispensable to safeguard against sophisti-
cated cyber threats and vulnerabilities while managing network
infrastructure. Celdrdn et al. [2] developed an IoT-focused
framework, employing behavioral fingerprinting to identify
and categorize preliminary malicious stages of cryptojackers
targeting single-board computers. Similarly, Hajizadeh et al.
[12] introduced the Flow-based Self-Active Intrusion Detec-
tion System (FSA-IDS) integrating active learning (AL) into
self-learning to minimize labeling costs and enhance IDS
effectiveness using real-world network traffic datasets. Liibben
and Pahl [19] proposed a DNN-based anomaly detection
model improving the detection performance while reducing the
computational cost. Kapetanidou et al. [15] explored the suit-
ability of two security methods, specifically the cryptography-
based approach, and a more lightweight reputation-based
alternative, within ad hoc information-centric networks.



Port hopping, a common technique in MTD, involves dy-
namically associating a service’s port with an unallocated
pseudo-random port. This strategy is intended to confuse po-
tential attackers. Shi et al. [27] demonstrated that port hopping
effectively maintains system operation even under high rates
of DoS attack traffic. Hari and Dohi [13] showed that port
hopping can improve communication success rates amidst
various DoS attack patterns. Lee and Thing [16] observed a
significant benefit of port hopping in traffic reception during
DoS attacks. Additionally, Fan et al. [8] proposed an end-
hopping scheme for IoT, employing fixed hopping timeslots
and a robust time synchronization strategy based on MTD
principles. Giraldo et al. [11] introduced a decentralized MTD
with a dual-layered uncertainty approach to enhance microgrid
security by replicating essential sensory and control signals.
Zhang et al. [31] employed a hidden MTD to detect false-data
injection and parameter derivation attacks.

While previous works have contributed to our understanding
of defenses in Smart 10T, there is still ample room for addi-
tional research and exploration. First, energy-aware defenses
have not been considered in [2, 6, 10, 19] for smart farm
environments using solar-powered sensors, which are used in
our work. Further, no prior port hopping-based MTD has been
applied in smart farm environments whose prior concern is to
save or maintain energy to ensure system sustainability. Addi-
tionally, existing approaches above [7, 8, 11, 12, 15, 26, 30, 31]
have not been sufficiently applied and validated in energy-
constrained smart environments. They neglected the challenges
associated with balancing defense effectiveness and associated
costs. In contrast, our approach addresses the dynamic be-
haviors of animals and energy fluctuations within smart farm
environments.

III. PROBLEM STATEMENT

The proposed smart farm system utilizes DRL to iden-
tify the optimal defense strategy of port hopping, aiming
to achieve high monitoring quality and extend the system’s
lifetime in the presence of attacks. We formulate this problem
as a scalarization-based multi-objective optimization (MOO)
function [5] by:

maximize MQ(s*) +RE(s") (1)

Here M Q(s*) is the monitoring quality of animal conditions
taking a set of port hopping defense strategies s*, RE(s*)
refers to the remaining energy of the entire system (e.g.,
solar-powered sensors) by performing s*, with MQ(s*) and
RE(s*) scaled in [0,1]. Here MQ(s*) can be calculated by:

Teur(s*) =X —d o
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where Ti..(s*) is the current system’s operation time step
while taking s*, X is the number of sensed data, d is the
number of attributes for each animal as detailed in Table I,
GT; ; is the ith ground truth data for jth attribute, and w; ;
is our observed data. The mq(i,j) term indicates the degree
of monitoring quality in a jth attribute compared to the th
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Fig. 1. An example of the considered wireless solar-powered sensor-based
smart farm network (DS* refers to a set of port hopping defense strategies.)

ground truth data and returns 1 when z;; == GT;;; 0
otherwise. On the other hand, RE(s*) is formulated by:

RS(S*) = 1- (gS + gD + gactive + gsleep) (3)

= 1- (%i + eDéz ) + %(dactive + dsleﬁ'p))y
where eg and ep(s*) are the energy consumed per data
transmission and energy consumed by hopping given s*,
respectively. The dctive and dgieep are energy levels consumed
per second in active and sleep modes. The Eg term indicates
the energy level when a sensor is fully charged.

TABLE I
EVD DATASET DESCRIPTION
Metric Description
Serial A unique animal identifier
HR Heart Rate of the animal
Average Average body temperature in Celsius
temperature

Min-temperature
Max-temperature
Average-activity

Minimum temperature in Celsius
Maximum temperature in Celsius
Average activity recorded by the
number of steps taken
Residual battery life
Date and time of transmission

Battery-level
Timestamp

IV. SYSTEM MODEL

Network Model. The network includes solar-powered sen-
sors, a long-range (LoRa) gateway, and a cloud server, as
shown in Fig 1. Sensors attached to animals like cows collect
and transmit data to the gateway, which aggregates and sends
it to the cloud server. The gateway acts as middleware,
facilitating sensor-cloud connectivity for cost-effective IoT
devices with extended ranges. A deep reinforcement learning
(DRL) model on the gateway optimizes defense strategies
requested from the sensors to maintain system operations. Due
to IoT resource constraints, the system may exacerbate certain
cyber threats and pose unique challenges for implementing
effective security measures, leaving wireless sensor-to-gateway



communication vulnerable to cyberattacks. Consequently, mul-
tiple adversarial attacks may affect data quality and protocol
deployment. Refer to the Threaat Model below. Our study
examines the robustness of our approach to ensure monitoring
quality amidst these threats. For scalability, we can use more
gateways covering a larger operation area. Since each gateway
is equipped by a DRL agent, a multi-agent DRL approach can
be applied to achieve the system goal [17].

Node Model. In the smart farm network, sensors periodi-
cally transmit data to the LoRa gateway to monitor animal con-
ditions. Solar-powered sensors experience energy fluctuations
due to environmental factors such as animal positions, weather
conditions, and sunlight levels. Hence, the system must with-
stand the dynamic smart farm environment, including energy
fluctuations and potential adversarial attacks. We define sensor
node ¢ at time ¢, denoted by sni, with four attributes:

Sni - [tempia hb;a Inaiv bl”a 4

where temp! is sensor node 7’s temprature at time ¢, hb! is

node 7’s heartbeat at time ¢, ma! refers to node i’s moving

activity at time ¢, and bl; means sensor node i’s battery life.

The ma} and bl} parameters are scaled in [0,100] as %.

In the proposed system, the LoRa protocol enables long-
distance transmission, spanning 5 to 15 km, with a data rate
of 27 kbps. Energy consumption varies: the LoRa radio of
SAM R34/35 dissipates around 170 mW during transmission.
Sensor nodes start with an initial energy level of 5 kW h, with
charging efficiency depending on lighting conditions: around
10 mW/em? outdoors and 0.1 mW/em? indoors [29].

Threat Model. We consider cyberattacks on sensor nodes,
assuming full trust in the gateway and cloud server.

« False data injection [22]: A compromised sensor executes
this attack by transmitting falsified or modified data to the
gateway.

« Non-compliance to protocol [21]: A compromised sensor
can execute this attack by employing an undesired action,
such as a defense strategy.

« Send data obstruction [28]: This is one consequence of de-
authentication attacks [24], a significant availability threat
in the smart farm environment. This attack disrupts sensor
nodes’ connection to the network, resulting in a loss of real-
time communication with LoRa gateways.

Typically, an outside attacker begins by conducting host
probing and port scanning as the initial steps to uncover
vulnerabilities within a network [4]. A sensor node in the
wireless sensor network will have an open port when it
attempts to establish communication with the gateway for data
transmission and network coordination. We assume that by
default, 30% of sensor nodes are under threat, with attackers
attempting to identify vulnerable ports. Once an attacker iden-
tifies a vulnerable port on a sensor node, they will compromise
the sensor and execute corresponding attacks.

V. PROPOSED APPROACH: eMTD

Our proposed approach comprises two main components:
one focuses on establishing the relationship between port

hopping and attack success rate. At the same time, the other
involves designing features for our DRL agent, which aims to
identify the optimal defense strategy.

A. Modeling Port Hopping

We employ the model abstraction from [18] to establish the
correlation between port hopping and the attack success rate.
In our scenario, there are two entities: a server responsible for
maintaining a set of open ports to provide network services and
an attacker targeting the server. The attacker seeks to conduct
reconnaissance on the host, while our objective is to conceal
the attributes of currently active ports. The attacker succeeds if
it identifies an active port, making this reconnaissance process
akin to an urn statistic model [14].

An urn problem refers to a class of probability problems
involving drawing objects from an urn (a container) without
replacement. We can liken our network server host to such a
model, containing v black balls and n — v white balls, totaling
n balls. Here, the number of balls represents the available
service ports, with black balls denoting vulnerable service
ports and white balls representing secure ports. Combining this
urn model with our environment in the presence of attackers,
we simulate the attack process as the attacker draws £ balls at
each time step. If there is at least one black ball, we consider
the attack attempt successful. Upon a successful attack, the
corresponding sensor node is compromised and executes the
attacks outlined in our Attack model in Section IV.

Based on the above urn model, the attack success rate (ASR)
is given by:

v

ASR=P(X =z) = < )pm(l —p)ke. (5)
In this context, X denotes a random variable representing
the number of black balls within k& draws, and p = %
represents the probability of drawing a black ball, signifying
the likelihood of encountering a vulnerable port. The Attack
Success Rate (ASR) in our environment is defined as the
probability of drawing at least one black ball, formulated as

follows:

ASR=P(X >2)=1-P(X=0)=1-(1-p)* (6

T

Assuming the attacker can probe k = n times, the following

parameters are defined:

e N: Maximum port pool (i.e., 64,512)

« m: Number of probes allowed before one port hopping

o Hopping frequency: Normalized between [0,1], ranging
from no port hopping (e.g., static port: m = N) to perfect
port hopping (e.g., perfect hopping: m = 1)

. %: Total hopping events over the lifetime of reconnaissance,
probing the entire port pool

Hence, ASR can be written as:

P(X>0) = 1-P(X=0) (7)
1 - P(X; = 0)P(Xy = 0)..P(Xx =0)
_ 17[(N$v)ﬁ

()



We utilize this equation to quantify ASR, the probability of a
sensor node being compromised successfully and subsequently
executing attacks in Section IV (Threat Model).

B. DRL-based MTD Strategy Selection

We employ DRL to discern the optimal defense strategy,
namely the optimal hopping frequency, to maximize monitor-
ing quality while preserving the remaining energy level within
our proposed system. The DRL agent operates on the gateway,
adjusting the optimal defense strategy at each time step. The
design features of our DRL agent are outlined as follows:

» State space S;_;:: For the DRL agent to determine the
optimal action (e.g., defense strategy) based on the cur-
rent environment, we define the state space as S;_1; =
(st,ar—1). Here, s; represents the state at the current time
t, and a;_; denotes the previous action taken by the agent
at time ¢ — 1. Incorporating the previous action into the
state enables the model to capture temporal dependencies
and learn patterns influenced by the agent’s recent history.
Moreover, the previous action serves as a relevant contextual
cue for the current action, facilitating the agent’s adaptation
to environmental changes. By encompassing the previous
action, the state space effectively replaces the information
requirements of both monitoring quality and remaining
energy, reducing the state space from two dimensions to
one dimension. This reduction significantly decreases the
computational complexity during training.

o Action space A;: Once the initial hopping frequency is
given, the DRL agent will optimally determine whether to
increase or decrease the frequency with a certain value 7
or stay the same based on the current system state at each
step during operation. Hence we define the action space
A; = {increase, decrease, stay}. A high hopping frequency
leads to low ASR resulting in fewer compromised sensor
nodes and consequently better monitoring quality of animal
status at the cost of depleting the remaining energy level,
and vice-versa. Moreover, hopping more frequently will
influence the service availability of data transmission, which
may increase latency and impact the monitoring quality
(i.e. freshness of data). A rule-based approach is lacking in
handling the high complexity and dynamics of such systems,
and may not handle inherent uncertainty with deterministic
rules. Therefore, we deploy DRL to identify the optimal
action to achieve both high monitoring quality and the
remaining energy level of sensors in the presence of energy
fluctuations and cyber attacks.

o Immediate reward (r;): The DRL agent receives im-
mediate reward upon taking action at time ¢, formulated
as 1t = MQ(at) + RE(ay) defined by Egs. 2 and 3,
respectively.

o Accumulated reward (R;): The DRL agent aims to select
an action that maximizes the accumulated expected return,
expressed as Rt = > .t = Othrt, where r; denotes the
reward at time ¢, 7 represents a discount factor, and T
signifies the duration of an episode.

TABLE II
KEY DESIGN PARAMETERS AND DEFAULT VALUES
Notation Description Default
Value
n Total number of sensors (cows) 20
25 Probability of cow 7 to move [0.3,0.7]
T Adjust step size when an agent takes action 0.1
Tu Time interval for a sensor to send sensed data 30s
Ta Time interval for an agent to select an action 60 s
FEinit Initial energy level of sensors [0.1,0.2]
dfinit Initial hopping frequency [0.3,0.6]
Py Percentage of sensor nodes being attacked 0.3
« Sun expose rate 0.8

VI. EXPERIMENT RESULT
A. Parameterization

We utilize real datasets from the smart farm operated by
Virginia Tech’s College of Agriculture and Life Sciences,
which hosts the Smart Farm Innovation Network (TM). This
network serves as a centralized platform for aggregating
and analyzing data from various farms across Virginia [3].
These datasets were gathered from multiple devices, including
EmbediVet Implantable Temperature Devices (EVD), Halter
Sensors, Heart Rate Sensors, and Implantable Temperature
Sensors, whose attributes are summarized in Table 1. Our
proposed system utilizes these datasets and sensor information
to simulate and evaluate the monitoring quality of the proposed
system. Compromised datasets were generated based on the
original data and threat models, resulting in semi-synthetic
datasets that inject threats into the real datasets.

The farm under consideration spans 40 acres (approximately
160 km?), with each side 400 meters long. There are 20
cows on the farm, monitored by a single gateway to ensure
comprehensive coverage and efficiency. The entire monitoring
simulation extends over 24 hours to demonstrate the efficacy
of the DRL agent in discovering optimal policies for the
solar-powered system under varying conditions, including both
daylight and nighttime scenarios. Additionally, we denote P!,
as the moving probability for cow ¢, assuming that cows move
randomly with speeds distributed normally, with an average
of 1.5 m/s and a standard deviation of 0.1 m/s. The typical
ranges of average activity lie within 1 to 2 meters per second.
Each sensor node has random initial battery levels within
the range of [0.1,0.2], denoted by E;,;;. The DRL agent is
deployed on the gateway and tasked with selecting the optimal
action at each time step 7, based on the current system state.
The objective is to maximize the monitoring quality as well as
the remaining energy of the entire system. Table II provides an
overview of the key design parameters, their interpretations,
and the default values utilized in our simulations.

B. Metrics

We use the following metrics to validate our approach:

o Accumulated reward (R): This metric calculates the sum
of immediate rewards over the entire simulation period.

o Monitoring quality (M Q): As defined by Expression (2),
this metric reflects the accuracy of the monitoring during



system operation, based on the quantity of true sensed data
received regarding attributes of each animal.

« Remaining energy (RE): This metric quantifies the level of
remaining energy in the sensor network during simulations,
as defined by Expression (3).

o Convergence time (C7): This denotes the duration from
the initiation of the training process to the attainment of a
converged state, estimated by:

Cr=T. - T, ®)

where T, represents the convergence time of the model
measured in the unit of the number of episodes, and T}
denotes the initiation time of the training process. Specifi-
cally, we define T, by the point when the immediate reward
stabilizes within a range of [—1,+1] around its final value
for a minimum of 10 consecutive episodes.

C. Schemes for Performance Analysis

We compare the schemes for performance analysis below:

e Deep Q-Network based MTD (DQN-MTD) [20]: DRL
agents select the best action from the learned Q-table.

o Proximal Policy Optimization based MTD (PPO-
MTD) [25]: PPO enables the DRL agents to learn an
optimal policy by employing an actor-critic algorithm with
multiple echoes of stochastic gradient.

« Random-MTD: Agents randomly select an action from the
action space at each step.

o Greedy-MTD: Agents choose an action based on imme-
diate reward. This scheme can also be considered a rule-
based/heuristic approach since the agent selects a solution
to achieve a local optimal value of Eq. (1).

« Fixed-MTD: Agents deploy a fixed hopping frequency (i.e.,
0.6) throughout the entire simulation. The frequency is
determined based on empirical evidence that results in the
best performance relative to alternative options.

« Static-HF: The system does not change the port number
while operating.

DQN-MTD and PPO-MTD denote our proposed schemes,
whereas Random-MTD, Greedy-MTD, Fixed-MTD, and
Static-MTD function as baseline schemes in the comparative
performance analysis.

D. Comparative Performance Analysis

Fig. 2 illustrates the learning process of six schemes out-
lined in Section VI-B, with P4 = 0.3 as default. Notably,
Static-MTD, Fixed-MTD, Random-MTD, and Greedy-MTD
do not engage in the learning process. Consequently, their
training curve remains a horizontal line, indicating no measure
of the convergence time.

The results demonstrate that our proposed PPO-based
schemes outperform others in terms of accumulated rewards
(R) (Fig. 2(a)) and monitoring quality (MQ) (Fig. 2(b)),
while showing reversed trends for the remaining energy (RE)
(Fig. 2(c)). This discrepancy arises due to the conflicting
objectives of the system, where higher monitoring quality
may lead to lower remaining energy levels and vice versa,

resulting in the adoption of different policies. Moreover, we
observe that the improvement in monitoring quality achieved
by more frequent hopping outweighs the energy sacrificed
by hopping. For instance, PPO-MTD, despite maintaining the
lowest remaining energy level among all schemes, achieves
the highest accumulated rewards during learning. Additionally,
the results underscore the characteristics of the PPO algorithm,
which consistently updates the policy with a small step size,
minimizing the probability of overlooking the optimal state
and being trapped in a non-optimal state. Figs. 2(a) and 2(d)
show that while DQN-MTD exhibits a lower convergence time
than PPO-MTD, it converges with a lower reward.

E. Sensitivity Analyses

1) Effect of Attack Severity (P4): Fig. 3 shows the effect
of attack severity (P4) on performance. As P4 increases, the
monitoring quality (M Q) diminishes due to the increased
presence of compromised data. Furthermore, elevated Py
yields greater remaining energy (RE) across all schemes,
as more frequent hopping becomes undesirable, given the
diminishing efficacy of hopping. Consequently, less energy is
expended while maintaining the effectiveness of the defense
strategy (i.e., MTD). The PPO-based DRL scheme consistently
outperforms DQN and baseline schemes, a result that aligns
well with the findings of the comparative analysis in Sec-
tion VI-D. Further, the PPO-based DRL scheme demonstrates
accelerated learning as P4 increases (which increases the
occurrence of attack events in the system), because there are
more samples for DRL to learn from at each time step.

2) Effect of Initial Sensor Energy Level (F;,;;): Fig. 4
shows the effect of the initial sensor energy level (FEjnit)
on performance. As F;,;; increases, the accumulated reward
(R) also increases, indicating that more energy is available
for data transmission and defense. However, this trend is
not observed for monitoring quality (M Q) when the initial
energy level continues to rise, such as in the ranges of
[0.15,0.25) and [0.2,0.3). In such cases, if the energy level
is already sufficient to achieve optimal monitoring quality,
further increases in the initial energy level do not enhance
monitoring quality. A higher initial sensor energy level leads
to a higher remaining energy level after convergence. On
the other hand, the convergence times for both DRL-based
schemes under different F;,,;; remain identical, indicating that
the efficiency of learning is unaffected by varying the initial
sensor energy level.

VII. CONCLUSION & FUTURE WORK

In this work, we introduced an energy-efficient DRL-based
defense strategy for moving target defense, namely eMTD,
in the smart farm environment. Our experimental results
showcase the superiority of our proposed scheme over baseline
methods concerning system performance. The key findings
obtained from the experiment outcomes are as follows:

« PPO demonstrates superior performance over DQN in accu-
mulated reward (R) and monitoring quality (M Q) without
compromising too much on energy sustainability as the
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remaining sensor energy level after convergence for both
schemes is approximately the same.

Despite DQN’s tendency to converge faster and require less
training time compared to PPO, it converges to a local
optimal state, resulting in lower rewards relative to PPO.
The increase in monitoring quality resulting from uncompro-
mised data reception at sensor nodes significantly outweighs
the additional energy consumption cost associated with data
transmission due to port hopping.

The port hopping frequency influences both ASR and data
freshness (induced by delay), contributing to fluctuations in
monitoring quality.

Moving forward, we will conduct comprehensive exper-

iments to perform sensitivity analyses with additional pa-
rameters, including sun exposure and other environmental
conditions. In addition, we plan to scale up our proposed
system, considering the integration of additional gateways with
a multi-agent DRL approach and extending the duration of
the simulations. In this approach, DRL agents can collaborate
to control sensor nodes within their respective transmission
ranges, thus enhancing the system’s scalability and adaptabil-

1ty.



(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

R. Bogue, “Solar-powered sensors: A review of products
and applications,” Sensor Review, 2012.

A. H. Celdran, J. v. d. Assen, K. Moser, P. M. S. Sanchez,
G. Bovet, G. M. Pérez, and B. Stiller, “Early detection
of cryptojacker malicious behaviors on iot crowdsensing
devices,” in NOMS 2023-2023 IEEE/IFIP Network Op-
erations and Management Symposium, 2023, pp. 1-8.
Center for Advanced Innovation in Agriculture
(CAIA). (2023) Virginia tech smartfarm innovation
network (TM). [Online]. Available: https://caia.cals.vt.
edu/caia-s-research-platforms/vtsmartfarm.html

C.-M. Chen, S.-C. Hsu, and G.-H. Lai, “Defense denial-
of service attacks on ipv6 wireless sensor networks,”
in Genetic and Evolutionary Computing: Proceedings
of the Ninth International Conference on Genetic and
Evolutionary Computing, August 26-28, 2015, Yangon,
Myanmar-Volume 1. Springer, 2016, pp. 319-326.
J.-H. Cho, Y. Wang, R. Chen, K. S. Chan, and A. Swami,
“A survey on modeling and optimizing multi-objective
systems,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 3, pp. 1867-1901, 2017.

A. El-Ghamry, A. Darwish, and A. E. Hassanien, “An op-
timized cnn-based intrusion detection system for reduc-
ing risks in smart farming,” Internet of Things, vol. 22,
p- 100709, 2023.

A. Eldosouky, A. Ferdowsi, and W. Saad, “Drones in
distress: A game-theoretic countermeasure for protecting
uavs against gps spoofing,” IEEE Internet of Things
Journal, vol. 7, no. 4, pp. 2840-2854, 2020.

Y. Fan, G. Wu, K.-C. Li, and A. Castiglione, “Robust end
hopping for secure satellite communication in moving
target defense,” IEEE Internet of Things Journal, vol. 9,
no. 18, pp. 16908-16916, 2022.

M. A. Ferrag, L. Shu, X. Yang, A. Derhab, and
L. Maglaras, “Security and privacy for green iot-based
agriculture: Review, blockchain solutions, and chal-
lenges,” IEEE Access, vol. 8, pp. 32031-32053, 2020.
R. Gayathri, S. Usharani, M. Mahdal, R. Vezhavendhan,
R. Vincent, M. Rajesh, and M. Elangovan, “Detection
and mitigation of IoT-based attacks using snmp and
moving target defense techniques,” Sensors, vol. 23,
no. 3, 2023.

J. Giraldo, M. E. Hariri, and M. Parvania, “Decentralized
moving target defense for microgrid protection against
false-data injection attacks,” IEEE Transactions on Smart
Grid, vol. 13, no. 5, pp. 3700-3710, 2022.

M. Hajizadeh, S. Barua, and P. Golchin, “Fsa-ids: A
flow-based self-active intrusion detection system,” in
NOMS 2023-2023 IEEE/IFIP Network Operations and
Management Symposium, 2023, pp. 1-9.

K. Hari and T. Dohi, “Sensitivity analysis of random
port hopping,” in 2010 7th International Conference on
Ubiquitous Intelligence & Computing and 7th Interna-
tional Conference on Autonomic & Trusted Computing,

[16]

[21]

[22]

[25]

[26]

2010, pp. 316-321.

N. Johnson and S. Kotz, Urn Models and Their
Application: An  Approach to Modern Discrete
Probability Theory, ser. Approach to Modern Discrete
Probability Theory. Wiley, 1977. [Online]. Available:
https://books.google.com/books?id=ZBfvAAAAMAAJ
I. A. Kapetanidou, P. Mendes, and V. Tsaoussidis, “En-
hancing security in information-centric ad hoc networks,”
in NOMS 2023-2023 IEEE/IFIP Network Operations and
Management Symposium, 2023, pp. 1-9.

H. Lee and V. Thing, “Port hopping for resilient net-
works,” in IEEE 60th Vehicular Technology Conference,
2004. VTC2004-Fall. 2004, vol. 5, 2004, pp. 3291-3295
Vol. 5.

R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel,
and 1. Mordatch, “Multi-agent actor-critic for mixed
cooperative-competitive environments,” Advances in neu-
ral information processing systems, vol. 30, 2017.

Y.-B. Luo, B.-S. Wang, and G.-L. Cai, “Effectiveness of
port hopping as a moving target defense,” in 2014 7th
International Conference on Security Technology, 2014,
pp. 7-10.

C. Liibben and M.-O. Pahl, “Distributed device-specific
anomaly detection using deep feed-forward neural net-
works,” in NOMS 2023-2023 IEEE/IFIP Network Oper-
ations and Management Symposium, 2023, pp. 1-9.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski ef al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529-533, 2015.

J. Ophoft, K. Renaud, and e. Bui, Tung X., “Revealing
the cyber security non-compliance “attribution gulf”,” in
Proceedings of the 54th Annual Hawaii International
Conference on System Sciences, HICSS 2021, ser. Pro-
ceedings of the Annual Hawaii International Conference
on System Sciences. USA: University of Hawaii at
Manoa, 2021, pp. 4557-4566.

M. A. Rahman and H. Mohsenian-Rad, “False data in-
jection attacks with incomplete information against smart
power grids,” in 2012 IEEE Global Communications
Conference (GLOBECOM), 2012, pp. 3153-3158.

A. Rettore de Araujo Zanella, E. da Silva, and L. C.
Pessoa Albini, “Security challenges to smart agriculture:
Current state, key issues, and future directions,” Array,
vol. 8, p. 100048, 2020.

L. P. Rondon, L. Babun, A. Aris, K. Akkaya, and
A. S. Uluagac, “Survey on enterprise internet-of-
things systems (e-iot): A security perspective,” Ad
Hoc Networks, vol. 125, p. 102728, 2022. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S1570870521002171

J. Schulman, et al., “Proximal policy optimization algo-
rithms,” arXiv preprint arXiv:1707.06347, 2017.

S. Seo, H. Moon, S. Lee, D. Kim, J. Lee, B. Kim, W. Lee,
and D. Kim, “D3gf: A study on optimal defense perfor-



[27]

(28]

[29]

[30]

[31]

(32]

mance evaluation of drone-type moving target defense
through game theory,” IEEE Access, vol. 11, pp. 59 575-
59598, 2023.

L. Shi, C. Jia, S. Lii, and Z. Liu, “Port and address
hopping for active cyber-defense,” in Intelligence and
Security Informatics, C. C. Yang, D. Zeng, M. Chau,
K. Chang, Q. Yang, X. Cheng, J. Wang, F.-Y. Wang,
and H. Chen, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 295-300.

S. Sontowski, M. Gupta, S. S. Laya Chukkapalli, M. Ab-
delsalam, S. Mittal, A. Joshi, and R. Sandhu, “Cyber at-
tacks on smart farming infrastructure,” in 2020 IEEE 6th
International Conference on Collaboration and Internet
Computing (CIC), 2020, pp. 135-143.

CC2640R2F SimpleLink™ Bluetooth® 5.1 Low Energy
Wireless MCU, Texas Instruments, 2016, rev. C. [Online].
Auvailable: https://www.ti.com/product/CC2640R2F

S. Woo, D. Moon, T.-Y. Youn, Y. Lee, and Y. Kim,
“Can id shuffling technique (cist): Moving target defense
strategy for protecting in-vehicle can,” IEEE Access,
vol. 7, pp. 15521-15536, 2019.

Z.Zhang, R. Deng, D. K. Y. Yau, P. Cheng, and J. Chen,
“On hiddenness of moving target defense against false
data injection attacks on power grid,” ACM Trans.
Cyber-Phys. Syst., vol. 4, no. 3, mar 2020. [Online].
Auvailable: https://doi.org/10.1145/3372751

K. Zhao and L. Ge, “A survey on the internet of things
security,” pp. 663-667, 2013.



