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Abstract — We propose and analyze a 3-tier cloud-cloudlet-device 
hierarchical trust-based service management protocol called IoT-
HiTrust for large-scale mobile cloud IoT systems. Our mobile 
cloud hierarchical service management protocol allows an IoT cus-
tomer to report its service experiences and query its subjective ser-
vice trust score toward an IoT service provider following a scalable 
report-and-query design. We conduct a formal scalability analysis 
along with a ns-3 simulation performance analysis demonstrating 
that IoT-HiTrust not only achieves scalability without compromis-
ing accuracy, convergence, and resiliency properties against mali-
cious attacks but also outperforms contemporary distributed and 
centralized IoT trust management protocols.  We test the feasibil-
ity by applying IoT-HiTrust to two case studies: a smart city travel 
service composition and binding application and an air pollution 
detection and response application. The results demonstrate that 
IoT-HiTrust outperforms contemporary distributed and central-
ized trust-based IoT service management protocols in selecting 
trustworthy nodes to maximize application performance, while 
achieving scalability. 

Keywords— Internet of things; scalability; trust management; 
service management; mobile cloud computing; service composition; 
performance analysis. 

I.  INTRODUCTION 

In recent years we have witnessed a proliferation of Internet 
of things (IoT) devices such as RFID tags, sensors, 
smartphones, smart appliances, environmental monitoring de-
vices, etc. capable of providing services upon request. There 
will be a huge number of such IoT devices competing for ser-
vice. Therefore, a central issue is whether the service provided 
by a selected IoT device is trustworthy. Further, most IoT de-
vices are mobile and will connect to the Internet (cloud) on and 
off, depending on the location they roam into as well as the en-
ergy status of individual IoT devices. Hence, it calls for an ef-
fective and efficient trust-based IoT service management proto-
col that can scale to a large number of heterogeneous devices in 
IoT systems.  

Trust-based service management is needed because not all 
IoT devices will be trustworthy and some IoT devices may be-
have maliciously to disrupt the cloud service (e.g., an adver-
sary) or just for their own gain (e.g., for increasing their chances 
to be selected to provide requested services). Furthermore, users 

who own IoT devices are likely to be socially connected via so-
cial networks. Therefore, misbehaving nodes with close social 
ties can collude and monopoly a class of services. For example, 
for service-oriented IoT systems [5] it is important for an IoT 
device to select only trustworthy IoT service providers before 
service composition is performed. For participatory sensing IoT 
applications [11], it is critical to assess source trustworthiness 
of IoT devices which report sensing results, so untrustworthy 
data can be filtered out before data analysis is taken. 

In the literature, trust-based service management protocols 
for IoT systems can be categorized into distributed [2, 3, 4, 5, 
6, 10, 17, 20] and centralized (cloud-based) [7, 14, 15, 23]. The 
basic issue of distributed trust-based service management pro-
tocols is scalability, i.e., an IoT device’s communication and 
storage cost cannot scale with a large number of IoT devices in 
the system. The basic issue of centralized trust-based service 
management protocols is that it is difficult if not impossible to 
maintain a consistent global view of social and interaction rela-
tionships for every pair of IoT devices dynamically in a large 
and rapidly changing IoT system. An inconsistent view of social 
and interaction relationships among IoT devices will make the 
trust prediction inaccurate and render trust-based service man-
agement ineffective. Since the cloud cannot physically collect 
social and interaction relationships itself, it needs to collect such 
information from individual IoT devices dynamically. The 
amount of traffic generated by a large number of IoT devices 
simultaneously to the cloud will not only consume IoT energy 
but also cripple the cloud communication network. Our re-
search motivation is to address the scalability issues in existing 
distributed and centralized trust-based IoT service management 
protocols, without compromising desirable trust accuracy, con-
vergence, and resiliency properties.  

In this paper, we propose and analyze a mobile cloud hierar-
chical trust management protocol called IoT-HiTrust with the 
goal to support scalable trust-based service management in 
large mobile cloud IoT applications. The reason we focus on 
mobile cloud IoT systems is that mobile cloud IoT applications 
will have great social impacts to our everyday life [19]. One 
example mobile cloud IoT application is environmental moni-
toring [11] where IoT devices (e.g., smart phones carried by hu-
mans) collect environmental data (noise, air pollution, temper-
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ature, humidity, light, etc.) and submit via wireless data com-
munication links to a processing center located in the cloud for 
environmental data analysis. In return, a user (e.g., a user with 
health concerns) can send a query to the cloud to query a loca-
tion’s noise or air pollution level. Another example is road/traf-
fic monitoring [11] by which traffic flows, potholes, bumps, 
braking, and honking information reported from IoT devices 
(smart phones carried by passengers/drivers in a car) are aggre-
gated by a data processing center located in the cloud to unveil 
traffic patterns previously unobserved with existing monitoring 
infrastructure. A third example is service-oriented architecture 
(SOA) based service management [5] in which each IoT device 
is both a service provider (SP) and a service requestor (SR) as 
in a web service system. An SR would request the availability 
of SPs resided in the same location, compose a composite ser-
vice, and select (or bind) trustworthy SPs for executing the com-
posite service [18]. 

Our paper has the following unique contributions: 
1. To the best of our knowledge, IoT-HiTrust is the only scal-

able trust protocol for mobile cloud IoT by means of a new 
“report-and-query” design in our proposed 3-tier cloud-
cloudlet-device hierarchy (see Section III.A for detail) that 
allows an IoT device to report its service experience and so-
cial relationship with another IoT device dynamically and 
query the service trustworthiness of another IoT device lo-
cally through the local cloudlet to the cloud and the cost re-
mains more or less constant. It achieves scalability because 
an IoT device’s communication and storage cost will remain 
the same, regardless of the number of IoT devices in the sys-
tem. An IoT device does not store trust and service experi-
ence data in its limited storage, acquire recommendations 
from other IoT devices it encounters, or compute the trust 
score of another IoT device. All trust and service experience 
data are stored in the cloud and all trust score computations 
are performed by the cloud.   

2. We propose a new cloud-based “subjective trust” evaluation 
design that allows a target IoT device to obtain its subjective 
trust of another IoT device by incorporating the target IoT 
device’s own observations and other IoT devices’ recom-
mendations weighted by the target IoT device’s subjective 
social relationship and trust view toward the recommenders. 
This is very different from contemporary centralized IoT 
trust protocols (e.g., ObjectiveTrust [14]) where only the 
concept of “objective trust” (i.e., common belief or reputa-
tion) is maintained. We argue that “subjective trust” must be 
used for an IoT device to select an IoT service provider be-
cause service quality is inherently related to the social rela-
tionship of human owners who control the service behaviors 
of their IoT devices, so that two IoT devices with a close 
social relationship will likely provide/receive good service. 

3. By a formal scalability analysis and a ns-3 simulation per-
formance analysis, we demonstrate that IoT-HiTrust not 
only achieves scalability without compromising system de-
sirable properties including accuracy, convergence, and re-
siliency against self-promotion, bad-mouthing, ballot-stuff-
ing, discriminatory, and opportunistic service attacks, but 

also outperforms contemporary distributed IoT trust man-
agement protocols (e.g., Adaptive IoT Trust [6]) as well as 
centralized IoT trust management protocols (e.g., Objec-
tiveTrust [14]). Furthermore, we demonstrate that accuracy, 
convergence, and resiliency properties can still be achieved 
despite intermittent network disconnection.  

4. We demonstrate the applicability of IoT-HiTrust with two 
real-world case studies: a smart city travel service composi-
tion application and an air pollution detection and response 
application. The results demonstrate that IoT-HiTrust out-
performs existing trust-based service management protocols 
including Adaptive IoT Trust [6] and ObjectiveTrust [14] in 
selecting trustworthy nodes to maximize application perfor-
mance. 
This paper has been substantially extended from our previ-

ous work [22] as follows: (a) we conduct a thorough literature 
survey of the current state of the art in trust management for IoT 
systems, and compare and contrast our work against existing 
work (Section II); (b) we extend the previous trust model in [22] 
by explicitly considering actions taken by an IoT device, a 
cloudlet, and a cloud server in responses to events occurring to 
them during protocol execution, illustrated by action flowcharts 
(Section IV); (c) we validate our hierarchical trust protocol de-
sign with two real-world mobile cloud applications, i.e., a smart 
city travel service composition application and an air pollution 
detection and response application, using web service quality 
traces [21] (Sections VI and VII); and (d) we compare IoT-
HiTrust with ObjectiveTrust [14] which is the only centralized 
IoT trust management protocol to-date that considers social 
standing and relationships for credibility rating. 

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III discusses the system model. 
Section IV describes IoT-HiTrust in detail and explains our ef-
ficient and effective hierarchical trust protocol design for man-
aging a huge number of IoT devices. Section V conducts a 
scalability analysis as well as a performance analysis of IoT-
HiTrust and demonstrates IoT-HiTrust can achieve scalability 
without compromising trust accuracy, convergence, and resili-
ency properties, when compared with Adaptive IoT Trust [6] 
and ObjectiveTrust [14]. Sections VI and VII demonstrate the 
applicability by a smart city travel service composition applica-
tion and an air pollution detection and response application, re-
spectively, and also compare the performance of IoT-HiTrust 
with Adaptive IoT Trust [6] and ObjectiveTrust [14]. Finally, 
Section VIII concludes the paper and outlines some future re-
search areas. 

II. RELATED WORK 

Mobile IoT systems can be characterized as a hybrid of P2P 
and social networks [6, 14] because IoT devices are mostly mo-
bile heterogeneous entities with limited capacity, yet are mostly 
human carried or human operated. IoT trust management must 
take into account social relationships among device owners in 
order to maximize protocol performance. Existing trust man-
agement for P2P or mobile ad hoc systems [10, 17, 20, 25, 26, 
36] therefore cannot be applied directly to mobile IoT systems 
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because they do not scale well with a huge number of heteroge-
neous IoT nodes and do not consider “social trust” among IoT 
device owners for service trustworthiness assessment.   

Trust management protocols for IoT systems are still emerg-
ing [35]. There are only a handful of IoT trust protocols de-
signed and evaluated to-date. 

Bao, et al. [2, 3, 4, 5, 6] pioneered the concept of distributed 
IoT trust management where each IoT device evaluates other 
IoT devices using both direct service experiences and indirect 
recommendations. Adaptive IoT Trust, a distributed IoT trust 
management protocol, is the end product. Adaptive trust man-
agement is achieved by determining the best way to combine 
direct trust (from direct experiences) and indirect trust (from 
recommendations) dynamically to minimize convergence time 
and trust estimation bias in the presence of malicious nodes per-
forming opportunistic service and collusion attacks. Direct ser-
vice experiences are collected based on own service experi-
ences, while recommendations are collected at the time nodes 
encounter each other through social contacts. They used social 
similarity to rate recommenders. A drawback is that a node may 
not encounter each other often to collect enough recommenda-
tions to make informed decisions. Our IoT-HiTrust protocol 
eliminates this problem, since service ratings toward a trustee 
node are sent to each user’s home cloud server. So many rec-
ommendations are available in the cloud for retrieval. The 
scalability issue was mitigated somewhat in [6] with a cache 
management design by which a capability-limited IoT device 
only keeps trust information of a subset of nodes of interest and 
performs minimum computation to update trust. The method, 
however, would still break down when there are a huge number 
of nodes in a large-scale IoT system.  

Relative to [2, 3, 4, 5, 6] our work focuses on hierarchical 
trust management for achieving efficiency and scalability, with-
out compromising trust accuracy.  

Chen, et al. [7] proposed a centralized IoT trust management 
model based on fuzzy reputation. However, their trust manage-
ment model considers a very specific IoT environment popu-
lated with immobile sensors only without considering node mo-
bility or scalability issues.  

Saied et al. [15] proposed a context-aware and multi-service 
approach for centralized trust management in IoT systems 
against malicious attacks. However, it requires a centralized 
trusted entity to collect and disseminate all trust data. Their 
work does not address how trust data may be collected and how 
the centralized trusted entity may be implemented to scale to a 
large number of IoT devices.   

Nitti et al. [14] proposed two models for IoT trust manage-
ment: a subjective model (called SubjectiveTrust) for distrib-
uted trust management with each node maintaining its own trust 
and service experience data, and an objective model (called Ob-
jectiveTrust) with a set of nodes forming a centralized reposi-
tory for storing trust and service experience data for all the 
nodes in the system. Both subjective and objective models rely 
on a friendship social network graph as input to know the “cen-
trality” of a node to another node or all nodes in the network. 
The distributed trust management protocol (SubjectiveTrust) is 
used by each individual node to assess its “subjective trust” to-
ward a peer IoT since each node maintains its own data. A node 
assesses the trust score of another node through a weighted sum 

of the following three scores: centrality, own service experi-
ences, and recommendations filtered by credibility. The central-
ity score (in the range of 0 to 1) of j as evaluated by i is com-
puted by the degree of common friends between i and j. The 
credibility score of k (a recommender that provides a recom-
mendation to i about j) as evaluated by i is computed by a 
weighted sum of own service experiences of i toward k and the 
centrality score of k as evaluated by i. For scalability, each node 
only stores trust information about its neighbor nodes in the so-
cial network graph. When a node wants to know the trust value 
of a remote node, a search procedure is invoked to first find a 
path leading to the remote node [23] whose trust value is then 
computed through the trust chain found. While it is scalable in 
terms of the storage cost because a node only needs to store trust 
data about its neighbors, it is expensive (and hence is not scala-
ble) in terms of the communication and computational cost and 
the delay may be intolerable. The objective model (Objective-
Trust) requires a set of pre-trusted nodes be in place for storing 
trust information of all nodes in the system. Unlike their sub-
jective model, their objective model assesses the trust score of 
a node through a weighted sum of the centrality score and the 
average opinion score (long term and short term) after applying 
the recommender’s credibility score to filter untrustworthy rec-
ommendations. Specifically, their objective model computes 
the centrality score (in the range of 0 to 1) of j based on if j is 
central in the network and if it is involved in many transactions. 
It computes a recommender’s credibility score by taking into 
consideration of possible collusion attacks. So the credibility 
score of k (a recommender that provides opinions about i) is 
proportional to k’s trust score, but inversely proportional to the 
capability of k, the strong object relationship (including owner-
ship, co-location, co-work, social, and parental) between i and 
k, and the number of transactions between i and k. A problem 
of their objective model is that it is not clear how user-owned 
IoT devices can serve the role of pre-trusted nodes. Also their 
objective model essentially is to compute the “objective trust” 
(common belief or reputation), not the “subjective trust” of an 
IoT device, so it does not preserve the notion that trust is sub-
jective and is inherently one-to-one. This is especially problem-
atic for IoT systems since IoT devices are owned by humans 
who have social relationships among themselves and the trust 
of one user toward another user is inherently one-to-one and 
subjective.  

Relative to [7, 14, 15, 23] our work also leverages central-
ized entities (i.e., cloud servers) for storing trust data. However, 
our work preserves the notion of “subjective trust” evaluation 
despite the fact that trust computation is performed by cloud 
servers. Unlike [7, 14, 15, 23], we address the issue of user pro-
file and trust data management for large-scale IoT systems, and 
we propose a scalable report-and-query design for supporting 
scalable mobile cloud IoT trust management. Lastly, unlike [14] 
which must rely on the existence of a friendship social network 
graph as input for specifying social relationships, we collect so-
cial relationships between each pair of IoT devices dynamically 
when IoT devices encounter each other. Our social similarity 
calculation method is more scalable than [14] as it is difficult if 
not impossible to construct an accurate friendship social net-
work graph when there is a large number of IoT devices arriving 
and leaving the system dynamically.  
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Among the contemporary IoT trust management protocols 
cited above, we select Adaptive IoT Trust [6] and Objective-
Trust [14] as baseline trust protocols against which IoT-HiTrust 
is compared for performance analysis. The reason we select 
Adaptive IoT Trust is that it is a proven protocol for distributed 
IoT trust management and it outperforms existing P2P trust pro-
tocols including EigenTrust [10], PeerTrust [20], and Service-
Trust [17]. The reason we select ObjectiveTrust is that it is the 
only centralized IoT trust management protocol to-date that 
considers social standing and relationships for credibility rating 
and recommendation filtering. Relative to Adaptive IoT Trust 
and ObjectiveTrust, our work addresses scalability while 
achieving “subjective trust” evaluation accuracy. Further, we 
demonstrate that our hierarchical trust management protocol 
outperforms these two baseline IoT trust protocols with two 
real-world mobile cloud IoT applications.  

III. SYSTEM MODEL 

A. 3-Tier Cloud-Cloudlet-Device Architecture 

IoT-HiTrust is built on top of a 3-tier mobile cloud architec-
ture [28] as illustrated in Figure 1 for hierarchical IoT trust man-
agement. IoT devices (labeled as d’s) are sitting at the bottom 
tier of the hierarchy. Cloudlets (labeled as CL’s) are at the mid-
dle tier. A public cloud comprising a number of “home” cloud 
servers (labeled as CS’s) is at the top tier. A user is assigned to 
a fixed “home” cloud server based on load balancing reasons 
and once the assignment is done, a user’s home cloud server is 
not changed dynamically.  

An IoT device runs IoT-HiTrust by creating virtual ma-
chines (VMs) running on the local cloudlet it is currently under 
as well as on its home cloud server to solve platform/operating 
system heterogeneity problems. A user’s queries and reports are 
sent to its local cloudlet’s VM which subsequently relays them 
to the home cloud server’s VM. In the literature [28], cloudlets 
can be either “heavyweight” IoT devices (e.g., PCs, servers, 
notebooks, etc.) collocated with Wi-Fi hotspots with moderate 
communication, computational and storage capability, or mo-
bile operator owned powerful base stations. The communica-
tion between an IoT device and a local cloudlet therefore is typ-
ically through Wi-Fi hotspots in the formal case, and through 
mobile operator’s base stations in the latter case. In this paper 
for generality we consider the former case. The communication 
between a cloudlet and the cloud is through the Internet. Using 
IoT-HiTrust, the cloud can periodically evaluate service trust-
worthiness of all IoT devices in a cloudlet region and select a 
group of IoT devices to form the region’s cloudlet. In return for 
the surrogate services provided by these IoT devices, users 
owning these IoT devices are granted access privileges to cloud 
resources. We will call these IoT devices selected to govern a 
region’s cloudlet as “cloudlet devices,” with the understanding 
that cloudlet devices are just heavyweight IoT devices. 

At the bottom tier sit “lightweight” IoT devices owned by 
users (e.g., smart phones, sensors, PDAs, etc.). Lightweight IoT 
devices typically are carried by their owners and can move from 
one cloudlet to another due to mobility. When a lightweight IoT 
device is disconnected from the current cloudlet, it can simply 
connect to a new regional cloudlet for service continuity. Since 

neither the IoT device nor the local cloudlet stores service trust-
worthiness data, an IoT device can simply recreate a VM to run 
on the new local cloudlet without involving VM content trans-
fer from the old regional cloudlet to the new regional cloudlet. 
To save energy and bandwidth, an IoT device always communi-
cates with the cloud through its regional cloudlet.  

Figure 1 shows two cloudlets, 𝐶𝐿ଵ and 𝐶𝐿ଶ, each with three 
heavyweight IoT devices serving as cloudlet devices. The “log-
ical” cloud has 5 cloud servers, 𝐶𝑆ଵ, 𝐶𝑆ଶ, 𝐶𝑆ଷ, 𝐶𝑆ସ and  𝐶𝑆ହ. In 
Figure 1, 𝐶𝑆ଶ is the home cloud server of user 𝑢ଶ and 𝐶𝑆ଷ is the 
home cloud server of user 𝑢ଷ.  Since user 𝑢ଷ owns two IoT de-
vices, 𝑑ଷଵ and 𝑑ଷଶ, these two IoT devices’ home cloud sever is 
also 𝐶𝑆ଷ. Each cloudlet only relays requests/responses from/to 
IoT devices under its region. In addition, each cloudlet caches 
trust information. In case of Internet disconnection, a cloudlet 
can operate in disconnection mode [16] to answer user queries 
issued from IoT devices in its region. The regional size covers 
the radio range to ensure that mobility and instability of radio 
environments will not be a major factor to prevent nodes under 
a cloudlet region from communicating directly with the cloudlet. 
When an IoT device in one cloudlet region moves to another 
cloudlet region, it performs a registration/deregistration action 
to the two involving cloudlets. As illustrated in Figure 1, user 
𝑢ଷ moves across the cloudlet boundary, causing deregistration 
with the old cloudlet 𝐶𝐿ଵ and registration with the new cloudlet 
𝐶𝐿ଶ. A pointer is recorded by 𝐶𝐿ଵ so that a message for 𝑢ଷ can 
be redirected to 𝐶𝐿ଶ. 
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Figure 1: Information Flow in the 3-Tier Cloud-Cloudlet-

Device Architecture. 

B. Threat Model 

By a malicious node, we refer to a node having only self-
interest. A smart malicious node can choose to provide good or 
bad service depending on whether it would benefit itself and its 
allies (other malicious nodes or friends) which altogether can 
collude to monopoly service. By trustworthiness of a node in 
the context of service management, we mean (a) when acting as 



1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

a service provider, whether it can deliver high service quality, 
and (b) when acting as a service recommender, whether it is 
truthful in providing the service ratings of service providers it 
claims to have service experiences on. A malicious node in gen-
eral can perform communication protocol attacks to disrupt net-
work operations. We assume such attack is handled by intrusion 
detection techniques [13] and is not addressed in this paper. We 
are concerned with trust-related attacks that can disrupt trust-
based service management.  

In this paper we consider a malicious IoT device (because 
its owner is malicious) capable of performing the following 
trust-related attacks: 
1. Self-promoting attacks: a malicious node can promote its 

importance (by providing good recommendations for itself) 
for it to be selected as an SP, but then can provide bad or 
malfunctioned service. We address this attack by not allow-
ing self-recommendations in trust computation (see Sec-
tion IV.B for detail).  

2. Bad-mouthing attacks: a malicious node can ruin the repu-
tation of a well-behaved device (by providing bad recom-
mendations against it) so as to decrease the chance of that 
good device being selected as an SP. Bad-mouthing attack 
is a form of collusion attack when multiple malicious nodes 
perform bad-mouthing attacks to a good node to ruin the 
service trustworthiness of the good node. We address this 
attack by “social similarity based recommendation filtering” 
to filter out untrustworthy service rating recommendations 
(see Section IV.A for detail). 

3. Ballot-stuffing attacks: a malicious node can boost the rep-
utation of a malicious node (by providing good recommen-
dations) so as to increase the chance of that bad device be-
ing selected as an SP. Ballot-stuffing attack is also a form 
of collusion attack when multiple malicious nodes perform 
ballot-stuffing attacks to boost the service trustworthiness 
of one another. We address this attack by “social similarity 
based recommendation filtering” to filter out untrustworthy 
service rating recommendations (see Section IV.A for de-
tail). 

4. Discriminatory attacks (or conflicting behavior attacks): a 
malicious node can discriminatively attack non-friends or 
nodes without strong social ties (without many common 
friends) because of human nature or propensity towards 
friends in social IoT systems. While serving as a recom-
mender, if the target node is a friend or a malicious node, it 
can provide a good service recommendation (i.e., ballot 
stuffing attacks) even if the target node does not provide 
good service. On the other hand, if the target node is a non-
friend, it can provide a bad service recommendation (i.e., 
bad-mouthing attacks) even if the target node provides 
good service. We address this attack by considering trust 
being formed not only from recommendations, but also 
from self-observations (see Section IV.B for detail). Self-
observations are one-to-one in nature, so the service behav-
ior of a malicious node performing discriminatory attacks 
on a service requester will be remembered by the service 

requester. Consequently, our trust formation design has in-
herently addressed discriminatory attacks. 

5. Opportunistic service attacks: a malicious node can pro-
vide good service to gain high reputation opportunistically 
especially when it senses its trust standing is dropping be-
cause of providing bad service. With a good trust standing, 
it can effectively collude with other bad nodes to perform 
bad-mouthing and ballot-stuffing attacks. We assume that 
a malicious node has a low trust score threshold below 
which it will behave (providing good service) in order to 
raise its trust standing, and a high trust score threshold 
above which it will misbehave (providing bad service) to 
take advantage of its high trust standing for self-gain. We 
address this attack by “adaptive filtering” (see Section IV.B 
for detail) which adjusts the weights associated with direct 
trust and indirect trust to adapt to new evidence (oscillating 
service experiences) exhibited from opportunistic service 
attacks, thus effectively reflecting the true service trustwor-
thiness level of an IoT device dynamically. 

IV. IOT-HITRUST PROTOCOL DESIGN 

In this section we provide a detailed description of our IoT-
HiTrust protocol design for trust-based service management of 
mobile cloud IoT systems. We first describe our recommenda-
tion filtering design based on social similarity. We then describe 
our report-and-query design for scalability. Then we describe 
the actions taken by the entities in our 3-tier mobile cloud hier-
archy (IoT devices, cloudlets, and cloud servers) for IoT-
HiTrust protocol execution. Lastly we describe how we make 
our 3-tier mobile cloud hierarchy resilient to network discon-
nection. 

A. Recommendation Filtering based on Social Similarity 
Our trust model is based on social relationships among hu-

man owners of IoT devices. A user upon receiving a recommen-
dation from an IoT device, will measure the trustworthiness of 
the recommender (or rater) so as to apply “recommendation fil-
tering” based on its social relationships with the recommender 
(or rater). We consider three core social metrics for measuring 
social relationships which are multifaceted: friendship (repre-
senting intimacy), social contact (representing closeness), and 
community of interest (representing knowledge and standard on 
the subject matter). The idea is that two users sharing similar 
social relationships are likely to have similar views towards ser-
vices provided by a trustee IoT device. Social relationships be-
tween owners are translated into social relationships between 
IoT devices as follows: 
1. Friendship: Each owner has a list of friends (i.e., other own-

ers), representing its social relationships. This friendship list 
varies dynamically as an owner makes or denies other own-
ers as friends. If the owners of two IoT devices are friends, 
then it is likely they will be cooperative with each other.  
The friendship list contains only direct friends of an owner, 
not friends of a friend. Friendship is measured by the degree 
of commonality of direct friends. That is, if two owners have 
about the same set of direct friends (including each other), 
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they have a strong tie in friendship. 
2. Social Contact: A device may be carried or operated by its 

owner in certain environments (e.g., at work, school or 
home). Two devices have high social contact opportunities 
when their owners go to the same locations. The social con-
tact relationship is measured by the degree of commonality 
of social contacts. 

3. Community of Interest (CoI): Each owner has a list of com-
munities of interest such as health, sport, travel, etc. Nodes 
belonging to a similar set of communities likely share sim-
ilar interests or capabilities [10].  The CoI relationship is 
measured by the degree of commonality of communities of 
interest. 

To facility measuring social similarity with other owners, an 
IoT device belonging to user 𝑢௫ maintains the following three 
lists ሺ𝐹, 𝑆, 𝐶) in its profile (as illustrated in Figure 2): 
1. Friends of 𝑢௫, denoted by a set  𝐹௫ = {𝑢ଵ, 𝑢ଶ, … }; 
2. Locations that 𝑢௫ frequently visited for social contact, de-

noted by a set 𝑆௫ = {𝐿𝑜𝑐ଵ, 𝐿𝑜𝑐ଶ, … }; 
3. Communities of interest that 𝑢௫ is a member of, denoted by 

a set 𝐶௫ = {𝐶𝑜𝐼ଵ, 𝐶𝑜𝐼ଶ, … }. 
A user may designate one of its IoT devices to update such 

information and share the information with other IoT devices it 
owns. Social similarity is inherently between two users, but it is 
propagated to IoT devices owned by the two users, so social 
similarity is also between two devices. 

u2 u5 ...

Loc1 Loc7 ...

CoI3 CoI4 ...

friend list

location list

CoI list

d11

u1

d21

u2

User u1's profile

User u2's profile

d12

 
Figure 2: Each User Stores Its Friend, Location, and CoI 

Lists for Detecting Social Similarity with other Users. 

B. Report-and-Query Design for Scalability 

We propose a simple report-and-query design for an IoT de-
vice to communicate with its local cloudlet for trust-based ser-
vice management. 

1) Report Design with Privacy Considerations 
An IoT device (on behalf of its owner) dynamically collects 

and reports to the cloud two pieces of sensitive information 
about other devices: (a) a service rating 𝑓௫,ሺ𝑡ሻ in the range of 0 
to 1 toward device 𝑑’s service quality after a service is received 
and rated by its owner (user 𝑢௫) at time t, and (b) a social simi-
larity score in the range of 0 to 1 toward another user acting as 
a recommender. The former is to assess the trustworthiness of 
the service quality of a service provider device based on self-

experience. The latter is to assess the trustworthiness of a rec-
ommender who recommends the service quality of a service 
provider. No other information about other devices is kept in an 
IoT device. Moreover, these two pieces of information are re-
ported to the cloud and saved in the cloud. As a result, an IoT 
device will not store service trustworthiness data of another IoT 
device. Consequently, when a device is compromised, only the 
private/sensitive information regarding the owner of the com-
promised IoT device itself will be leaked out through its user 
profile which contains the owner’s friendship, social contact, 
and CoI information.  

A user would not want to reveal its social relationship data 
to another user when they encounter each other and exchange 
their friendship, social contact, and CoI information to compute 
mutual social similarity. This is achieved by our privacy-pre-
serving social similarity computation design described below. 
Each user maintains its ሺ𝐹, 𝑆, 𝐶) profile separately. When user 
𝑢௫ encounters user 𝑢௬,  they exchange their ሺ𝐹௫, 𝑆௫, 𝐶௫ ) and 
ሺ𝐹௬, 𝑆௬, 𝐶௬) profiles to measure their mutual social similarity. 
To preserve energy, they can exchange the profile information 
the very first time they encounter or periodically. This is espe-
cially so if user profile information does not change much over 
time. To preserve privacy, they only want to reveal common 
elements in the F, S, and C lists (if any) but do not want to let 
the other party know their entire ሺ𝐹, 𝑆, 𝐶ሻ profile. To achieve 
this, users 𝑢௫ and 𝑢௬ can first authenticate each other using 
standard PKI. User 𝑢௫ can then use a cryptographic hash func-
tion in combination with a secret session key K (established via 
PKI during user authentication) to generate a hash-based mes-
sage authentication code HMAC(K, p) for p  ሺ𝐹௫, 𝑆௫, 𝐶௫ሻ and 
then transmit HMAC(K, p) along with HMAC(K, HMAC(K, p)) 
to 𝑢௬. When 𝑢௬ receives the message, it can unilaterally gener-
ate HMAC(K, HMAC(K, p)) using HMAC(K, p) sent by 𝑢௫. If 
this matches with HMAC(K, HMAC(K, p)) sent by 𝑢௫, then 𝑢௬ 
verifies the message received is indeed sent by 𝑢௫. Then 𝑢௬ can 
compare HMAC(K, p) with HMAC(K, q) for qሺ𝐹௬, 𝑆௬, 𝐶௬). If 
HMAC(K, p)=HMAC(K, q) then p=q and a common friend, lo-
cation, or CoI (corresponding to F, S, or C) is identified. If 
HMAC(K, p)≠HMAC(K, q), it prevents the identities of uncom-
mon friends/locations/CoIs from being revealed. 

We adopt “cosine similarity” to measure the distance of two 
social relationship lists (see Figure 2), with 1 representing com-
plete similarity and 0 representing no similarity. The physical 
meaning of cosine similarity is the cosine of the angle between 
the two vectors deriving from the two lists, with the cosine 
value of 1 meaning totally identical lists and the cosine value of 
0 meaning totally non-overlapping lists. Computational effi-
ciency is the main reason why we choose cosine similarity to 
measure the similarity of two lists in high-dimensional positive 
spaces because of limited computational capacity of IoT de-
vices. Specifically, the following three similarity metrics are 
measured as follows:  
 Friendship Similarity (𝑠𝑖𝑚): The friendship similarity is 

a powerful social relationship (intimacy) for screening rec-
ommendations. After two users 𝑢௫  and 𝑢௬  exchange their 
friend lists, 𝐹௫ and 𝐹௬, they compute the “cosine similarity” 
𝑠𝑖𝑚 as follows: 
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𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ ൌ
ห𝐹௫ ∩ 𝐹௬ห

ට|𝐹௫| ∙  ห𝐹௬ห
 (1) 

Where the notation |𝐴| represents the cardinality of set 𝐴.  
 Social Contact Similarity (𝑠𝑖𝑚௦): The social contact simi-

larity represents closeness and is an indication if two nodes 
share the same location-based social contacts (e.g., co-
workers at work, classmates at school, and co-residents at 
home) and thus share the same sentiment towards devices 
which provide the same service. The operational area could 
be partitioned into sub-grids. User 𝑢௫  records the IDs of 
sub-grids it has visited in its location list 𝑆௫ for social con-
tact. After two users 𝑢௫ and 𝑢௬ exchange their location lists, 
𝑆௫  and 𝑆௬, they could compute 𝑠𝑖𝑚௦  in the same way of 
computing 𝑠𝑖𝑚 as follows: 

𝑠𝑖𝑚௦൫𝑢௫, 𝑢௬൯ ൌ
ห𝑆௫ ∩ 𝑆௬ห

ට|𝑆௫| ∙  ห𝑆௬ห
 (2) 

 Community of Interest Similarity (𝑠𝑖𝑚): Two users in 
the same CoI share similar social interests and most likely 
have common knowledge and standard toward a service 
provided by the same device. Also very likely two users who 
have used services provided by the same IoT device can 
form a CoI (or are in the same CoI). After two users 𝑢௫ and 
𝑢௬ exchange their device lists, 𝐶௫ and 𝐶௬, they could com-
pute 𝑠𝑖𝑚 as follows: 

𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ ൌ
ห𝐶௫ ∩ 𝐶௬ห

ට|𝐶௫| ∙  ห𝐶௬ห
 (3) 

The above three social similarity measures 
(𝑠𝑖𝑚, 𝑠𝑖𝑚௦, 𝑠𝑖𝑚ሻ  are computed upon the encountering event 
of user 𝑢௫ with user 𝑢௬, and are reported by user 𝑢௫ and user 
𝑢௬ through their local cloudlets to the home cloud servers of 
user 𝑢௫ and user 𝑢௬, respectively.  

When the home cloud server of 𝑢௫ receives 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯,
𝑖 ∈ ሼ𝑓, 𝑠, 𝑐ሽ,  from user 𝑢௫  which just encounters user 𝑢௬ , it 
computes the social similarity between users 𝑢௫ and 𝑢௬  (who 
now serves as a rater or recommender) as a weighted combina-
tion of all social similarity metrics as follows:  

𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ ൌ  𝑤 ∙ 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯
∈ሼ,௦,ሽ

 (4) 

where 0  𝑤, 𝑤௦, 𝑤  1, with 𝑤  𝑤௦  𝑤 ൌ 1, are social 
similarity weight parameters to be dynamically adjusted by IoT-
HiTrust to maximize trust protocol performance.  

2) Query Design 
Whenever a user wants to know the trust value of an IoT 

device, it simply sends a query to its home cloud server. For 
example, in Figure 1, 𝑢ଶ will send a query to its home cloud 
server 𝐶𝑆ଶ to know its “subjective trust” toward 𝑑ଷଵ which be-
longs to 𝑢ଷ.    

Let 𝑡௫, denote the “subjective trust” of user 𝑢௫  toward 𝑑. 
The home cloud server of 𝑢௫ computes 𝑡௫, by combining 𝑢௫

ᇱ 𝑠 

direct trust toward 𝑑 ሺ𝑡௫,
ௗ ሻ based on self-observation rating re-

ports, and 𝑢௫
ᇱ 𝑠 indirect trust toward 𝑑 (𝑡௫,

 ሻ based on other us-
ers’ rating reports, as follows: 

𝑡௫, ൌ 𝜇௫, ∙ 𝑡௫,
ௗ  ሺ1 െ 𝜇௫,ሻ ∙ 𝑡௫,

  (5)

Here, 𝜇௫, is a weight parameter (0  𝜇  1) to weigh the 
importance of direct trust relative to indirect trust. The selection 
of 𝜇௫, is critical to trust evaluation. We apply adaptive filtering 
developed in [6] to adjust 𝜇௫, dynamically to effectively cope 
with malicious attacks and to improve trust accuracy. 

The direct trust 𝑡௫,
ௗ  in Equation 5 is computed by Beta Rep-

utation [9] under which the trust value is modeled as a random 
variable in the range of [0, 1] following the Beta ሺ𝛼, 𝛽ሻ  distri-
bution. The numbers of positive and negative experiences are 
modeled as binomial random variables. Since the beta-binomial 
is a conjugate pair, this leads to a posterior beta distribution with 
updated parameters. Specifically, we can calculate direct trust 
of 𝑢௫ toward device 𝑑, 𝑡௫,

ௗ , as follows: 

𝑡௫,
ௗ ൌ 𝛼/ሺ𝛼  𝛽ሻ (6)

where 𝛼 is the amount of positive service experience with time 
decay and 𝛽 is the amount of negative service experience with 
time decay, calculated as 𝛼 = ∑ 𝑓௫,ሺ𝑡ሻ 𝑒ିఒሺ௧ೢି௧ሻand 𝛽 ൌ
∑ ሺ1 െ 𝑓௫,ሺ𝑡ሻሻ 𝑒ିఒሺ௧ೢି௧ሻ  where 𝑓௫,ሺ𝑡ሻis a service rating 
received from user 𝑢௫  at time t about 𝑑 ’s service quality, 
𝑡௪ is the current time, and 𝜆ௗ is the decay parameter to dis-
count old service experiences. Here 𝑓௫, contributes to positive 
service experience and 1 െ 𝑓௫, contributes to negative service 
experience. If 𝑡 ൌ 𝑡௪ then the service rating has the highest 
credibility of 1; otherwise, the credibility of the service rating 
decays over time exponentially. The summation is over all ser-
vice ratings received from user 𝑢௫, including old and new ser-
vice ratings maintained in user 𝑢௫′𝑠 cloud server.  

To compute indirect trust of 𝑢௫  toward device 𝑑 , 𝑡௫,
 , the 

home cloud server of 𝑢௫ first locates social similarity records 
𝑠𝑖𝑚ሺ𝑢௫, 𝑢௭ሻ′𝑠 in its local storage. The home cloud server of 
𝑢௫ then selects top-𝑛 raters with the highest similarity scores 
with 𝑢௫ among all and calculates the indirect trust (𝑡௫,

 ) towards 
device 𝑑 as follows: 

𝑡௫,
 ൌ 

𝑠𝑖𝑚ሺ𝑢௫, 𝑢௭ሻ
∑ 𝑠𝑖𝑚ሺ𝑢௫, 𝑢௪ሻ௨ೢ∈

 𝑡௭,
ௗ

௨∈

 (7) 

The indirect trust model as indicated in Equation 7 is essen-
tially a weighted sum of service ratings reported by other IoT 
devices (acting as recommenders) with a higher weight giving 
to a recommender with a higher social similarity. It is based on 
a widely accepted concept that mobile IoT systems can be char-
acterized as a hybrid of P2P and social networks and IoT trust 
management must take into account social relationships among 
device owners in order to maximize protocol performance [6, 
14]. Here, 𝑈  is a set of up to 𝑛  raters whose 𝑠𝑖𝑚ሺ𝑢௫, 𝑢௭ሻ 
scores are the highest, 𝑢௭ ∈ 𝑈 is a rater selected, and 𝑡௭,

ௗ  is the 
service rating provided by 𝑢௭  toward device 𝑑. We note that 
𝑡௭,

ௗ  is stored in the home cloud server of 𝑢௭ but it is obtainable 
after the home cloud server of 𝑢௫ communicates with the home 
cloud server of 𝑢௭.  In Equation 7, the service rating provided 
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from 𝑢௭  toward 𝑑  ൫i. e. , 𝑡௭,
ௗ ൯  is weighted by the ratio of the 

similarity score of 𝑢௫  toward 𝑢௭  to the sum of the similarity 
scores toward all raters. That is, if the similarity score of 𝑢௫ to-
ward 𝑢௭ is high relative to that of 𝑢௫ toward other raters, then 
the home cloud server of 𝑢௫ will put a relatively high weight on 
the rating 𝑡௭,

ௗ  provided by 𝑢௭ to compute 𝑡௫,
 .  

C. Protocol Execution Description 

In this section, we elaborate in detail the actions taken by the 
entities in our 3-tier mobile cloud hierarchy (IoT devices, cloud-
lets, and cloud servers) while executing IoT-HiTrust. For 
user 𝑢௫, we use 𝐶𝐿௫ and 𝐶𝑆௫ to refer to its local cloudlet and 
home cloud server, respectively, in the 3-tier mobile cloud hi-
erarchy. We note that while 𝐶𝑆௫ is fixed, 𝐶𝐿௫  is dynamically 
changed as the user roams from one region to another. 

 Figure 3 shows a flowchart of our trust management proto-
col execution from the perspective of user 𝑢௫. As illustrated in 
Figure 3, the actions performed by 𝑢௫ are as follows: 
(1) When 𝑢௫ just receives a service completed by 𝑑 belonging 

to 𝑢௬,  𝑢௫  (using its primary IoT device) reports to 𝐶𝑆௫ 
through 𝐶𝐿௫  a service rating report (𝑓௫, along with the 
timestamp at which service is rendered) indicating the ex-
tent to which it is satisfied with the service provided by 𝑑.  

(2) When 𝑢௫  encounters 𝑢௬ , they exchange their ሺ𝐹௫, 𝑆௫, 𝐶௫ ) 
and ሺ𝐹௬, 𝑆௬, 𝐶௬) profiles so as to measure their mutual so-
cial similarity 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ (Equations 1, 2, 3 and 4). Then 
𝑢௫ and 𝑢௬ report it to their respective home cloud servers 
𝐶𝑆௫ and 𝐶𝑆௬ through their local cloudlets 𝐶𝐿௫ and 𝐶𝐿௬,re-
spectively. Energy constrained devices may re-
port 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ only the first time or periodically to con-
serve energy. 

(3) When 𝑢௫ wants to know service trustworthiness of 𝑑 be-
longing to 𝑢௬ , 𝑢௫  (using its primary IoT device) sends a 
query to 𝐶𝑆௫ through 𝐶𝐿௫ and waits for a reply back from 
𝐶𝐿௫ returning the trust score of 𝑑. 

 

Figure 3: Action Flowchart for User 𝑢௫. 
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Figure 4: Action Flowchart for Cloud Server 𝐶𝑆௫. 

 
Figure 4 shows a flowchart of our trust management proto-

col execution from the perspective of 𝐶𝑆௫, the home cloud 
server of user 𝑢௫ . As illustrated in Figure 4, the actions per-
formed by 𝐶𝑆௫are as follows: 
(1) When 𝐶𝑆௫ receives a new service rating 𝑓௫,ሺ𝑡ሻ along with 

the timestamp t from user 𝑢௫ about the service quality of 
𝑑 belonging to 𝑢௬, 𝐶𝑆௫ updates 𝛼 and 𝛽 values for 𝑢௫ to-
ward 𝑑 based on 𝑢௫′𝑠 own old and new service ratings to-
ward 𝑑 with trust decay over time. Then, 𝐶𝑆௫updates di-
rect trust of 𝑢௫ toward device 𝑑 (𝑡௫,

ௗ ) by Equation 6 and 
stores the updated 𝑡௫,

ௗ  value in the local database. 
(2) When 𝐶𝑆௫ receives 𝑠𝑖𝑚ሺ𝑢௫, 𝑢௬ሻfrom user 𝑢௫ about the so-

cial similarity between 𝑢௫ and 𝑢௬, 𝐶𝑆௫ stores the updated 
𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ value in the local database.  

(3) When 𝐶𝑆௫  receives a query from user 𝑢௫ asking for the 
trust value of 𝑑  belonging to 𝑢௬, 𝐶𝑆௫  first computes the 
indirect trust of 𝑢௫  toward device 𝑑  ሺ𝑡௫,

 ሻ by Equation 7 
using 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ values received earlier and stored in its 
local database. Then, 𝐶𝑆௫ computes the overall trust of 𝑢௫ 
toward device 𝑑  (𝑡௫,ሻ by Equation 5 using 𝑡௫,

ௗ  and 𝜇௫, 
values stored in the local database. Lastly, 𝐶𝑆௫ returns 
𝑡௫, to user 𝑢௫ via 𝐶𝐿௫. 

Figure 5 shows a flowchart of our trust management proto-
col execution from the perspective of 𝐶𝐿௫, the local cloudlet of 
user 𝑢௫ . As illustrated in Figure 5, the actions performed by 
𝐶𝐿௫ are as follows: 
(1) When 𝐶𝐿௫  receives a service rating 𝑓௫, along with the 

timestamp from user 𝑢௫ about the service quality of 𝑑 be-
longing to 𝑢௬, 𝐶𝐿௫ forwards it to 𝑢௫′s home cloud server 
𝐶𝑆௫. 
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(2) When 𝐶𝐿௫  receives 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ from user 𝑢௫ about the 
social similarity between 𝑢௫ and 𝑢௬ , 𝐶𝐿௫ forwards it to 
𝑢௫′𝑠 home cloud server 𝐶𝑆௫.  

(3) When 𝐶𝐿௫  receives a query from user 𝑢௫ asking for the 
trust value of 𝑑 belonging to 𝑢௬, 𝐶𝐿௫ forwards the query 
to 𝑢௫′𝑠 home cloud server 𝐶𝑆௫. Then, after receiving 𝑡௫, as 
a reply from 𝐶𝑆௫, 𝐶𝐿௫forwards it to user 𝑢௫. 

 

 

Figure 5: Action Flowchart for Cloudlet 𝐶𝐿௫. 

D. Dealing with Network Disconnection 

A cloudlet may lose connectivity with the cloud if all heav-
yweight IoT devices selected as the cloudlet devices for the 
cloudlet experience network disconnection in emergency situa-
tions such as a network service disruption. A cloudlet must 
maintain service continuity to IoT devices during network dis-
connection. In case the cloudlet can still communicate with a 
neighbor cloudlet which still has connectivity with the cloud, 
then all reports, queries, and responses can route through the 
neighbor cloudlet. Otherwise, it will have to operate in discon-
nected mode [16] using cached data. For a heavy IoT device 
that is typically not mobile or only moves within the region, the 
home regional cloudlet has all the data it needs for answering a 
user query regarding the trustworthiness of the IoT device, since 
it caches all reports, responses, and social similarity reports 
with the IoT device which most of the time stays within the lo-
cal cloudlet region. So all the local cloudlet has to do is to fol-
low the computational procedure described earlier to assess the 
trustworthiness of the IoT device, as if the computation is per-
formed by the cloud itself. For a lightweight IoT device, the 
home region cloudlet may lose some precision in estimating the 
trustworthiness of the IoT device because the local cloudlet may 
not have all the data needed. For example, the local cloudlet 
may miss some reports of a lightweight IoT device when the 
IoT device moves away from its region. The trust accuracy is 
largely affected by the mobility of the user carrying the IoT de-
vice. In Section V we will assess the extent to which the trust 
accuracy is impacted under various mobility scenarios. 

E. System Responsiveness 

Our solution greatly improves responsiveness of the system 
for two reasons. First, all IoT devices in the system inde-
pendently and concurrently perform trustworthiness evaluation 
toward service providers or recommenders they encounter and 
report the trustworthiness data to the cloud through local cloud-
lets, as explained in Section IV.C and illustrated in Figures 3, 4, 
and 5. As a result, trustworthiness data can be quickly accumu-
lated in the cloud concurrently by all the IoT devices in the sys-
tem, allowing the system to quickly answer a query regarding 
the service trustworthiness of a device. Secondly, our solution 
does not rely on the existence of a social network graph as input 
for specifying social relationships. Such approaches (e.g., [14, 
23]) require the cloud to collect social and interaction relation-
ships information from individual IoT devices dynamically in 
order to maintain an accurate and up-to-date social network 
graph. The amount of traffic generated by cloud-to-IoT query 
messages and IoT-to-cloud reply messages due to a large num-
ber of IoT devices simultaneously communicating with the 
cloud will not only consume IoT energy but also cripple the 
cloud communication network and reduce system responsive-
ness. Our solution collects social relationships between each 
pair of IoT devices dynamically only when IoT devices encoun-
ter each other. As a result, only IoT-to-cloud report traffic is 
being generated sparingly at the encountering moments, as ex-
plained in Section IV.B.1 and illustrated in Figure 3. This 
avoids a huge amount of traffic from being generated simulta-
neously by a large number of IoT devices and thus greatly im-
proves system responsiveness. In Section V.A we perform a 
complexity analysis of the communication and storage cost to 
back up our claim that our 3-tier cloud-cloudlet-device hierar-
chical trust-based service management protocol provides ade-
quate system responsiveness. Further improvement in respon-
siveness is possible by applying intelligent cache management 
(e.g., as in [6]) so that cloudlets cache trustworthiness data for 
IoT devices (acting as a service provider or as a recommender) 
under their regions, thereby allowing a query regarding the ser-
vice trustworthiness of a local IoT device to be answered by a 
local cloudlet using the cached trustworthiness data, without 
having to route the query to the cloud for query processing. The 
topic of cache coherence protocol design is outside the scope of 
this paper. 

V. IOT-HITRUST PROTOCOL PERFORMANCE 

In this section, we analyze IoT-HiTrust system perfor-
mance. We first perform a complexity analysis of the commu-
nication and storage cost for evaluating scalability. Then we 
conduct a performance analysis using ns-3 network simulator 
[24]. We compare IoT-HiTrust with two baseline trust proto-
cols, Adaptive IoT Trust [6] and ObjectiveTrust [14]. See Sec-
tion II for the detail of these two baseline trust protocols chosen 
for our comparative analysis.  

A. Scalability Analysis 

Table 1 summarizes the complexity analysis results. We 
evaluate the scalability of IoT-HiTrust against Adaptive IoT 
Trust [6] and ObjectiveTrust [14] based on the complexity anal-
ysis results.  
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Table 1: Complexity Analysis of IoT-HiTrust against 

Adaptive IoT Trust [6] and ObjectiveTrust [14]. 
Protocol Communication Complexity Storage Complexity 

IoT-HiTrust Oሺ 𝜆

ே

ୀଵ

 𝑞  𝜋ሻ Oሺ1ሻ 

Adaptive IoT 
Trust Oሺ 𝜋ሻ

ே

ୀଵ

 Oሺ𝑁்ሻ 

ObjectiveTrust ٭O ቌ 𝜆

ே

ୀଵ

 𝑞ቍ Oሺ1ሻ 

 .assuming existence of a global friendship social network graph as input٭

 
Communication Cost Complexity: For IoT-HiTrust, the 

communication cost per IoT device (from node i’s perspective) 

is of complexity Oሺ 𝜆
ே

ୀଵ
 𝑞  𝜋ሻ  where 𝑁்  is the 

number of IoT devices in the system, 𝜆 is the service request 
rate of node i to node j, 𝑞 is the query rate of node i about node 
j’s trust status, and 𝜋 is the encountering rate of node i with 
node j which can be derived by analyzing the encounter or in-
teraction pattern, e.g., a power-law distribution, as supported by 
the analysis of many real traces [27]. Upon completing a service 
from node j, node i sends its service quality assessment toward 
node j to its home cloud server. When node i wishes to find out 
if node j is trustworthy, it sends a query to its home cloud server. 
Lastly, upon encountering node j, node i exchanges its user pro-
file with node j’s user profile while preserving privacy to com-
pute three social similarity measures (𝑠𝑖𝑚, 𝑠𝑖𝑚௦, 𝑠𝑖𝑚ሻ  be-
tween node i and node j according to Equations 1, 2, and 3, after 
which node i sends (𝑠𝑖𝑚, 𝑠𝑖𝑚௦, 𝑠𝑖𝑚ሻ to its home cloud server 
for storage. The one extra message needed for sending com-
puted social similarity values to its home cloud server does not 
change the complexity.  

For ObjectiveTrust [14], the communication cost per IoT de-
vice (from node i’s perspective) is of complexity 

O ቀ 𝜆
ே

ୀଵ
 𝑞ቁ.  Upon completing a service from node j, 

node i sends its service quality assessment toward node j to the 
cloud. When node i wishes to find out if node j is trustworthy, 
it sends a query to the cloud. There is no need for node i to ex-
change social relationships upon encountering each other, or re-
port the social similarity between node i and node j to the cloud 
because ObjectiveTrust assumes the existence of a friendship 
social network graph as input for specifying social relationships 
(e.g., centrality and credibility) and such information is already 
loaded in the cloud. Due to this assumption, ObjectiveTrust’s 
communication cost complexity is lower than that of IoT-

HiTrust by Oሺ 𝜋ሻ.
ே

ୀଵ
  

For Adaptive IoT Trust [6], the communication cost per node 

(from node i’s perspective) is Oሺ 𝜋ሻ
ே

ୀଵ
 because upon node 

i encountering node j, node i exchanges its user profile with 
node j’s user profile for computing social similarity and also 
exchanges its service quality experiences with node j’s service 

quality experiences toward other nodes in the system for com-
puting trust scores toward other nodes in the system. There is 
no communication cost for node i to send its own service quality 
assessment results and social similarity results to the cloud be-
cause node i stores all service quality assessment results (in-
cluding from itself and from all other nodes) as well as social 
similarity results in its local storage. When node i wishes to 
know node j’s trust status it simply looks up its trust data in the 
local storage. Compared with IoT-HiTrust, Adaptive IoT Trust 

communication cost complexity is lower by O ቀ 𝜆
ே

ୀଵ


𝑞ቁ since node i sends neither trust data nor trust status queries 

to the cloud. 
Storage Cost Complexity: For IoT-HiTrust, the storage 

cost per node (from node i’s perspective) is O(1) for storing its 
own user profile only (i.e., friend, social contact, and commu-
nity-interest lists) because all service quality experience, social 
similarity, and trust data are stored in the cloud. The storage 
cost per cloud server is O(NT/NC) for storing service quality ex-
periences, social similarity, and trust data of NT/NC devices, 
where NT is the number of IoT devices and NC is the number of 
cloud servers, as the load is shared by all cloud servers (through 
the use of a fair hash function).  

For ObjectiveTrust [14], the storage cost per node is also 
O(1) because all data are also stored in the cloud. 

For Adaptive IoT Trust [6], the storage cost per node is 
O(NT) because for every other IoT device, a storage space is 
needed for storing service quality experiences, social similarity, 
and trust data. Apparently Adaptive IoT Trust is not scalable 
when NT is sufficiently large. 

Scalability Evaluation: Adaptive IoT Trust is not scalable 
in the storage cost when NT is sufficiently large. IoT-HiTrust 
and ObjectiveTrust are both scalable in the communication and 
storage cost. However, IoT-HiTrust achieves better scalability 
than ObjectiveTrust for two reasons: (a) with the hierarchical 
mobile cloud IoT architecture under IoT-HiTrust, an IoT device 
only communicates with its local cloudlet over a short radio-
range distance when forwarding service quality experience re-
sults and social similarity information to the cloud or querying 
trust data from the cloud, whereas under ObjectiveTrust, an IoT 
device communicates with the cloud over a long haul distance; 
(b) IoT-HiTrust collects social relationships between each pair 
of IoT devices dynamically when IoT devices encounter each 
other, while ObjectiveTrust must rely on the existence of a 
friendship social network graph for specifying social relation-
ships. Point (b) above is especially problematic for scalability 
of ObjectiveTrust because it will be costly if not impossible to 
obtain a global social network graph with a huge number of IoT 
devices changing their social profiles dynamically. 

 
Table 2: Parameter List for Performance Evaluation. 

Parameter Meaning Default  

𝑁் Number of IoT devices 2000 

𝑁௨ Number of users 500 

𝑁  Number of cloud servers 10 
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𝑃ெ % of malicious users 20-40% 

𝑃  % of high centrality nodes 0-40% 

𝜆 Service request rate per node 1/day 

𝜆ௗ Time decay parameter for service rating 10ିସ 

 Standard deviation of error 1% 

𝑚  𝑚 Cloudlet regional area 1616 

𝑆𝑊𝐼𝑀ௌ SWIM slope 1.45 

𝑆𝑊𝐼𝑀௧ SWIM maximum pause time 4 hrs 

𝑆𝑊𝐼𝑀 SWIM # popular places per node [10, 25] 

𝑛, # friends per low-centrality node [10, 50] 

𝑛, # friends per high-centrality node [100, 500] 

𝑁ூ # communities of interest 50 

𝑛ூ # communities of interest per node [10, 25] 

𝑛 # of recommenders accepted 10 

𝑤: 𝑤௦: 𝑤 Weight ratio of social relations 1/3:1/3:1/3 

 

B. Environment Setup for Simuation Evaluation 

The experiment setup follows the model parameters as listed 
in Table 2. We select the values for the parameters listed in Ta-
ble 2 to model a relatively large IoT system to illustrate scala-
bility. We consider a large IoT 𝑚  𝑚 ൌ 16  16 cloudlet re-
gional area with NT = 2000 IoT devices, where each cloudlet 
region (location) is also a square with the width and height equal 
to wireless radio range so that nodes within a grid can communi-
cate with the local cloudlet in the grid. The boundary locations 
are wrapped around (i.e., a torus is assumed) to avoid end ef-
fects. These IoT devices are randomly assigned to NU = 500 us-
ers, with each user having 4 devices on average. The number of 
cloud servers in the data cloud center is NC = 10 such that each 
cloud server can approximately handle NT/NC  = 200 IoT de-
vices. Note that NC = 10 is an arbitrary choice, so in the simula-
tion we know which user/device is map to which cloud server.   

The % of malicious users (PM) is a model parameter whose 
effect will be analyzed via a sensitivity analysis. Malicious us-
ers are chosen randomly from NU = 500 users. A malicious user 
will perform self-promoting, bad-mouthing, ballot-stuffing, 
discriminatory, and opportunistic service attacks as described in 
Section II.C. In particular, a malicious user 𝑢௬ can provide a 

bad recommendation 𝑡௬,
ௗ =0 (see Equation 7) against a good de-

vice i for bad-mouthing attacks, and conversely a good recom-
mendation 𝑡௬,

ௗ =1 for a malicious device i for ballot-stuffing at-
tacks. Our protocol handles ballot-stuffing and bad-mouthing 
attacks by recommendation filtering (see Section IV.A) during 
the computation of indirect trust 𝑡௫,

  based on Equation 7.  
The % of high centrality users (PC) is also a model parameter 

whose effect will be analyzed. Users are connected through so-
cial networks represented by a friendship matrix and a CoI ma-
trix where an entry at (x, y) is 1 means that user x and user y are 
friends and members of a CoI, respectively. Each low centrality 
user has 𝑛, = [10, 50] friends, and each high centrality user 
has 𝑛, = [100, 500] friends populated randomly. There are 
𝑁ூ = 50 CoIs and each user has 𝑛ூ = [10, 25] CoIs.  

We consider all users moving according to the small world 

in motion (SWIM) mobility model [12], modeling human social 
behaviors for the purpose of assessing the social contact simi-
larity metric between each pair of users. In SWIM [12], a node 
has a home location and 𝑆𝑊𝐼𝑀= [10, 25] popular places 
populated randomly out of the 𝑚  𝑚 locations in the system. 
A node makes a move to one of the population places based on 
a prescribed pattern. The probability of a location being selected 
is higher if it is closer to the node’s home location or if it has a 
higher popularity (visited by more nodes). When reaching the 
destination, the node pauses at the destination location for a pe-
riod of time following a bounded power law distribution [27]. 
We set the slope of the SWIM mobility model (𝑆𝑊𝐼𝑀ௌ) to 1.45 
(as in [12]) and the upper-bound pause time (𝑆𝑊𝐼𝑀௧) to 4 
hours. The encounter time interval for any two nodes is a 
bounded power-law distribution between [10 minutes, 2 days], 
which models the social contact behavior of any two nodes. 

Three IoT devices in a region are selected as cloudlet de-
vices periodically responsible for caching and relaying service 
experience reports, trust score queries, and responses for IoT 
devices in the region. Direct trust of node i toward node j is 
assessed upon completion of a service request from node i to 
node j. Each node requests services from a selected device with 
a time interval following an exponential distribution with pa-
rameter 𝜆, with 1/day being the default unless otherwise speci-
fied. The trust update interval Δ𝑡 is 2 hours. The system runs 
continuously although trust convergence is achieved in less than 
200 hours.  

The user satisfaction levels of service experience (i.e., 𝑓௫, in 
the range of [0, 1] from user 𝑢௫ about 𝑑’s service quality) are 
from a real web service dataset [21] and are used as “ground 
truth” based on which the accuracy of our trust protocol is as-
sessed. Since the direct trust of user 𝑢௫ toward service provider 
𝑑  (i.e., 𝑡௫,

ௗ ) is calculated by Equation 5 with “ground truth” 
user service experiences as input, 𝑡௫,

ௗ  essentially is equal to 
ground truth. However, we account for the presence of noise in 
the IoT environment (i.e., error of assessing user satisfaction 
level received) by considering a standard deviation parameter 
σc (set to 1% as default) to reflect the deviation of the actual 
user satisfaction level recorded in the database from the direct 
trust evaluation outcome 𝑡௫,

ௗ . The decay parameter 𝜆ௗ is set to 
10ିସ as in [26] for heavy discounting old experiences. Initially, 
𝑡௫, is set to 0.5 (ignorance) by user 𝑢௫ for all i’s. Then, trust is 
updated dynamically as nodes encounter each other, as services 
are requested and rendered, and as trust feedback are acquired. 
𝑛=10 for the set size of 𝑈 in Equation 7 for calculating 𝑡௫,

 . 
We consider 𝑤 ൌ 𝑤 ൌ 𝑤 ൌ 1/3 considering friendship, so-
cial contact, and community of interest are equally important. 

C. IoT-HiTrust Performance Characteristics 

In this section, we report ns-3 simulation results on IoT-
HiTrust performance characteristics in response to user and en-
vironment dynamics.   



1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

 

Figure 6: Trust Value of a Good Node under Intermittent Dis-
connection. 

 

Figure 7: Trust Value of a Bad Node under Intermittent Dis-
connection. 

Figure 6 shows IoT-HiTrust performance in terms of trust 
accuracy, convergence, and resiliency against attacks. It shows 
the progressive trust value of a “good” IoT device as assessed 
by the cloudlet in the home region where the IoT device initially 
resides vs. time for the case in which PM = 30%. The “ground 
truth” trust value of this good device is depicted by the solid 
line at 0.83. Note that the “ground truth” trust value of this good 
node is not 1 because 𝑓௫,  (service satisfaction experience of 
user 𝑢௫ toward 𝑑) retrieved from the trace dataset [21] is not 
necessarily 1. The progressive trust value measured by IoT-
HiTrust is depicted by dashed lines. We consider the scenario 
in which the “good” IoT device’s cloudlet is disconnected due 
to network disconnection at times (marked by zig-zag patterns) 
during which it can only perform disconnected trust assessment. 
The label “no region roaming” means that the target IoT device 
stays in the same region all the time. The label “neighbor region 
roaming” means that the target IoT device stays in the home 
region but roams to neighbor regions from time to time. The 
label “hopper” means that the target IoT device moves across 
region boundary frequently. We see that trust accuracy de-
creases as the target “good” IoT device moves across the re-
gional boundary more frequently. However, all cases eventually 
converge after sufficient data are collected to allow accurate 
trust assessment.  

Correspondingly, Figure 7 shows IoT-HiTrust performance 
in terms of the trust value of a “bad” IoT device vs. time when 
PM = 30%. This bad node’s trust value is up and down because 
of opportunistic service attacks performed by the bad node. We 
again confirm that trust accuracy decreases as the target “bad” 
IoT device moves across the regional boundary more fre-
quently. However, trust accuracy is restored as soon as the 
home regional cloudlet is reconnected. Figures 6 and 7 verify 
that our IoT-HiTrust protocol is effective to deal with intermit-
tent disconnection for providing service continuity, especially 
for IoT devices that do not move much such as heavyweight IoT 
devices. 

In summary, relative to prior work [2, 3, 4, 5, 6], Figures 6 
and 7 demonstrate that our hierarchical trust management 
achieves efficiency and scalability, without compromising trust 
accuracy. 

 

Figure 8: Trust Value of a Good Node under Various Attack 
Types. 

 

Figure 9: Trust Value of a Bad Node under Various Attack 
Types. 

We test the sensitivity of the results w.r.t. the attack type in 
Figures 8 and 9.  

Figure 8 demonstrates the effect of the attack type on trust 
accuracy, convergence, and resiliency of a “good” target node 
that roams between neighbor regions. The curve labeled by 
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“with all attacks” (green curve) corresponds to the “neighbor 
region roaming” curve in Figure 6. There are three other curves, 
i.e., “without bad-mouthing and ballot-stuffing attacks,” “with-
out discriminatory attacks,” and “without opportunistic at-
tacks,” each with a particular attack type being removed so that 
we can see the effect of its absence on accuracy, convergence, 
and resiliency. Figure 8 indicates that recommendation attacks 
(i.e., bad-mouthing and ballot-stuffing attacks combined) have 
the biggest effect on accuracy, convergence, and resiliency be-
cause without them (red curve) the system can approach ground 
truth (black curve) in the shortest amount of time. Discrimina-
tory attacks also have some effect on accuracy, convergence, 
and resiliency because without them (blue curve) the system can 
converge faster than with them (green curve), although the sen-
sitivity is not as high. Lastly, opportunistic attacks have the least 
effect on accuracy, convergence, and resiliency because with-
out them (pink curve) the system does not converge any faster 
than with them (green curve). The reason is that a bad node per-
forming opportunistic attacks will only affect its own trust 
value, not the “good” target node’s trust value. Therefore, the 
most severe attack type is the recommendation attack as it will 
ruin the reputation of the “good” target node.   

Figure 9 demonstrates the effect of the attack type on trust 
accuracy, convergence, and resiliency of a “bad” node that 
roams between neighbor regions. Similarly the curve labeled by 
“with all attacks” (green curve) corresponds to the curve in Fig-
ure 7. There are three other curves, i.e., “without bad-mouthing 
and ballot-stuffing attacks,” “without discriminatory attacks,” 
and “without opportunistic attacks,” each with a particular at-
tack type being removed so as to see its absence on accuracy, 
convergence, and resiliency. Since the target node is a “bad” 
node, we see from Figure 9 that opportunistic attacks have the 
most severe effect on accuracy, convergence, and resiliency be-
cause without them (pink curve) the system converges to 
ground truth (zero for a bad node) while with them the system 
converges to the up and down curve (green curve). This is so 
because the “bad” target node performing opportunistic service 
attacks will alternate between behave and misbehave to keep its 
trust value between the high threshold and low threshold. We 
see from Figure 9 that the other two attack types do not have a 
high impact on the trust value of this “bad” target node. In prac-
tice, a bad node will always perform opportunistic service at-
tacks to disguise itself as a good node without being caught. The 
best the system can do is to accurately track a bad node’s trust 
status to refrain it from providing bad service and to decrease 
the chance of selecting bad nodes for providing service. This is 
illustrated by two real-world mobile cloud IoT applications de-
scribed in Sections VI and VII below. 

D. Sensitivity and Comparative Analysis 

In this section, we report the sensitivity of IoT-HiTrust per-
formance with respect to the % of malicious users (PM) and the 
% of high centrality users (PC). We again compare IoT-HiTrust 
performance with Adaptive IoT Trust [6] and ObjectiveTrust 
[14], which we have described in detail in Section II. 

We first analyze the effect of the % of malicious users (PM). 

Figure 10 compares IoT-HiTrust (red surface) with Adaptive 
IoT Trust (orange surface) and ObjectiveTrust (green surface) 
as PM (% of malicious nodes) varies from 20% to 40% for a 
non-malicious node randomly chosen. All other parameters use 
the default settings as in Table 2. The ground truth trust value 
of the non-malicious node is marked by a solid line at 0.83. We 
first note that for all protocols, the estimated trust score of the 
non-malicious nodes approaches the ground truth value as time 
progresses as more evidence is collected. Also, the deviation 
from the ground truth trust score increases as PM increases be-
cause more malicious nodes perform attacks. We see that IoT-
HiTrust (red) consistently outperforms Adaptive IoT Trust (or-
ange) and ObjectiveTrust (green), especially when the % of ma-
licious nodes is high (40%). We attribute IoT-HiTrust perform-
ing better than Adaptive IoT Trust to the fact that IoT-HiTrust 
can leverage cloud service to aggregate broad evidence from all 
nodes to achieve the minimum trust bias. We attribute IoT-
HiTrust performing better than ObjectiveTrust to the fact that 
unlike ObjectiveTrust, IoT-HiTrust considers “subjective trust” 
which takes a customer’s own service experiences into consid-
eration and it can dynamically adjust the weight associated with 
a customer’s own service experiences to effectively cope with 
malicious attacks and improve trust accuracy. 

 

Figure 10: Performance Comparison of Trust Convergence, 
Accuracy and Resiliency in 3-D View with PM (% of Mali-

cious Nodes) ranging from 20% to 40%. 

 

Figure 11: Performance Comparison of Trust Convergence, 
Accuracy and Resiliency in 3-D View with PC (% of High 

Centrality Nodes) ranging from 0% to 40%. 
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Next we analyze the effect of % of high centrality users (PC). 
Figure 11 compares IoT-HiTrust (red surface) with Adaptive 
IoT Trust (orange surface) and ObjectiveTrust (green surface) 
as PC (% of high centrality nodes) varies from 0% to 40% for a 
non-malicious node randomly chosen. All other parameters use 
the default settings as in Table I. We see IoT-HiTrust (red) also 
consistently performs better than Adaptive IoT Trust (orange) 
and ObjectiveTrust (green), especially when PC is low. All pro-
tocols perform comparably when PC is high. The reason is that 
all protocols consider social relationships (including friendship 
which maps to centrality) for recommendation filtering. So 
when PC is high, all have excellent recommendation filtering 
taking place, resulting in the estimated trust score approaching 
the ground truth trust value. When PC is extremely high (40%), 
ObjectiveTrust has a slight edge over IoT-HiTrust and Adaptive 
IoT Trust, because ObjectiveTrust uses a weighted sum of cen-
trality and filtered opinions for trust computation, and directly 
uses centrality (by means of the overall trust score computation) 
as credibility for recommendation filtering. One should note 
that, however, a social network normally has only a small num-
ber of nodes with high centrality [23], so for a typical social 
network with less than 20% high centrality nodes, IoT-HiTrust 
(red) still outperforms ObjectiveTrust (green). 

It is interesting to note that Figure 11 also analyzes the effect 
of insufficient knowledge of friend devices (or missing friend-
ship) on trust-based service management, through analyzing the 
effect of % of high centrality users (PC) in the network. When 
there are not many high centrality users in the system, there is a 
weak tie in friendship for users in the network and hence the 
friendship social similarity is low. Figure 11 shows that the trust 
value of a non-malicious service provider decreases as the % of 
high centrality users (PC) decreases because a device may un-
necessarily filter out many trustworthy recommenders due to 
missing friendship. On the other hand, when PC is high and 
hence the friendship social similarity is high, an IoT device will 
have access to many trustworthy recommenders, resulting in the 
estimated trust score of the non-malicious service provider in 
question approaching the ground truth trust value (solid line). 
Figure 11 demonstrates that IoT-HiTrust (red surface) consist-
ently performs better than Adaptive IoT Trust (orange surface) 
and ObjectiveTrust (green surface), the effect of which is espe-
cially pronounced when a device does not have much 
knowledge about friend devices, i.e., when PC is low. 

In summary, relative to Adaptive IoT Trust [6] and Objec-
tiveTrust [14], our work addresses scalability while achieving 
“subjective trust” evaluation accuracy. 

VI. CASE STUDY 1: SMART CITY TRAVEL SERVICE 

COMPOSITION  

The first case study is taken from [5]: Bob has never traveled 
to Washington DC, so he is excited but also nervous about the 
quality of service he will receive during his visit. He is aware 
of the fact that DC is a smart city so he registers his smartphone 
to the travelers-in-Washington-DC social network. He also 
downloads an augmented map social IoT application [34] to run 
on his smartphone, allowing his Near Field Communications 

(NFC) equipped smartphone to browse a tag-augmented DC 
map wherever he goes sightseeing. This tag-augmented map au-
tomatically connects Bob’s smartphone to IoT devices available 
upon encounter, which provide information, food, entertain-
ment (e.g., ticket purchasing), and transportation services. Bob 
instructs his smartphone to make selection decisions dynami-
cally, so it can leverage new information derived from direct 
experiences and recommendations received from IoT devices it 
encounters. In response to a service request issued by Bob, his 
smartphone must (a) gather sensing data or information col-
lected from the physical environment based on either self-ob-
servations or recommendations; (b) formulate a service plan 
based on the results gathered; and (c) invoke necessary services 
to meet Bob’s service demand and requirements. 

To this end, the augmented map travel service composition 
application running on Bob’s smartphone composes a service 
workflow plan as shown in Figure 12 in response his service 
request “Fill me with the best grilled hamburger within 20 
minutes under a $30 budget.” With the service plan formulated, 
Bob’s smartphone selects the best service providers out of a 
myriad of service providers to execute the service plan. The ob-
jective of this trust-based service composition application run-
ning on Bob’s smartphone is to select the most trustworthy IoT 
nodes for providing services specified in the flow structure sub-
ject to the time and budget constraints (20 minutes and 30 dol-
lars) such that the overall trustworthiness score representing the 
goodness of the service composition is maximized. 

S3: taxi S4: bus S5: metro

S1: search service A S2: search service B

S6: hamburger shop

or

and

 
 

Figure 12: A Service Flow Structure for the Smart City 
Travel Service Composition Application. 

 
In Figure 12, there are 6 atomic services connected by three 

types of workflow structures: sequential, parallel (AND), and 
selection (OR). Each service would have multiple service pro-
vider candidates. In this case, the overall trustworthiness score 
of this service composition application can be calculated recur-
sively in the same way the reliability of a series-parallel con-
nected system is calculated. Specifically, the trustworthiness 
score of a composite service (whose trustworthiness score 
is𝑇௦ሻ that consists of two subservices (whose trustworthiness 
scores are 𝑇ଵ and 𝑇ଶሻ depends on the structure connecting the 
two subservices as follows:  
a) Sequential structure: 𝑇௦ ൌ 𝑇ଵ ൈ 𝑇ଶ; 
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b) Selection structure (OR): 𝑇௦ ൌ max ሺ𝑇ଵ, 𝑇ଶሻ; 
c) Parallel structure (AND): 𝑇௦ ൌ 1 െ ሺ1 െ 𝑇ଵሻ ൈ ሺ1 െ 𝑇ଶሻ. 

For the flow structure in Figure 12, the outmost structure is 
a sequential structure connecting (S1 S2), (S3 S4 S5), and S6 out 
of which (S1 S2) is a parallel structure and (S3 S4 S5) is a selec-
tion structure. 

Figure 13 shows the ns-3 simulation results. The 3-tier hier-
archical mobile cloud environment is setup the same way as dis-
cussed in Section V (see Table 2). We observe that trust-based 
service composition with IoT-HiTrust (red line) outperforms 
both Adaptive IoT Trust (yellow line) and ObjectiveTrust 
(green line) as time progresses when more trust evidence is 
gathered.  

Figure 14 shows the percentage of bad nodes selected for 
the augmented map travel service composition application. 
Again as time progresses, IoT-HiTrust outperforms all baseline 
schemes in selecting a good SP to execute the service request. 
Initially Adaptive IoT Trust (which is a distributed trust proto-
col) performs better than both IoT-HiTrust and ObjectiveTrust 
(both are centralized trust protocols) because centralized trust 
protocols initially do not have access to a broad range of trust 
evidence collected from other IoT devices. The advantage of 
IoT-HiTrust over Adaptive IoT Trust increases as time pro-
gresses after the system gathers sufficient service data from all 
nodes having service experience with a target node. We also 
note that the advantage persists even the percentage of mali-
cious nodes is 30% in the system. On the other hand, IoT-
HiTrust performs better than ObjectiveTrust because it consid-
ers “subjective trust” which takes a customer’s own service ex-
periences with a target service provider into consideration as it 
computes the trust score of a customer toward a target service 
provider. In the case in which the service experience is plenty, 
IoT-HiTrust will dynamically put a higher weight on direct ser-
vice experience and conversely a lower weight on the recom-
mendations to compute the trust score for the purpose of mini-
mizing trust bias. In the case in which the service experience is 
not plenty but recent, IoT-HiTrust will adaptively adjust the 
weights on direct service experiences and recommendations 
such that the computed score would match the recent service 
satisfaction outcome. In both cases, it shields the customer from 
malicious recommendation attacks, which is a common prob-
lem for reputation-based trust management protocols like Ob-
jectiveTrust. 

 
Figure 13: Utility Score of the Smart City Travel Service 

Composition Application. 

 
Figure 14: Probability of a Bad SP Being Selected for the 
Smart City Travel Service Composition Application. 

VII. CASE STUDY 2: AIR POLLUTION DETECTION AND 

RESPONSE  

The second case study is for the Fairfax County Hazard De-
tection and Response Team charged to monitor the pollution 
levels of CO, NO2, SO2, and O3 for all cities under the county 
so as to take appropriate actions if the air pollution level is 
above a tolerance threshold. Since the area to be covered is ra-
ther large, the county officials only install a few county-sensors 
in more strategic and populated areas to collect air pollution 
data. To cover the whole county area air quality detection, the 
county officials also encourage environment-health-conscious 
civilians driving or carrying air pollution detection capable ve-
hicles or smartphones [8] to report air pollution data.  

In case of emergency, the county officials can request IoT 
devices in a particular location to immediately report their sens-
ing results to their home cloud servers through their local cloud-
lets. Because the county officials have registered this cloud ser-
vice, a home cloud server upon receiving a sensing report will 
inform the county officials (running as an IoT device) of the 
sensing report. Also the county officials send queries via IoT-
HiTrust to get the trustworthiness scores of these IoT devices 
who had reported sensing results. To know if a location has ac-
ceptable air quality, the county officials (running as node i) ac-
cept results (𝑆) from 200 most trustworthy IoT devices (which 
have the highest 𝑡 trust values as determined by IoT-HiTrust) 
for the air quality detection service out of a total of 2000 nodes, 
and compute a trust-weighted average ∑ ሺ𝑡/ ∑ 𝑡ሻ ଶ

ୀଵ ൈଶ
ୀଵ

𝑆 for each air pollutant (e.g., CO). If the level exceeds a mini-
mum threshold (e.g., above 70 ppm for CO), the county officials 
push alerting text to IoT devices in the affected area.  

Using the ns-3 simulator, we simulate the above system 
populated with 2000 IoT devices capable of detecting and re-
porting CO air pollutant levels. The 3-tier hierarchical mobile 
cloud environment is setup the same way as discussed in Sec-
tion V (see Table 2). The CO level is simulated to be in the 
range of [60, 70 ppm] in various locations. The percentage of 
bad nodes is set at PM =30%. A malicious node always reports 
CO readings above 70 ppm in the range of [70, 120 ppm] re-
gardless of location in order to confuse the county official. Also 
a malicious node always performs bad-mouthing attacks (say-
ing a good node’s sensing result is not trustworthy in the user 
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satisfaction report) and ballot-stuffing attacks (saying a bad 
node’s sensing result is trustworthy). 

We again compare IoT-HiTrust with Adaptive IoT Trust 
and ObjectiveTrust. We measure two performance metrics for 
performance analysis: (a) the trust-weighted average CO read-
ing vs. ground truth (i.e., the actual CO level at a specific loca-
tion and a particular time); (b) the accuracy of selecting trust-
worthy participants. 

 
Figure 15: Performance Comparison of Trust-Weighted 

Average CO Readings for the Air Pollution Detection and Re-
sponse Application. 

 

Figure 16: Percentage of Bad IoT Devices Selected to Pro-
vide CO Sensing Service for the Air Pollution Detection and 

Response Application. 

 
Figure 15 shows the trust-weighted average CO readings vs. 

time (each time point is a CO detection service request) with the 
percentage of bad nodes PM set at 30%. We observe that IoT-
HiTrust (red line) leveraging the proposed mobile cloud hierar-
chy can provide CO readings very close to ground truth (black 
line) as time progresses. Further, IoT-HiTrust outperforms 
Adaptive IoT Trust (yellow line) and ObjectiveTrust (green 
line) in terms of accuracy, convergence, and resiliency. We 
mark a “Dangerous CO Level” line at which the CO reading is 
equal to or above 70 in the graph. We see that in many sensing 
time points such as at 65, 75, 90, 100, and 185, IoT-HiTrust 
would report the CO level is not dangerous as the ground truth 
is, but either Adaptive IoT Trust or ObjectiveTrust would 
falsely report the CO level is dangerous since the trust-weighted 
CO level average computed is above 70. This demonstrates that 

IoT-HiTrust is more resilient to malicious attacks (30% are ma-
licious) than either Adaptive IoT Trust or ObjectiveTrust in this 
application. Figure 16 shows the percentage of bad nodes se-
lected to provide sensing results. We see again IoT-HiTrust (red 
line) outperforms Adaptive IoT Trust and ObjectiveTrust as 
time progresses.  

We attribute the superiority of IoT-HiTrust over Adaptive 
IoT Trust to its ability to effectively aggregate trust evidence 
from all nodes who have had sensing service experiences with 
a target IoT device, leveraging our scalable report-and-query 
design, not being limited by node encountering experiences as 
in Adaptive IoT Trust. We attribute the superiority of IoT-
HiTrust over ObjectiveTrust to its ability to accurately compute 
the “subjective trust” which takes a customer’s own service ex-
periences into consideration as opposed to the “objective trust” 
which only takes the common belief or reputation into consid-
eration as in ObjectiveTrust, and also to its ability to dynami-
cally adjust the weights associated with direct trust and indirect 
trust to minimize trust bias, based on the customer’s past and 
recent own service experiences. 

VIII.  CONCLUSION 

In this paper, we designed and analyzed a scalable hierar-
chical trust management protocol called IoT-HiTrust for large 
mobile cloud IoT systems. We verified that IoT-HiTrust is ef-
fective for dealing with intermittent disconnection and cloud 
failure while preserving desirable trust accuracy, convergence 
and resiliency properties, especially for IoT devices that do not 
move much such as heavyweight IoT devices. We also demon-
strated its applicability by applying IoT-HiTrust to a smart city 
travel service composition application and an air pollution de-
tection and response application. Our results support its superi-
ority over Adaptive IoT Trust [6] and ObjectiveTrust [14] in 
achieving scalability and maximizing application performance, 
without compromising trust accuracy, convergence and resili-
ency properties.  

In the future, we plan to further validate our 3-tier cloud-
cloudlet-device hierarchical trust-based service management 
with more real-world mobile cloud IoT applications, including 
environmental monitoring and road/traffic monitoring applica-
tions [11], IoT services applications [6, 18], and IoT health ap-
plications [1, 34]. We also plan to investigate caching mecha-
nisms at the cloudlet level that can improve the overall system 
performance. Last but not least, we are currently investigating 
a more holistic design to manage integrated mobility, service, 
and trust information of a large number of IoT devices, in a scal-
able, secure, reliable, and efficient manner. A possible solution 
is to integrate the tiered cloud architecture presented in this 
work with existing design concepts of hierarchical mobility 
management [29], resilient failure recovery management [30, 
31], and admission control [32, 33]. While a node in a hierar-
chical mobility management architecture is a router responsible 
for keeping track of location information only (where and how 
to route), a node in a hierarchical cloud management architec-
ture is a cloud server responsible for keeping track of integrated 
information including location, trust, and service information. 
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A lower-level cloud server (e.g., a cloudlet) keeps track of IoT 
devices in its directly covered service area. A higher-level cloud 
server (e.g., a public cloud) in the architecture keeps track of 
status of all IoT devices covered by all lower-level cloud servers 
below it. Should an IoT device roam from one cloud server area 
to another, a “service handoff” ensues, causing this IoT device’s 
location, trust, and service information to be transferred be-
tween the two involving cloud servers such that the new local 
cloud server can immediately answer user queries regarding this 
IoT device that just roams into its area. Such an IoT architecture 
can track IoT devices not only in trust status, but also in service 
and mobility status dynamically to achieve the potential of an-
ytime anywhere service-oriented IoT applications. 
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