
1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

Trust-based Service Management
for Mobile Cloud IoT Systems

Ing-Ray Chen, Jia Guo
Computer Science

Virginia Tech
irchen@vt.edu
jiaguo@vt.edu

Ding-Chau Wang
Information Management
Southern Taiwan Univer-

sity of Science and
Technology

dcwang@stust.edu.tw

Jeffrey J.P. Tsai
Bioinformatics
and Biomedical

Engineering
Asia University

jjptsai@gmail.com

Hamid Al-Hamadi
Computer Science
Kuwait University

hamid@cs.ku.edu.kw

Ilsun You
Information

Security Engineering
Soonchunhyang

University
ilsunu@gmail.com

Abstract — We propose and analyze a 3-tier cloud-cloudlet-device
hierarchical trust-based service management protocol called IoT-
HiTrust for large-scale mobile cloud IoT systems. Our mobile
cloud hierarchical service management protocol allows an IoT cus-
tomer to report its service experiences and query its subjective ser-
vice trust score toward an IoT service provider following a scalable
report-and-query design. We conduct a formal scalability analysis
along with a ns-3 simulation performance analysis demonstrating
that IoT-HiTrust not only achieves scalability without compromis-
ing accuracy, convergence, and resiliency properties against mali-
cious attacks but also outperforms contemporary distributed and
centralized IoT trust management protocols. We test the feasibil-
ity by applying IoT-HiTrust to two case studies: a smart city travel
service composition and binding application and an air pollution
detection and response application. The results demonstrate that
IoT-HiTrust outperforms contemporary distributed and central-
ized trust-based IoT service management protocols in selecting
trustworthy nodes to maximize application performance, while
achieving scalability.

Keywords— Internet of things; scalability; trust management;
service management; mobile cloud computing; service composition;
performance analysis.

I. INTRODUCTION

In recent years we have witnessed a proliferation of Internet
of things (IoT) devices such as RFID tags, sensors,
smartphones, smart appliances, environmental monitoring de-
vices, etc. capable of providing services upon request. There
will be a huge number of such IoT devices competing for ser-
vice. Therefore, a central issue is whether the service provided
by a selected IoT device is trustworthy. Further, most IoT de-
vices are mobile and will connect to the Internet (cloud) on and
off, depending on the location they roam into as well as the en-
ergy status of individual IoT devices. Hence, it calls for an ef-
fective and efficient trust-based IoT service management proto-
col that can scale to a large number of heterogeneous devices in
IoT systems.

Trust-based service management is needed because not all
IoT devices will be trustworthy and some IoT devices may be-
have maliciously to disrupt the cloud service (e.g., an adver-
sary) or just for their own gain (e.g., for increasing their chances
to be selected to provide requested services). Furthermore, users

who own IoT devices are likely to be socially connected via so-
cial networks. Therefore, misbehaving nodes with close social
ties can collude and monopoly a class of services. For example,
for service-oriented IoT systems [5] it is important for an IoT
device to select only trustworthy IoT service providers before
service composition is performed. For participatory sensing IoT
applications [11], it is critical to assess source trustworthiness
of IoT devices which report sensing results, so untrustworthy
data can be filtered out before data analysis is taken.

In the literature, trust-based service management protocols
for IoT systems can be categorized into distributed [2, 3, 4, 5,
6, 10, 17, 20] and centralized (cloud-based) [7, 14, 15, 23]. The
basic issue of distributed trust-based service management pro-
tocols is scalability, i.e., an IoT device’s communication and
storage cost cannot scale with a large number of IoT devices in
the system. The basic issue of centralized trust-based service
management protocols is that it is difficult if not impossible to
maintain a consistent global view of social and interaction rela-
tionships for every pair of IoT devices dynamically in a large
and rapidly changing IoT system. An inconsistent view of social
and interaction relationships among IoT devices will make the
trust prediction inaccurate and render trust-based service man-
agement ineffective. Since the cloud cannot physically collect
social and interaction relationships itself, it needs to collect such
information from individual IoT devices dynamically. The
amount of traffic generated by a large number of IoT devices
simultaneously to the cloud will not only consume IoT energy
but also cripple the cloud communication network. Our re-
search motivation is to address the scalability issues in existing
distributed and centralized trust-based IoT service management
protocols, without compromising desirable trust accuracy, con-
vergence, and resiliency properties.

In this paper, we propose and analyze a mobile cloud hierar-
chical trust management protocol called IoT-HiTrust with the
goal to support scalable trust-based service management in
large mobile cloud IoT applications. The reason we focus on
mobile cloud IoT systems is that mobile cloud IoT applications
will have great social impacts to our everyday life [19]. One
example mobile cloud IoT application is environmental moni-
toring [11] where IoT devices (e.g., smart phones carried by hu-
mans) collect environmental data (noise, air pollution, temper-

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

ature, humidity, light, etc.) and submit via wireless data com-
munication links to a processing center located in the cloud for
environmental data analysis. In return, a user (e.g., a user with
health concerns) can send a query to the cloud to query a loca-
tion’s noise or air pollution level. Another example is road/traf-
fic monitoring [11] by which traffic flows, potholes, bumps,
braking, and honking information reported from IoT devices
(smart phones carried by passengers/drivers in a car) are aggre-
gated by a data processing center located in the cloud to unveil
traffic patterns previously unobserved with existing monitoring
infrastructure. A third example is service-oriented architecture
(SOA) based service management [5] in which each IoT device
is both a service provider (SP) and a service requestor (SR) as
in a web service system. An SR would request the availability
of SPs resided in the same location, compose a composite ser-
vice, and select (or bind) trustworthy SPs for executing the com-
posite service [18].

Our paper has the following unique contributions:
1. To the best of our knowledge, IoT-HiTrust is the only scal-

able trust protocol for mobile cloud IoT by means of a new
“report-and-query” design in our proposed 3-tier cloud-
cloudlet-device hierarchy (see Section III.A for detail) that
allows an IoT device to report its service experience and so-
cial relationship with another IoT device dynamically and
query the service trustworthiness of another IoT device lo-
cally through the local cloudlet to the cloud and the cost re-
mains more or less constant. It achieves scalability because
an IoT device’s communication and storage cost will remain
the same, regardless of the number of IoT devices in the sys-
tem. An IoT device does not store trust and service experi-
ence data in its limited storage, acquire recommendations
from other IoT devices it encounters, or compute the trust
score of another IoT device. All trust and service experience
data are stored in the cloud and all trust score computations
are performed by the cloud.

2. We propose a new cloud-based “subjective trust” evaluation
design that allows a target IoT device to obtain its subjective
trust of another IoT device by incorporating the target IoT
device’s own observations and other IoT devices’ recom-
mendations weighted by the target IoT device’s subjective
social relationship and trust view toward the recommenders.
This is very different from contemporary centralized IoT
trust protocols (e.g., ObjectiveTrust [14]) where only the
concept of “objective trust” (i.e., common belief or reputa-
tion) is maintained. We argue that “subjective trust” must be
used for an IoT device to select an IoT service provider be-
cause service quality is inherently related to the social rela-
tionship of human owners who control the service behaviors
of their IoT devices, so that two IoT devices with a close
social relationship will likely provide/receive good service.

3. By a formal scalability analysis and a ns-3 simulation per-
formance analysis, we demonstrate that IoT-HiTrust not
only achieves scalability without compromising system de-
sirable properties including accuracy, convergence, and re-
siliency against self-promotion, bad-mouthing, ballot-stuff-
ing, discriminatory, and opportunistic service attacks, but

also outperforms contemporary distributed IoT trust man-
agement protocols (e.g., Adaptive IoT Trust [6]) as well as
centralized IoT trust management protocols (e.g., Objec-
tiveTrust [14]). Furthermore, we demonstrate that accuracy,
convergence, and resiliency properties can still be achieved
despite intermittent network disconnection.

4. We demonstrate the applicability of IoT-HiTrust with two
real-world case studies: a smart city travel service composi-
tion application and an air pollution detection and response
application. The results demonstrate that IoT-HiTrust out-
performs existing trust-based service management protocols
including Adaptive IoT Trust [6] and ObjectiveTrust [14] in
selecting trustworthy nodes to maximize application perfor-
mance.
This paper has been substantially extended from our previ-

ous work [22] as follows: (a) we conduct a thorough literature
survey of the current state of the art in trust management for IoT
systems, and compare and contrast our work against existing
work (Section II); (b) we extend the previous trust model in [22]
by explicitly considering actions taken by an IoT device, a
cloudlet, and a cloud server in responses to events occurring to
them during protocol execution, illustrated by action flowcharts
(Section IV); (c) we validate our hierarchical trust protocol de-
sign with two real-world mobile cloud applications, i.e., a smart
city travel service composition application and an air pollution
detection and response application, using web service quality
traces [21] (Sections VI and VII); and (d) we compare IoT-
HiTrust with ObjectiveTrust [14] which is the only centralized
IoT trust management protocol to-date that considers social
standing and relationships for credibility rating.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III discusses the system model.
Section IV describes IoT-HiTrust in detail and explains our ef-
ficient and effective hierarchical trust protocol design for man-
aging a huge number of IoT devices. Section V conducts a
scalability analysis as well as a performance analysis of IoT-
HiTrust and demonstrates IoT-HiTrust can achieve scalability
without compromising trust accuracy, convergence, and resili-
ency properties, when compared with Adaptive IoT Trust [6]
and ObjectiveTrust [14]. Sections VI and VII demonstrate the
applicability by a smart city travel service composition applica-
tion and an air pollution detection and response application, re-
spectively, and also compare the performance of IoT-HiTrust
with Adaptive IoT Trust [6] and ObjectiveTrust [14]. Finally,
Section VIII concludes the paper and outlines some future re-
search areas.

II. RELATED WORK

Mobile IoT systems can be characterized as a hybrid of P2P
and social networks [6, 14] because IoT devices are mostly mo-
bile heterogeneous entities with limited capacity, yet are mostly
human carried or human operated. IoT trust management must
take into account social relationships among device owners in
order to maximize protocol performance. Existing trust man-
agement for P2P or mobile ad hoc systems [10, 17, 20, 25, 26,
36] therefore cannot be applied directly to mobile IoT systems

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

because they do not scale well with a huge number of heteroge-
neous IoT nodes and do not consider “social trust” among IoT
device owners for service trustworthiness assessment.

Trust management protocols for IoT systems are still emerg-
ing [35]. There are only a handful of IoT trust protocols de-
signed and evaluated to-date.

Bao, et al. [2, 3, 4, 5, 6] pioneered the concept of distributed
IoT trust management where each IoT device evaluates other
IoT devices using both direct service experiences and indirect
recommendations. Adaptive IoT Trust, a distributed IoT trust
management protocol, is the end product. Adaptive trust man-
agement is achieved by determining the best way to combine
direct trust (from direct experiences) and indirect trust (from
recommendations) dynamically to minimize convergence time
and trust estimation bias in the presence of malicious nodes per-
forming opportunistic service and collusion attacks. Direct ser-
vice experiences are collected based on own service experi-
ences, while recommendations are collected at the time nodes
encounter each other through social contacts. They used social
similarity to rate recommenders. A drawback is that a node may
not encounter each other often to collect enough recommenda-
tions to make informed decisions. Our IoT-HiTrust protocol
eliminates this problem, since service ratings toward a trustee
node are sent to each user’s home cloud server. So many rec-
ommendations are available in the cloud for retrieval. The
scalability issue was mitigated somewhat in [6] with a cache
management design by which a capability-limited IoT device
only keeps trust information of a subset of nodes of interest and
performs minimum computation to update trust. The method,
however, would still break down when there are a huge number
of nodes in a large-scale IoT system.

Relative to [2, 3, 4, 5, 6] our work focuses on hierarchical
trust management for achieving efficiency and scalability, with-
out compromising trust accuracy.

Chen, et al. [7] proposed a centralized IoT trust management
model based on fuzzy reputation. However, their trust manage-
ment model considers a very specific IoT environment popu-
lated with immobile sensors only without considering node mo-
bility or scalability issues.

Saied et al. [15] proposed a context-aware and multi-service
approach for centralized trust management in IoT systems
against malicious attacks. However, it requires a centralized
trusted entity to collect and disseminate all trust data. Their
work does not address how trust data may be collected and how
the centralized trusted entity may be implemented to scale to a
large number of IoT devices.

Nitti et al. [14] proposed two models for IoT trust manage-
ment: a subjective model (called SubjectiveTrust) for distrib-
uted trust management with each node maintaining its own trust
and service experience data, and an objective model (called Ob-
jectiveTrust) with a set of nodes forming a centralized reposi-
tory for storing trust and service experience data for all the
nodes in the system. Both subjective and objective models rely
on a friendship social network graph as input to know the “cen-
trality” of a node to another node or all nodes in the network.
The distributed trust management protocol (SubjectiveTrust) is
used by each individual node to assess its “subjective trust” to-
ward a peer IoT since each node maintains its own data. A node
assesses the trust score of another node through a weighted sum

of the following three scores: centrality, own service experi-
ences, and recommendations filtered by credibility. The central-
ity score (in the range of 0 to 1) of j as evaluated by i is com-
puted by the degree of common friends between i and j. The
credibility score of k (a recommender that provides a recom-
mendation to i about j) as evaluated by i is computed by a
weighted sum of own service experiences of i toward k and the
centrality score of k as evaluated by i. For scalability, each node
only stores trust information about its neighbor nodes in the so-
cial network graph. When a node wants to know the trust value
of a remote node, a search procedure is invoked to first find a
path leading to the remote node [23] whose trust value is then
computed through the trust chain found. While it is scalable in
terms of the storage cost because a node only needs to store trust
data about its neighbors, it is expensive (and hence is not scala-
ble) in terms of the communication and computational cost and
the delay may be intolerable. The objective model (Objective-
Trust) requires a set of pre-trusted nodes be in place for storing
trust information of all nodes in the system. Unlike their sub-
jective model, their objective model assesses the trust score of
a node through a weighted sum of the centrality score and the
average opinion score (long term and short term) after applying
the recommender’s credibility score to filter untrustworthy rec-
ommendations. Specifically, their objective model computes
the centrality score (in the range of 0 to 1) of j based on if j is
central in the network and if it is involved in many transactions.
It computes a recommender’s credibility score by taking into
consideration of possible collusion attacks. So the credibility
score of k (a recommender that provides opinions about i) is
proportional to k’s trust score, but inversely proportional to the
capability of k, the strong object relationship (including owner-
ship, co-location, co-work, social, and parental) between i and
k, and the number of transactions between i and k. A problem
of their objective model is that it is not clear how user-owned
IoT devices can serve the role of pre-trusted nodes. Also their
objective model essentially is to compute the “objective trust”
(common belief or reputation), not the “subjective trust” of an
IoT device, so it does not preserve the notion that trust is sub-
jective and is inherently one-to-one. This is especially problem-
atic for IoT systems since IoT devices are owned by humans
who have social relationships among themselves and the trust
of one user toward another user is inherently one-to-one and
subjective.

Relative to [7, 14, 15, 23] our work also leverages central-
ized entities (i.e., cloud servers) for storing trust data. However,
our work preserves the notion of “subjective trust” evaluation
despite the fact that trust computation is performed by cloud
servers. Unlike [7, 14, 15, 23], we address the issue of user pro-
file and trust data management for large-scale IoT systems, and
we propose a scalable report-and-query design for supporting
scalable mobile cloud IoT trust management. Lastly, unlike [14]
which must rely on the existence of a friendship social network
graph as input for specifying social relationships, we collect so-
cial relationships between each pair of IoT devices dynamically
when IoT devices encounter each other. Our social similarity
calculation method is more scalable than [14] as it is difficult if
not impossible to construct an accurate friendship social net-
work graph when there is a large number of IoT devices arriving
and leaving the system dynamically.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

Among the contemporary IoT trust management protocols
cited above, we select Adaptive IoT Trust [6] and Objective-
Trust [14] as baseline trust protocols against which IoT-HiTrust
is compared for performance analysis. The reason we select
Adaptive IoT Trust is that it is a proven protocol for distributed
IoT trust management and it outperforms existing P2P trust pro-
tocols including EigenTrust [10], PeerTrust [20], and Service-
Trust [17]. The reason we select ObjectiveTrust is that it is the
only centralized IoT trust management protocol to-date that
considers social standing and relationships for credibility rating
and recommendation filtering. Relative to Adaptive IoT Trust
and ObjectiveTrust, our work addresses scalability while
achieving “subjective trust” evaluation accuracy. Further, we
demonstrate that our hierarchical trust management protocol
outperforms these two baseline IoT trust protocols with two
real-world mobile cloud IoT applications.

III. SYSTEM MODEL

A. 3-Tier Cloud-Cloudlet-Device Architecture

IoT-HiTrust is built on top of a 3-tier mobile cloud architec-
ture [28] as illustrated in Figure 1 for hierarchical IoT trust man-
agement. IoT devices (labeled as d’s) are sitting at the bottom
tier of the hierarchy. Cloudlets (labeled as CL’s) are at the mid-
dle tier. A public cloud comprising a number of “home” cloud
servers (labeled as CS’s) is at the top tier. A user is assigned to
a fixed “home” cloud server based on load balancing reasons
and once the assignment is done, a user’s home cloud server is
not changed dynamically.

An IoT device runs IoT-HiTrust by creating virtual ma-
chines (VMs) running on the local cloudlet it is currently under
as well as on its home cloud server to solve platform/operating
system heterogeneity problems. A user’s queries and reports are
sent to its local cloudlet’s VM which subsequently relays them
to the home cloud server’s VM. In the literature [28], cloudlets
can be either “heavyweight” IoT devices (e.g., PCs, servers,
notebooks, etc.) collocated with Wi-Fi hotspots with moderate
communication, computational and storage capability, or mo-
bile operator owned powerful base stations. The communica-
tion between an IoT device and a local cloudlet therefore is typ-
ically through Wi-Fi hotspots in the formal case, and through
mobile operator’s base stations in the latter case. In this paper
for generality we consider the former case. The communication
between a cloudlet and the cloud is through the Internet. Using
IoT-HiTrust, the cloud can periodically evaluate service trust-
worthiness of all IoT devices in a cloudlet region and select a
group of IoT devices to form the region’s cloudlet. In return for
the surrogate services provided by these IoT devices, users
owning these IoT devices are granted access privileges to cloud
resources. We will call these IoT devices selected to govern a
region’s cloudlet as “cloudlet devices,” with the understanding
that cloudlet devices are just heavyweight IoT devices.

At the bottom tier sit “lightweight” IoT devices owned by
users (e.g., smart phones, sensors, PDAs, etc.). Lightweight IoT
devices typically are carried by their owners and can move from
one cloudlet to another due to mobility. When a lightweight IoT
device is disconnected from the current cloudlet, it can simply
connect to a new regional cloudlet for service continuity. Since

neither the IoT device nor the local cloudlet stores service trust-
worthiness data, an IoT device can simply recreate a VM to run
on the new local cloudlet without involving VM content trans-
fer from the old regional cloudlet to the new regional cloudlet.
To save energy and bandwidth, an IoT device always communi-
cates with the cloud through its regional cloudlet.

Figure 1 shows two cloudlets, 𝐶𝐿ଵ and 𝐶𝐿ଶ, each with three
heavyweight IoT devices serving as cloudlet devices. The “log-
ical” cloud has 5 cloud servers, 𝐶𝑆ଵ, 𝐶𝑆ଶ, 𝐶𝑆ଷ, 𝐶𝑆ସ and 𝐶𝑆ହ. In
Figure 1, 𝐶𝑆ଶ is the home cloud server of user 𝑢ଶ and 𝐶𝑆ଷ is the
home cloud server of user 𝑢ଷ. Since user 𝑢ଷ owns two IoT de-
vices, 𝑑ଷଵ and 𝑑ଷଶ, these two IoT devices’ home cloud sever is
also 𝐶𝑆ଷ. Each cloudlet only relays requests/responses from/to
IoT devices under its region. In addition, each cloudlet caches
trust information. In case of Internet disconnection, a cloudlet
can operate in disconnection mode [16] to answer user queries
issued from IoT devices in its region. The regional size covers
the radio range to ensure that mobility and instability of radio
environments will not be a major factor to prevent nodes under
a cloudlet region from communicating directly with the cloudlet.
When an IoT device in one cloudlet region moves to another
cloudlet region, it performs a registration/deregistration action
to the two involving cloudlets. As illustrated in Figure 1, user
𝑢ଷ moves across the cloudlet boundary, causing deregistration
with the old cloudlet 𝐶𝐿ଵ and registration with the new cloudlet
𝐶𝐿ଶ. A pointer is recorded by 𝐶𝐿ଵ so that a message for 𝑢ଷ can
be redirected to 𝐶𝐿ଶ.

Report
and

Query

Responsed31

d32

u3

u2
d21

u1

Response
Report and

Query

Home cloud
server of u3

CS1
CS3

Home cloud
server of u2

CS2

CS4

CS5

Home cloud
server of u1

Home cloud
server of u4

Home cloud
server of u5

d31

d32

u3

u4
d52u5

d51

Response
Report and

Query

ResponseReport
and

Query

Cloudlet
Boundary
Crossing

CL1
CL2

Figure 1: Information Flow in the 3-Tier Cloud-Cloudlet-

Device Architecture.

B. Threat Model

By a malicious node, we refer to a node having only self-
interest. A smart malicious node can choose to provide good or
bad service depending on whether it would benefit itself and its
allies (other malicious nodes or friends) which altogether can
collude to monopoly service. By trustworthiness of a node in
the context of service management, we mean (a) when acting as

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

a service provider, whether it can deliver high service quality,
and (b) when acting as a service recommender, whether it is
truthful in providing the service ratings of service providers it
claims to have service experiences on. A malicious node in gen-
eral can perform communication protocol attacks to disrupt net-
work operations. We assume such attack is handled by intrusion
detection techniques [13] and is not addressed in this paper. We
are concerned with trust-related attacks that can disrupt trust-
based service management.

In this paper we consider a malicious IoT device (because
its owner is malicious) capable of performing the following
trust-related attacks:
1. Self-promoting attacks: a malicious node can promote its

importance (by providing good recommendations for itself)
for it to be selected as an SP, but then can provide bad or
malfunctioned service. We address this attack by not allow-
ing self-recommendations in trust computation (see Sec-
tion IV.B for detail).

2. Bad-mouthing attacks: a malicious node can ruin the repu-
tation of a well-behaved device (by providing bad recom-
mendations against it) so as to decrease the chance of that
good device being selected as an SP. Bad-mouthing attack
is a form of collusion attack when multiple malicious nodes
perform bad-mouthing attacks to a good node to ruin the
service trustworthiness of the good node. We address this
attack by “social similarity based recommendation filtering”
to filter out untrustworthy service rating recommendations
(see Section IV.A for detail).

3. Ballot-stuffing attacks: a malicious node can boost the rep-
utation of a malicious node (by providing good recommen-
dations) so as to increase the chance of that bad device be-
ing selected as an SP. Ballot-stuffing attack is also a form
of collusion attack when multiple malicious nodes perform
ballot-stuffing attacks to boost the service trustworthiness
of one another. We address this attack by “social similarity
based recommendation filtering” to filter out untrustworthy
service rating recommendations (see Section IV.A for de-
tail).

4. Discriminatory attacks (or conflicting behavior attacks): a
malicious node can discriminatively attack non-friends or
nodes without strong social ties (without many common
friends) because of human nature or propensity towards
friends in social IoT systems. While serving as a recom-
mender, if the target node is a friend or a malicious node, it
can provide a good service recommendation (i.e., ballot
stuffing attacks) even if the target node does not provide
good service. On the other hand, if the target node is a non-
friend, it can provide a bad service recommendation (i.e.,
bad-mouthing attacks) even if the target node provides
good service. We address this attack by considering trust
being formed not only from recommendations, but also
from self-observations (see Section IV.B for detail). Self-
observations are one-to-one in nature, so the service behav-
ior of a malicious node performing discriminatory attacks
on a service requester will be remembered by the service

requester. Consequently, our trust formation design has in-
herently addressed discriminatory attacks.

5. Opportunistic service attacks: a malicious node can pro-
vide good service to gain high reputation opportunistically
especially when it senses its trust standing is dropping be-
cause of providing bad service. With a good trust standing,
it can effectively collude with other bad nodes to perform
bad-mouthing and ballot-stuffing attacks. We assume that
a malicious node has a low trust score threshold below
which it will behave (providing good service) in order to
raise its trust standing, and a high trust score threshold
above which it will misbehave (providing bad service) to
take advantage of its high trust standing for self-gain. We
address this attack by “adaptive filtering” (see Section IV.B
for detail) which adjusts the weights associated with direct
trust and indirect trust to adapt to new evidence (oscillating
service experiences) exhibited from opportunistic service
attacks, thus effectively reflecting the true service trustwor-
thiness level of an IoT device dynamically.

IV. IOT-HITRUST PROTOCOL DESIGN

In this section we provide a detailed description of our IoT-
HiTrust protocol design for trust-based service management of
mobile cloud IoT systems. We first describe our recommenda-
tion filtering design based on social similarity. We then describe
our report-and-query design for scalability. Then we describe
the actions taken by the entities in our 3-tier mobile cloud hier-
archy (IoT devices, cloudlets, and cloud servers) for IoT-
HiTrust protocol execution. Lastly we describe how we make
our 3-tier mobile cloud hierarchy resilient to network discon-
nection.

A. Recommendation Filtering based on Social Similarity
Our trust model is based on social relationships among hu-

man owners of IoT devices. A user upon receiving a recommen-
dation from an IoT device, will measure the trustworthiness of
the recommender (or rater) so as to apply “recommendation fil-
tering” based on its social relationships with the recommender
(or rater). We consider three core social metrics for measuring
social relationships which are multifaceted: friendship (repre-
senting intimacy), social contact (representing closeness), and
community of interest (representing knowledge and standard on
the subject matter). The idea is that two users sharing similar
social relationships are likely to have similar views towards ser-
vices provided by a trustee IoT device. Social relationships be-
tween owners are translated into social relationships between
IoT devices as follows:
1. Friendship: Each owner has a list of friends (i.e., other own-

ers), representing its social relationships. This friendship list
varies dynamically as an owner makes or denies other own-
ers as friends. If the owners of two IoT devices are friends,
then it is likely they will be cooperative with each other.
The friendship list contains only direct friends of an owner,
not friends of a friend. Friendship is measured by the degree
of commonality of direct friends. That is, if two owners have
about the same set of direct friends (including each other),

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

they have a strong tie in friendship.
2. Social Contact: A device may be carried or operated by its

owner in certain environments (e.g., at work, school or
home). Two devices have high social contact opportunities
when their owners go to the same locations. The social con-
tact relationship is measured by the degree of commonality
of social contacts.

3. Community of Interest (CoI): Each owner has a list of com-
munities of interest such as health, sport, travel, etc. Nodes
belonging to a similar set of communities likely share sim-
ilar interests or capabilities [10]. The CoI relationship is
measured by the degree of commonality of communities of
interest.

To facility measuring social similarity with other owners, an
IoT device belonging to user 𝑢௫ maintains the following three
lists ሺ𝐹, 𝑆, 𝐶) in its profile (as illustrated in Figure 2):
1. Friends of 𝑢௫, denoted by a set 𝐹௫ = {𝑢ଵ, 𝑢ଶ, … };
2. Locations that 𝑢௫ frequently visited for social contact, de-

noted by a set 𝑆௫ = {𝐿𝑜𝑐ଵ, 𝐿𝑜𝑐ଶ, … };
3. Communities of interest that 𝑢௫ is a member of, denoted by

a set 𝐶௫ = {𝐶𝑜𝐼ଵ, 𝐶𝑜𝐼ଶ, … }.
A user may designate one of its IoT devices to update such

information and share the information with other IoT devices it
owns. Social similarity is inherently between two users, but it is
propagated to IoT devices owned by the two users, so social
similarity is also between two devices.

u2 u5 ...

Loc1 Loc7 ...

CoI3 CoI4 ...

friend list

location list

CoI list

d11

u1

d21

u2

User u1's profile

User u2's profile

d12

Figure 2: Each User Stores Its Friend, Location, and CoI

Lists for Detecting Social Similarity with other Users.

B. Report-and-Query Design for Scalability

We propose a simple report-and-query design for an IoT de-
vice to communicate with its local cloudlet for trust-based ser-
vice management.

1) Report Design with Privacy Considerations
An IoT device (on behalf of its owner) dynamically collects

and reports to the cloud two pieces of sensitive information
about other devices: (a) a service rating 𝑓௫,ሺ𝑡ሻ in the range of 0
to 1 toward device 𝑑’s service quality after a service is received
and rated by its owner (user 𝑢௫) at time t, and (b) a social simi-
larity score in the range of 0 to 1 toward another user acting as
a recommender. The former is to assess the trustworthiness of
the service quality of a service provider device based on self-

experience. The latter is to assess the trustworthiness of a rec-
ommender who recommends the service quality of a service
provider. No other information about other devices is kept in an
IoT device. Moreover, these two pieces of information are re-
ported to the cloud and saved in the cloud. As a result, an IoT
device will not store service trustworthiness data of another IoT
device. Consequently, when a device is compromised, only the
private/sensitive information regarding the owner of the com-
promised IoT device itself will be leaked out through its user
profile which contains the owner’s friendship, social contact,
and CoI information.

A user would not want to reveal its social relationship data
to another user when they encounter each other and exchange
their friendship, social contact, and CoI information to compute
mutual social similarity. This is achieved by our privacy-pre-
serving social similarity computation design described below.
Each user maintains its ሺ𝐹, 𝑆, 𝐶) profile separately. When user
𝑢௫ encounters user 𝑢௬, they exchange their ሺ𝐹௫, 𝑆௫, 𝐶௫) and
ሺ𝐹௬, 𝑆௬, 𝐶௬) profiles to measure their mutual social similarity.
To preserve energy, they can exchange the profile information
the very first time they encounter or periodically. This is espe-
cially so if user profile information does not change much over
time. To preserve privacy, they only want to reveal common
elements in the F, S, and C lists (if any) but do not want to let
the other party know their entire ሺ𝐹, 𝑆, 𝐶ሻ profile. To achieve
this, users 𝑢௫ and 𝑢௬ can first authenticate each other using
standard PKI. User 𝑢௫ can then use a cryptographic hash func-
tion in combination with a secret session key K (established via
PKI during user authentication) to generate a hash-based mes-
sage authentication code HMAC(K, p) for p ሺ𝐹௫, 𝑆௫, 𝐶௫ሻ and
then transmit HMAC(K, p) along with HMAC(K, HMAC(K, p))
to 𝑢௬. When 𝑢௬ receives the message, it can unilaterally gener-
ate HMAC(K, HMAC(K, p)) using HMAC(K, p) sent by 𝑢௫. If
this matches with HMAC(K, HMAC(K, p)) sent by 𝑢௫, then 𝑢௬
verifies the message received is indeed sent by 𝑢௫. Then 𝑢௬ can
compare HMAC(K, p) with HMAC(K, q) for qሺ𝐹௬, 𝑆௬, 𝐶௬). If
HMAC(K, p)=HMAC(K, q) then p=q and a common friend, lo-
cation, or CoI (corresponding to F, S, or C) is identified. If
HMAC(K, p)≠HMAC(K, q), it prevents the identities of uncom-
mon friends/locations/CoIs from being revealed.

We adopt “cosine similarity” to measure the distance of two
social relationship lists (see Figure 2), with 1 representing com-
plete similarity and 0 representing no similarity. The physical
meaning of cosine similarity is the cosine of the angle between
the two vectors deriving from the two lists, with the cosine
value of 1 meaning totally identical lists and the cosine value of
0 meaning totally non-overlapping lists. Computational effi-
ciency is the main reason why we choose cosine similarity to
measure the similarity of two lists in high-dimensional positive
spaces because of limited computational capacity of IoT de-
vices. Specifically, the following three similarity metrics are
measured as follows:
 Friendship Similarity (𝑠𝑖𝑚): The friendship similarity is

a powerful social relationship (intimacy) for screening rec-
ommendations. After two users 𝑢௫ and 𝑢௬ exchange their
friend lists, 𝐹௫ and 𝐹௬, they compute the “cosine similarity”
𝑠𝑖𝑚 as follows:

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ ൌ
ห𝐹௫ ∩ 𝐹௬ห

ට|𝐹௫| ∙ ห𝐹௬ห
 (1)

Where the notation |𝐴| represents the cardinality of set 𝐴.
 Social Contact Similarity (𝑠𝑖𝑚௦): The social contact simi-

larity represents closeness and is an indication if two nodes
share the same location-based social contacts (e.g., co-
workers at work, classmates at school, and co-residents at
home) and thus share the same sentiment towards devices
which provide the same service. The operational area could
be partitioned into sub-grids. User 𝑢௫ records the IDs of
sub-grids it has visited in its location list 𝑆௫ for social con-
tact. After two users 𝑢௫ and 𝑢௬ exchange their location lists,
𝑆௫ and 𝑆௬, they could compute 𝑠𝑖𝑚௦ in the same way of
computing 𝑠𝑖𝑚 as follows:

𝑠𝑖𝑚௦൫𝑢௫, 𝑢௬൯ ൌ
ห𝑆௫ ∩ 𝑆௬ห

ට|𝑆௫| ∙ ห𝑆௬ห
 (2)

 Community of Interest Similarity (𝑠𝑖𝑚): Two users in
the same CoI share similar social interests and most likely
have common knowledge and standard toward a service
provided by the same device. Also very likely two users who
have used services provided by the same IoT device can
form a CoI (or are in the same CoI). After two users 𝑢௫ and
𝑢௬ exchange their device lists, 𝐶௫ and 𝐶௬, they could com-
pute 𝑠𝑖𝑚 as follows:

𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ ൌ
ห𝐶௫ ∩ 𝐶௬ห

ට|𝐶௫| ∙ ห𝐶௬ห
 (3)

The above three social similarity measures
(𝑠𝑖𝑚, 𝑠𝑖𝑚௦, 𝑠𝑖𝑚ሻ are computed upon the encountering event
of user 𝑢௫ with user 𝑢௬, and are reported by user 𝑢௫ and user
𝑢௬ through their local cloudlets to the home cloud servers of
user 𝑢௫ and user 𝑢௬, respectively.

When the home cloud server of 𝑢௫ receives 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯,
𝑖 ∈ ሼ𝑓, 𝑠, 𝑐ሽ, from user 𝑢௫ which just encounters user 𝑢௬ , it
computes the social similarity between users 𝑢௫ and 𝑢௬ (who
now serves as a rater or recommender) as a weighted combina-
tion of all social similarity metrics as follows:

𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ ൌ 𝑤 ∙ 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯
∈ሼ,௦,ሽ

 (4)

where 0 𝑤, 𝑤௦, 𝑤 1, with 𝑤 𝑤௦ 𝑤 ൌ 1, are social
similarity weight parameters to be dynamically adjusted by IoT-
HiTrust to maximize trust protocol performance.

2) Query Design
Whenever a user wants to know the trust value of an IoT

device, it simply sends a query to its home cloud server. For
example, in Figure 1, 𝑢ଶ will send a query to its home cloud
server 𝐶𝑆ଶ to know its “subjective trust” toward 𝑑ଷଵ which be-
longs to 𝑢ଷ.

Let 𝑡௫, denote the “subjective trust” of user 𝑢௫ toward 𝑑.
The home cloud server of 𝑢௫ computes 𝑡௫, by combining 𝑢௫

ᇱ 𝑠

direct trust toward 𝑑 ሺ𝑡௫,
ௗ ሻ based on self-observation rating re-

ports, and 𝑢௫
ᇱ 𝑠 indirect trust toward 𝑑 (𝑡௫,

 ሻ based on other us-
ers’ rating reports, as follows:

𝑡௫, ൌ 𝜇௫, ∙ 𝑡௫,
ௗ ሺ1 െ 𝜇௫,ሻ ∙ 𝑡௫,

 (5)

Here, 𝜇௫, is a weight parameter (0 𝜇 1) to weigh the
importance of direct trust relative to indirect trust. The selection
of 𝜇௫, is critical to trust evaluation. We apply adaptive filtering
developed in [6] to adjust 𝜇௫, dynamically to effectively cope
with malicious attacks and to improve trust accuracy.

The direct trust 𝑡௫,
ௗ in Equation 5 is computed by Beta Rep-

utation [9] under which the trust value is modeled as a random
variable in the range of [0, 1] following the Beta ሺ𝛼, 𝛽ሻ distri-
bution. The numbers of positive and negative experiences are
modeled as binomial random variables. Since the beta-binomial
is a conjugate pair, this leads to a posterior beta distribution with
updated parameters. Specifically, we can calculate direct trust
of 𝑢௫ toward device 𝑑, 𝑡௫,

ௗ , as follows:

𝑡௫,
ௗ ൌ 𝛼/ሺ𝛼 𝛽ሻ (6)

where 𝛼 is the amount of positive service experience with time
decay and 𝛽 is the amount of negative service experience with
time decay, calculated as 𝛼 = ∑ 𝑓௫,ሺ𝑡ሻ 𝑒ିఒሺ௧ೢି௧ሻand 𝛽 ൌ
∑ ሺ1 െ 𝑓௫,ሺ𝑡ሻሻ 𝑒ିఒሺ௧ೢି௧ሻ where 𝑓௫,ሺ𝑡ሻis a service rating
received from user 𝑢௫ at time t about 𝑑 ’s service quality,
𝑡௪ is the current time, and 𝜆ௗ is the decay parameter to dis-
count old service experiences. Here 𝑓௫, contributes to positive
service experience and 1 െ 𝑓௫, contributes to negative service
experience. If 𝑡 ൌ 𝑡௪ then the service rating has the highest
credibility of 1; otherwise, the credibility of the service rating
decays over time exponentially. The summation is over all ser-
vice ratings received from user 𝑢௫, including old and new ser-
vice ratings maintained in user 𝑢௫′𝑠 cloud server.

To compute indirect trust of 𝑢௫ toward device 𝑑 , 𝑡௫,
 , the

home cloud server of 𝑢௫ first locates social similarity records
𝑠𝑖𝑚ሺ𝑢௫, 𝑢௭ሻ′𝑠 in its local storage. The home cloud server of
𝑢௫ then selects top-𝑛 raters with the highest similarity scores
with 𝑢௫ among all and calculates the indirect trust (𝑡௫,

) towards
device 𝑑 as follows:

𝑡௫,
 ൌ

𝑠𝑖𝑚ሺ𝑢௫, 𝑢௭ሻ
∑ 𝑠𝑖𝑚ሺ𝑢௫, 𝑢௪ሻ௨ೢ∈

 𝑡௭,
ௗ

௨∈

 (7)

The indirect trust model as indicated in Equation 7 is essen-
tially a weighted sum of service ratings reported by other IoT
devices (acting as recommenders) with a higher weight giving
to a recommender with a higher social similarity. It is based on
a widely accepted concept that mobile IoT systems can be char-
acterized as a hybrid of P2P and social networks and IoT trust
management must take into account social relationships among
device owners in order to maximize protocol performance [6,
14]. Here, 𝑈 is a set of up to 𝑛 raters whose 𝑠𝑖𝑚ሺ𝑢௫, 𝑢௭ሻ
scores are the highest, 𝑢௭ ∈ 𝑈 is a rater selected, and 𝑡௭,

ௗ is the
service rating provided by 𝑢௭ toward device 𝑑. We note that
𝑡௭,

ௗ is stored in the home cloud server of 𝑢௭ but it is obtainable
after the home cloud server of 𝑢௫ communicates with the home
cloud server of 𝑢௭. In Equation 7, the service rating provided

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

from 𝑢௭ toward 𝑑 ൫i. e. , 𝑡௭,
ௗ ൯ is weighted by the ratio of the

similarity score of 𝑢௫ toward 𝑢௭ to the sum of the similarity
scores toward all raters. That is, if the similarity score of 𝑢௫ to-
ward 𝑢௭ is high relative to that of 𝑢௫ toward other raters, then
the home cloud server of 𝑢௫ will put a relatively high weight on
the rating 𝑡௭,

ௗ provided by 𝑢௭ to compute 𝑡௫,
 .

C. Protocol Execution Description

In this section, we elaborate in detail the actions taken by the
entities in our 3-tier mobile cloud hierarchy (IoT devices, cloud-
lets, and cloud servers) while executing IoT-HiTrust. For
user 𝑢௫, we use 𝐶𝐿௫ and 𝐶𝑆௫ to refer to its local cloudlet and
home cloud server, respectively, in the 3-tier mobile cloud hi-
erarchy. We note that while 𝐶𝑆௫ is fixed, 𝐶𝐿௫ is dynamically
changed as the user roams from one region to another.

 Figure 3 shows a flowchart of our trust management proto-
col execution from the perspective of user 𝑢௫. As illustrated in
Figure 3, the actions performed by 𝑢௫ are as follows:
(1) When 𝑢௫ just receives a service completed by 𝑑 belonging

to 𝑢௬, 𝑢௫ (using its primary IoT device) reports to 𝐶𝑆௫
through 𝐶𝐿௫ a service rating report (𝑓௫, along with the
timestamp at which service is rendered) indicating the ex-
tent to which it is satisfied with the service provided by 𝑑.

(2) When 𝑢௫ encounters 𝑢௬ , they exchange their ሺ𝐹௫, 𝑆௫, 𝐶௫)
and ሺ𝐹௬, 𝑆௬, 𝐶௬) profiles so as to measure their mutual so-
cial similarity 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ (Equations 1, 2, 3 and 4). Then
𝑢௫ and 𝑢௬ report it to their respective home cloud servers
𝐶𝑆௫ and 𝐶𝑆௬ through their local cloudlets 𝐶𝐿௫ and 𝐶𝐿௬,re-
spectively. Energy constrained devices may re-
port 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ only the first time or periodically to con-
serve energy.

(3) When 𝑢௫ wants to know service trustworthiness of 𝑑 be-
longing to 𝑢௬ , 𝑢௫ (using its primary IoT device) sends a
query to 𝐶𝑆௫ through 𝐶𝐿௫ and waits for a reply back from
𝐶𝐿௫ returning the trust score of 𝑑.

Figure 3: Action Flowchart for User 𝑢௫.

CSx receives a service

rating fx,i along with
the timestamp from

user ux about the

service quality of di

belonging to uy

 CSx updates the α

and β values for ux
toward di

CSx stores the
updated value in the

local database

CSx receives a query

from user ux asking for

the trust value of di

belonging to uy

CSx first computes the

indirect trust of ux
toward device di using

values sim(ux,uz)
received and stored

earlier

CSx computes the

overall trust of ux
toward device di

CSx receives

sim(ux,uy) from user

ux about the social
similarity between

ux and uy

CSx updates direct

trust of ux toward

device di by Equation
6 and stores the

updated trust value in
the local database

CSx returns tx,i to user

ux via CLx

CSx’s action in response to an event
(1) (3)

(2)

Figure 4: Action Flowchart for Cloud Server 𝐶𝑆௫.

Figure 4 shows a flowchart of our trust management proto-

col execution from the perspective of 𝐶𝑆௫, the home cloud
server of user 𝑢௫ . As illustrated in Figure 4, the actions per-
formed by 𝐶𝑆௫are as follows:
(1) When 𝐶𝑆௫ receives a new service rating 𝑓௫,ሺ𝑡ሻ along with

the timestamp t from user 𝑢௫ about the service quality of
𝑑 belonging to 𝑢௬, 𝐶𝑆௫ updates 𝛼 and 𝛽 values for 𝑢௫ to-
ward 𝑑 based on 𝑢௫′𝑠 own old and new service ratings to-
ward 𝑑 with trust decay over time. Then, 𝐶𝑆௫updates di-
rect trust of 𝑢௫ toward device 𝑑 (𝑡௫,

ௗ) by Equation 6 and
stores the updated 𝑡௫,

ௗ value in the local database.
(2) When 𝐶𝑆௫ receives 𝑠𝑖𝑚ሺ𝑢௫, 𝑢௬ሻfrom user 𝑢௫ about the so-

cial similarity between 𝑢௫ and 𝑢௬, 𝐶𝑆௫ stores the updated
𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ value in the local database.

(3) When 𝐶𝑆௫ receives a query from user 𝑢௫ asking for the
trust value of 𝑑 belonging to 𝑢௬, 𝐶𝑆௫ first computes the
indirect trust of 𝑢௫ toward device 𝑑 ሺ𝑡௫,

 ሻ by Equation 7
using 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ values received earlier and stored in its
local database. Then, 𝐶𝑆௫ computes the overall trust of 𝑢௫
toward device 𝑑 (𝑡௫,ሻ by Equation 5 using 𝑡௫,

ௗ and 𝜇௫,
values stored in the local database. Lastly, 𝐶𝑆௫ returns
𝑡௫, to user 𝑢௫ via 𝐶𝐿௫.

Figure 5 shows a flowchart of our trust management proto-
col execution from the perspective of 𝐶𝐿௫, the local cloudlet of
user 𝑢௫ . As illustrated in Figure 5, the actions performed by
𝐶𝐿௫ are as follows:
(1) When 𝐶𝐿௫ receives a service rating 𝑓௫, along with the

timestamp from user 𝑢௫ about the service quality of 𝑑 be-
longing to 𝑢௬, 𝐶𝐿௫ forwards it to 𝑢௫′s home cloud server
𝐶𝑆௫.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

(2) When 𝐶𝐿௫ receives 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ from user 𝑢௫ about the
social similarity between 𝑢௫ and 𝑢௬ , 𝐶𝐿௫ forwards it to
𝑢௫′𝑠 home cloud server 𝐶𝑆௫.

(3) When 𝐶𝐿௫ receives a query from user 𝑢௫ asking for the
trust value of 𝑑 belonging to 𝑢௬, 𝐶𝐿௫ forwards the query
to 𝑢௫′𝑠 home cloud server 𝐶𝑆௫. Then, after receiving 𝑡௫, as
a reply from 𝐶𝑆௫, 𝐶𝐿௫forwards it to user 𝑢௫.

Figure 5: Action Flowchart for Cloudlet 𝐶𝐿௫.

D. Dealing with Network Disconnection

A cloudlet may lose connectivity with the cloud if all heav-
yweight IoT devices selected as the cloudlet devices for the
cloudlet experience network disconnection in emergency situa-
tions such as a network service disruption. A cloudlet must
maintain service continuity to IoT devices during network dis-
connection. In case the cloudlet can still communicate with a
neighbor cloudlet which still has connectivity with the cloud,
then all reports, queries, and responses can route through the
neighbor cloudlet. Otherwise, it will have to operate in discon-
nected mode [16] using cached data. For a heavy IoT device
that is typically not mobile or only moves within the region, the
home regional cloudlet has all the data it needs for answering a
user query regarding the trustworthiness of the IoT device, since
it caches all reports, responses, and social similarity reports
with the IoT device which most of the time stays within the lo-
cal cloudlet region. So all the local cloudlet has to do is to fol-
low the computational procedure described earlier to assess the
trustworthiness of the IoT device, as if the computation is per-
formed by the cloud itself. For a lightweight IoT device, the
home region cloudlet may lose some precision in estimating the
trustworthiness of the IoT device because the local cloudlet may
not have all the data needed. For example, the local cloudlet
may miss some reports of a lightweight IoT device when the
IoT device moves away from its region. The trust accuracy is
largely affected by the mobility of the user carrying the IoT de-
vice. In Section V we will assess the extent to which the trust
accuracy is impacted under various mobility scenarios.

E. System Responsiveness

Our solution greatly improves responsiveness of the system
for two reasons. First, all IoT devices in the system inde-
pendently and concurrently perform trustworthiness evaluation
toward service providers or recommenders they encounter and
report the trustworthiness data to the cloud through local cloud-
lets, as explained in Section IV.C and illustrated in Figures 3, 4,
and 5. As a result, trustworthiness data can be quickly accumu-
lated in the cloud concurrently by all the IoT devices in the sys-
tem, allowing the system to quickly answer a query regarding
the service trustworthiness of a device. Secondly, our solution
does not rely on the existence of a social network graph as input
for specifying social relationships. Such approaches (e.g., [14,
23]) require the cloud to collect social and interaction relation-
ships information from individual IoT devices dynamically in
order to maintain an accurate and up-to-date social network
graph. The amount of traffic generated by cloud-to-IoT query
messages and IoT-to-cloud reply messages due to a large num-
ber of IoT devices simultaneously communicating with the
cloud will not only consume IoT energy but also cripple the
cloud communication network and reduce system responsive-
ness. Our solution collects social relationships between each
pair of IoT devices dynamically only when IoT devices encoun-
ter each other. As a result, only IoT-to-cloud report traffic is
being generated sparingly at the encountering moments, as ex-
plained in Section IV.B.1 and illustrated in Figure 3. This
avoids a huge amount of traffic from being generated simulta-
neously by a large number of IoT devices and thus greatly im-
proves system responsiveness. In Section V.A we perform a
complexity analysis of the communication and storage cost to
back up our claim that our 3-tier cloud-cloudlet-device hierar-
chical trust-based service management protocol provides ade-
quate system responsiveness. Further improvement in respon-
siveness is possible by applying intelligent cache management
(e.g., as in [6]) so that cloudlets cache trustworthiness data for
IoT devices (acting as a service provider or as a recommender)
under their regions, thereby allowing a query regarding the ser-
vice trustworthiness of a local IoT device to be answered by a
local cloudlet using the cached trustworthiness data, without
having to route the query to the cloud for query processing. The
topic of cache coherence protocol design is outside the scope of
this paper.

V. IOT-HITRUST PROTOCOL PERFORMANCE

In this section, we analyze IoT-HiTrust system perfor-
mance. We first perform a complexity analysis of the commu-
nication and storage cost for evaluating scalability. Then we
conduct a performance analysis using ns-3 network simulator
[24]. We compare IoT-HiTrust with two baseline trust proto-
cols, Adaptive IoT Trust [6] and ObjectiveTrust [14]. See Sec-
tion II for the detail of these two baseline trust protocols chosen
for our comparative analysis.

A. Scalability Analysis

Table 1 summarizes the complexity analysis results. We
evaluate the scalability of IoT-HiTrust against Adaptive IoT
Trust [6] and ObjectiveTrust [14] based on the complexity anal-
ysis results.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

Table 1: Complexity Analysis of IoT-HiTrust against

Adaptive IoT Trust [6] and ObjectiveTrust [14].
Protocol Communication Complexity Storage Complexity

IoT-HiTrust Oሺ 𝜆

ே

ୀଵ

 𝑞 𝜋ሻ Oሺ1ሻ

Adaptive IoT
Trust Oሺ 𝜋ሻ

ே

ୀଵ

 Oሺ𝑁்ሻ

ObjectiveTrust ٭O ቌ 𝜆

ே

ୀଵ

 𝑞ቍ Oሺ1ሻ

 .assuming existence of a global friendship social network graph as input٭

Communication Cost Complexity: For IoT-HiTrust, the

communication cost per IoT device (from node i’s perspective)

is of complexity Oሺ 𝜆
ே

ୀଵ
 𝑞 𝜋ሻ where 𝑁் is the

number of IoT devices in the system, 𝜆 is the service request
rate of node i to node j, 𝑞 is the query rate of node i about node
j’s trust status, and 𝜋 is the encountering rate of node i with
node j which can be derived by analyzing the encounter or in-
teraction pattern, e.g., a power-law distribution, as supported by
the analysis of many real traces [27]. Upon completing a service
from node j, node i sends its service quality assessment toward
node j to its home cloud server. When node i wishes to find out
if node j is trustworthy, it sends a query to its home cloud server.
Lastly, upon encountering node j, node i exchanges its user pro-
file with node j’s user profile while preserving privacy to com-
pute three social similarity measures (𝑠𝑖𝑚, 𝑠𝑖𝑚௦, 𝑠𝑖𝑚ሻ be-
tween node i and node j according to Equations 1, 2, and 3, after
which node i sends (𝑠𝑖𝑚, 𝑠𝑖𝑚௦, 𝑠𝑖𝑚ሻ to its home cloud server
for storage. The one extra message needed for sending com-
puted social similarity values to its home cloud server does not
change the complexity.

For ObjectiveTrust [14], the communication cost per IoT de-
vice (from node i’s perspective) is of complexity

O ቀ 𝜆
ே

ୀଵ
 𝑞ቁ. Upon completing a service from node j,

node i sends its service quality assessment toward node j to the
cloud. When node i wishes to find out if node j is trustworthy,
it sends a query to the cloud. There is no need for node i to ex-
change social relationships upon encountering each other, or re-
port the social similarity between node i and node j to the cloud
because ObjectiveTrust assumes the existence of a friendship
social network graph as input for specifying social relationships
(e.g., centrality and credibility) and such information is already
loaded in the cloud. Due to this assumption, ObjectiveTrust’s
communication cost complexity is lower than that of IoT-

HiTrust by Oሺ 𝜋ሻ.
ே

ୀଵ

For Adaptive IoT Trust [6], the communication cost per node

(from node i’s perspective) is Oሺ 𝜋ሻ
ே

ୀଵ
 because upon node

i encountering node j, node i exchanges its user profile with
node j’s user profile for computing social similarity and also
exchanges its service quality experiences with node j’s service

quality experiences toward other nodes in the system for com-
puting trust scores toward other nodes in the system. There is
no communication cost for node i to send its own service quality
assessment results and social similarity results to the cloud be-
cause node i stores all service quality assessment results (in-
cluding from itself and from all other nodes) as well as social
similarity results in its local storage. When node i wishes to
know node j’s trust status it simply looks up its trust data in the
local storage. Compared with IoT-HiTrust, Adaptive IoT Trust

communication cost complexity is lower by O ቀ 𝜆
ே

ୀଵ

𝑞ቁ since node i sends neither trust data nor trust status queries

to the cloud.
Storage Cost Complexity: For IoT-HiTrust, the storage

cost per node (from node i’s perspective) is O(1) for storing its
own user profile only (i.e., friend, social contact, and commu-
nity-interest lists) because all service quality experience, social
similarity, and trust data are stored in the cloud. The storage
cost per cloud server is O(NT/NC) for storing service quality ex-
periences, social similarity, and trust data of NT/NC devices,
where NT is the number of IoT devices and NC is the number of
cloud servers, as the load is shared by all cloud servers (through
the use of a fair hash function).

For ObjectiveTrust [14], the storage cost per node is also
O(1) because all data are also stored in the cloud.

For Adaptive IoT Trust [6], the storage cost per node is
O(NT) because for every other IoT device, a storage space is
needed for storing service quality experiences, social similarity,
and trust data. Apparently Adaptive IoT Trust is not scalable
when NT is sufficiently large.

Scalability Evaluation: Adaptive IoT Trust is not scalable
in the storage cost when NT is sufficiently large. IoT-HiTrust
and ObjectiveTrust are both scalable in the communication and
storage cost. However, IoT-HiTrust achieves better scalability
than ObjectiveTrust for two reasons: (a) with the hierarchical
mobile cloud IoT architecture under IoT-HiTrust, an IoT device
only communicates with its local cloudlet over a short radio-
range distance when forwarding service quality experience re-
sults and social similarity information to the cloud or querying
trust data from the cloud, whereas under ObjectiveTrust, an IoT
device communicates with the cloud over a long haul distance;
(b) IoT-HiTrust collects social relationships between each pair
of IoT devices dynamically when IoT devices encounter each
other, while ObjectiveTrust must rely on the existence of a
friendship social network graph for specifying social relation-
ships. Point (b) above is especially problematic for scalability
of ObjectiveTrust because it will be costly if not impossible to
obtain a global social network graph with a huge number of IoT
devices changing their social profiles dynamically.

Table 2: Parameter List for Performance Evaluation.

Parameter Meaning Default

𝑁் Number of IoT devices 2000

𝑁௨ Number of users 500

𝑁 Number of cloud servers 10

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

𝑃ெ % of malicious users 20-40%

𝑃 % of high centrality nodes 0-40%

𝜆 Service request rate per node 1/day

𝜆ௗ Time decay parameter for service rating 10ିସ

 Standard deviation of error 1%

𝑚 𝑚 Cloudlet regional area 1616

𝑆𝑊𝐼𝑀ௌ SWIM slope 1.45

𝑆𝑊𝐼𝑀௧ SWIM maximum pause time 4 hrs

𝑆𝑊𝐼𝑀 SWIM # popular places per node [10, 25]

𝑛, # friends per low-centrality node [10, 50]

𝑛, # friends per high-centrality node [100, 500]

𝑁ூ # communities of interest 50

𝑛ூ # communities of interest per node [10, 25]

𝑛 # of recommenders accepted 10

𝑤: 𝑤௦: 𝑤 Weight ratio of social relations 1/3:1/3:1/3

B. Environment Setup for Simuation Evaluation

The experiment setup follows the model parameters as listed
in Table 2. We select the values for the parameters listed in Ta-
ble 2 to model a relatively large IoT system to illustrate scala-
bility. We consider a large IoT 𝑚 𝑚 ൌ 16 16 cloudlet re-
gional area with NT = 2000 IoT devices, where each cloudlet
region (location) is also a square with the width and height equal
to wireless radio range so that nodes within a grid can communi-
cate with the local cloudlet in the grid. The boundary locations
are wrapped around (i.e., a torus is assumed) to avoid end ef-
fects. These IoT devices are randomly assigned to NU = 500 us-
ers, with each user having 4 devices on average. The number of
cloud servers in the data cloud center is NC = 10 such that each
cloud server can approximately handle NT/NC = 200 IoT de-
vices. Note that NC = 10 is an arbitrary choice, so in the simula-
tion we know which user/device is map to which cloud server.

The % of malicious users (PM) is a model parameter whose
effect will be analyzed via a sensitivity analysis. Malicious us-
ers are chosen randomly from NU = 500 users. A malicious user
will perform self-promoting, bad-mouthing, ballot-stuffing,
discriminatory, and opportunistic service attacks as described in
Section II.C. In particular, a malicious user 𝑢௬ can provide a

bad recommendation 𝑡௬,
ௗ =0 (see Equation 7) against a good de-

vice i for bad-mouthing attacks, and conversely a good recom-
mendation 𝑡௬,

ௗ =1 for a malicious device i for ballot-stuffing at-
tacks. Our protocol handles ballot-stuffing and bad-mouthing
attacks by recommendation filtering (see Section IV.A) during
the computation of indirect trust 𝑡௫,

 based on Equation 7.
The % of high centrality users (PC) is also a model parameter

whose effect will be analyzed. Users are connected through so-
cial networks represented by a friendship matrix and a CoI ma-
trix where an entry at (x, y) is 1 means that user x and user y are
friends and members of a CoI, respectively. Each low centrality
user has 𝑛, = [10, 50] friends, and each high centrality user
has 𝑛, = [100, 500] friends populated randomly. There are
𝑁ூ = 50 CoIs and each user has 𝑛ூ = [10, 25] CoIs.

We consider all users moving according to the small world

in motion (SWIM) mobility model [12], modeling human social
behaviors for the purpose of assessing the social contact simi-
larity metric between each pair of users. In SWIM [12], a node
has a home location and 𝑆𝑊𝐼𝑀= [10, 25] popular places
populated randomly out of the 𝑚 𝑚 locations in the system.
A node makes a move to one of the population places based on
a prescribed pattern. The probability of a location being selected
is higher if it is closer to the node’s home location or if it has a
higher popularity (visited by more nodes). When reaching the
destination, the node pauses at the destination location for a pe-
riod of time following a bounded power law distribution [27].
We set the slope of the SWIM mobility model (𝑆𝑊𝐼𝑀ௌ) to 1.45
(as in [12]) and the upper-bound pause time (𝑆𝑊𝐼𝑀௧) to 4
hours. The encounter time interval for any two nodes is a
bounded power-law distribution between [10 minutes, 2 days],
which models the social contact behavior of any two nodes.

Three IoT devices in a region are selected as cloudlet de-
vices periodically responsible for caching and relaying service
experience reports, trust score queries, and responses for IoT
devices in the region. Direct trust of node i toward node j is
assessed upon completion of a service request from node i to
node j. Each node requests services from a selected device with
a time interval following an exponential distribution with pa-
rameter 𝜆, with 1/day being the default unless otherwise speci-
fied. The trust update interval Δ𝑡 is 2 hours. The system runs
continuously although trust convergence is achieved in less than
200 hours.

The user satisfaction levels of service experience (i.e., 𝑓௫, in
the range of [0, 1] from user 𝑢௫ about 𝑑’s service quality) are
from a real web service dataset [21] and are used as “ground
truth” based on which the accuracy of our trust protocol is as-
sessed. Since the direct trust of user 𝑢௫ toward service provider
𝑑 (i.e., 𝑡௫,

ௗ) is calculated by Equation 5 with “ground truth”
user service experiences as input, 𝑡௫,

ௗ essentially is equal to
ground truth. However, we account for the presence of noise in
the IoT environment (i.e., error of assessing user satisfaction
level received) by considering a standard deviation parameter
σc (set to 1% as default) to reflect the deviation of the actual
user satisfaction level recorded in the database from the direct
trust evaluation outcome 𝑡௫,

ௗ . The decay parameter 𝜆ௗ is set to
10ିସ as in [26] for heavy discounting old experiences. Initially,
𝑡௫, is set to 0.5 (ignorance) by user 𝑢௫ for all i’s. Then, trust is
updated dynamically as nodes encounter each other, as services
are requested and rendered, and as trust feedback are acquired.
𝑛=10 for the set size of 𝑈 in Equation 7 for calculating 𝑡௫,

 .
We consider 𝑤 ൌ 𝑤 ൌ 𝑤 ൌ 1/3 considering friendship, so-
cial contact, and community of interest are equally important.

C. IoT-HiTrust Performance Characteristics

In this section, we report ns-3 simulation results on IoT-
HiTrust performance characteristics in response to user and en-
vironment dynamics.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

Figure 6: Trust Value of a Good Node under Intermittent Dis-
connection.

Figure 7: Trust Value of a Bad Node under Intermittent Dis-
connection.

Figure 6 shows IoT-HiTrust performance in terms of trust
accuracy, convergence, and resiliency against attacks. It shows
the progressive trust value of a “good” IoT device as assessed
by the cloudlet in the home region where the IoT device initially
resides vs. time for the case in which PM = 30%. The “ground
truth” trust value of this good device is depicted by the solid
line at 0.83. Note that the “ground truth” trust value of this good
node is not 1 because 𝑓௫, (service satisfaction experience of
user 𝑢௫ toward 𝑑) retrieved from the trace dataset [21] is not
necessarily 1. The progressive trust value measured by IoT-
HiTrust is depicted by dashed lines. We consider the scenario
in which the “good” IoT device’s cloudlet is disconnected due
to network disconnection at times (marked by zig-zag patterns)
during which it can only perform disconnected trust assessment.
The label “no region roaming” means that the target IoT device
stays in the same region all the time. The label “neighbor region
roaming” means that the target IoT device stays in the home
region but roams to neighbor regions from time to time. The
label “hopper” means that the target IoT device moves across
region boundary frequently. We see that trust accuracy de-
creases as the target “good” IoT device moves across the re-
gional boundary more frequently. However, all cases eventually
converge after sufficient data are collected to allow accurate
trust assessment.

Correspondingly, Figure 7 shows IoT-HiTrust performance
in terms of the trust value of a “bad” IoT device vs. time when
PM = 30%. This bad node’s trust value is up and down because
of opportunistic service attacks performed by the bad node. We
again confirm that trust accuracy decreases as the target “bad”
IoT device moves across the regional boundary more fre-
quently. However, trust accuracy is restored as soon as the
home regional cloudlet is reconnected. Figures 6 and 7 verify
that our IoT-HiTrust protocol is effective to deal with intermit-
tent disconnection for providing service continuity, especially
for IoT devices that do not move much such as heavyweight IoT
devices.

In summary, relative to prior work [2, 3, 4, 5, 6], Figures 6
and 7 demonstrate that our hierarchical trust management
achieves efficiency and scalability, without compromising trust
accuracy.

Figure 8: Trust Value of a Good Node under Various Attack
Types.

Figure 9: Trust Value of a Bad Node under Various Attack
Types.

We test the sensitivity of the results w.r.t. the attack type in
Figures 8 and 9.

Figure 8 demonstrates the effect of the attack type on trust
accuracy, convergence, and resiliency of a “good” target node
that roams between neighbor regions. The curve labeled by

0 50 100 150 200
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Time (hours)

T
ru

st
 v

al
ue

Ground truth
IoT-HiTrust no region roaming
IoT-HiTrust neighbor region roaming
IoT-HiTrust hopper

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

Time (hours)

T
ru

st
 v

al
ue

IoT-HiTrust no region roaming

IoT-HiTrust neighbor region roaming

IoT-HiTrust hopper

0 20 40 60 80 100 120 140 160 180 200
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Time (hours)

T
ru

st
 v

al
u

e

Ground truth
IoT-HiTrust without bad-mouthing & ballot-stuffing
IoT-HiTrust without discriminatory attacks
IoT-HiTrust without opportunistic attacks
IoT-HiTrust with all attacks

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (hours)

T
ru

st
 v

al
ue

IoT-HiTrust without bad-mouthing & ballot-stuffing

IoT-HiTrust without discriminatory attacks

IoT-HiTrust without opportunistic attacks

IoT-HiTrust with all attacks

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

“with all attacks” (green curve) corresponds to the “neighbor
region roaming” curve in Figure 6. There are three other curves,
i.e., “without bad-mouthing and ballot-stuffing attacks,” “with-
out discriminatory attacks,” and “without opportunistic at-
tacks,” each with a particular attack type being removed so that
we can see the effect of its absence on accuracy, convergence,
and resiliency. Figure 8 indicates that recommendation attacks
(i.e., bad-mouthing and ballot-stuffing attacks combined) have
the biggest effect on accuracy, convergence, and resiliency be-
cause without them (red curve) the system can approach ground
truth (black curve) in the shortest amount of time. Discrimina-
tory attacks also have some effect on accuracy, convergence,
and resiliency because without them (blue curve) the system can
converge faster than with them (green curve), although the sen-
sitivity is not as high. Lastly, opportunistic attacks have the least
effect on accuracy, convergence, and resiliency because with-
out them (pink curve) the system does not converge any faster
than with them (green curve). The reason is that a bad node per-
forming opportunistic attacks will only affect its own trust
value, not the “good” target node’s trust value. Therefore, the
most severe attack type is the recommendation attack as it will
ruin the reputation of the “good” target node.

Figure 9 demonstrates the effect of the attack type on trust
accuracy, convergence, and resiliency of a “bad” node that
roams between neighbor regions. Similarly the curve labeled by
“with all attacks” (green curve) corresponds to the curve in Fig-
ure 7. There are three other curves, i.e., “without bad-mouthing
and ballot-stuffing attacks,” “without discriminatory attacks,”
and “without opportunistic attacks,” each with a particular at-
tack type being removed so as to see its absence on accuracy,
convergence, and resiliency. Since the target node is a “bad”
node, we see from Figure 9 that opportunistic attacks have the
most severe effect on accuracy, convergence, and resiliency be-
cause without them (pink curve) the system converges to
ground truth (zero for a bad node) while with them the system
converges to the up and down curve (green curve). This is so
because the “bad” target node performing opportunistic service
attacks will alternate between behave and misbehave to keep its
trust value between the high threshold and low threshold. We
see from Figure 9 that the other two attack types do not have a
high impact on the trust value of this “bad” target node. In prac-
tice, a bad node will always perform opportunistic service at-
tacks to disguise itself as a good node without being caught. The
best the system can do is to accurately track a bad node’s trust
status to refrain it from providing bad service and to decrease
the chance of selecting bad nodes for providing service. This is
illustrated by two real-world mobile cloud IoT applications de-
scribed in Sections VI and VII below.

D. Sensitivity and Comparative Analysis

In this section, we report the sensitivity of IoT-HiTrust per-
formance with respect to the % of malicious users (PM) and the
% of high centrality users (PC). We again compare IoT-HiTrust
performance with Adaptive IoT Trust [6] and ObjectiveTrust
[14], which we have described in detail in Section II.

We first analyze the effect of the % of malicious users (PM).

Figure 10 compares IoT-HiTrust (red surface) with Adaptive
IoT Trust (orange surface) and ObjectiveTrust (green surface)
as PM (% of malicious nodes) varies from 20% to 40% for a
non-malicious node randomly chosen. All other parameters use
the default settings as in Table 2. The ground truth trust value
of the non-malicious node is marked by a solid line at 0.83. We
first note that for all protocols, the estimated trust score of the
non-malicious nodes approaches the ground truth value as time
progresses as more evidence is collected. Also, the deviation
from the ground truth trust score increases as PM increases be-
cause more malicious nodes perform attacks. We see that IoT-
HiTrust (red) consistently outperforms Adaptive IoT Trust (or-
ange) and ObjectiveTrust (green), especially when the % of ma-
licious nodes is high (40%). We attribute IoT-HiTrust perform-
ing better than Adaptive IoT Trust to the fact that IoT-HiTrust
can leverage cloud service to aggregate broad evidence from all
nodes to achieve the minimum trust bias. We attribute IoT-
HiTrust performing better than ObjectiveTrust to the fact that
unlike ObjectiveTrust, IoT-HiTrust considers “subjective trust”
which takes a customer’s own service experiences into consid-
eration and it can dynamically adjust the weight associated with
a customer’s own service experiences to effectively cope with
malicious attacks and improve trust accuracy.

Figure 10: Performance Comparison of Trust Convergence,
Accuracy and Resiliency in 3-D View with PM (% of Mali-

cious Nodes) ranging from 20% to 40%.

Figure 11: Performance Comparison of Trust Convergence,
Accuracy and Resiliency in 3-D View with PC (% of High

Centrality Nodes) ranging from 0% to 40%.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

Next we analyze the effect of % of high centrality users (PC).
Figure 11 compares IoT-HiTrust (red surface) with Adaptive
IoT Trust (orange surface) and ObjectiveTrust (green surface)
as PC (% of high centrality nodes) varies from 0% to 40% for a
non-malicious node randomly chosen. All other parameters use
the default settings as in Table I. We see IoT-HiTrust (red) also
consistently performs better than Adaptive IoT Trust (orange)
and ObjectiveTrust (green), especially when PC is low. All pro-
tocols perform comparably when PC is high. The reason is that
all protocols consider social relationships (including friendship
which maps to centrality) for recommendation filtering. So
when PC is high, all have excellent recommendation filtering
taking place, resulting in the estimated trust score approaching
the ground truth trust value. When PC is extremely high (40%),
ObjectiveTrust has a slight edge over IoT-HiTrust and Adaptive
IoT Trust, because ObjectiveTrust uses a weighted sum of cen-
trality and filtered opinions for trust computation, and directly
uses centrality (by means of the overall trust score computation)
as credibility for recommendation filtering. One should note
that, however, a social network normally has only a small num-
ber of nodes with high centrality [23], so for a typical social
network with less than 20% high centrality nodes, IoT-HiTrust
(red) still outperforms ObjectiveTrust (green).

It is interesting to note that Figure 11 also analyzes the effect
of insufficient knowledge of friend devices (or missing friend-
ship) on trust-based service management, through analyzing the
effect of % of high centrality users (PC) in the network. When
there are not many high centrality users in the system, there is a
weak tie in friendship for users in the network and hence the
friendship social similarity is low. Figure 11 shows that the trust
value of a non-malicious service provider decreases as the % of
high centrality users (PC) decreases because a device may un-
necessarily filter out many trustworthy recommenders due to
missing friendship. On the other hand, when PC is high and
hence the friendship social similarity is high, an IoT device will
have access to many trustworthy recommenders, resulting in the
estimated trust score of the non-malicious service provider in
question approaching the ground truth trust value (solid line).
Figure 11 demonstrates that IoT-HiTrust (red surface) consist-
ently performs better than Adaptive IoT Trust (orange surface)
and ObjectiveTrust (green surface), the effect of which is espe-
cially pronounced when a device does not have much
knowledge about friend devices, i.e., when PC is low.

In summary, relative to Adaptive IoT Trust [6] and Objec-
tiveTrust [14], our work addresses scalability while achieving
“subjective trust” evaluation accuracy.

VI. CASE STUDY 1: SMART CITY TRAVEL SERVICE

COMPOSITION

The first case study is taken from [5]: Bob has never traveled
to Washington DC, so he is excited but also nervous about the
quality of service he will receive during his visit. He is aware
of the fact that DC is a smart city so he registers his smartphone
to the travelers-in-Washington-DC social network. He also
downloads an augmented map social IoT application [34] to run
on his smartphone, allowing his Near Field Communications

(NFC) equipped smartphone to browse a tag-augmented DC
map wherever he goes sightseeing. This tag-augmented map au-
tomatically connects Bob’s smartphone to IoT devices available
upon encounter, which provide information, food, entertain-
ment (e.g., ticket purchasing), and transportation services. Bob
instructs his smartphone to make selection decisions dynami-
cally, so it can leverage new information derived from direct
experiences and recommendations received from IoT devices it
encounters. In response to a service request issued by Bob, his
smartphone must (a) gather sensing data or information col-
lected from the physical environment based on either self-ob-
servations or recommendations; (b) formulate a service plan
based on the results gathered; and (c) invoke necessary services
to meet Bob’s service demand and requirements.

To this end, the augmented map travel service composition
application running on Bob’s smartphone composes a service
workflow plan as shown in Figure 12 in response his service
request “Fill me with the best grilled hamburger within 20
minutes under a $30 budget.” With the service plan formulated,
Bob’s smartphone selects the best service providers out of a
myriad of service providers to execute the service plan. The ob-
jective of this trust-based service composition application run-
ning on Bob’s smartphone is to select the most trustworthy IoT
nodes for providing services specified in the flow structure sub-
ject to the time and budget constraints (20 minutes and 30 dol-
lars) such that the overall trustworthiness score representing the
goodness of the service composition is maximized.

S3: taxi S4: bus S5: metro

S1: search service A S2: search service B

S6: hamburger shop

or

and

Figure 12: A Service Flow Structure for the Smart City
Travel Service Composition Application.

In Figure 12, there are 6 atomic services connected by three

types of workflow structures: sequential, parallel (AND), and
selection (OR). Each service would have multiple service pro-
vider candidates. In this case, the overall trustworthiness score
of this service composition application can be calculated recur-
sively in the same way the reliability of a series-parallel con-
nected system is calculated. Specifically, the trustworthiness
score of a composite service (whose trustworthiness score
is𝑇௦ሻ that consists of two subservices (whose trustworthiness
scores are 𝑇ଵ and 𝑇ଶሻ depends on the structure connecting the
two subservices as follows:
a) Sequential structure: 𝑇௦ ൌ 𝑇ଵ ൈ 𝑇ଶ;

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

b) Selection structure (OR): 𝑇௦ ൌ max ሺ𝑇ଵ, 𝑇ଶሻ;
c) Parallel structure (AND): 𝑇௦ ൌ 1 െ ሺ1 െ 𝑇ଵሻ ൈ ሺ1 െ 𝑇ଶሻ.

For the flow structure in Figure 12, the outmost structure is
a sequential structure connecting (S1 S2), (S3 S4 S5), and S6 out
of which (S1 S2) is a parallel structure and (S3 S4 S5) is a selec-
tion structure.

Figure 13 shows the ns-3 simulation results. The 3-tier hier-
archical mobile cloud environment is setup the same way as dis-
cussed in Section V (see Table 2). We observe that trust-based
service composition with IoT-HiTrust (red line) outperforms
both Adaptive IoT Trust (yellow line) and ObjectiveTrust
(green line) as time progresses when more trust evidence is
gathered.

Figure 14 shows the percentage of bad nodes selected for
the augmented map travel service composition application.
Again as time progresses, IoT-HiTrust outperforms all baseline
schemes in selecting a good SP to execute the service request.
Initially Adaptive IoT Trust (which is a distributed trust proto-
col) performs better than both IoT-HiTrust and ObjectiveTrust
(both are centralized trust protocols) because centralized trust
protocols initially do not have access to a broad range of trust
evidence collected from other IoT devices. The advantage of
IoT-HiTrust over Adaptive IoT Trust increases as time pro-
gresses after the system gathers sufficient service data from all
nodes having service experience with a target node. We also
note that the advantage persists even the percentage of mali-
cious nodes is 30% in the system. On the other hand, IoT-
HiTrust performs better than ObjectiveTrust because it consid-
ers “subjective trust” which takes a customer’s own service ex-
periences with a target service provider into consideration as it
computes the trust score of a customer toward a target service
provider. In the case in which the service experience is plenty,
IoT-HiTrust will dynamically put a higher weight on direct ser-
vice experience and conversely a lower weight on the recom-
mendations to compute the trust score for the purpose of mini-
mizing trust bias. In the case in which the service experience is
not plenty but recent, IoT-HiTrust will adaptively adjust the
weights on direct service experiences and recommendations
such that the computed score would match the recent service
satisfaction outcome. In both cases, it shields the customer from
malicious recommendation attacks, which is a common prob-
lem for reputation-based trust management protocols like Ob-
jectiveTrust.

Figure 13: Utility Score of the Smart City Travel Service

Composition Application.

Figure 14: Probability of a Bad SP Being Selected for the
Smart City Travel Service Composition Application.

VII. CASE STUDY 2: AIR POLLUTION DETECTION AND

RESPONSE

The second case study is for the Fairfax County Hazard De-
tection and Response Team charged to monitor the pollution
levels of CO, NO2, SO2, and O3 for all cities under the county
so as to take appropriate actions if the air pollution level is
above a tolerance threshold. Since the area to be covered is ra-
ther large, the county officials only install a few county-sensors
in more strategic and populated areas to collect air pollution
data. To cover the whole county area air quality detection, the
county officials also encourage environment-health-conscious
civilians driving or carrying air pollution detection capable ve-
hicles or smartphones [8] to report air pollution data.

In case of emergency, the county officials can request IoT
devices in a particular location to immediately report their sens-
ing results to their home cloud servers through their local cloud-
lets. Because the county officials have registered this cloud ser-
vice, a home cloud server upon receiving a sensing report will
inform the county officials (running as an IoT device) of the
sensing report. Also the county officials send queries via IoT-
HiTrust to get the trustworthiness scores of these IoT devices
who had reported sensing results. To know if a location has ac-
ceptable air quality, the county officials (running as node i) ac-
cept results (𝑆) from 200 most trustworthy IoT devices (which
have the highest 𝑡 trust values as determined by IoT-HiTrust)
for the air quality detection service out of a total of 2000 nodes,
and compute a trust-weighted average ∑ ሺ𝑡/ ∑ 𝑡ሻ ଶ

ୀଵ ൈଶ
ୀଵ

𝑆 for each air pollutant (e.g., CO). If the level exceeds a mini-
mum threshold (e.g., above 70 ppm for CO), the county officials
push alerting text to IoT devices in the affected area.

Using the ns-3 simulator, we simulate the above system
populated with 2000 IoT devices capable of detecting and re-
porting CO air pollutant levels. The 3-tier hierarchical mobile
cloud environment is setup the same way as discussed in Sec-
tion V (see Table 2). The CO level is simulated to be in the
range of [60, 70 ppm] in various locations. The percentage of
bad nodes is set at PM =30%. A malicious node always reports
CO readings above 70 ppm in the range of [70, 120 ppm] re-
gardless of location in order to confuse the county official. Also
a malicious node always performs bad-mouthing attacks (say-
ing a good node’s sensing result is not trustworthy in the user

0 50 100 150 200 250 300 350 400
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Time (hours)

U
til

ity

P
M

=30%

IoT-HiTrust
Adaptive IoT Trust
ObjectiveTrust

0 50 100 150 200

0.05

0.1

0.15

0.2

0.25

0.3

Time (hours)

P
ro

b
.

of
 b

ad
 S

P
 s

e
le

ct
io

n

P
M

=30%

ObjectiveTrust
Adaptive IoT Trust
IoT-HiTrust

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

satisfaction report) and ballot-stuffing attacks (saying a bad
node’s sensing result is trustworthy).

We again compare IoT-HiTrust with Adaptive IoT Trust
and ObjectiveTrust. We measure two performance metrics for
performance analysis: (a) the trust-weighted average CO read-
ing vs. ground truth (i.e., the actual CO level at a specific loca-
tion and a particular time); (b) the accuracy of selecting trust-
worthy participants.

Figure 15: Performance Comparison of Trust-Weighted

Average CO Readings for the Air Pollution Detection and Re-
sponse Application.

Figure 16: Percentage of Bad IoT Devices Selected to Pro-
vide CO Sensing Service for the Air Pollution Detection and

Response Application.

Figure 15 shows the trust-weighted average CO readings vs.

time (each time point is a CO detection service request) with the
percentage of bad nodes PM set at 30%. We observe that IoT-
HiTrust (red line) leveraging the proposed mobile cloud hierar-
chy can provide CO readings very close to ground truth (black
line) as time progresses. Further, IoT-HiTrust outperforms
Adaptive IoT Trust (yellow line) and ObjectiveTrust (green
line) in terms of accuracy, convergence, and resiliency. We
mark a “Dangerous CO Level” line at which the CO reading is
equal to or above 70 in the graph. We see that in many sensing
time points such as at 65, 75, 90, 100, and 185, IoT-HiTrust
would report the CO level is not dangerous as the ground truth
is, but either Adaptive IoT Trust or ObjectiveTrust would
falsely report the CO level is dangerous since the trust-weighted
CO level average computed is above 70. This demonstrates that

IoT-HiTrust is more resilient to malicious attacks (30% are ma-
licious) than either Adaptive IoT Trust or ObjectiveTrust in this
application. Figure 16 shows the percentage of bad nodes se-
lected to provide sensing results. We see again IoT-HiTrust (red
line) outperforms Adaptive IoT Trust and ObjectiveTrust as
time progresses.

We attribute the superiority of IoT-HiTrust over Adaptive
IoT Trust to its ability to effectively aggregate trust evidence
from all nodes who have had sensing service experiences with
a target IoT device, leveraging our scalable report-and-query
design, not being limited by node encountering experiences as
in Adaptive IoT Trust. We attribute the superiority of IoT-
HiTrust over ObjectiveTrust to its ability to accurately compute
the “subjective trust” which takes a customer’s own service ex-
periences into consideration as opposed to the “objective trust”
which only takes the common belief or reputation into consid-
eration as in ObjectiveTrust, and also to its ability to dynami-
cally adjust the weights associated with direct trust and indirect
trust to minimize trust bias, based on the customer’s past and
recent own service experiences.

VIII. CONCLUSION

In this paper, we designed and analyzed a scalable hierar-
chical trust management protocol called IoT-HiTrust for large
mobile cloud IoT systems. We verified that IoT-HiTrust is ef-
fective for dealing with intermittent disconnection and cloud
failure while preserving desirable trust accuracy, convergence
and resiliency properties, especially for IoT devices that do not
move much such as heavyweight IoT devices. We also demon-
strated its applicability by applying IoT-HiTrust to a smart city
travel service composition application and an air pollution de-
tection and response application. Our results support its superi-
ority over Adaptive IoT Trust [6] and ObjectiveTrust [14] in
achieving scalability and maximizing application performance,
without compromising trust accuracy, convergence and resili-
ency properties.

In the future, we plan to further validate our 3-tier cloud-
cloudlet-device hierarchical trust-based service management
with more real-world mobile cloud IoT applications, including
environmental monitoring and road/traffic monitoring applica-
tions [11], IoT services applications [6, 18], and IoT health ap-
plications [1, 34]. We also plan to investigate caching mecha-
nisms at the cloudlet level that can improve the overall system
performance. Last but not least, we are currently investigating
a more holistic design to manage integrated mobility, service,
and trust information of a large number of IoT devices, in a scal-
able, secure, reliable, and efficient manner. A possible solution
is to integrate the tiered cloud architecture presented in this
work with existing design concepts of hierarchical mobility
management [29], resilient failure recovery management [30,
31], and admission control [32, 33]. While a node in a hierar-
chical mobility management architecture is a router responsible
for keeping track of location information only (where and how
to route), a node in a hierarchical cloud management architec-
ture is a cloud server responsible for keeping track of integrated
information including location, trust, and service information.

0 50 100 150 200
60

65

70

75

80

85

Time (hours)

C
O

 r
ea

di
ng

Dangerous CO Level

P
M

=30%

ObjectiveTrust
Adaptive IoT Trust
IoT-HiTrust
Ground Truth

0 50 100 150 200

0.05

0.1

0.15

0.2

0.25

0.3

Time (hours)

P
ro

b.
 o

f b
ad

 S
P

 s
el

ec
tio

n

P
M

=30%

ObjectiveTrust
Adaptive IoT Trust
IoT-HiTrust

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

A lower-level cloud server (e.g., a cloudlet) keeps track of IoT
devices in its directly covered service area. A higher-level cloud
server (e.g., a public cloud) in the architecture keeps track of
status of all IoT devices covered by all lower-level cloud servers
below it. Should an IoT device roam from one cloud server area
to another, a “service handoff” ensues, causing this IoT device’s
location, trust, and service information to be transferred be-
tween the two involving cloud servers such that the new local
cloud server can immediately answer user queries regarding this
IoT device that just roams into its area. Such an IoT architecture
can track IoT devices not only in trust status, but also in service
and mobility status dynamically to achieve the potential of an-
ytime anywhere service-oriented IoT applications.

ACKNOWLEDGEMENTS

This work is supported in part by the U.S. AFOSR under grant
number FA2386-17-1-4076. This work is also partially sup-
ported by Institute for Information & communications Technol-
ogy Promotion (IITP) grant funded by the Korea government
(MSIT) (No. 2017-0-00664, Rule Specification-based Misbe-
havior Detection for IoT-Embedded Cyber Physical Systems).

REFERENCES
[1] H. Al-Hamadi and I.R. Chen, “Trust-Based Decision Making for Health

IoT Systems,” IEEE Internet of Things Journal, vol. 4, no. 5, Oct. 2017,
pp. 1408-1419.

[2] F. Bao and I. R. Chen, “Dynamic Trust Management for Internet of
Things Applications,” 2012 International Workshop on Self-Aware Inter-
net of Things, San Jose, California, USA, 2012.

[3] F. Bao and I.R. Chen, “Trust Management for the Internet of Things and
Its Application to Service Composition,” IEEE WoWMoM 2012 Work-
shop on the Internet of Things, San Francisco, CA, USA, 2012.

[4] F. Bao, I.R. Chen, and J. Guo, “Scalable, Adaptive and Survivable Trust
Management for Community of Interest Based Internet of Things Sys-
tems,” 11th International Symposium on Autonomous Decentralized Sys-
tem, Mexico City, Mexico, 2013.

[5] I. R. Chen, F. Bao, and J. Guo, "Trust-based Service Management for So-
cial Internet of Things Systems," IEEE Transactions on Dependable and
Secure Computing, vol. 13, no. 6, Nov-Dec 2016, pp. 684-696.

[6] I.R. Chen, J. Guo, and F. Bao, “Trust Management for SOA-based IoT
and Its Application to Service Composition,” IEEE Transactions on Ser-
vices Computing, vol. 9, no. 3, 2016, pp. 482-495.

[7] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, and X. Wang, “TRM-IoT: A Trust
Management Model Based on Fuzzy Reputation for Internet of Things,”
Computer Science and Information Systems, vol. 8, no. 4, pp. 1207-1228,
Oct 2011.

[8] S. Devarakonda, et al., “Real-time Air Quality Monitoring Through Mo-
bile Sensing in Metropolitan Areas,” UrbComp, Chicago, Illinois, USA,
2013.

[9] A. Jøsang, and R. Ismail, “The Beta Reputation System,” Bled Electronic
Commerce Conference, Bled, Slovenia, 2002, pp. 1-14.

[10] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The EigenTrust
algorithm for reputation management in P2P net-works,” 12th Interna-
tional Conference on World Wide Web, Budapest, Hungary, May 2003.

[11] W.Z. Khan, Y. Xiang, M.Y. Aalsalem, and Q. Arshad, “Mobile Phone
Sensing Systems: A Survey,” IEEE Communications Surveys and Tutori-
als, vol. 15, no. 1, pp. 402–427, 2013.

[12] S. Kosta, A. Mei, and J. Stefa, “Small World in Motion (SWIM): Model-
ing Communities in Ad-Hoc Mobile Networking,” 7th IEEE Conference
on Sensor, Mesh and Ad Hoc Communications and Networks, Boston, MA,
USA, 2010.

[13] R. Mitchell and I. R. Chen, “Modeling and Analysis of Attacks and Coun-
ter Defense Mechanisms for Cyber Physical Systems,” IEEE Transac-
tions on Reliability, vol. 65, no. 1, March 2016, pp. 350-358.

[14] M. Nitti, R. Girau, and L. Atzori, “Trustworthiness Management in the
Social Internet of Things,” IEEE Transactions on Knowledge and Data
Management, vol. 26, no. 5, 2014, pp. 1253-1266.

[15] Y. B. Saied, A. Olivereau, D. Zeghlache, and M. Laurent, “Trust manage-
ment system design for the Internet of Things: A context-aware and multi-
service approach,” Computers and Security, vol. 39, Nov. 2013, pp. 351-
365.

[16] M. Satyanarayanan, et al., “The role of cloudlets in hostile environments,”
IEEE Pervasive Computing, Oct. 2013, pp. 40-49.

[17] Z. Su, L. Liu, M. Li, X. Fan, and Y. Zhou, “ServiceTrust: Trust Manage-
ment in Service Provision Networks,” IEEE International Conference on
Services Computing, Santa Clara, 2013, pp. 272-279.

[18] Y. Wang, I.R. Chen, J.H. Cho, A. Swami, and K.S. Chan, “Trust-based
Service Composition and Binding with Multiple Objective Optimization
in Service-Oriented Ad Hoc Networks," IEEE Trans. Services Computing,
vol. 10, no. 4, 2017, pp. 1939-1374.

[19] Y. Wang, I.R. Chen, and D.C. Wang, “A Survey of Mobile Cloud Com-
puting Applications: Perspectives and Challenges,” Wireless Personal
Communications, vol. 80, no. 4, 2015, pp. 1607-1623.

[20] L. Xiong, and L. Liu, “PeerTrust: Supporting Reputation-Based Trust for
Peer-to-Peer Electronic Communities,” IEEE Trans. on Knowledge and
Data Engineering, v.16, pp. 843-857, July 2004.

[21] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating QoS of Real-World
Web Services,” IEEE Transactions on Services Computing, vol. 7, no. 1,
pp. 32-39, 2014.

[22] J. Guo, I.R. Chen, and J.J.P. Tsai, “A Mobile Cloud Hierarchical Trust
Management Protocol for IoT Systems,” 5th IEEE International Confer-
ence on Mobile Cloud Computing, Services, and Engineering, San Fran-
cisco, April 2017.

[23] M. Nitti, L. Atzori, and I.P. Cvijikj, “Friendship Selection in the Social
Internet of Things: Challenges and Possible Strategies,” IEEE Internet of
Things Journal, vol. 2, no. 3, 2015, pp. 240-247.

[24] ns-3 Network Simulator, http://www.nsnam.org, Release ns-3.27 with
core, network, Internet, and mobility models, Oct. 2017.

[25] I.R. Chen, J. Guo, F. Bao, and J.H. Cho, “Trust Management in Mobile
Ad Hoc Networks for Bias Minimization and Application Performance
Maximization,” Ad Hoc Networks, vol. 19, August 2014, pp. 59-74.

[26] I.R Chen, F. Bao, M.J. Chang, and J.H. Cho, “Dynamic Trust Manage-
ment for Delay Tolerant Networks and Its Application to Secure Routing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 5,
2014, pp. 1200-1210.

[27] T. Karagiannis, J.-Y. Le Boudec, and M. Vojnović, “Power Law and Ex-
ponential Decay of Intercontact Times between Mobile Devices,” IEEE
Trans. Mobile Computing, vol. 8, no. 10, 2007, pp. 1377-1390.

[28] J.B. Abdo and J. Demerjian, “Evaluation of Mobile Cloud Architecture,”
Pervasive and Mobile Computing, vol. 39, 2017, pp. 284-303.

[29] B. Gu and I. R. Chen, “Performance Analysis of Location-aware Mobile
Service Proxies for Reducing Network Cost in Personal Communication
Systems,” Mobile Networks and Applications, vol. 10, no. 4, 2005, pp.
453-463.

[30] I.R. Chen, B. Gu, S.E. George, and S.T. Cheng, “On Failure Recoverabil-
ity of Client-Server Applications in Mobile Wireless Environments,”
IEEE Trans. Reliability, vol. 54, no. 1, 2005, pp. 115-122.

[31] I.R. Chen and F.B. Bastani, “Effect of Artificial-Intelligence Planning
Procedures on System Reliability,” IEEE Trans Reliability, vol. 40, no. 3,
pp. 364-369, 1991.

[32] S.T. Cheng, C.M. Chen, and I.R. Chen, “Dynamic Quota-based Admis-
sion Control with Sub-rating in Multimedia Servers,” Multimedia Sys-
tems, vol. 8, no. 2, 2000, pp. 83-91.

[33] I.R. Chen, O. Yilmaz, and I.L. Yen, “Admission Control Algorithms for
Revenue Optimization with QoS Guarantees in Mobile Wireless Net-
works," Wireless Personal Communications, vol. 38, no. 3, 2006, pp. 357-
376.

[34] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,”
Computer Networks, vol. 54, pp. 2787-2805, Oct. 2010.

[35] J. Guo, I.R. Chen, and J.J.P. Tsai, “A Survey of Trust Computation Mod-
els for Internet of Things Systems,” Computer Communications, vol. 97,
2017, pp. 1-14.

[36] J.H. Cho and I.R. Chen, “PROVEST: Provenance-based Trust Model for
Delay Tolerant Networks,” IEEE Transactions on Dependable and Se-
cure Computing, vol. 15, no. 1, 2018, pp. 151-165.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2886379, IEEE
Transactions on Network and Service Management

AUTHOR BIOGRAPHIES

 Ing-Ray Chen received the BS degree from the

National Taiwan University, and the MS and PhD

degrees in computer science from the University of

Houston. He is a professor in the Department of

Computer Science at Virginia Tech. His research

interests include mobile computing, wireless systems,

security, trust management, and reliability and

performance analysis. Dr. Chen currently serves as an editor for IEEE

Transactions on Services Computing, IEEE Transactions on Network and

Service Management, and The Computer Journal. He is a recipient of the IEEE

Communications Society William R. Bennett Prize in the field of

Communications Networking.

Jia Guo received his BS degree in computer science

from Jilin University, China in 2011 and his PhD degree

in computer science from Virginia Tech in 2018. His

research interests include trust management, mobile ad

hoc and sensor networks, Internet of things, delay tol-

erant computing, and secure and dependable compu-

ting.

Ding-Chau Wang received the BS degree from Tung-

Hai University, Taichung, Taiwan, and the MS and

PhD degrees in computer science and information

engineering from National Cheng Kung University,

Tainan, Taiwan. He is currently an associate professor

in the Department of Information Management at

Southern Taiwan University of Science and

Technology, Tainan, Taiwan. His research interests

include game-based learning, Internet of things, mobile computing, security,

database systems and performance analysis.

Jeffrey J.P. Tsai received a Ph.D. degree in Computer

Science from the Northwestern University, Evanston,

Illinois. He is the President of Asia University, Tai-

wan, and a professor in the Department of Bioinfor-

matics and Biomedical Engineering at Asia Univer-

sity. Dr. Tsai was a Professor of Computer Science at

the University of Illinois, Chicago. His current re-

search interests include bioinformatics, ubiquitous computing, services compu-

ting, intrusion detection, knowledge-based software engineering, formal mod-

eling and verification, distributed real-time systems, and intelligent agents. Dr.

Tsai received an IEEE Technical Achievement Award and an IEEE Meritorious

Service Award from IEEE Computer Society. He is a Fellow of the AAAS,

IEEE, and SDPS.

Hamid Al-Hamadi received the B.S. degree in

information technology from Griffith University, Brisbane,

Australia, in 2003 and the M.S. degree in information

technology from the Queensland University of Technology,

Brisbane, Australia, in 2005 and the Ph.D. degree in

computer science from the Virginia Polytechnic Institute

and State University, VA, USA in 2014. He has experience

working as a Network Engineer at Kuwait National Petroleum Company and at

Tawasul Telecom, Kuwait. Currently, he is an Assistant Professor with the

Department of Computer Science, Kuwait University, Kuwait. His current

research interests include Internet of Things, security, mobile cloud, trust

management, and reliability and performance analysis.

Ilsun You received the M.S. and Ph.D. degrees in com-

puter science from Dankook University, Seoul, South

Korea, in 1997 and 2002, respectively, and the Ph.D. de-

gree from Kyushu University, Japan, in 2012. He is cur-

rently Chairperson of the Department of Information Se-

curity Engineering, Soonchunhyang University, Asan,

South Korea. His main research interests include Inter-

net security, authentication, access control, and formal

security analysis. He is a Fellow of the IET. He is the EiC of the Journal of

Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applica-

tions. He is on the Editorial Board of Information Sciences, Journal of Network

and Computer Applications, International Journal of Ad Hoc and Ubiquitous

Computing, Computing and Informatics, Journal of High Speed Networks, In-

telligent Automation and Soft Computing, and Security and Communication

Networks.

