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Abstract— Delay tolerant networks (DTNs) are characterized by high end-to-end latency, frequent 

disconnection, and opportunistic communication over unreliable wireless links. In this paper, we design and 

validate a dynamic trust management protocol for secure routing optimization in DTN environments in the 

presence of well-behaved, selfish and malicious nodes. We develop a novel model-based methodology for the 

analysis of our trust protocol and validate it via extensive simulation. Moreover, we address dynamic trust 

management, i.e., determining and applying the best operational settings at runtime in response to dynamically 

changing network conditions to minimize trust bias and to maximize the routing application performance. We 

perform a comparative analysis of our proposed routing protocol against Bayesian trust-based and non-trust 

based (PROPHET and epidemic) routing protocols. The results demonstrate that our protocol is able to deal 

with selfish behaviors and is resilient against trust-related attacks. Furthermore, our trust-based routing protocol 

can effectively trade off message overhead and message delay for a significant gain in delivery ratio. Our trust-

based routing protocol operating under identified best settings outperforms Bayesian trust-based routing and 

PROPHET, and approaches the ideal performance of epidemic routing in delivery ratio and message delay 

without incurring high message or protocol maintenance overhead. 

Index Terms— Delay tolerant networks, dynamic trust management, secure routing, performance analysis, 

design and validation. 
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1 INTRODUCTION 

A delay tolerant network (DTN) comprises mobile nodes 

(e.g., humans in a social DTN) experiencing sparse 

connection, opportunistic communication, and frequently 

changing network topology. Because of lack of end-to-end 

connectivity, routing in DTN adopts a store-carry-and-

forward scheme by which messages are forwarded through 

a number of intermediate nodes leveraging opportunistic 

encountering, hence resulting in high end-to-end latency.  

In this paper, we propose dynamic trust management for 

DTNs to deal with both malicious and selfish misbehaving 

nodes. Our notion of selfishness is social selfishness [18, 

21] as very often humans carrying communication devices 

(smart phones, GPSs, etc.) in a DTN are socially selfish to 

outsiders but unselfish to friends. Our notion of 

maliciousness refers to malicious nodes performing trust-

related attacks to disrupt DTN operations built on trust 

(e.g., trust-based DTN routing considered in this paper). 

We aim to design and validate a dynamic trust management 

protocol for DTN routing performance optimization in 

response to dynamically changing conditions such as the 

population of misbehaving nodes. 

The contributions of the paper relative to existing work 

in trust/reputation management for DTNs are summarized 

as follows. 

1. We propose to combine social trust deriving from 

social networks [25] and traditional Quality of Service 

(QoS) trust deriving from communication networks 

into a composite trust metric to assess the trust of a 

node in a DTN. To cope with both malicious and 

socially selfish nodes, we consider ―healthiness‖ and 

―unselfishness‖ as two social trust metrics. 

2. We propose the notions of ―subjective trust‖ vs. 

―objective trust‖ based on ground truth for protocol 

validation. For example, the healthiness trust of a good 

node should converge to 1 (ground truth) minus a false 

positive probability caused by noise, while the 

healthiness of a bad node should converge to 0 (ground 

truth) plus a false negative probability caused by noise 

and the random attack probability with which this bad 

node performs trust-related attacks. 

3. We address the issue of application performance 

maximization (trust-based DTN routing in this paper) 

through dynamic trust management by adjusting trust 

aggregation/formation protocol settings dynamically in 

response to changing conditions to maximize DTN 

routing performance. Essentially we address the 

importance of integration of trust and security metrics 

into routing and replication decisions in DTNs.  

4. We develop a novel model-based methodology 

utilizing Stochastic Petri Net (SPN) techniques [26] for 
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the analysis of our trust protocol and validate it via 

extensive simulation. The model validated with 

simulation yields actual ground truth node status 

against which ―subjective‖ trust obtained from 

executing the trust protocol is verified, and helps 

identify the best protocol settings in response to 

dynamically changing network conditions to minimize 

trust bias and to maximize the routing application 

performance. 

5. We perform a comparative analysis of our trust-based 

DTN routing protocol built on top of dynamic trust 

management with simulation validation against routing 

based on Bayesian trust management [12, 14] (called 

Bayesian trust-based routing for short) and non-trust 

based (PROPHET [19] and epidemic [27]) protocols. 

Our trust-based routing protocol outperforms Bayesian 

trust-based routing and PROPHET. Further, it 

approaches the ideal performance of epidemic routing 

in delivery ratio and message delay without incurring 

high message or protocol maintenance overhead. 

The rest of the paper is organized as follows. In Section 

2, we survey existing trust management protocols and 

approaches to deal with misbehaving nodes in DTNs. In 

Section 3, we describe the system model. In Section 4, we 

describe our dynamic trust management protocol. In 

Section 5, we develop a performance model for the analysis 

of our trust protocol. In Section 6, we first identify the best 

protocol settings to minimize trust bias and to maximize the 

routing application performance, when given a set of 

parameters characterizing the operational and 

environmental conditions. Then we perform a comparative 

analysis of our proposed routing protocol against Bayesian 

trust-based routing and PROPHET. In Section 7, we 

validate our trust management protocol design through 

extensive simulation using both synthetic and real mobility 

data. In Section 8, we demonstrate the effectiveness of 

dynamic trust management in response to changing network 

conditions to maximize DTN routing performance. Finally 

in Section 9, we conclude the paper and discuss future 

research areas. 

2 RELATED WORK 

We refer the readers to Appendix A of the supplemental file 

[6] for a comprehensive survey on the state of the art of 

trust management for DTNs. 

3 SYSTEM MODEL 

We consider a DTN environment with no centralized 

trusted authority. Nodes communicate through multiple 

hops. When a node encounters another node, they exchange 

encounter histories certified by encounter tickets [16] so as 

to prevent black hole attacks to DTN routing. We 

differentiate socially selfish nodes from malicious nodes. A 

selfish node acts for its own interests including interests to 

its friends, groups, or communities. So it may drop packets 

arbitrarily just to save energy but it may decide to forward a 

packet if it has good social ties with the source, current 

carrier or destination node. We consider a friendship matrix 

[18] to represent the social ties among nodes. Each node 

keeps a friend list in its local storage. A similar concept to 

the friendship relationship is proposed in [20], where 

familiar strangers are identified based on colocation 

information in urban transport environments for media 

sharing. Our work is different from [20] in that rather than 

by frequent colocation instances, friendship is established 

by the existence of common friends. Energy spent for 

maintaining friend lists and executing matching operations 

is negligible because energy spent for computation is very 

small compared with that for DTN communication and 

matching operations are performed only when there is a 

change to the friend lists. When a node becomes selfish, it 

will only forward messages when it is a friend of the 

source, current carrier, or the destination node, while a 

well-behaved node performs altruistically regardless of the 

social ties. A malicious node aims to break the basic DTN 

routing functionality. In addition to dropping packets, a 

malicious node can perform the following trust-related 

attacks: 

1. Self-promoting attacks: it can promote its importance 

(by providing good recommendations for itself) so as 

to attract packets routing through it (and being 

dropped). 

2. Bad-mouthing attacks: it can ruin the reputation of 

well-behaved nodes (by providing bad 

recommendations against good nodes) so as to decrease 

the chance of packets routing through good nodes. 

3. Ballot stuffing: it can boost the reputation of bad nodes 

(by providing good recommendations for them) so as 

to increase the chance of packets routing through 

malicious nodes (and being dropped). 

A malicious attacker can perform random attacks to 

evade detection. We introduce a random attack probability 

      to reflect random attack behavior. When       =1, 

the malicious attacker is a reckless attacker; when       < 1 

it is a random attacker.  

A collaborative attack means the malicious nodes in the 

system boost their allies and focus on particular victims in 

the system to victimize. Ballot stuffing and bad-mouthing 

attacks are a form of collaborative attacks to the trust 

system to boost the reputation of malicious nodes and to 

ruin the reputation of (and thus to victimize) good nodes. 

We mitigate collaborative attacks with an application-level 

trust optimization design by setting a trust recommender 

threshold      to filter out less trustworthy recommenders, 

and a trust carrier threshold    to select trustworthy carriers 

for message forwarding. These two thresholds are 

dynamically changed in response to environment changes. 

A node’s trust value is assessed based on direct trust 

evaluation and indirect trust information like 

recommendations. The trust of one node toward another 

node is updated upon encounter events. Each node will 

execute the trust protocol independently and will perform 



 

 

its direct trust assessment toward an encountered node 

based on specific detection mechanisms designed for 

assessing a trust property X. Later in Section 4 we will 

discuss these specific detection mechanisms employed in 

our protocol for trust aggregation. 

4 TRUST MANAGEMENT PROTOCOL 

Our trust protocol considers trust composition, trust 

aggregation, trust formation and application-level trust 

optimization designs. Figure 1 shows a flowchart of our 

trust management protocol execution. For trust composition 

design (described in the top part of Figure 1), we consider 

two types of trust properties: 

 QoS trust: QoS trust [10] is evaluated through the 

communication network by the capability of a node to 

deliver messages to the destination node. We consider 

―connectivity‖ and ―energy‖ to measure the QoS trust 

level of a node. The connectivity QoS trust is about the 

ability of a node to encounter other nodes due to its 

movement patterns. The energy QoS trust is about the 

battery energy of a node to perform the basic routing 

function.  

 Social trust: Social trust [10, 25] is based on honesty or 

integrity in social relationships and friendship in social 

ties. We consider ―healthiness‖ and social ―unselfishness‖ 

to measure the social trust level of a node. The 

healthiness social trust is the belief of whether a node is 

malicious. The unselfishness social trust is the belief of 

whether a node is socially selfish. While social ties cover 

more than just friendship, we consider friendship as a 

major factor for determining a node’s socially selfish 

behavior. 

The selection of trust properties is application driven. In 

DTN routing, message delivery ratio and message delay are 

two important factors. We consider ―healthiness‖, 

―unselfishness‖, and ―energy‖ in order to achieve high 

message delivery ratio, and we consider ―connectivity‖ to 

achieve low message delay. 

We define a node’s trust level as a real number in the 

range of [0, 1], with 1 indicating complete trust, 0.5 

ignorance, and 0 complete distrust. We consider a trust 

formation design (described in the middle part of Figure 1) 

by which the trust value of node j evaluated by node i at 

time t, denoted as      ( )  is computed by a weighted 

average of healthiness, unselfishness, connectivity, and 

energy as follows: 

    ( )  ∑        
 ( )

   

 

 (1) 

where X represents a trust property explored (X = 

healthiness, unselfishness, connectivity or energy),     
 ( ) is 

node i’s trust in trust property X toward node j, and    is 

the weight associated with trust property X with the sum 

equal to 1.    is application-dependent. However, it is not 

related to the application priority [23] but dependent on the 

operational profile of an application [22].  

In this paper, we aim to identify the best weight ratio 

under which the application performance (secure routing) is 

maximized, given an operational profile [22] as input. 

Before this can be achieved, however, one must address the 

accuracy issue of trust aggregation. That is, for each QoS or 

social trust property X, we must devise and validate the 

trust aggregation protocol executed by a trustor node to 

assess X of a trustee node such that the trust value 

computed is accurate with respect to actual status of the 

trustee node in X. This is achieved by devising a trust 

propagation protocol (described in the middle part of Figure 

1) with tunable parameters which can be adjusted based on 

each trust property.  

When evaluating     ( ) we adopt the following 

notations: node i is the trustor, node j is the trustee, node m 

is a newly encountered node, and node k is a recommender. 

Node i (trustor) updates its trust toward node j (trustee) in 

trust property X upon encountering a node at time t over an 

encounter interval [      ] as follows: 
 

    
 (    )       

        (    )  (   )    
          (    ) (2) 

In Equation 2,     
        (    ) and     

          (    ) are 

―direct trust‖ (based on direct observations) and ―indirect 

trust‖ (based on recommendations) of node i toward node j 

in X at time     , respectively, and   in the range of [0, 

1] is a parameter to weigh node i’s own direct trust 

assessment toward node j. Every trust property X has its 

own specific   value under which subjective     
 ( ) 

obtained is accurate, i.e., close to actual status of node j in 

X at time t. Trust update is triggered by encounter events. 

Node i encounters 

node m.

Nodes i and m exchange trust information, 

encounter history, friends list, etc.

m == j ?

Use direct observations to update 

Ti,j
direct,X(t+Δt) – Eq. (3)

Yes No

Node i evaluates each trust property X of node j: 

healthiness, unselfishness, connectivity, or energy

Use past indirect trust with decay 

to update Ti,j
indirect,X(t+Δt) – Eq. (4)

Use past direct trust with decay to 

update Ti,j
direct,X(t+Δt) – Eq. (6)

Use recommendations to update 

Ti,j
indirect,X(t+Δt) – Eq. (5)

Combine direct trust and indirect trust to 

compute Ti,j
X(t+Δt) – Eq. (2)

Combine four trust components to 

compute overall trust Ti,j(t+Δt) – Eq. (1)

Use Ti,j(t+Δt) to select next message 

carrier in DTN routing.

Trust

composition

Trust

aggregation

Trust

formation

Application-level

trust optimization

Figure 1: A Flowchart for Trust Protocol Execution. 



 

 

Upon each encounter event, node i obtains either direct 

observations toward j (if node i encounters node j) or 

indirect recommendations towards node j (if node i 

encounters node m,    ). This is indicated in the yes/no 

decision box in Figure 1.  

4.1 Trust Update Upon Node i Encountering Node j  

Upon encountering node j at time t, node i updates  

―direct trust‖     
        (    ) in Equation 2 based on 

―direct‖ observations or interaction experiences with node j 

over the encounter interval [      ]  When a monitoring 

node (node i) cannot properly monitor a trustee node (node 

j) upon encounter because of a short contact time, it adapts 

to this situation by discarding the current monitoring result 

and instead updating direct trust by its past direct trust 

toward j decayed over the time interval ∆t to model trust 

decay over time. Specifically, let      
        ( ) be a boolean 

variable indicating if the needed data (discussed below) for 

assessing X is obtainable within   . Then,     
        (  

  )  node i’s trust in X toward node j at time      upon 

encounter at time t, is calculated by: 

     
         (    )

 {
     
            (    )               

        ( )       

           
         ( )              

        ( )        
 

(3) 

In other words, node i will update     
        (  

  ) with its new direct trust toward node j in property X 

only if node i directly encounters node j at time t and the 

data needed for assessing X is obtainable within the 

encounter interval   ; otherwise, node i will simply update 

    
        (    ) with its past experience 

    
        ( ) decayed over   . We adopt an exponential time 

decay factor,        (with 0     ≤ 0.1 to limit the decay to 

at most 50%).  

Node i assesses     
            (    )  based on data 

collected from direct observations toward node j over the 

encounter interval [      ] as follows: 

     
                     (    )  Node i assesses node j’s 

unhealthiness based on evidences manifested due to 

malicious attacks including self-promoting, bad-

mouthing and ballot stuffing attacks. Evidences of self-

promoting attacks may be detected through the 

encounter history exchanged from node j. If the 

encounter history is not certified (e.g., using encounter 

tickets as in [4, 16]), or is certified but inconsistent 

with node i’s encounter history matrix [11] 

accumulated, it is considered as a negative experience. 

A matrix element (j, k) records the number of times 

node j encountered node k, with each encounter being 

certified with an encounter ticket [4, 16] by both nodes 

j and k with timestamp information. Because of the 

encounter ticket mechanism, it is impossible that node 

i’s cumulative encounter history matrix element (j, k) is 

inconsistent with the encounter history provided by 

node j with node k if either node j or k is a good node, 

but it is possible that element (j, k) is inconsistent with 

the encounter history provided by node j with node k if 

both node j and node k are malicious, colluding and 

performing self-promoting attacks to attract packets to 

them. This is particularly the case when either node j or 

node k was good but later compromised and became 

malicious in between two encounters with node i. This 

inconsistency would be detected by node i and counted 

as one negative experience. Evidences of bad-

mouthing/ballot stuffing attacks may be detected by 

comparing node j’s recommendation toward another, 

say, node q, with the trust value of node i toward node 

q itself. If the percentage difference is higher than a 

threshold, it is considered suspicious and thus a 

negative experience. These positive/negative 

experiences are collected over the new encounter 

period [      ] to assess     
                     (  

  )  It is computed by the number of positive 

experiences over the total experiences in healthiness-

related behavior. 

     
                       (    )  Our notion of social 

selfishness is that friends will be cooperative toward 

each other even if they are selfish. Every node keeps a 

friend list and also adds itself as a member. When node 

i and node j encounter and directly interact with each 

other, if there is a change to either friend list, they can 

exchange their friend lists. To preserve privacy, node i 

and node j can agree on a one-way hash function (with 

a session key) upon encountering while exchanging the 

friend lists to hide the identities of their friends. This 

way, only common friends (the source node, node i, 

node j, or the destination node) will be identified while 

the identities of uncommon friends will not be revealed. 

From node i’s perspective if node j is a friend of the 

source node, node i, or node d (the destination) then 

    
                       (    ) is 1. Otherwise, node i 

will hope that node j is altruistic by examining the 

protocol compliance degree of node j. Specifically, 

node i applies monitoring techniques to detect altruistic 

behaviors, e.g., whether or not node j follows the 

prescribed protocol over [       ]. Evidence of 

altruism is manifested by the behavior for executing 

beacon, encounter history exchange, packet receipt 

acknowledgement, and trust evaluation protocols 

expected out of node j.     
                       (  

  ) is then computed by the number of positive 

experiences over the total experiences in unselfishness-

related behavior. Here we note that node i will not 

monitor if node j has forwarded a packet since it is 

impractical to monitor packet forwarding in DTNs. 

     
                      (    )  While there is no pre-

determined connectivity pattern in DTNs, the 

connectivity of one node (j) to another node (d) is 

inherently associated with its mobility pattern and its 



 

 

social activities. This trust property represents the 

connectivity of node j to the destination node d. If the 

connectivity trust is high, then node j would be a good 

candidate for packet delivery to node d. Node i deduces 

node j’s connectivity with node d based on its 

encounter matrix [11] collected over [      ]  
including the new encounter history received from 

node j. Specifically, node i uses its encounter history 

matrix accumulated over [      ]  to compute 

    
                      (    )  as the ratio of the 

number of encounters between node j and node d to the 

maximum number of encounters between any node and 

node d. Note that node i should only accept a certified 

encounter history (as in [4, 16]) to avoid black hole 

attacks. 

     
                (    )  This trust property 

represents the capability or competence of node j to do 

the basic routing function. Node i counts the ratio of 

the number of acknowledgement packets received from 

node j (at the MAC layer) over transmitted packets to 

node j, over [      ], to estimate energy status in 

node j. 

In this case, since there is no new ―indirect trust,‖ node i 

simply updates     
          (    ) with its past experience 

    
          ( ) decayed over   , i.e., 

    
              (    )              

           ( ) (4) 

4.2 Trust Update Upon Node i Encountering Node m, 

    
When node i encounters node m,      node i uses its 

1-hop neighbors (including node m) as recommenders to 

update ―indirect trust‖     
          (    ) in Equation 2. An 

application-level optimization parameter is the 

recommender trust threshold      for the selection of 

recommenders. Using      provides robustness against bad-

mouthing or ballot stuffing attacks since only 

recommendations from more trustworthy nodes are 

considered. The indirect trust evaluation toward node j is 

given in Equation 5 below where     is the set containing 

node i’s 1-hop neighbors with     ( )       and 

|  | indicates the cardinality of    . If node i considers node 

k as a trustworthy recommender, i.e.,      ( )        then 

node k is allowed to provide its recommendation to node i 

for evaluating node j. In this case, node i weighs node k’s 

recommendation,     
 ( )  with node i’s referral trust, 

    
 ( )  toward node k. 

    
              (    )

 

{
 

 

                   

           
           ( )                        |  |   

∑ {    
 ( )      

 ( )}    

∑     
 ( )    

                        |  |    
 

(5) 

In this case, since there is no new ―direct trust,‖ node i 

simply updates     
        (    ) with its past experience 

    
        ( ) decayed over   , i.e., 

    
            (    )              

         ( ) (6) 

4.3 Application-Level Trust Optimization for 

Encounter-Based DTN Routing 

When node i encounters node j, it uses     ( )  from 

Equation 1 to decide whether or not node m can be the next 

message carrier to shorten message delay or improve 

message delivery ratio. We use two application-level 

optimization parameters for encounter-based DTN routing 

performance maximization. One parameter described earlier 

in Section 4.2 is the minimum trust threshold      for the 

selection of recommenders. A high     blocks bad-

mouthing or ballot stuffing attacks but discourages 

recommendations, so ―indirect trust‖ may be decayed 

unnecessarily because of lack of recommendations. A low 

     on the other hand encourages recommendations but 

opens door to malicious attacks. Another application-level 

optimization parameter is the minimum trust threshold    

for the selection of the next message carrier. Node i will 

forward the message to node j only if      ( )     

and     ( ) is in the top Ω percentile among all     ( )’s. 

This helps the chance of selecting a trustworthy next 

message carrier. We aim to identify the best application-

level trust optimization parameter settings in terms of 

    and   to maximize the performance of the DTN routing 

application. This application-level trust optimization design 

is described in the bottom part of Figure 1. 

5 PERFORMANCE MODELING 

We validate our trust management designs by a novel 

model-based analysis methodology via extensive 

simulation. Specifically we develop a mathematical model 

based on continuous-time semi-Markov stochastic 

processes (for which the event time may follow any general 

distribution) to define a DTN consisting of a large number 

of mobile nodes exhibiting heterogeneous social and QoS 

behaviors. 

We take the concept of ―operational profiles‖ in 

software reliability engineering [22] as we build the 

mathematical model. An operational profile is what the 

system expects to see during its operational phase. During 

the testing and debugging phase, a system would be tested 

with its anticipated operational profile to reveal design 

faults. Failures are detected and design faults causing 

system failures are removed to improve the system 

reliability. The operational profile of a DTN system 

specifies the operational and environmental conditions. 

Typically this would include knowledge regarding (a) 

hostility such as the expected % of misbehaving nodes and 

if it is evolving the expected rate at which nodes become 

malicious or selfish or even the expected % of misbehaving 

nodes as a function of time; (b) mobility traces providing 



 

 

information of how often nodes meet and interact with each 

other; (c) behavior specifications defining good behavior 

and misbehavior during protocol execution; and (d) 

resource information such as how fast energy is consumed. 

We develop a probability model based on Stochastic 

Petri Net (SPN) techniques [26] to describe a DTN, given 

an operational profile as input. The SPN model for a DTN 

node is shown in Figure 2 consisting of 4 places, namely, 

energy, location, maliciousness and selfishness. The 

underlying state machine is a semi-Markov model with 4-

component states, i.e., (energy, location, maliciousness, 

selfishness), where energy is an integer holding the amount 

of energy left in the node, location is an integer holding the 

location of the node, maliciousness is a binary variable with 

1 indicating the node is malicious and 0 otherwise, and 

selfishness is a binary variable with 1 indicating the node is 

socially selfish and 0 otherwise. A selfish node will forward 

a packet only if the source, current carrier or the destination 

is in its friend list. Here we note that a node’s trust value 

actually is a real number in [0, 1]; it is calculated by a state-

probability weighed sum of trust values assigned to the 

states of the underlying semi-Markov model of the SPN 

performance model, i.e., trust value = ∑i (state probability 

of state i × trust value in state i). In some states, the trust 

value is binary. For example in a state in which a node is 

compromised, the trust value for property ―healthiness‖ in 

this state is 0. Note that each node has its own SPN model. 

So there are as many SPN models as they are nodes in the 

DTN. The operational profile specifies the % of malicious 

nodes and the % of socially selfish nodes. Thus, some 

nodes will be malicious in accordance with this 

specification. Similarly some nodes will be selfish based on 

the % of selfish nodes. 

 The purpose of the SPN model is to yield ground truth 

status of a node in terms of its healthiness, unselfishness, 

connectivity, and energy status. Then we can check 

subjective trust against ground truth status for validation of 

trust protocol designs. Below we explain how we leverage 

the SPN model to determine a node’s ground truth status. 

Location (Connectivity): The connectivity trust of 

node m toward node d is measured by the probability that 

both node m and node d are in the same location at time t. 

We use the location subnet to describe the location status of 

a node. Transition T_LOCATION is triggered when the 

node moves to a new area from its current location 

according to its mobility pattern. We consider both 

synthetic mobility models and real mobility traces. This 

information along with the location information of other 

nodes at time t provides us the probability of two nodes 

encountering with each other at any time t.  

Energy: We use the energy subnet to describe the 

energy status of a node. Place energy represents the current 

energy level of a node. An initial energy level (  ) of each 

node represented by a number of tokens is assigned 

according to node heterogeneity information. A token is 

taken out when transition T_ENERGY fires representing 

the energy consumed during protocol execution, packet 

forwarding and/or performing attacks in the case of a 

malicious node. The rate of transition T_ENERGY 

indicates the energy consumption rate which varies 

depending on the ground truth status of the node (i.e., 

malicious or selfish). The operational profile specifies the 

energy consumption rate of a malicious node vs. a selfish 

node vs. a well-behaved node. 

Healthiness: A malicious node is necessarily unhealthy. 

So we will know the ground truth status of healthiness of 

the node by simply inspecting if place maliciousness 

contains a token. 

Unselfishness: A socially selfish node drops packets 

unless the source, current carrier or the destination node is 

in its friend list. We will know the ground truth status of 

unselfishness of the node by simply inspecting if place 

selfishness contains a token. 

Dynamically Changing Environment Conditions: 

With the goal to deal with malicious and selfish nodes in 

DTN routing, in this paper we consider a dynamically 

changing environment in which the number of misbehaving 

nodes (malicious or selfish) is changing over time. A node 

becomes malicious when it is captured and turned into a 

compromised node, as dictated by the per-node capture 

rate. The SPN output provides the probability that a node is 

compromised at time t. We model the capture event by a 

transition T_COMPRO (in dashed line) in Figure 2. Once 

the transition T_COMPRO is triggered, a token will be 

moved into the place maliciousness representing that this 

node is compromised. Similarly, once the transition 

T_SELFISH (also in dashed line) is triggered, a token will 

be moved into the place selfishness representing that this 

node becomes selfish. The transition rates of T_COMPRO 

and T_SELFISH are    and   , respectively. We will use 

the SPN model augmented with the two dashed line 

transitions in Section 8 in which we treat the subject of 

dynamic trust management. 

Objective Trust Evaluation: The SPN model 

described above yields actual or ground truth status of each 

node. The ―objective‖ trust of node j at time t, denoted 

by     ( )   is also obtained from Equation 1 except that 

  
 ( ) is being used instead of     

 ( )   Here   
 ( ) is simply 

the actual or ground truth status of node j in trust property X 

at time t obtainable from the SPN model for node j. The 

notion of ―objective‖ trust evaluation is to validate 

subjective trust evaluation, that is, subjective trust 

evaluation is valid if the subjective trust value obtained as a 

energy

selfishnessmaliciousness

location

T_ENERGY

T_SELFISHT_COMPRO
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Figure 2: SPN Model for a Node in the DTN. 



 

 

result of executing our dynamic trust management protocol 

is accurate with respect to the objective trust value obtained 

from ground truth. 

6 NUMERICAL RESULTS 

In this section we present numerical results generated from 

the SPN model. Our trust evaluation results have two parts. 

The first part is about the convergence and accuracy of trust 

aggregation for individual trust properties. The second part 

is about maximizing application performance through trust 

formation (by setting the best weights to trust properties) 

and application-level trust optimization (by setting the best 

recommender trust threshold       and message carrier trust 

threshold   )  Because different trust properties have their 

own intrinsic trust nature and react differently to trust decay 

over time, each trust property X has its own best set of 

(     )  under which     
 ( ) obtained from Equation 2 

would be the most accurate, i.e., closest to actual status of 

node j in trust property X, or   
 ( )  Recall that a higher   

value indicates that subjective trust evaluation relies more 

on direct observations compared with indirect 

recommendations provided by the recommenders and that a 

higher    indicates a higher trust decay rate. Once we 

ensure the accuracy of each trust property X, we can then 

address the trust formation issue, i.e., identifying the best 

way to form the overall trust out of QoS and social trust 

properties and the best way to set application-level trust 

parameters such that the application performance (i.e., 

secure routing) is maximized. 

Table 1 lists a set of parameters and their values (for 

input parameters) as prescribed by the operational profile of 

a DTN. We consider N = 20 nodes moving according to the 

SWIM mobility model [15] modeling human social 

behaviors in an m×m=16×16 (4km×4km) operational 

region, with each region coving R = 250m radio radius. We 

use SWIM in this section for numerical results. Later in 

Section 7 we also use traces in our simulation studies. The 

initial energy of each node E0 is set to 100 hours lifetime. 

The error probability of direct trust assessment of 

    
         (    ) due to environment noise denoted by 

       is set to 5%. For X=healthiness, the false positive 

probability     of misidentifying a healthy node as an 

unhealthy node is equivalent to         i.e., 5%. For a 

compromised node performing random attacks with 

probability       (in the range of [0, 1]) to evade detection, 

the false negative probability    for missing an unhealthy 

node as a healthy node is             (        )(  
     ) . That is,     is        with probability      (if 

attacking) and          with probability         (if not 

attacking). We set     
         (in Equation 3) to true if the 

encounter duration is longer than 10 minutes as it would 

allow sufficient data to be collected for direct trust 

assessment of X; we set it to false otherwise. In SWIM [15], 

a node has a home location and a number of popular places. 

A node makes a move to one of the population places based 

on a prescribed pattern. The probability of a location being 

selected is higher if it is closer to the node’s home location 

or if it has a higher popularity (visited by more nodes). 

When reaching the destination, the node pauses at the 

destination location for a period of time following a 

bounded power law distribution. We set the slope of the 

SWIM mobility model to 1.45 (as in [15]) and the upper-

bound pause time to 4 hours. 

The weight of direct trust (β), trust decay parameter (λd), 

trust threshold for the recommender (    ), trust threshold 

for the next carrier (  ) and weight of trust property X (w
X
) 

are design parameters whose best settings are to be 

determined as output. Here we should note that a social 

friendship matrix [18] and the percentages of selfish and 

malicious nodes, although not specified in Table 1, are also 

given as input, which we will vary in the analysis to test 

their effects on design parameters. Lastly, the node 

compromise rate (  )  and node selfishness rate (  )  for 

characterizing changing DTN conditions are also not 

specified in Table 1. We will consider these two parameters 

and treat the subject of dynamic trust management in 

Section 8.  

6.1 Best Trust Propagation Protocol Settings to 

Minimize Trust Bias 

Here we determine the best (    ) values that yield 

subjective trust evaluation closest to objective trust 

evaluation to minimize trust bias, given a set of parameter 

values as listed in Table 1 characterizing the operational 

and environmental conditions. We fix the percentage of 

selfish nodes to 30% and vary the percentage of malicious 

nodes from 0% to 45% to examine its effect. We set the 

recommender trust threshold (    ) to 0.6, since the trust 

value of a malicious node is likely to be lower than 

ignorance (0.5), so          can effectively filter out false 

recommendations from malicious nodes. Since there are 

only two input parameters, we search the best (    ) for 

each trust property through exhaustive search, i.e., we 

compare subjective trust obtained through protocol 

execution under a given (    ) with objective trust. The 

best (    )  combination is the one that produces the 

lowest mean square error (MSE). This information 

determined at static time is recorded in a table to be used by 

dynamic trust management which we will discuss later in 

Section 8.  

In Table 2, we summarize the best (     ) values for 

each trust property for minimizing trust bias, given the % of 

malicious nodes as input, for a trustor node (i.e., node i) 

randomly picked toward a trustee node (i.e., node j) also 

Table 1: System Parameters. 

Name Value Name Value Name Value 

m×m 16×16 (4km×4km) N 20 Perror 5% 

Slope of 

SWIM 
1.45 R 250m Prand [0,1] 

Pause of 

SWIM 
≤ 4 hrs E0 100 hrs   

 



 

 

randomly picked. Each (    ) entry represents the best 

combination under which subjective trust     
 ( ) obtained as 

a result of executing our trust aggregation protocol for trust 

property X (as prescribed by Equation 2) deviates the least 

from objective trust for property X (that is,   
 ( ) ). We 

have observed for all cases the most deviation is 3% MSE. 

This substantiates our claim that there exists a distinct best 

protocol setting in terms of (     ) for each trust property 

X, with X = connectivity, energy, healthiness or 

unselfishness. Furthermore, the best (    ) setting changes 

as the % of misbehaving nodes changes dynamically. 

6.2 Best Trust Formation Protocol Settings to Maximize 

Application Performance 

Next we turn our attention to the trust formation issue to 

optimize application performance. For the secure routing 

application, two most important performance metrics are 

message delivery ratio and delay. In many situations, 

however, excessive long delays are not acceptable to DTN 

applications. We define the delivery ratio as the percentage 

of messages that are delivered successfully within an 

application deadline which is the maximum delay the 

application can tolerate. While our protocol is generic to 

any deadline, we set the deadline (or a time-to-live limit) to 

2 hours to reveal the tradeoff between delay and delivery 

ratio in this environment setting for DTN routing. Our goal 

is to find the best way to assign the weight    to X = 

healthiness, unselfishness, connectivity or energy to 

maximize the delivery ratio. Since the search space is small, 

we perform exhaust search to identify the best trust 

formation (w
X
 with an increment of 0.1) under which 

delivery ratio is maximized. This information again is 

recorded in a table to be used for dynamic trust 

management (Section 8). We assume that a malicious node 

drops all packets. A selfish node drops part of packets it 

receives depending on if it knows the source, current carrier 

or destination node socially (whether these nodes are in its 

friend list). 

We consider two variations of secure routing protocols: 

single-copy forwarding (L = 1) and multi-copy forwarding 

(L ≥ 2), where L is the maximum number of carriers to 

which a node can forward a message. Below we discuss 

how we identify the best setting for double-copy 

forwarding (L = 2). The best setting for other cases (L = 1 

or L > 2) can be obtained in a similar way, but is not 

presented here due to space limitation.  

Table 3 summarizes the best trust formation for 

maximizing delivery ratio under double-copy forwarding, 

given the percentage of malicious nodes as input. We first 

observe there is a distinct set of optimal weight settings 

under which delivery ratio is maximized. Second, the 

optimal weight of the healthiness trust property increases as 

the % of malicious node increases. This is because in 

hostile environments, using a higher weight on healthiness 

helps identify malicious nodes to avoid message loss.  

Figure 3 correspondingly shows the maximum delivery 

ratio obtainable when the system operates under the best 

trust formation setting identified. We see that the delivery 

ratio remains high even as the % of malicious nodes 

increases to as high as 45%. This to some extent 

demonstrates the resiliency property of our trust-based 

routing protocol against malicious attacks. 

Table 2: Best (β, λd) to Minimize Trust Bias. 
% of 

malicious 

nodes 

Healthiness 

 (β, λd ×104) 

Unselfishness 

(β, λd ×104) 

Connectivity 

 (β, λd ×104) 

Energy  

(β, λd ×104) 

0% (0.44, 0.0) (0.41, 0.2) (0.80, 10) (0.39, 0.1) 

5% (0.39, 0.0) (0.41, 0.2) (0.80, 10) (0.39, 0.1) 

10% (0.40, 0.0) (0.39, 0.0) (0.80, 10) (0.39, 0.1) 

15% (0.39, 0.0) (0.37, 0.0) (0.86, 10) (0.39, 0.1) 

20% (0.41, 0.0) (0.33, 0.0) (0.91, 10) (0.39, 0.1) 

25% (0.35, 0.0) (0.30, 0.0) (0.91, 10) (0.48, 0.5) 

30% (0.35, 0.0) (0.28, 0.0) (0.91, 10) (0.47, 0.0) 

35% (0.35, 0.0) (0.26, 0.0) (0.95, 10) (0.49, 0.5) 

40% (0.35, 0.0) (0.21, 0.1) (0.95, 10) (0.49, 0.5) 

45% (0.35, 0.0) (0.22, 0.5) (0.95, 10) (0.58, 0.5) 

 
Figure 3: Delivery Ratio under Best Trust Formation. 

 

Table 3: Best Trust Formation to Maximize Delivery Ratio. 
% of 

malicious 

nodes 
whealthiness wunselfishness wconnectivity wenergy 

0% 0.0 0.6 0.4 0.0 

5% 0.1 0.8 0.1 0.0 

10% 0.3 0.3 0.3 0.1 

15% 0.3 0.3 0.3 0.1 

20% 0.3 0.3 0.3 0.1 

25% 0.3 0.3 0.2 0.2 

30% 0.3 0.3 0.3 0.1 

35% 0.3 0.3 0.3 0.1 

40% 0.4 0.3 0.2 0.1 

45% 0.4 0.3 0.2 0.1 

 
Figure 4: Effect of    on Delivery Ratio. 

 



 

 

6.3 Best Application-Level Trust Optimization Design 

Settings to Maximize Application Performance 

In this section, we apply the application-level trust 

optimization design in terms of the best minimum trust 

threshold      for the selection of recommenders and the 

best message carrier trust threshold    to maximize delivery 

ratio in response to changing hostility reflected by the % of 

malicious nodes. Figure 4 shows delivery ratio vs.    with 

the percentage of malicious nodes varying in [0 - 45%]. We 

set the trust recommender threshold,     , at 0.6 to isolate 

out its effect. We notice that there is an optimal    value 

under which delivery ratio is maximized. With the 

environment setting (30% selfish nodes and 0 to 45% 

malicious nodes), the optimal value    value is around 0.7. 

The reason is that using a higher value of    helps generate 

a higher message delivery ratio by choosing only the most 

trustworthy nodes as message carriers, but it also introduces 

a higher message delay. Therefore,    = 0.7 is the best 

setting to balance the tradeoff between message delivery 

ratio vs. message delay, except for the case when there are 

little malicious nodes for which    = 0.5 is the best setting.  

6.4 Comparative Analysis 

Lastly we conduct a comparative analysis, contrasting 

our trust-based protocol operating under the best settings 

identified with Bayesian trust-based routing [12, 14] and 

non-trust based (PROPHET [19] and epidemic [27]) 

protocols. PROPHET [19] uses the history of encounters 

and transitivity to calculate the probability that a node can 

deliver a message to a particular destination; it is 

considered as a benchmark ―non-trust based‖ forwarding 

algorithm for DTNs in the literature. Bayesian trust-based 

routing on the other hand relies on the use of trust 

information maintained by a Bayesian based trust 

management system (such as a Beta reputation system [12, 

14]) to make routing decisions. In a Bayesian trust 

management system, the trust value is assessed using the 

Bayes estimator, updated by both direct observations and 

indirect recommendations. The direct observations are 

directly used to update the number of positive and negative 

observations, whereas the recommendations are discounted 

by the confidence [12] or belief [14] of the trustor toward 

the recommender. Under Bayesian trust-based routing, a 

node is chosen as the message carrier only if its trust value 

is in the top Ω percentile and higher than the message 

carrier trust threshold     We choose Bayesian trust-based 

routing because of its popularity in trust/reputation systems. 

We again consider double-copy forwarding (with L = 2) 

with nodes following the SWIM mobility model. For our 

trust-based secure routing protocol, we use the best settings 

for double-copy forwarding as identified earlier. There is no 

specific protocol parameter being used in epidemic routing. 

In epidemic routing, a message carrier forwards a message 

to every encountering node whenever this node has not seen 

the message before. It is selected as a baseline protocol to 

provide a performance bound in message delivery ratio and 

message delay. For PROPHET, the parameter values of 

initialization constant, aging constant, and scaling constant 

are 0.75, 0.25, and 0.98, respectively as suggested in [19], 

and we verify that PROPHET performs the best under these 

parameter settings through simulation. For the Bayesian 

trust model, there is no direct trust and indirect trust weight 

parameters because the weight to indirect trust is 

determined by confidence or belief [12, 14, 17] based on 

the positive and negative experiences/recommendations 

received. For fair comparison, we also use the best 

application-level protocol setting (i.e.,   ) when applying 

the Bayesian trust model to DTN routing.  

Figure 5 compares the message delivery ratio, delay, 

and overhead generated by our trust protocol against 

Bayesian trust-based, PROPHET, and epidemic routing 

protocols. The results demonstrate that our trust-based 

secure routing protocol designed to maximize delivery ratio 

can effectively trade off message overhead for a significant 

gain in delivery ratio. In particular, our protocol and 

Bayesian trust-based routing have less performance 

degradation in message delivery ratio than PROPHET when 

the percentage of malicious nodes increases. The reason is 

that using trust to select the next message carrier can avoid 

messages being forwarded to malicious nodes and then 

 

 

 (a) Delivery Ratio. 

 
(b) Message Delay. 

 
(c) Message Overhead. 

Figure 5: Performance Comparison (Analytical Results based 

on SWIM Mobility). 



 

 

being dropped. Further, our trust-based routing protocol 

outperforms Bayesian trust-based routing and PROPHET in 

delivery ratio as it applies the best trust formation out of 

social and QoS trust properties. Furthermore, our trust-

based routing protocol also outperforms Bayesian trust-

based and PROPHET in message delay except when there 

is a very high % of malicious nodes (e.g., 40-45% of 

malicious nodes) in the system. The reason is that when 

there is a high % of malicious nodes, our protocol tends to 

use a higher weight for healthiness and consequently a 

lower weight for connectivity, thus causing a higher 

message delay. Here we note that there is a trade-off 

between message delivery ratio and message delay. When 

the percentage of malicious nodes in the network increases, 

a message originally successfully delivered with a longer 

message delay is more likely to be dropped; hence, this 

dropped message would not be counted in calculating 

message delay. This certainly does not mean we should 

have more malicious nodes in the network since the 

message delivery ratio will decrease. The similar 

observations appear in [19] investigating the performance 

of both message delivery ratio and message delay in DTN 

routing. Lastly, the message overhead of our trust-based 

routing protocol is significantly lower than epidemic 

routing. We conclude that our trust-based protocol 

approaches the ideal performance of epidemic routing in 

delivery ratio and message delay without incurring high 

message overhead.  

7 SIMULATION VALIDATION 

In this section, we validate analytical results through 

extensive simulation using ns-3 [1]. The simulated DTN 

environment is setup as described in Table 1. We simulate 

two mobility patterns: a synthetic mobility model (SWIM) 

[15] and real mobility traces from [24], namely Intel, 

Cambridge, Infocom05 and Infocom06. The simulation 

results obtained based on both SWIM mobility and mobility 

traces correlate well with analytical results in Figure 5. We 

also present simulation results to demonstrate trust 

assessment accuracy, convergence and resiliency properties 

of our protocol. We refer the readers to Appendix B of the 

supplemental file [6] for detail. 

8 DYNAMIC TRUST MANAGEMENT 

In this section, we perform a comparative analysis of our 

dynamic trust management protocol for DTN routing 

against PROPHET, Bayesian trust-based routing, and 

epidemic routing, all operating under best protocol settings 

dynamically in response to hostility changes over time. We 

consider two mobility patterns: the SWIM mobility model 

[15] and the infocom06 mobility trace [24] to demonstrate 

the effectiveness of our dynamic trust management protocol 

regardless of the mobility pattern. We refer the readers to 

Appendix C of the supplemental file [6] for detail. 

9 CONCLUSION 

In this paper, we designed and validated a trust 

management protocol for DTNs and applied it to secure 

routing to demonstrate its utility. Our trust management 

protocol combines QoS trust with social trust to obtain a 

composite trust metric. Our design allows the best trust 

setting (    ) for trust aggregation to be identified so that 

subjective trust is closest to objective trust for each 

individual trust property for minimizing trust bias. Further, 

our design also allows the best trust formation (w
X
) and 

application-level trust settings (  ,     ) to be identified to 

maximize application performance. We demonstrated how 

the results obtained at design time can facilitate dynamic 

trust management for DTN routing in response to 

dynamically changing conditions at runtime. We performed 

a comparative analysis of trust-based secure routing 

running on top of our trust management protocol with 

Bayesian trust-based routing and non-trust-based routing 

protocols (PROPHET and epidemic) in DTNs. Our results 

backed by simulation validation demonstrate that our trust-

based secure routing protocol outperforms Bayesian trust-

based routing and PROPHET. Further, it approaches the 

ideal performance of epidemic routing in delivery ratio and 

message delay without incurring high message or protocol 

maintenance overhead. 

There are several future research areas including (a) 

exploring other trust-based DTN applications with which 

we could further demonstrate the utility of our dynamic 

trust management protocol design; (b) designing trust 

management for DTNs considering social communities and 

performing  comparative analysis with more recent works 

such as [2, 3]; (c) implementing our proposed dynamic trust 

management protocol on top of a real DTN architecture [5] 

to further validate the protocol design, as well as to quantify 

the protocol overhead; (d) investigating trust-based 

admission control strategies as in [7-9] used by selfish 

nodes to maximize their own payoffs while contributing to 

DTN routing performance;  and (e) developing trust and 

security management protocols for delay-tolerant, self-

contained message forwarding applications based on the 

information-centric networks (ICN) architecture [13]. 
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