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Abstract — An Internet of Things (IoT) system connects a large 

amount of tags, sensors, and smart devices often with mobility to 

facilitate information sharing, enabling a variety of attractive 

applications. On the one hand, the service oriented architecture 

(SOA) can provide connectivity and interoperability among 

heterogeneous IoT devices in the physical network. On the other 

hand, IoT devices are virtually connected via social networks. In 

this paper, we analyze the notion of adaptive trust management 

to support reliable service composition applications in SOA-

based IoT systems. Each device records user satisfaction 

experiences toward devices with which it has interacted, and 

collects trust feedbacks from other devices sharing social 

interests. We consider friendship, social contact, and community 

of interest social relationships to select trust feedbacks. Further 

we develop a novel adaptive filtering technique to determine the 

best way to combine direct trust and indirect trust feedbacks 

dynamically to minimize both convergence time and trust bias. 

We demonstrate the effectiveness of the proposed trust 

management through a service composition application in SOA-

based IoT systems.  

Keywords— Trust management; Internet of things; social 

networks; service composition; SOA; performance analysis. 

1 INTRODUCTION  

An Internet of Things (IoT) system connects the physical 

world into cyberspace via radio frequency identification 

(RFID) tags, sensors, and mobile devices. IoT systems 

challenge trust management in the following aspects. First, an 

IoT system evolves with new nodes joining and existing nodes 

leaving. A trust management protocol must address this issue 

to allow newly joining nodes to build up trust quickly with a 

reasonable degree of accuracy. Second, the building blocks or 

entities of IoT systems are mostly human carried or human 

operated devices [2], so trust management must take into 

account social relationships among device owners in order to 

maximize protocol performance. Lastly, a social IoT system 

essentially consists of uncensored IoT devices providing a 

wide variety of services. Inherently, many of them (the 

owners) will be malicious for their own gain. A trust 

management protocol for IoT must be resilient to malicious 

attacks to survive in hostile environments. 

The problem we aim to solve is design and validation of an 

adaptive and survivable trust management protocol for SOA-

based social IoT systems [1] capable of answering the 

challenges discussed above. The trust management protocol 

must be executed autonomously by SOA-based IoT devices 

with little human intervention. The goals are two-fold: (a) trust 

bias minimization; (b) application performance optimization. 

This is achieved by dynamic trust management, i.e., adjusting 

trust protocol parameters in response to environment changes 

dynamically. We illustrate application performance 

optimization via a service composition example. 

Despite the abundance of trust protocols for P2P and 

mobile ad hoc and sensor networks [8, 9], there is little work 

on trust management for IoT systems. Chen et al. [7] proposed 

a trust management model based on fuzzy reputation for IoT. 

However, their trust management model considers a specific 

IoT environment consisting of only wireless sensors with QoS 

trust metrics such as packet forwarding/delivery ratio and 

energy consumption, and does not take into account the social 

relationship which is important in social IoT systems. Bao and 

Chen [3, 4] proposed a trust management protocol considering 

both social trust and QoS trust metrics and using both direct 

observations and indirect recommendations to update trust. 

Their proposed trust management protocol considers a social 

IoT environment where environment conditions are 

dynamically changing, and interaction pattern changes. To 

address the scalability issue, Bao and Chen further proposed a 

scalable trust management protocol [5] for large-scale IoT 

systems by utilizing a scalable storage management strategy. 

Relative to prior work, we have the following contributions: 

(1) we utilize distributed collaborating filtering [12] to select 

trust feedbacks from nodes sharing similar social interests; (2) 

we develop a novel adaptive filtering technique to dynamically 

adjust trust parameter settings so as to minimize trust 

estimation bias; (3) we apply the proposed trust management 

to a trust-based service composition application in SOA-based 

IoT systems [1] to demonstrate application performance 

optimization; and (4) we validate the proposed trust 

management and its application through simulation based on 

real trace data [6].  



2 SYSTEM MODEL  

We consider a social SOA-based IoT environment [1, 2] 

where nodes are physical connected via communication 

networks and socially connected via users’ social networks. 

Each node has a unique address to identify (i.e., URI). There is 

no centralized trusted authority. There are two types of nodes: 

devices and users (or owners). The user-device relationship is 

a one-to-multiple relationship. In our trust management, the 

trustor is a user and the trustee is a device (owned by another 

user). For each user, the trust evaluation information is 

computed and stored in a designated high-end device owned 

by the user. 

We consider the following three social relationships: 

friendship, social contact, and community of interest (CoI). 

The reason is that device owners that are friends, have 

frequent social contacts in common locations, or share similar 

community of interests tend to have close social relationships 

and their referrals or recommendations are considered more 

trustable or reliable than a complete stranger [2]. These social 

relationships are represented by three lists: a friend list with 

current friends, a location list with locations frequently visited 

for social contact, and a CoI list with devices (services) 

directly interacted with. Each user has at least one designated 

high-end device (i.e., smart phone and laptop) storing these 

lists in the user’s profile (see Figure 1). Other devices of the 

same user have the privilege to access the profile. By 

delegating the storage and computation of social networks to a 

high-end device for each user, many low-end devices (i.e., 

sensors) are able to share and utilize the same social 

information to maximize its performance. 

Each time when device d1 requests a service from device 

d2, d1 updates the user satisfaction experience record (in the 

user satisfaction experience list in Figure 1) towards d2 stored 

in the designated device of d1’s user. Similarly, d1 can query 

the trust information (in the trust list in Figure 1) towards d2 

from the designated device of d1’s user. Please note that 

elements in the user interaction experience list correspond to 

devices in the CoI list. 

In the context of SOA, an owner provides services via its 

IoT devices. An IoT device providing a service will have to 

compete with other IoT devices which provide a similar type 

of service. A malicious IoT device (because its owner is 

malicious) can perform the following attacks for its own gain: 

Self-promoting attacks: it can promote its importance (by 

providing good recommendations for itself) so as to be 

selected as the service provider, but then can provide bad or 

malfunctioned service. 

Bad-mouthing attacks: it can ruin the reputation of a well-

behaved device (by providing bad recommendations against it) 

so as to decrease the chance of that good device being selected 

as a service provider. 

Ballot stuffing attacks: it can collude with a bad device and 

boost the reputation of the bad device (by providing good 

recommendations) so as to increase the chance of that bad 

device being selected as a service provider. 

3 TRUST MANAGEMENT PROTOCOL  

Our trust management protocol for IoT systems is 

distributed. Each user maintains its own trust assessment 

towards devices. For scalability, a user just keeps its trust 

evaluation results towards a limited set of devices of its 

interests. Each user stores its profile in a designated high-end 

device (Figure 1). The profile of user 𝑢  includes: 

(1) A “friend” list including all friends of 𝑢 , denoted by a 

set  𝐹  = {𝑢 , 𝑢 , … }; 

(2) Locations that 𝑢  frequently visited for social contact, 

denoted by a set 𝑃  = {𝑝 , , 𝑝 , , … }; 

(3) List of devices that 𝑢  has directly interacted with and 

the corresponding user satisfaction experience values, 

denoted by set 𝐷  = {𝑑 , 𝑑 , … } and set 𝐵  = {(𝛼 , , 

𝛽 , ), ( 𝛼 , , 𝛽 , ), … }, where 𝛼 ,  and 𝛽 ,  are the 

accumulated positive and negative user satisfaction 

experiences of user 𝑢  towards device 𝑑 ; 

(4) Trust values of user 𝑢  towards IoT devices, denoted by 

a set 𝑇  = {𝑡 , , 𝑡 , , … }. 

3.1 Direct Interaction Experiences 

We adopt Bayesian framework [14] as the underlying 

model for evaluating direct trust from direct user satisfaction 

experiences. The reason we choose Bayesian because it is 

well-established and because of its popularity in 

trust/reputation systems. In service computing, a service 

requester could rate a service provider after direct interaction 

based on nonfunctional characteristics. The nonfunctional 

characteristics include user-observed response time, failure 

probability, prices, etc. The current user satisfaction 

experience of user 𝑢  toward device 𝑑  is represented by a 

value, 𝑓 , . We consider the simple case in which the direct 

user satisfaction experience 𝑓 ,  is a binary value, with 1 

indicating satisfied and 0 not satisfied. Then, we can consider 

𝑓 ,  as an outcome of a Bernoulli trial with the probability of 

success parameter 𝜃 ,  following a Beta distribution (a 

conjugate prior for the Bernoulli distribution), i.e., Beta(𝛼 , , 

𝛽 , ). Then, the posterior p(𝜃 , |𝑓 , ) has a Beta distribution as 

well, i.e., Beta(𝛼 , + 𝑓 , , 𝛽 , +1−𝑓 , ). Equation 1 shows 
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Figure 1: User Profile. 



how the hyper-parameters 𝛼 ,  and 𝛽 ,  are updated 

considering trust decay. 

𝛼 , = 𝑒    ∙ 𝛼 , 
(   )

+ 𝑓 ,         

𝛽 , = 𝑒    ∙ 𝛽 , 
(   )

+ 1 − 𝑓 , 

 (1)  

In Equation 1, 𝑓 ,  contributes to positive observations and 

1 − 𝑓 ,  contributes to negative observations. When updating 

𝛼 ,  and 𝛽 , , we consider an exponential decay, 𝑒    , on 

𝛼 , 
(   )

 and 𝛽 , 
(   )

, where 𝜑  is the decay factor which is 

normally is a small number to model small trust decay over 

time, and Δ𝑡 is the trust update interval.  

The direct trust of user 𝑢  to device 𝑑 , 𝑡 , 
 , is calculated as 

the expected value of 𝜃 , , i.e., 

𝑡 , 
 = 𝐸[𝜃 , ] =

𝛼 , 

𝛼 , + 𝛽 , 

 (2)  

In the literature, 𝛼 ,  and 𝛽 ,  are initially set to 0 or 1 since 

no prior knowledge available. In this paper, we consider the 

social relationships (if available) between 𝑢  and the user of 

𝑑  (say 𝑢 ) as the prior knowledge and set initial values of 𝛼 ,  

and 𝛽 ,  to 𝑠𝑖𝑚(𝑢 , 𝑢 )  and 1 − 𝑠𝑖𝑚(𝑢 , 𝑢 ) , respectively, 

where 𝑠𝑖𝑚(𝑢 , 𝑢 )  is the similarity between 𝑢  and 𝑢 , 

characterizing their social connections. This is discussed in 

Section 3.2 below. 

3.2 Recommendations 

When the devices of two users have direct interactions, 

they can exchange their profiles and provide trust 

recommendations. In addition, a device can also aggressively 

request trust recommendations from another device belonging 

to a friend if necessary. To preserve privacy, one can use a 

hash function (with session key) to prevent the identities of 

uncommon friends/devices from being revealed. Our protocol 

design is that a node will first measure its “social similarity” 

with a recommender in friendship, social contact (representing 

physical proximity) and CoI (representing knowledge on the 

subject matter) and then decide if the recommendation is 

trustable. The three social similarity measures are estimated 

dynamically as follows:  

 Friendship Similarity (𝑠𝑖𝑚 ): The friendship similarity is 

a powerful social relationship (intimacy) for screening 

recommendations. After two users 𝑢  and 𝑢  exchange 

their friend lists, 𝐹  and 𝐹 , they could compute two binary 

vectors, 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗   and 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗  , each with size |𝐹 ∪ 𝐹 |. An element 

in 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗   (or 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗  ) will be 1 if the corresponding user is in 𝐹  

(or 𝐹 ), otherwise 0. Let ‖𝐴 ‖ be the norm of vector 𝐴  and 

|𝐵|  be the cardinality of set 𝐵.  Then, we could use the 

“cosine similarity” of 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗   and 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗   (giving the cosine of 

the angle between them) to compute 𝑠𝑖𝑚  as follows: 

𝑠𝑖𝑚 (𝑢 , 𝑢 ) =
𝑉𝐹 ⃗⃗⃗⃗ ⃗⃗  ⃗ ∙ 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝑉𝐹 ⃗⃗⃗⃗ ⃗⃗  ⃗‖‖𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
=

|𝐹 ∩ 𝐹 |

√|𝐹 | ∙  |𝐹 |

  

 Social contact Similarity ( 𝑠𝑖𝑚 ): The social contact 

similarity presents closeness and is an indication if two 

nodes have the same physical contacts and thus the same 

sentiment towards devices which provide the same service. 

The operational area could be partitioned into sub-grids. 

User 𝑢  records the IDs of sub-grids it has visited in its 

location list 𝑃  for social contact. After two users 𝑢  and 

𝑢  exchange their location lists, 𝑃  and 𝑃 , they could 

compute 𝑠𝑖𝑚  in the same way of computing 𝑠𝑖𝑚  as 

follows: 

𝑠𝑖𝑚 (𝑢 , 𝑢 ) =
|𝑃 ∩ 𝑃 |

√|𝑃 | ∙  |𝑃 |

  

 Community of Interest Similarity (𝑠𝑖𝑚 ): Two users in 

the same COI share similar social interests and most likely 

have common knowledge and standard toward a service 

provided by the same device. Also very likely two users 

who have used services provided by the same IoT device 

can form a CoI (or are in the same CoI). After two users 𝑢  

and 𝑢  exchange their device lists, 𝐷  and 𝐷 , they could 

compute 𝑠𝑖𝑚  in the same way of computing 𝑠𝑖𝑚  as 

follows: 

𝑠𝑖𝑚 (𝑢 , 𝑢 ) =
|𝐷 ∩ 𝐷 |

√|𝐷 | ∙  |𝐷 |

  

The social similarity between two users can be a weighted 

combination of all social similarity metrics, i.e., friendship, 

social contact, and community of interest, considered in this 

paper:  

𝑠𝑖𝑚(𝑢 , 𝑢 ) = ∑ 𝑤 ∙ 𝑠𝑖𝑚 (𝑢 , 𝑢 )

    , ,  

 (3)  

where 𝑤 + 𝑤 + 𝑤 = 1  and 0 ≤ 𝑤 , 𝑤 , 𝑤 ≤ 1 . Each user 

can send trust recommendations request to its friends 

periodically (Δ𝑡 interval) or before requesting a service. Upon 

receiving recommendations, user 𝑢  selects top-k 

recommendations from k users with the highest similarity 

values with 𝑢  and calculates the indirect trust (𝑡 , 
 ) towards 

device 𝑑  as follows: 

𝑡 , 
 =

∑ 𝑠𝑖𝑚(𝑢 , 𝑢 ) · 𝑡 , 
 

    

∑ 𝑠𝑖𝑚(𝑢 , 𝑢 )    

 (4)  

Here, 𝑈 is a set of up to k users whose 𝑠𝑖𝑚(𝑢 , 𝑢 ) values 

are the highest, and 𝑡 , 
  is the direct trust of user 𝑢  toward 

device 𝑑  serving as 𝑢 ′𝑠 recommendation toward 𝑑  provided 

to 𝑢 . Here we note that if 𝑢  is malicious then it can provide 

𝑡 , 
 =0 against a good device for bad-mouthing attacks, and 

𝑡 , 
 =1 for a bad node for ballot stuffing attacks. 

3.3 Adaptive Control of the Weight Parameter 

The trust value of user 𝑢  toward 𝑑  is denoted as 𝑡 ,  and 

is obtained by combining direct trust and indirect 

recommendations (if available) as follows, 

𝑡 , = 𝜇 ∙ 𝑡 , 
 + (1 − 𝜇) ∙ 𝑡 , 

  (5)  



Here, 𝜇  is a weight parameter (0 ≤ 𝜇 ≤ 1) to weigh the 

importance of direct trust relative to indirect trust feedback. 

The selection of 𝜇 is critical to trust evaluation. A contribution 

of the paper is that we propose a method based on adaptive 

filtering [12] to adjust 𝜇 dynamically in order to improve trust 

evaluation performance. The basic design principle is that a 

successful trust management protocol should provide high 

trust toward devices who have more positive user satisfaction 

experiences and, conversely, low trust toward those with more 

negative user satisfaction experiences. Specifically, the current 

trust evaluation (i.e., 𝑡 , (𝜇) as a function of 𝜇) should be as 

close to the average user satisfaction experiences observed 

over that last trust update window Δ𝑡. Therefore, we formulate 

the selection of 𝜇 as an optimization problem as follows:  

Find: 𝜇, 0 ≤ 𝜇 ≤ 1  

Minimize: MSE(𝜇) = ∑ (𝑡 , (𝜇) − 𝑓 , 
(   )̅̅ ̅̅ ̅̅ ̅̅

)
 

  
 

(6)  

Here, 𝑡 , (𝜇) is obtained from Equation 5 using past direct 

user satisfaction experiences and indirect trust feedback, and 

𝑓 , 
(   )̅̅ ̅̅ ̅̅ ̅̅

 is the most recent direct user satisfaction experiences 

observed by user 𝑢  within the last trust update interval Δ𝑡.  
The minimization objective can be achieved by minimizing 

the mean square error (MSE) of trust evaluations against 

actual user satisfaction experiences towards all applicable 

devices, such that the trust value could be a good indicator or 

predictor for quality of service (with direct user satisfaction 

experiences considered as ground truth). After user 𝑢  obtains 

new user satisfaction experiences over Δ𝑡, it can compute the 

average user satisfaction experience value 𝑓 , 
(   )̅̅ ̅̅ ̅̅ ̅̅

 and update 𝜇 

by minimizing MSE in Equation 6. The optimization problem 

in Equation 6 can be solved by plugging 𝑡 , (𝜇) in Equation 5 

into Equation 6 and minimizing  MSE(𝜇) as follows: 

MSE(𝜇) = ∑(𝜇 ∙ 𝑡 , 
 + (1 − 𝜇) ∙ 𝑡 , 

 − 𝑓 , 
(   )̅̅ ̅̅ ̅̅ ̅̅

)
 

 

 
(7)  

The minimum value of MSE(𝜇)  is obtained at the point 

where the derivative is zero, i.e., MSE (�̃�) = 0 . Thus, �̃�  1s 

obtained as follows, 

�̃� =
∑ (𝑓 , 

(   )̅̅ ̅̅ ̅̅ ̅̅
− 𝑡 , 

 ) (𝑡 , 
 − 𝑡 , 

 ) 

∑ (𝑡 , 
 − 𝑡 , 

 )
 

 

 (8)  

The optimal value of 𝜇 (i.e., �̂�) should be in the range of [0, 

1] because of it is a weight parameter, therefore, 

�̂� = {
0 �̃� < 0
�̃� 0 ≤ �̃� ≤ 1
1 �̃� > 1

 (9)  

Each user maintains its own optimal value of 𝜇 (i.e., �̂�) and 

updates it dynamically in very time interval Δ𝑡. This adaptive 

design is applicable to other trust parameters (i.e., 𝜆  and 

( 𝑤 , 𝑤 , 𝑤 )) as well. However, introducing these trust 

parameters in Equation 6 leads to a more complex 

optimization problem and may not be feasible for IoT devices 

with limited resources. 

4 TRUST PROTOCOL PERFORMANCE  

In this section, we report ns3 simulation results obtained as 

a result of executing our proposed autonomous trust 

management protocol by IoT devices. Table 1 lists the default 

parameter values. We consider an IoT environment with NT = 

400 heterogeneous smart objects/devices. These IoT devices 

are randomly assigned to N = 40 users. Users are connected in 

a social network represented by a friendship matrix [13]. We 

consider these users moving according to the SWIM mobility 

model [11] modeling human social behaviors in an 

m×m=16×16 operational region for the purpose of assessing 

the social contact similarity metric between any pair of users. 

Direct trust of node i toward node j is assessed upon 

completion of a service request from node i to node j.  Each 

node requests services from a selected device with a time 

interval following an exponential distribution with parameter 

𝜆, with 1/day being the default unless otherwise specified. The 

trust update interval Δ𝑡 is 2 hours at which time if there is no 

direct trust update due to service request and completion, 

direct trust will be decayed according to Equation 1. Indirect 

trust is always updated in every Δ𝑡  interval according to 

Equation 4. 

The user satisfaction levels of service invocations are 

generated based on a real dataset [6] and are used as “ground 

truth” based on which the accuracy of our trust protocol is 

assessed. As the direct trust of user 𝑢  toward device/service 

provider 𝑑  (i.e., 𝑡 , 
 ) is calculated based on “ground truth” 

interaction experiences per Equation 1, 𝑡 , 
  essentially is equal 

to ground truth. However, we account for the presence of noise 

in the IoT environment (i.e., error of assessing user 

satisfaction level received) by considering a standard deviation 

parameter σc (set to 1% as default) to reflect the deviation of 

the actual user satisfaction level as recorded in the database 

from the direct trust evaluation outcome in terms of 𝑡 , 
 . 

Initially, 𝑡 ,  is set to 0.5 (ignorance) by user 𝑢  for all i’s. 

Then, trust is updated dynamically as nodes encounter each 

other, as services are requested and rendered, and as trust 

feedbacks are acquired. We consider 𝑤 = 𝑤 = 𝑤 = 1/3 (in 

Equation 3) for the three social relationships considered for 

the calculation of social similarity and indirect trust  𝑡 , 
 . 

We test the resiliency of our trust protocol against 

malicious node behavior (i.e., performing self-promotion, bad-

mouthing and ballot-stuffing attacks) by randomly selecting a 

percentage PM out of all as dishonest malicious nodes with 

PM=20% as the default. A normal or good node follows the 

execution of our trust management protocol faithfully, while a 

malicious node provides false trust feedback by means of 

ballot stuffing, bad-mouthing, and self-promoting attacks to 

Table 1: Parameter List and Default Values Used. 

parameter value parameter value parameter value 

NT 400 m×m 16×16 T 200hrs 

N 40 PM 20% 𝜑 0.001 

𝛥𝑡 2 hrs σc 0.01 𝜆  1/day 



gain advantage.   

Our simulation results have two parts. First, we 

demonstrate the trust convergence behavior of our IoT trust 

protocol design. Second, we show trust bias is effectively 

minimized after convergence by applying our adaptive control 

design.  

4.1 Trust Convergence Behavior 

We examine the trust convergence behavior of our trust 

protocol design. We compare static control (i.e., 𝜇 is fixed at a 

constant) vs. adaptive control (i.e., 𝜇 is changed dynamically 

based on Equation 9). Figure 2 shows trust evaluation results 

for a trustor node toward a “good” trustee node randomly 

picked. We see that trust convergence behavior is observed for 

either fixed or adaptive control. There is a tradeoff between 

convergence time vs. trust bias. With static control, when a 

higher 𝜇 value is used, the trust convergence time is longer, 

but the trust bias is smaller, i.e., the trust value is closer to 

ground truth after convergence. With adaptive control, on the 

other hand, the trustor node is able to adjust 𝜇 dynamically to 

minimize both the convergence time and the trust bias after 

convergence.  

4.2 Resiliency against Malicious Attacks  

Figure 2 is for the case in which the percentage of 

malicious nodes PM = 20%. We conduct experiments to test 

the residency of our trust protocol against increasing malicious 

node population. The results are shown In Figure 3. We see 

that as the population of malicious nodes increases, both the 

convergence time and trust bias increase. However, the system 

is found to be resilient to malicious attacks for PM as high as 

40%, with proper convergence and accuracy behaviors 

exhibited. In general we observe that the trust bias is 

minimum, e.g., < 5% when PM ≤ 40% and the trust bias 

becomes more significant, e.g., > 10% when PM ≥ 50%.  This 

demonstrates the resiliency property of our trust protocol 

against malicious attacks.   

Corresponding, Figure 4 shows how our trust-based 

adaptive control protocol adjusts 𝜇 in Equation 5 in response 

to increasing malicious node population. The observation is 

that as the malicious node population increases, the system 

will have to rely more on direct trust by increasing 𝜇 to 

mitigate the effect of bad-mouthing and ballot-stuffing attacks 

by malicious nodes. Figure 4 shows that when PM = 20%, the 

optimal converged 𝜇 value is 0.76 while when PM = 40%, the 

optimal converged 𝜇 value is 0.87. The system cannot rely on 

direct trust 100% because malicious nodes can also perform 

self-promoting attacks and there is an error of assessing direct 

trust due to noise in the environment. Figure 4 demonstrates 

that our adaptive control mechanism is effective to converge 𝜇 

to its optimal value under which trust bias is minimized.    

5 TRUST-BASED SERVICE COMPOSITION 

In this section, we apply our trust management to a trust-

based service composition application in SOA-based IoT 

systems. We consider a travel planning service composition 

application (not shown here due to space limitation) for which 

a workflow describes the data flow and logic of the composite 

service. There are 9 atomic services connected by three types 

of workflow structures in this example, namely, sequential, 

parallel (AND), and selection (OR). Each service would have 

multiple service provider candidates.   

In trust-based service composition, the service requester 

calculates the overall trustworthiness using its trust toward 

service providers, as well as the overall cost for each candidate 

configuration, and selects the configuration with the highest 

trustworthiness value among those with the overall cost under 

the budget limit such that user satisfaction toward the travel 

plan is the best. We use the average of the “true” user 

satisfaction levels (in the real dataset [6]) of the service 

providers selected as the utility scores to evaluate the 

performance of service composition. We compare the 

performance of our trust-based service composition protocol 

with two baseline approaches: 

 

Figure 2: Convergence Behavior. 

 

 

Figure 3: Resiliency against Increasing Malicious Node Population. 

 

 

Figure 4: Adjustment of 𝝁 against Increasing Malicious Node Population. 
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1. Ideal service composition which returns the maximum 

achievable utility score derived from global knowledge. 

2. Random service composition which randomly selects 

service providers for service composition without 

regard to trust. 

Figure 5 shows the simulation results. We can see that 

trust-based service composition with adaptive control 

significantly outperforms random service composition and 

approaches the performance of ideal service composition. We 

attribute the superiority to our protocol’s adaptability to adjust 

the best trust parameter (𝜇) dynamically to minimize trust bias, 

and, consequently, maximize the performance of the service 

composition application.  

6 CONCLUSION 

In this paper, we designed and analyzed an adaptive and 

survivable trust management protocol for user-centric IoT 

systems. A user performs trust evaluation based on its past 

direct user satisfaction experiences and trust feedbacks from 

other users sharing similar social interests. We considered 

three social relationships, i.e., friendship, social contact, and 

community of interest, for measuring social similarity and 

filtering trust feedbacks based on social similarity. We 

developed an adaptive filtering technique through which the 

best way to combine direct trust and indirect trust feedback 

can be determined dynamically, allowing each node to 

adaptively select its best trust parameter to minimize 

convergence time and trust bias.  

To demonstrate the applicability, we applied our trust 

management protocol to a service composition application in 

SOA-based IoT systems. Our results demonstrated that with 

our adaptive trust protocol design, the application is able to 

approach the ideal performance upon convergence and can 

significantly outperform the counterpart non-trust-based 

random selection protocol.  

In the future, we plan to consider more sophisticated attack 

behaviors including opportunistic, random and insidious 

attacks [10] utilizing stochastic process modeling techniques 

[15-18] to further test the resiliency property of our trust 

protocol design. We also plan to extend adaptive control to 

other trust parameters such as 𝜑 (the trust decay factor) and 

(𝑤 , 𝑤 , 𝑤 ) to further improve protocol performance.  
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Figure 5: Utility of Trust-based Service Composition vs. Ideal 

and Random Service Composition. 
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