
978-1-4799-3083-8/14/$31.00 © 2014 IEEE

Trust Management for Service Composition in SOA-

based IoT Systems

Ing-Ray Chen, Jia Guo and Fenye Bao

Virginia Tech

Department of Computer Science

{irchen, jiaguo, baofenye}@vt.edu

Abstract — An Internet of Things (IoT) system connects a large

amount of tags, sensors, and smart devices often with mobility to

facilitate information sharing, enabling a variety of attractive

applications. On the one hand, the service oriented architecture

(SOA) can provide connectivity and interoperability among

heterogeneous IoT devices in the physical network. On the other

hand, IoT devices are virtually connected via social networks. In

this paper, we analyze the notion of adaptive trust management

to support reliable service composition applications in SOA-

based IoT systems. Each device records user satisfaction

experiences toward devices with which it has interacted, and

collects trust feedbacks from other devices sharing social

interests. We consider friendship, social contact, and community

of interest social relationships to select trust feedbacks. Further

we develop a novel adaptive filtering technique to determine the

best way to combine direct trust and indirect trust feedbacks

dynamically to minimize both convergence time and trust bias.

We demonstrate the effectiveness of the proposed trust

management through a service composition application in SOA-

based IoT systems.

Keywords— Trust management; Internet of things; social

networks; service composition; SOA; performance analysis.

1 INTRODUCTION

An Internet of Things (IoT) system connects the physical

world into cyberspace via radio frequency identification

(RFID) tags, sensors, and mobile devices. IoT systems

challenge trust management in the following aspects. First, an

IoT system evolves with new nodes joining and existing nodes

leaving. A trust management protocol must address this issue

to allow newly joining nodes to build up trust quickly with a

reasonable degree of accuracy. Second, the building blocks or

entities of IoT systems are mostly human carried or human

operated devices [2], so trust management must take into

account social relationships among device owners in order to

maximize protocol performance. Lastly, a social IoT system

essentially consists of uncensored IoT devices providing a

wide variety of services. Inherently, many of them (the

owners) will be malicious for their own gain. A trust

management protocol for IoT must be resilient to malicious

attacks to survive in hostile environments.

The problem we aim to solve is design and validation of an

adaptive and survivable trust management protocol for SOA-

based social IoT systems [1] capable of answering the

challenges discussed above. The trust management protocol

must be executed autonomously by SOA-based IoT devices

with little human intervention. The goals are two-fold: (a) trust

bias minimization; (b) application performance optimization.

This is achieved by dynamic trust management, i.e., adjusting

trust protocol parameters in response to environment changes

dynamically. We illustrate application performance

optimization via a service composition example.

Despite the abundance of trust protocols for P2P and

mobile ad hoc and sensor networks [8, 9], there is little work

on trust management for IoT systems. Chen et al. [7] proposed

a trust management model based on fuzzy reputation for IoT.

However, their trust management model considers a specific

IoT environment consisting of only wireless sensors with QoS

trust metrics such as packet forwarding/delivery ratio and

energy consumption, and does not take into account the social

relationship which is important in social IoT systems. Bao and

Chen [3, 4] proposed a trust management protocol considering

both social trust and QoS trust metrics and using both direct

observations and indirect recommendations to update trust.

Their proposed trust management protocol considers a social

IoT environment where environment conditions are

dynamically changing, and interaction pattern changes. To

address the scalability issue, Bao and Chen further proposed a

scalable trust management protocol [5] for large-scale IoT

systems by utilizing a scalable storage management strategy.

Relative to prior work, we have the following contributions:

(1) we utilize distributed collaborating filtering [12] to select

trust feedbacks from nodes sharing similar social interests; (2)

we develop a novel adaptive filtering technique to dynamically

adjust trust parameter settings so as to minimize trust

estimation bias; (3) we apply the proposed trust management

to a trust-based service composition application in SOA-based

IoT systems [1] to demonstrate application performance

optimization; and (4) we validate the proposed trust

management and its application through simulation based on

real trace data [6].

2 SYSTEM MODEL

We consider a social SOA-based IoT environment [1, 2]

where nodes are physical connected via communication

networks and socially connected via users’ social networks.

Each node has a unique address to identify (i.e., URI). There is

no centralized trusted authority. There are two types of nodes:

devices and users (or owners). The user-device relationship is

a one-to-multiple relationship. In our trust management, the

trustor is a user and the trustee is a device (owned by another

user). For each user, the trust evaluation information is

computed and stored in a designated high-end device owned

by the user.

We consider the following three social relationships:

friendship, social contact, and community of interest (CoI).

The reason is that device owners that are friends, have

frequent social contacts in common locations, or share similar

community of interests tend to have close social relationships

and their referrals or recommendations are considered more

trustable or reliable than a complete stranger [2]. These social

relationships are represented by three lists: a friend list with

current friends, a location list with locations frequently visited

for social contact, and a CoI list with devices (services)

directly interacted with. Each user has at least one designated

high-end device (i.e., smart phone and laptop) storing these

lists in the user’s profile (see Figure 1). Other devices of the

same user have the privilege to access the profile. By

delegating the storage and computation of social networks to a

high-end device for each user, many low-end devices (i.e.,

sensors) are able to share and utilize the same social

information to maximize its performance.

Each time when device d1 requests a service from device

d2, d1 updates the user satisfaction experience record (in the

user satisfaction experience list in Figure 1) towards d2 stored

in the designated device of d1’s user. Similarly, d1 can query

the trust information (in the trust list in Figure 1) towards d2

from the designated device of d1’s user. Please note that

elements in the user interaction experience list correspond to

devices in the CoI list.

In the context of SOA, an owner provides services via its

IoT devices. An IoT device providing a service will have to

compete with other IoT devices which provide a similar type

of service. A malicious IoT device (because its owner is

malicious) can perform the following attacks for its own gain:

Self-promoting attacks: it can promote its importance (by

providing good recommendations for itself) so as to be

selected as the service provider, but then can provide bad or

malfunctioned service.

Bad-mouthing attacks: it can ruin the reputation of a well-

behaved device (by providing bad recommendations against it)

so as to decrease the chance of that good device being selected

as a service provider.

Ballot stuffing attacks: it can collude with a bad device and

boost the reputation of the bad device (by providing good

recommendations) so as to increase the chance of that bad

device being selected as a service provider.

3 TRUST MANAGEMENT PROTOCOL

Our trust management protocol for IoT systems is

distributed. Each user maintains its own trust assessment

towards devices. For scalability, a user just keeps its trust

evaluation results towards a limited set of devices of its

interests. Each user stores its profile in a designated high-end

device (Figure 1). The profile of user 𝑢 includes:

(1) A “friend” list including all friends of 𝑢 , denoted by a

set 𝐹 = {𝑢 , 𝑢 , … };

(2) Locations that 𝑢 frequently visited for social contact,

denoted by a set 𝑃 = {𝑝 , , 𝑝 , , … };

(3) List of devices that 𝑢 has directly interacted with and

the corresponding user satisfaction experience values,

denoted by set 𝐷 = {𝑑 , 𝑑 , … } and set 𝐵 = {(𝛼 , ,

𝛽 ,), (𝛼 , , 𝛽 ,), … }, where 𝛼 , and 𝛽 , are the

accumulated positive and negative user satisfaction

experiences of user 𝑢 towards device 𝑑 ;

(4) Trust values of user 𝑢 towards IoT devices, denoted by

a set 𝑇 = {𝑡 , , 𝑡 , , … }.

3.1 Direct Interaction Experiences

We adopt Bayesian framework [14] as the underlying

model for evaluating direct trust from direct user satisfaction

experiences. The reason we choose Bayesian because it is

well-established and because of its popularity in

trust/reputation systems. In service computing, a service

requester could rate a service provider after direct interaction

based on nonfunctional characteristics. The nonfunctional

characteristics include user-observed response time, failure

probability, prices, etc. The current user satisfaction

experience of user 𝑢 toward device 𝑑 is represented by a

value, 𝑓 , . We consider the simple case in which the direct

user satisfaction experience 𝑓 , is a binary value, with 1

indicating satisfied and 0 not satisfied. Then, we can consider

𝑓 , as an outcome of a Bernoulli trial with the probability of

success parameter 𝜃 , following a Beta distribution (a

conjugate prior for the Bernoulli distribution), i.e., Beta(𝛼 , ,

𝛽 ,). Then, the posterior p(𝜃 , |𝑓 ,) has a Beta distribution as

well, i.e., Beta(𝛼 , + 𝑓 , , 𝛽 , +1−𝑓 ,). Equation 1 shows

u2 u5 ...

User u2's profile

p1 p2 ...

d2 d3 dn...

(α2,β2)(α3,β3) (αn,βn)...

friend list

location list

CoI list

user satisfaction

experience list

d1

u1

d2

u2

User u1's profile

designated

high-end device

designated

high-end device

t2 t3 tn... trust list

Figure 1: User Profile.

how the hyper-parameters 𝛼 , and 𝛽 , are updated

considering trust decay.

𝛼 , = 𝑒 ∙ 𝛼 ,
()

+ 𝑓 ,

𝛽 , = 𝑒 ∙ 𝛽 ,
()

+ 1 − 𝑓 ,

 (1)

In Equation 1, 𝑓 , contributes to positive observations and

1 − 𝑓 , contributes to negative observations. When updating

𝛼 , and 𝛽 , , we consider an exponential decay, 𝑒 , on

𝛼 ,
()

 and 𝛽 ,
()

, where 𝜑 is the decay factor which is

normally is a small number to model small trust decay over

time, and Δ𝑡 is the trust update interval.

The direct trust of user 𝑢 to device 𝑑 , 𝑡 ,
 , is calculated as

the expected value of 𝜃 , , i.e.,

𝑡 ,
 = 𝐸[𝜃 ,] =

𝛼 ,

𝛼 , + 𝛽 ,

 (2)

In the literature, 𝛼 , and 𝛽 , are initially set to 0 or 1 since

no prior knowledge available. In this paper, we consider the

social relationships (if available) between 𝑢 and the user of

𝑑 (say 𝑢) as the prior knowledge and set initial values of 𝛼 ,

and 𝛽 , to 𝑠𝑖𝑚(𝑢 , 𝑢) and 1 − 𝑠𝑖𝑚(𝑢 , 𝑢) , respectively,

where 𝑠𝑖𝑚(𝑢 , 𝑢) is the similarity between 𝑢 and 𝑢 ,

characterizing their social connections. This is discussed in

Section 3.2 below.

3.2 Recommendations

When the devices of two users have direct interactions,

they can exchange their profiles and provide trust

recommendations. In addition, a device can also aggressively

request trust recommendations from another device belonging

to a friend if necessary. To preserve privacy, one can use a

hash function (with session key) to prevent the identities of

uncommon friends/devices from being revealed. Our protocol

design is that a node will first measure its “social similarity”

with a recommender in friendship, social contact (representing

physical proximity) and CoI (representing knowledge on the

subject matter) and then decide if the recommendation is

trustable. The three social similarity measures are estimated

dynamically as follows:

 Friendship Similarity (𝑠𝑖𝑚): The friendship similarity is

a powerful social relationship (intimacy) for screening

recommendations. After two users 𝑢 and 𝑢 exchange

their friend lists, 𝐹 and 𝐹 , they could compute two binary

vectors, 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗ and 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗ , each with size |𝐹 ∪ 𝐹 |. An element

in 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗ (or 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗) will be 1 if the corresponding user is in 𝐹

(or 𝐹), otherwise 0. Let ‖𝐴 ‖ be the norm of vector 𝐴 and

|𝐵| be the cardinality of set 𝐵. Then, we could use the

“cosine similarity” of 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗ and 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗ (giving the cosine of

the angle between them) to compute 𝑠𝑖𝑚 as follows:

𝑠𝑖𝑚 (𝑢 , 𝑢) =
𝑉𝐹 ⃗⃗⃗⃗ ⃗⃗ ⃗ ∙ 𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗ ⃗

‖𝑉𝐹 ⃗⃗⃗⃗ ⃗⃗ ⃗‖‖𝑉𝐹 ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
=

|𝐹 ∩ 𝐹 |

√|𝐹 | ∙ |𝐹 |

 Social contact Similarity (𝑠𝑖𝑚): The social contact

similarity presents closeness and is an indication if two

nodes have the same physical contacts and thus the same

sentiment towards devices which provide the same service.

The operational area could be partitioned into sub-grids.

User 𝑢 records the IDs of sub-grids it has visited in its

location list 𝑃 for social contact. After two users 𝑢 and

𝑢 exchange their location lists, 𝑃 and 𝑃 , they could

compute 𝑠𝑖𝑚 in the same way of computing 𝑠𝑖𝑚 as

follows:

𝑠𝑖𝑚 (𝑢 , 𝑢) =
|𝑃 ∩ 𝑃 |

√|𝑃 | ∙ |𝑃 |

 Community of Interest Similarity (𝑠𝑖𝑚): Two users in

the same COI share similar social interests and most likely

have common knowledge and standard toward a service

provided by the same device. Also very likely two users

who have used services provided by the same IoT device

can form a CoI (or are in the same CoI). After two users 𝑢

and 𝑢 exchange their device lists, 𝐷 and 𝐷 , they could

compute 𝑠𝑖𝑚 in the same way of computing 𝑠𝑖𝑚 as

follows:

𝑠𝑖𝑚 (𝑢 , 𝑢) =
|𝐷 ∩ 𝐷 |

√|𝐷 | ∙ |𝐷 |

The social similarity between two users can be a weighted

combination of all social similarity metrics, i.e., friendship,

social contact, and community of interest, considered in this

paper:

𝑠𝑖𝑚(𝑢 , 𝑢) = ∑ 𝑤 ∙ 𝑠𝑖𝑚 (𝑢 , 𝑢)

 , ,

 (3)

where 𝑤 + 𝑤 + 𝑤 = 1 and 0 ≤ 𝑤 , 𝑤 , 𝑤 ≤ 1 . Each user

can send trust recommendations request to its friends

periodically (Δ𝑡 interval) or before requesting a service. Upon

receiving recommendations, user 𝑢 selects top-k

recommendations from k users with the highest similarity

values with 𝑢 and calculates the indirect trust (𝑡 ,
) towards

device 𝑑 as follows:

𝑡 ,
 =

∑ 𝑠𝑖𝑚(𝑢 , 𝑢) · 𝑡 ,

∑ 𝑠𝑖𝑚(𝑢 , 𝑢)

 (4)

Here, 𝑈 is a set of up to k users whose 𝑠𝑖𝑚(𝑢 , 𝑢) values

are the highest, and 𝑡 ,
 is the direct trust of user 𝑢 toward

device 𝑑 serving as 𝑢 ′𝑠 recommendation toward 𝑑 provided

to 𝑢 . Here we note that if 𝑢 is malicious then it can provide

𝑡 ,
 =0 against a good device for bad-mouthing attacks, and

𝑡 ,
 =1 for a bad node for ballot stuffing attacks.

3.3 Adaptive Control of the Weight Parameter

The trust value of user 𝑢 toward 𝑑 is denoted as 𝑡 , and

is obtained by combining direct trust and indirect

recommendations (if available) as follows,

𝑡 , = 𝜇 ∙ 𝑡 ,
 + (1 − 𝜇) ∙ 𝑡 ,

 (5)

Here, 𝜇 is a weight parameter (0 ≤ 𝜇 ≤ 1) to weigh the

importance of direct trust relative to indirect trust feedback.

The selection of 𝜇 is critical to trust evaluation. A contribution

of the paper is that we propose a method based on adaptive

filtering [12] to adjust 𝜇 dynamically in order to improve trust

evaluation performance. The basic design principle is that a

successful trust management protocol should provide high

trust toward devices who have more positive user satisfaction

experiences and, conversely, low trust toward those with more

negative user satisfaction experiences. Specifically, the current

trust evaluation (i.e., 𝑡 , (𝜇) as a function of 𝜇) should be as

close to the average user satisfaction experiences observed

over that last trust update window Δ𝑡. Therefore, we formulate

the selection of 𝜇 as an optimization problem as follows:

Find: 𝜇, 0 ≤ 𝜇 ≤ 1

Minimize: MSE(𝜇) = ∑ (𝑡 , (𝜇) − 𝑓 ,
()̅̅ ̅̅ ̅̅ ̅̅

)

(6)

Here, 𝑡 , (𝜇) is obtained from Equation 5 using past direct

user satisfaction experiences and indirect trust feedback, and

𝑓 ,
()̅̅ ̅̅ ̅̅ ̅̅

 is the most recent direct user satisfaction experiences

observed by user 𝑢 within the last trust update interval Δ𝑡.
The minimization objective can be achieved by minimizing

the mean square error (MSE) of trust evaluations against

actual user satisfaction experiences towards all applicable

devices, such that the trust value could be a good indicator or

predictor for quality of service (with direct user satisfaction

experiences considered as ground truth). After user 𝑢 obtains

new user satisfaction experiences over Δ𝑡, it can compute the

average user satisfaction experience value 𝑓 ,
()̅̅ ̅̅ ̅̅ ̅̅

 and update 𝜇

by minimizing MSE in Equation 6. The optimization problem

in Equation 6 can be solved by plugging 𝑡 , (𝜇) in Equation 5

into Equation 6 and minimizing MSE(𝜇) as follows:

MSE(𝜇) = ∑(𝜇 ∙ 𝑡 ,
 + (1 − 𝜇) ∙ 𝑡 ,

 − 𝑓 ,
()̅̅ ̅̅ ̅̅ ̅̅

)

(7)

The minimum value of MSE(𝜇) is obtained at the point

where the derivative is zero, i.e., MSE (𝜇̃) = 0 . Thus, 𝜇̃ 1s

obtained as follows,

𝜇̃ =
∑ (𝑓 ,

()̅̅ ̅̅ ̅̅ ̅̅
− 𝑡 ,

) (𝑡 ,
 − 𝑡 ,

)

∑ (𝑡 ,
 − 𝑡 ,

)

 (8)

The optimal value of 𝜇 (i.e., 𝜇̂) should be in the range of [0,

1] because of it is a weight parameter, therefore,

𝜇̂ = {
0 𝜇̃ < 0
𝜇̃ 0 ≤ 𝜇̃ ≤ 1
1 𝜇̃ > 1

 (9)

Each user maintains its own optimal value of 𝜇 (i.e., 𝜇̂) and

updates it dynamically in very time interval Δ𝑡. This adaptive

design is applicable to other trust parameters (i.e., 𝜆 and

(𝑤 , 𝑤 , 𝑤)) as well. However, introducing these trust

parameters in Equation 6 leads to a more complex

optimization problem and may not be feasible for IoT devices

with limited resources.

4 TRUST PROTOCOL PERFORMANCE

In this section, we report ns3 simulation results obtained as

a result of executing our proposed autonomous trust

management protocol by IoT devices. Table 1 lists the default

parameter values. We consider an IoT environment with NT =

400 heterogeneous smart objects/devices. These IoT devices

are randomly assigned to N = 40 users. Users are connected in

a social network represented by a friendship matrix [13]. We

consider these users moving according to the SWIM mobility

model [11] modeling human social behaviors in an

m×m=16×16 operational region for the purpose of assessing

the social contact similarity metric between any pair of users.

Direct trust of node i toward node j is assessed upon

completion of a service request from node i to node j. Each

node requests services from a selected device with a time

interval following an exponential distribution with parameter

𝜆, with 1/day being the default unless otherwise specified. The

trust update interval Δ𝑡 is 2 hours at which time if there is no

direct trust update due to service request and completion,

direct trust will be decayed according to Equation 1. Indirect

trust is always updated in every Δ𝑡 interval according to

Equation 4.

The user satisfaction levels of service invocations are

generated based on a real dataset [6] and are used as “ground

truth” based on which the accuracy of our trust protocol is

assessed. As the direct trust of user 𝑢 toward device/service

provider 𝑑 (i.e., 𝑡 ,
) is calculated based on “ground truth”

interaction experiences per Equation 1, 𝑡 ,
 essentially is equal

to ground truth. However, we account for the presence of noise

in the IoT environment (i.e., error of assessing user

satisfaction level received) by considering a standard deviation

parameter σc (set to 1% as default) to reflect the deviation of

the actual user satisfaction level as recorded in the database

from the direct trust evaluation outcome in terms of 𝑡 ,
 .

Initially, 𝑡 , is set to 0.5 (ignorance) by user 𝑢 for all i’s.

Then, trust is updated dynamically as nodes encounter each

other, as services are requested and rendered, and as trust

feedbacks are acquired. We consider 𝑤 = 𝑤 = 𝑤 = 1/3 (in

Equation 3) for the three social relationships considered for

the calculation of social similarity and indirect trust 𝑡 ,
 .

We test the resiliency of our trust protocol against

malicious node behavior (i.e., performing self-promotion, bad-

mouthing and ballot-stuffing attacks) by randomly selecting a

percentage PM out of all as dishonest malicious nodes with

PM=20% as the default. A normal or good node follows the

execution of our trust management protocol faithfully, while a

malicious node provides false trust feedback by means of

ballot stuffing, bad-mouthing, and self-promoting attacks to

Table 1: Parameter List and Default Values Used.

parameter value parameter value parameter value

NT 400 m×m 16×16 T 200hrs

N 40 PM 20% 𝜑 0.001

𝛥𝑡 2 hrs σc 0.01 𝜆 1/day

gain advantage.

Our simulation results have two parts. First, we

demonstrate the trust convergence behavior of our IoT trust

protocol design. Second, we show trust bias is effectively

minimized after convergence by applying our adaptive control

design.

4.1 Trust Convergence Behavior

We examine the trust convergence behavior of our trust

protocol design. We compare static control (i.e., 𝜇 is fixed at a

constant) vs. adaptive control (i.e., 𝜇 is changed dynamically

based on Equation 9). Figure 2 shows trust evaluation results

for a trustor node toward a “good” trustee node randomly

picked. We see that trust convergence behavior is observed for

either fixed or adaptive control. There is a tradeoff between

convergence time vs. trust bias. With static control, when a

higher 𝜇 value is used, the trust convergence time is longer,

but the trust bias is smaller, i.e., the trust value is closer to

ground truth after convergence. With adaptive control, on the

other hand, the trustor node is able to adjust 𝜇 dynamically to

minimize both the convergence time and the trust bias after

convergence.

4.2 Resiliency against Malicious Attacks

Figure 2 is for the case in which the percentage of

malicious nodes PM = 20%. We conduct experiments to test

the residency of our trust protocol against increasing malicious

node population. The results are shown In Figure 3. We see

that as the population of malicious nodes increases, both the

convergence time and trust bias increase. However, the system

is found to be resilient to malicious attacks for PM as high as

40%, with proper convergence and accuracy behaviors

exhibited. In general we observe that the trust bias is

minimum, e.g., < 5% when PM ≤ 40% and the trust bias

becomes more significant, e.g., > 10% when PM ≥ 50%. This

demonstrates the resiliency property of our trust protocol

against malicious attacks.

Corresponding, Figure 4 shows how our trust-based

adaptive control protocol adjusts 𝜇 in Equation 5 in response

to increasing malicious node population. The observation is

that as the malicious node population increases, the system

will have to rely more on direct trust by increasing 𝜇 to

mitigate the effect of bad-mouthing and ballot-stuffing attacks

by malicious nodes. Figure 4 shows that when PM = 20%, the

optimal converged 𝜇 value is 0.76 while when PM = 40%, the

optimal converged 𝜇 value is 0.87. The system cannot rely on

direct trust 100% because malicious nodes can also perform

self-promoting attacks and there is an error of assessing direct

trust due to noise in the environment. Figure 4 demonstrates

that our adaptive control mechanism is effective to converge 𝜇

to its optimal value under which trust bias is minimized.

5 TRUST-BASED SERVICE COMPOSITION

In this section, we apply our trust management to a trust-

based service composition application in SOA-based IoT

systems. We consider a travel planning service composition

application (not shown here due to space limitation) for which

a workflow describes the data flow and logic of the composite

service. There are 9 atomic services connected by three types

of workflow structures in this example, namely, sequential,

parallel (AND), and selection (OR). Each service would have

multiple service provider candidates.

In trust-based service composition, the service requester

calculates the overall trustworthiness using its trust toward

service providers, as well as the overall cost for each candidate

configuration, and selects the configuration with the highest

trustworthiness value among those with the overall cost under

the budget limit such that user satisfaction toward the travel

plan is the best. We use the average of the “true” user

satisfaction levels (in the real dataset [6]) of the service

providers selected as the utility scores to evaluate the

performance of service composition. We compare the

performance of our trust-based service composition protocol

with two baseline approaches:

Figure 2: Convergence Behavior.

Figure 3: Resiliency against Increasing Malicious Node Population.

Figure 4: Adjustment of 𝝁 against Increasing Malicious Node Population.

0 50 100 150 200
0.4

0.5

0.6

0.7

0.8

0.9

Time (hours)

T
ru

s
t
v
a

lu
e

Ground truth

adaptive trust-based

static trust-based =0.2

static trust-based =0.5

static trust-based =0.8

0 50 100 150 200
0.4

0.5

0.6

0.7

0.8

0.9

Time (hours)

T
ru

s
t
v
a

lu
e

Ground truth

adaptive trust-based P
M

=20%

adaptive trust-based P
M

=30%

adaptive trust-based P
M

=40%

adaptive trust-based P
M

=50%

0 50 100 150 200
0.4

0.5

0.6

0.7

0.8

0.9

1

Time (hours)



adaptive trust-based P
M

=50%

adaptive trust-based P
M

=40%

adaptive trust-based P
M

=30%

adaptive trust-based P
M

=20%

1. Ideal service composition which returns the maximum

achievable utility score derived from global knowledge.

2. Random service composition which randomly selects

service providers for service composition without

regard to trust.

Figure 5 shows the simulation results. We can see that

trust-based service composition with adaptive control

significantly outperforms random service composition and

approaches the performance of ideal service composition. We

attribute the superiority to our protocol’s adaptability to adjust

the best trust parameter (𝜇) dynamically to minimize trust bias,

and, consequently, maximize the performance of the service

composition application.

6 CONCLUSION

In this paper, we designed and analyzed an adaptive and

survivable trust management protocol for user-centric IoT

systems. A user performs trust evaluation based on its past

direct user satisfaction experiences and trust feedbacks from

other users sharing similar social interests. We considered

three social relationships, i.e., friendship, social contact, and

community of interest, for measuring social similarity and

filtering trust feedbacks based on social similarity. We

developed an adaptive filtering technique through which the

best way to combine direct trust and indirect trust feedback

can be determined dynamically, allowing each node to

adaptively select its best trust parameter to minimize

convergence time and trust bias.

To demonstrate the applicability, we applied our trust

management protocol to a service composition application in

SOA-based IoT systems. Our results demonstrated that with

our adaptive trust protocol design, the application is able to

approach the ideal performance upon convergence and can

significantly outperform the counterpart non-trust-based

random selection protocol.

In the future, we plan to consider more sophisticated attack

behaviors including opportunistic, random and insidious

attacks [10] utilizing stochastic process modeling techniques

[15-18] to further test the resiliency property of our trust

protocol design. We also plan to extend adaptive control to

other trust parameters such as 𝜑 (the trust decay factor) and

(𝑤 , 𝑤 , 𝑤) to further improve protocol performance.

ACKNOWLEDGMENT

This material is based upon work supported in part by the U.

S. Army Research Laboratory and the U. S. Army Research

Office under contract number W911NF-12-1-0445.

REFERENCES

[1] D. Guinard, et al., “Interacting with the SOA-Based Internet of

Things: Discovery, Query, Selection, and On-Demand Provisioning

of Web Services,” IEEE Transactions on Services Computing, vol.

3, no. 3, pp. 223-235, July-September, 2010.

[2] L. Atzori, A. Iera, and G. Morabito, “SIoT: Giving a Social Structure

to the Internet of Things,” IEEE Communication Letters, vol. 15, no.

11, pp. 1193-1195, Nov., 2011.

[3] F. Bao, and I. R. Chen, “Dynamic Trust Management for Internet of

Things Applications,” 2012 Inter. Workshop on Self-Aware Internet

of Things, San Jose, California, USA, 2012.

[4] F. Bao, and I. R. Chen, “Trust Management for the Internet of

Things and Its Application to Service Composition,” IEEE

WoWMoM 2012 Workshop on the Internet of Things: Smart Objects

and Services, San Francisco, CA, USA, 2012.

[5] F. Bao, I. R. Chen, and J. Guo, “Scalable, Adaptive and Survivable

Trust Management for Community of Interest Based Internet of

Things Systems,” 11th International Symposium on Autonomous

Decentralized System, Mexico City, Mexico, 2013.

[6] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating QoS of Real-

World Web Services,” IEEE Transactions on Services Computing,

Nov. 2012.

[7] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, and X. Wang, “TRM-IoT: A

Trust Management Model Based on Fuzzy Reputation for Internet of

Things,” Computer Science and Information Systems, vol. 8, no. 4,

pp. 1207-1228, Oct., 2011.

[8] J. H. Cho, et al., “Modeling and Analysis of Trust Management for

Cognitive Mission-Driven Group Communication Systems in

Mobile Ad Hoc Networks,” Inter. Conf. Computational Science and

Engineering, Vancouver, Canada, 2009, pp. 641-650.

[9] J. H. Cho, et al., “Modeling and analysis of trust management with

trust chain optimization in mobile ad hoc networks” Network and

Computer Applications, vol. 35, no. 3, 2012, pp. 1001-1012.

[10] R. Mitchell and I. R. Chen, "Effect of Intrusion Detection and

Response on Reliability of Cyber Physical Systems," IEEE

Transactions on Reliability, vol. 62, no. 1, pp. 199-210, 2013.

[11] S. Kosta, A. Mei, and J. Stefa, “Small World in Motion (SWIM):

Modeling Communities in Ad-Hoc Mobile Networking,” 7th IEEE

Conference on Sensor, Mesh and Ad Hoc Communications and

Networks, Boston, MA, USA, 2010.

[12] Z. Huang, D. Zeng, H. Chen, “A Comparison of Collaborative-

Filtering Recommendation Algorithms for E-commerce,” IEEE

Intelligent Systems, vol. 22, no. 5, pp. 68-78, 2007.

[13] Q. Li, S. Zhu, and G. Cao, “Routing in Socially Selfish Delay

Tolerant Networks,” IEEE Conference on Computer

Communications, San Diego, CA, 2010, pp. 1-9.

[14] A. Jøsang, R. Ismail, “The Beta Reputation System,” Electronic

Commerce Conference, Bled, Slovenia, 2002, pp. 1-14.

[15] I.R. Chen, and D.C. Wang, “Analysis of Replicated Data with Repair

Dependency,” The Computer Journal, vol. 39, no. 9, 1996, pp. 767-

779.

[16] I.R. Chen, and D.C. Wang, “Analyzing Dynamic Voting using Petri

Nets,” 15th IEEE Symposium on Reliable Distributed Systems,

Niagara Falls, Canada, 1996, pp. 44-53.

[17] Y. Li and I.R. Chen, “Design and performance analysis of mobility

management schemes based on pointer forwarding for wireless

mesh networks,” IEEE Transactions on Mobile Computing, vol. 10,

no. 3, 2011, pp. 349-361.

[18] I. R. Chen, A. P. Speer, and M. Eltoweissy, "Adaptive Fault-Tolerant

QoS Control Algorithms for Maximizing System Lifetime of Query-

Based Wireless Sensor Networks," IEEE Trans. on Dependable and

Secure Computing, vol. 8, no. 2, 2011, pp. 161-176.

Figure 5: Utility of Trust-based Service Composition vs. Ideal

and Random Service Composition.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

Time (hours)

U
ti
lit

y

ideal random adaptive trust-based

