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Abstract: Mobile ad hoc and sensor networks may consist of a mixture of nodes, some of which may be considered 

selfish due to a lack of cooperativeness in providing network services such as forwarding packets. In the literature, 

existing trust management protocols for mobile ad hoc networks advocate isolating selfish nodes as soon as they are 

detected. Further, altruistic behaviors are encouraged with incentive mechanisms. In this paper, we propose and 

analyze a trust management protocol for group communication systems where selfish nodes exist and system 

survivability is highly critical to mission execution. Rather than always encouraging altruistic behaviors, we consider 

the tradeoff between a node’s individual welfare (e.g., saving energy to prolong the node lifetime) versus global 

welfare (e.g., achieving a given mission with sufficient service availability) and identify the best design condition of 

this behavior model to balance selfish vs. altruistic behaviors. With the system lifetime and the mission success 

probability as our trust-based reliability metric, we show that our behavior model that exploits the tradeoff between 

selfishness vs. altruism outperforms one that only encourages altruistic behaviors.    
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1. Introduction 

Most existing works on trust management in mobile ad hoc networks (MANETs) in the presence of selfish nodes 

encourage cooperative behaviors while discouraging selfish behaviors of participating nodes, so as to achieve a system 

goal such as high service availability. A common solution is to isolate selfish nodes as soon as they are detected and to 

reward altruistic nodes with incentive mechanisms to encourage cooperation. Many MANET applications such as 

disaster management, rescue missions, and military tactical operations often require multi-hop communications (e.g., 

multicast or broadcast) without the presence of a trusted infrastructure in an environment where resources (e.g., 

bandwidth, memory, computational power, and energy) are severely constrained. In such applications, encouraging 

only altruistic behaviors may lead to a short system lifetime span. This is because altruistic nodes may die quickly due 

to energy depletion, thus possibly causing a system failure as there are not enough nodes remaining in the system to 

continue service. This is especially detrimental to systems designed to prolong the system lifetime for successful 

mission execution.  

Thomas et al. [1] studied system performance in this scenario, and claimed that there must be a tradeoff between 

energy saved by selfish nodes and service availability provided by cooperative nodes. However, no analysis of the 

tradeoff was given. Papadimitriou [2] described these two conflicting goals (i.e., the local goal of a selfish node to save 



 

its energy vs. the global goal of an altruistic node to provide high service availability) with the term “the price of 

anarchy.” The price of anarchy was defined as the performance difference between a system run by an all-knowing 

benign dictator who can make right decisions to optimize system performance versus a system run by a selfish anarchy.  

We advocate that, as in other engineering fields, there should be a tradeoff between system survivability and 

service availability in terms of these two conflicting goals. As Thomas et al. [1] indicated, each node can cognitively 

make a decision for its own interest as well as for global interest such as system goals. In this paper, we address this 

problem by proposing and analyzing a behavior model that exploits the tradeoff between selfishness vs. altruism for 

system survivability for a cognitive mission-driven group communication system (GCS) in MANETs based on the 

concept of cognitive networks. Each node has intelligence to adapt to dynamically changing MANET environments 

through a learning process, thereby adjusting its altruistic vs. selfish behaviors in response to future dynamics. We seek 

to identify the optimal design settings that maximize the system lifetime and consequently the mission success 

probability while satisfying performance requirements such as service availability.  

We adopt the demand and pricing (DP) mechanism originally derived from economics [3] by which a node decides 

whether it should behave selfishly or altruistically based on the balance between individual welfare (i.e., saving energy) 

and global welfare (i.e., providing services). A node’s decision may depend on its own energy level, 1-hop neighbors’ 

selfishness levels (i.e., to judge whether the system still has sufficient resources even if the node is selfish), and the 

degree of mission importance (i.e., to judge whether a node’s selfish behavior would have a significant detrimental 

impact on mission success). In the literature, social scientists have addressed the tradeoff between local/individual 

utility and global/collective interest in the area of collaboration theory using the trust concept in groups, teams, and 

organizations [4]. However, no prior work exists to address this tradeoff in the context of networking environments. 

Many routing protocols for MANETs have been developed to isolate selfish nodes and to encourage collaboration 

among participating nodes [5]-[12]. Das et al. [5] proposed a new credit-based system for MANETs where each node 

has a unique IP address. Djenouri et al. [6] demonstrated an optimization mechanism to improve quality-of-service 

(QoS) by alleviating the effect of selfish nodes. Kargl et al. [7] developed a mechanism to detect selfish nodes. Wang et 

al. [8] devised an efficient incentive mechanism to encourage cooperative behaviors. Zhao [9] and Yan and Hailes [10] 

proposed game theoretic approaches to encourage cooperativeness. Miranda and Rodrigues [11] proposed an algorithm 

to discourage selfish behaviors based on a fair distribution of resource consumption. Different from the above work 

[5]-[11], Zhang and Agrawal [12] reversed the common intuition about selfish nodes; they found the positive aspect of 

having selfish nodes in terms of traffic reduction, and identified the optimal number of selfish nodes. Except [12], all 

prior works above emphasize the disadvantages of having selfish nodes in MANETs. Our work in this paper is different 

from all above works [5]-[12] in that we investigate and identify the best balance between individual benefit via selfish 

behaviors versus global interest via altruistic behaviors so as to prolong the system lifetime for successful mission 

execution. 

A number of routing protocols have been proposed based on the concept of trust (or reputation) to isolate selfish 

nodes [13]-[19]. Refaei et al. [13] proposed a reputation-based mechanism using various types of reputation functions 

and identified the optimal scheme that reduces false positives and isolates selfish nodes. He et al. [14] also proposed a 



 

reputation-based trust management scheme using an incentive mechanism, called SORI (Secure and Objective 

Reputation-based Incentive), to encourage packet forwarding and discourage selfish behaviors based on reputation 

propagation by a one-way hash chain authentication. Pisinou et al. [15] devised a secure AODV (Ad hoc On Demand 

Distance Vector) based routing protocol for multi-hop ad hoc networks to find a secure end-to-end route free of black 

hole attack, route injection, and selfish nodes. Soltanali et al. [16] proposed a distributed mechanism to deal with selfish 

nodes as well as to encourage cooperation in MANETs based on a combination of reputation and incentives. Moe et al. 

[17] proposed a trust-based routing protocol based on an incentive mechanism to discourage selfish behaviors, using a 

hidden Markov model (HMM) to quantitatively measure the trustworthiness of nodes. Adams et al. [18] proposed a 

node-centric reputation management scheme that considers feedback of a node’s behavior in generating a reputation 

index in order to determine trustworthiness of its peers before establishing IPSec security associations. Velloso et al. 

[19] proposed a human-based model which describes a maturity-based trust relationship between nodes in MANETs.  

These trust-based schemes cited above [13]-[19] in general aim to isolate or discourage selfish behaviors of 

participating nodes. Moreover, the trust metric used frequently does not adequately consider unique properties of trust 

in a MANET environment, including subjectivity, asymmetry, incomplete transitivity, dynamicity, and 

context-dependency [20]. Our work takes these properties into consideration and adopts a trust metric that reflects both 

social trust derived from social networks and QoS (quality-of-service) trust derived from communication networks. 

Our interest is not so much in isolating selfish nodes but in quantifying the tradeoff between individual and global 

welfare, allowing each node to adapt to network dynamics and node status. 

In game theory (or Nash equilibrium), an entity is assumed to be rational to maximize its own payoff, which is 

usually regarded as selfish. Most existing work used rewards or incentives to entice cooperativeness and discourage 

selfishness so that each entity makes moves to obtain the best individual payoff. In this work, we reveal that each node 

can actually dynamically adapt its behavior to achieve both its individual goal and global goal. A behavior model is 

proposed modeling an entity’s altruism vs. selfishness behavior such that when it has a global view to execute a mission 

successfully which requires its longevity, it can be temporarily selfish to save its energy so it can contribute to 

successful mission execution. While traditional game theoretic approaches are solely based on a node’s rationality, 

being selfish or cooperative to maximize its payoff, our approach proposes an adaptive strategy of “altruistic 

selfishness” (providing service to increase trustworthiness for not being isolated from the network) or “selfish 

altruism” (saving energy to prolong the node lifetime so as to contribute to successful mission execution) to best 

balance altruistic behavior vs. selfish behavior. 

Researchers have taken economic perspectives in modeling network behaviors and solving practical service 

problems in telecommunication systems [21]-[27]. Marbach and Qiu [21] took a market-based approach to encourage 

cooperation among nodes in MANETs by charging the service for relaying data packets. Aldebert et al. [22] analyzed 

residential demand by traffic destination using the demand and pricing (DP) theory. Yilmaz and Chen [23] utilized the 

DP theory to model an admission control algorithm with the goal of revenue optimization with QoS guarantees in 

wireless cellular networks. Rappaport et al. [24] analyzed a consumer survey to estimate household demand for 

wireless internet access. Kamioka and Yanada [25] used the DP theory to explain the relationship between the service 



 

demand of source nodes and the service supply of relay nodes. Xi and Yeh [26] investigated pricing games in multi-hop 

relay networks where selfishly and strategically behaving nodes charge their service and accordingly route their traffic. 

Chen et al. [27] proposed a fair-pricing focused incentive mechanism to encourage cooperation in MANETs. Different 

from the works cited above [21]-[27], we use the DP theory to model the selfish and altruistic behaviors of a node in 

MANETs.  

Recently trust has been applied to security applications such as secure routing or intrusion detection in MANETs 

[36]. Bao et al. [34] proposed a cluster-based hierarchical trust management protocol for large-scale wireless sensor 

networks (WSNs) to effectively deal with selfish or malicious nodes. They tested their proposed protocol to maximize 

security application performance in secure routing and intrusion detection. Fung et al. [35] proposed Dirichlet-based 

trust management to measure the level of trust among intrusion detection systems according to their mutual experience 

including the degree of acquaintance between two entities. However, these works [34], [35] do not consider the balance 

between a node’s selfish behavior and altruistic behavior to maximize the system goal.    

Different from existing work cited above, the goal of this work is not to use the proposed behavior model to 

determine whether to trust a node or not. Our goal is to demonstrate that when nodes can balance altruistic behavior 

(i.e., providing high service availability) vs. selfish behavior (i.e., saving energy) in accordance with the DP theory, the 

system reliability can be improved compared with pure altruistic or pure selfish behaviors. 

The contributions of this work are as follows. First, we develop and analyze a selfishness vs. altruism behavior 

model for a mission-driven GCS in MANETs where nodes may behave selfishly. We use the DP theory to quantify the 

conflicts between individual welfare and global welfare, and identify the condition to best prolong the system lifetime 

for successful mission execution while satisfying performance requirements. Second, we propose a composite trust 

metric encompassing social trust for sociability and QoS trust for performance capability. This composite trust metric 

allows us to cover a wide range of GCS applications with humans in the loop carrying communication devices to 

execute a mission assigned. Third, we develop a reliability metric, called the mission success probability, to predict the 

degree of successful mission completion for a trust-based GCS. This metric uniquely reflects the impact of trust 

management on system reliability. Fourth, we develop a mathematical model to describe the proposed GCS based on 

hierarchical Stochastic Petri Nets (SPN) [37], allowing optimal conditions to be identified to answer what-if types of 

questions for operational and environmental condition changes. Fifth, we demonstrate that our DP behavior model 

exploiting the tradeoff between selfishness vs. altruism is capable of maintaining an acceptable trust level while 

achieving a high mission success probability and a prolonged system lifetime, compared to both a purely altruistic 

system and a purely selfish system.  

This paper significantly extends our preliminary work published in [32]. Compared to [32], this paper has new 

contributions including: (1) a new composite trust metric (Section 2.3); (2) a new trust-based reliability metric to 

predict the mission success probability (Section 3.3); (3) an analysis comparing the DP behavior model with the two 

baseline behavior models in terms of the trust level obtained, the percentage of cooperative nodes obtained, and the 

trust-based reliability assessment; and (4) an analysis of the DP behavior model by varying key design parameters to 

investigate its usefulness in practice.  



 

The rest of this paper is organized as follows. Section 2 describes the system model, including the trust protocol 

description, assumptions, trust metric, energy model, and behavior model. Section 3 develops a performance model 

based on hierarchical SPN subnets. In addition, Section 3 discusses and defines the mission success probability as the 

trust-based reliability metric to predict trust-based system survivability. Section 4 analyzes numerical results obtained 

through the evaluation of our SPN performance models. In particular, we perform a comparative analysis of the DP 

behavior model against a solely altruistic model and a solely selfish model. We also investigate the sensitivity of our 

results with respect to critical design parameters. Finally, Section 5 concludes the paper and outlines future work.  

2. System Model 

2.1 Trust-based Cognitive Networks for MANETs 

Due to the unique characteristics of MANETs and the inherent nature of the unreliable medium in wireless 

networks, trust management for MANETs should encompass the following trust concepts: it should be dynamic and 

account for uncertainty; it should be context-dependent, and subjective, and not necessarily transitive or reciprocal. To 

reflect these unique trust concepts in MANETs, trust management for MANETs should consider the following design 

features: trust metrics must be customizable, evaluation of trust should be fully distributed without reliance on a 

centralized authority, and trust management should cope with dynamics and adverse behaviors in a tactical MANET 

[36]. 

Cognitive networks are able to reconfigure the network infrastructure based on past experiences by adapting to 

changing network behaviors to improve scalability (e.g., reducing complexity), survivability (e.g., increasing 

reliability), and QoS (e.g., facilitating cooperation among nodes) as a forward looking mechanism [1]. We use this 

concept of cognitive networks to introduce intelligence into each node to adapt to changing network conditions, such as 

a node’s selfish behavior, node failure or mobility, energy exhaustion of a node, or voluntary disconnection for energy 

savings.  

In the initial network deployment, we assume that there is no predefined trust. Without prior interactions, the initial 

bootstrapping will establish a shallow level of trust based only on indirect information (e.g., reputation from 

historically collected data or recommendation by third parties) and authentication by a challenge/response process 

(e.g., public key authentication). Over time, participating nodes will establish a stronger trust level with more 

confidence based on direct or indirect interactions and changing operational and environmental network conditions. 

Our trust management protocol allows each node to evaluate the overall trust of other nodes as well as to be evaluated 

by other nodes based on two factors, social trust and QoS trust. Social trust includes trust properties for “sociable” 

purposes while QoS trust includes QoS properties for mission execution purposes [20].  

Trust decays over time without further updates or interactions between entities. Node mobility also hinders 

continuous interactions with other group members, lowering the chances of evaluations of each other in the group. This 

includes cases such as a node moving towards other areas causing its disconnection from the current group, leaving a 

group for tactical mission reasons, and either voluntary disconnection for saving power or involuntary disconnection 

due to terrain or low energy. In addition, when we use the concept of web of trust [28], we obtain a certain degree of 



 

trust based on the length of the web of trust. For example, when the length of the trust chain is 4, e.g., A trusts B, B 

trusts C, C trusts D, and D trusts E, then, A may trust E. However, the longer the trust chain is, the more is the decay in 

the degree of trust [28]. Note that we use direct trust relationships when trust information is passed from A to E. 

Particularly, we call referral trust from A to D (i.e., A-B, B-C, C-D) and functional trust from D to E (i.e., D-E) [31]. 

Referral trust is the one used to pass references from A to D while functional trust is the one used to obtain the trust 

information of a target node from D that directly knows E.  

Our target system is a mission-driven GCS in military tactical MANETs where a symmetric key, called the group 

key, is used as a secret key for group communications between group members [20]. Upon a node’s disconnection from 

the group, the system generates and redistributes a new key so that non-member nodes will not be able to access a valid 

secret group key. Nevertheless, each group member keeps old trust information even for non-member nodes so that the 

information can be reused for future interactions, preventing a new comer attack. 

2.2 Assumptions 

We assume that the GCS is in a MANET environment without any centralized trusted entity in which nodes 

communicate through multiple hops. Nodes have different levels of energy, thus reflecting node heterogeneity. Each 

node periodically beacons its identification (ID) and location information to its 1-hop neighbors so that node failure or 

node leaving events can be easily detected by 1-hop neighbors to support our trust protocol design. We contrast our 

design with an efficient beacon-less routing protocol [44] which uses a relay node to forward a beacon message to 

avoid redundant dissemination of the beacon message to the network. Instead of disseminating a beacon message to the 

entire network, we limit beaconing to only 1-hop neighbors so that 1-hop neighbors can gain trust evidence towards a 

node based on beacon messages received. Accordingly rekeying is done immediately upon every membership change, 

and all member nodes are periodically aware of other nodes’ location and their ID in the network. Due to the goal of the 

GCS that a mission should be completed based on the collaboration or cooperation of nodes in the network, we 

consider one group with group members that intend to pursue and successfully complete an assigned mission. 

Involuntary disconnections or reconnections caused by network topology changes (e.g., network split or merge due to 

node mobility or failure) are implicitly considered by a node’s join or leave and the corresponding rekeying cost is 

considered in calculating energy consumption, as shown in Section 2.4. A node’s disconnections or reconnections are 

incorporated in calculating trust values of a node based on “closeness” component, as discussed in Section 2.3. 

We assume that mobile devices are carried by humans such as dismounted soldiers. We model group member join 

and member leave operations as common events for a GCS. Upon every membership change due to join/leave, a 

rekeying operation will be performed to generate a new group key based on a distributed key agreement protocol such 

as GDH (Group Diffie Hellman) [38]. We assume that nodes move randomly in a MANET environment. The energy 

consumption rate of a node depends on its status. The energy model is described in Section 2.4. A node’s selfishness vs. 

altruism behavior is modeled by a behavior model. The behavior model is described in Section 2.5. The mobility 

model, energy model and behavior model are input to the trust management protocol. 

We assume that a node’s trust value is being evaluated based on direct observations (e.g., packet dropping) as well 

as indirect observations. Indirect observations are recommendations obtained from 1-hop neighbors with the highest 



 

trust values. If sufficient recommenders cannot be found, recommendations from all 1-hop neighbors can be used. Each 

node disseminates a status exchange message containing its ID and its trust evaluation information toward its 1-hop 

neighbors (based on direct observations) periodically. This will enable each node to compute trust values of other 

nodes considering the original recommendations from the 1-hop neighbors of a target node as well as the reliability of 

the path that the trust information is obtained. It is assumed that each node can observe behaviors of 1-hop neighbors 

and compute interested trust component values based on the direct observations using a reputation monitoring 

mechanism pre-installed such as Watchdog or Pathrater [33]. When each node receives the status exchange messages, 

it can calculate trust based on desired trust availability and required path reliability. Trust availability is the probability 

that a target node exists within an n-hop distance from the evaluator’s location where n refers to the length of a trust 

chain used. That is, as n increases, trust availability increases. On the other hand, when a target node is found within n 

hops from the evaluator’s location, the reliability of a route taken by referral trust recommenders (called path 

reliability) to pass the trust information (recommendation) from the functional trust recommender of the target node 

will decrease. We calculate the path reliability by the product of referral trust values of all referral trust recommenders 

where the referral trust value is measured by unselfishness (a trust component considered in our trust management 

protocol), measuring the protocol compliance of a referral trust recommender. We will discuss path reliability in more 

detail in Section 2.3. As n increases, the path reliability decreases. Based on this tradeoff, each node cognitively and 

adaptively adjusts the length of its trust chain in order to collaborate with more nodes to achieve the desired trust 

availability while maintaining the required path reliability. 

We consider the presence of outside attackers. We assume that existing prevention techniques such as encryption, 

authentication, or rekeying inhibit outsider attacks. We consider the presence of both selfish nodes and compromised 

nodes among legitimate group members. We distinguish selfish nodes from compromised nodes in that a selfish node 

can adjust its status from selfish to unselfish or unselfish to selfish depending on the network conditions while a 

compromised node stays selfish continuously. We model the behaviors of a selfish node by the DP theory, as described 

in Section 2.4. 

2.3 Trust Management Protocol  

We consider a trust metric that spans two aspects of the trust relationship. First, social trust [30] will be evaluated 

through social networks to account for social relationships. We consider closeness for social trust where closeness is 

measured by the number of 1-hop neighbors a node has. Second, QoS trust accounts for the capability of a node to 

complete a given mission. We consider the energy level and degree of unselfishness (or cooperativeness) to estimate 

the QoS trust level of a node. A node’s trust value changes dynamically to account for trust decay over time due to node 

mobility or failure, as the trust chain becomes longer, as the node’s energy level changes, and as the node becomes 

selfish or unselfish.  

We define a node’s trust level as a continuous real number in the range of [0, 1], with 1 indicating complete trust, 0.5 

ignorance, 0 complete distrust. The overall trust value is derived based on three trust components explaining the status 

of a node in terms of energy (probability of being alive with remaining energy ≤ energy threshold,        ), 



 

unselfishness (i.e., probability of being unselfish while forwarding packets), and closeness (i.e., number of 1-hop 

neighbors).   

 Below we describe how the trust value is calculated. Our trust metric reflects three components as mentioned above: 

unselfishness, energy, and closeness. The subjective trust evaluation of node i toward node j inherently hinges on the 

length of the trust chain between i and j.  Specifically the trust value (    
     ( )) of node j as evaluated by node i over 

a n-hop trust chain is given by:  

    
     ( )  ∑      

       ( )

   

 (1)  

Three trust components shown in Equation 1 are weighted by    where the set x includes unselfishness, energy, and 

closeness. 

Next we describe how the trust value of node j in component x as evaluated by node i,     
       

( ), is obtained. If the 

length of the trust chain separating node i from node j is not greater than the maximum length of a trust chain (i.e., n 

hops), node i can update node j’s trust value at time t with both direct and indirect information collected. If node j 

cannot be found within n hops, node i relies on node j’s past trust value with some decay considered. Reflecting these 

two cases,     
       

( ) is calculated by:  

    
       ( )  {

      
       (    )  (   )    

                ( )           (   )   

         
       (    )                                                                     

 

(2)  

In Equation 2, when node j is found within n hops from node i’s location ( (   )    where  (   ) is the hop distance 

between nodes i and j), both direct and indirect information are used to derive the trust value of node j evaluated by 

node i. Otherwise, the trust value at time t is evaluated based on past trust information at time      with the decay 

factor       to consider the staleness where   is a constant to normalize the decay. Note that Equation 2 is applied only 

when node j exists in the system. When node j does not exist in the system due to energy depletion, node j’s trust value 

will drop to zero. In Equation 2,   is used as a weight for the node’s own information, that is, “self-information” based 

on the past experience using trust value at time (    )  and, conversely,     is the weight for indirect information 

using recommendations, that is, the “other-information.”  

The probability that node j is found within n hops from node i, denoted by     
     ( ), can be computed by: 
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     ( )   
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(3)  

Here S is a set covering all (l, m) pairs with the distance between l and m being k hops away;     
     ( ) is the 

cumulative probability that the hop distance between two nodes ≤ n;      
     

( ) is the probability that the hop distance 

between two nodes is equal to k; and   
     ( ) is the probability that node i is located in area k.  



 

Indirect information for trust component x at time t using a n-hop trust chain,     
                ( ), in Equation 2 is 

computed by: 

    
                ( )  

∑ (      
        ( )    

        ( ))   

   
 

(4)  

In Equation 4, S is the set of functional trust recommenders, that is, the set of 1-hop neighbors of node j that know 

about node j most. In Equation 4,       
        ( ) refers to the path reliability for the route between nodes i and m, 

computed by the product of direct unselfishness trust values of all pairwise intermediate nodes between nodes i and m 

along the path. This process reflects an incomplete transitivity of trust in MANETs. That is, trust decays as it 

propagates, or as the trust chain grows. Note that based on Jøsang et al. [31], we use referral trust with       
        ( ) 

and functional trust with     
        ( ) (discussed in Equation 5). Consequently,     

                ( ) is derived based 

on direct trust relationships of all intermediate nodes between nodes i and j to ensure independence of trust values of 

intermediate nodes involved [31].  

The trust value of node j in component x as evaluated by node i based on direct evidence observed by node i at time 

t,     
        ( ), in Equation 4 is obtained by: 

    
        ( )     [

  
 ( )

  
 ( )

  ]            
        ( )    

(5)  

In Equation 5, we reflect the subjective characteristic of trust by dividing node j’s trust in x (  
 ( )) by node i’s trust 

in x (  
 ( )). We assume that all nodes are trustworthy with a trust value of 1 at time t = 0. We also assume that direct 

trust evaluation is close to actual status, so   
 ( ) for x = unselfishness or energy can be directly obtained from our SPN 

model output which yields actual node status, while the   
 ( ) value for x = closeness should be computed based on 

location information (  
     ( ) where l indicates a particular area). When x = closeness,   

         ( ) refers to the 

degree of node i’s average closeness toward any node at time t and is computed by: 

  
         ( )  

  
     ( )

  
       ( )

  
(6)  

where   
     ( ) is the number of 1-hop neighbors of node i at time t, and   

       ( ) is the total number of nodes in 

the system except node i at time t. That is,   
         ( ) means the closeness of node i toward any node. 

To assess the accuracy of “subjective” trust obtained from Equation 1, we compare it against “objective” trust 

calculated based on the node’s actual status. Specifically, the objective trust of node i is calculated by: 

  
   ( )  ∑    

 ( )

   

 (7)  

Here   
 ( ) is the “ground truth” status of node j in x at time t.  

Dynamic trust formation by adjusting the weights associated with trust components to optimize application 

performance in response to dynamically changing conditions is an important research area [32], [34], but is outside of 



 

the scope of the paper. For the purpose of achieving the goal of the paper, we have selected three trust components, 

namely, energy, unselfishness, and closeness, to reveal the tradeoff between altruistic behavior (i.e., providing high 

service availability) vs. selfish behavior (i.e., saving energy), and we have considered a mission scenario for which all 

trust components are weighted equally. 

We apply a model-based analysis in this paper utilizing a SPN model to describe the behaviors of nodes following 

their mobility model (random movement), energy model (Section 2.4) and selfishness vs. altruism behavior model 

(Section 2.5) assumptions. The underlying model of the SPN model is a semi-Markov model which, after being solved, 

yields the probability that a node is in a particular state at time t. For example, node i is in area k at time t,   
     ( )  is 

an output of the SPN model. The actual “ground truth” status of node j in component x at time t,   
 ( )  is also output of 

the SPN model, which can be used to calculate objective trust according to Equation 7. We will describe our 

performance model later in detail in Section 3. Here we note that objective trust in Equation 7 refers to trustworthiness 

mentioned in [31], representing the “objective” trust level. We use objective trust as a sanity check to ensure accuracy 

of our measured trust values based on Equations 1-6. 

2.4 Energy Model 

In this section, we discuss the communication overheads of beaconing, group communication, status exchange, and 

rekeying operations in our protocol design in terms of message traffic generated (i.e., bits generated per second) and 

energy consumption rate per node for these operations. Since the application is a MANET group, rekeying and group 

communication packets are disseminated to legitimate members through hop-by-hop multicasting, while beaconing 

and status exchange packets are disseminated to only 1-hop neighbors based on our protocol design. 

The energy model describes the amount of energy consumed when a node is in a particular state. It is an input to our 

trust management protocol. We associate the energy level of a node with its status in selfishness and group 

membership. Depending on the remaining energy, each node acts differently. The degree of energy consumption is also 

affected by the node’s state. Thus, these parameters are interwoven and affect a node’s lifetime significantly. 

  A GCS in MANETs must handle events such as beaconing, group communication, rekeying, and status exchange. 

In particular, after a status exchange event, trust evaluation towards 1-hop neighboring nodes as well as distant nodes 

may be performed. Each node may transmit its own status (e.g., information providing the trust values) as well as status 

of other nodes (i.e., trust values) on a trust chain. Recall that we use recommendations from 1-hop neighbors for trust 

evaluation. 

We design the packet format (bits) based on [      
 〈   〉  

] where the main message encrypted by a group 

key,   , consists of header H and data payload D. A hash-based message authentication code (HMAC) using a MAC 

key derived from    is used to ensure message integrity and authentication. Typically the size of MAC is 128 or 160 

bits in the case of MD5 or SHA-1 respectively [50]. This allows us to estimate energy consumption upon packet 

transmission and reception in our energy model as below. 

The energy consumption per bit for transmission is estimated by [29]: 

  (   )      (   )  (8)  



 

where  (   ) is the distance between transmitter i and receiver j,   is the path-loss factor (typically, 2     6), and    is 

a distance-independent parameter. For simplicity, we use    =       [29], and   (   )    , the wireless radio range. 

Hence, we have          ( )  for the energy consumption per bit at a transmitter, assuming    . The energy 

consumption per second for data transmission by a node is given by:  

        [         
                 

       ] (9)  

The first term is for energy consumption for transmission initiated by a node where A represents bits generated per 

second covering beaconing, group communication, status exchange, and rekeying operations. The second term is for 

energy consumption for forwarding packets from unselfish 1-hop neighbors (      
         ) where B represents bits 

generated per second, covering the messages for group communication, and rekeying operations to be disseminated to 

all group members using multicasting. Beaconing and status exchange messages are not required to be disseminated to 

all group members, so they are excluded from forwarding. The third term indicates the energy consumption for 

transmitting packets from selfish 1-hop neighbors (      
       ) who do not forward group communication packets 

received from others, with C representing bits generated per second for rekeying operations. We note that       
          is 

set to the average number of 1-hop neighboring nodes, and       
        is set to zero in the first round of iterations of the 

SPN subnet based on the assumption that all neighbors are unselfish. From the second round of iterations, the estimates 

of       
          and       

        obtained at the end of the previous round of iterations are used. Note that       
         and 

      
        are time-averaged values; they reflect the average behavior of the system and can be estimated after the first 

round of iterations. Node i’s         
        is calculated as: 

        
          

∑ ∑   
     ( )∑           

     ( )   
     
   

   
   

         
 

(10)  

          
     ( )  ∑           

     ( )

       

 
(11)  

In Equation 11, S includes all nodes’ IDs except node i and           
     ( ) is the number of selfish nodes in area k 

except for the case that node i is selfish in area k at time t. Similarly,           
     ( ), where y is an element of Y that 

includes k location itself, north, south, west, and east of area k as the 1-hop neighbor areas, gives the number of 1-hop 

neighbor selfish nodes in areas in Y, max is the upper bound of time measured and           is the number of time 

points.   
     ( ) is the probability that node i is located in area k at time t.           

     ( ) is the probability that node j is 

selfish and located at area k. Both   
     ( ) and           

     ( ) can be obtained from the SPN model output.         
          is 

calculated by the average number of 1-hop neighbors minus         
       . Henceforth, we omit the symbol i in         

          

and         
        for simplicity. 



 

Assume that a node may leave the group voluntarily with rate μ and may rejoin the group with rate λ. Then, the 

probability that a node is in the group is λ/(λ +μ) and the probability that it is not is μ/(λ +μ). Then, the rekeying interval 

          is calculated as:  

           
    

⁄               
   

   
   

(12)  

where      is the aggregate join and leave rate in equilibrium.  

The energy consumed in reception is typically less than that for transmission; we assume       ⁄  and do not 

consider energy consumed in idle listening. The energy consumed per second by each member node for packet 

reception from 1-hop neighbors is calculated by: 

           [        
                  

       ] (13)  

where A is the same as in Equation 9 and D represents bits received per second for beacon, status exchange, rekeying, 

and group communication messages for which the selfish 1-hop neighboring nodes transmit. In Equation 13, the first 

term represents the energy consumed by receiving packets forwarded from healthy 1-hop neighbors (      
        ) and the 

second term indicates the energy consumed by receiving packets forwarded from selfish 1-hop neighbors (      
       ).  

In summary, the consumed energy of a node per second is:  

                 (14)  

If a member node is selfish, it does not forward any packet from others but just transmits its own packets. The 

energy consumption per second for data transmission by a selfish node is given by: 

                  (15)  

If a member node is selfish, the energy consumption per second for receiving packets is also          since we 

assume all nodes are in promiscuous mode. Thus, the node will save                     energy by being selfish. 

Thus, the total energy consumption for a selfish node per second is: 

                                (16)  

If a node is a non-member, it will only transmit and receive beacon messages. Thus, the energy consumption per 

second for a non-member is computed as: 

                                                  (            ) (17)  

Here        includes both       
          and        

        since any node that is alive will disseminate beacon messages, and 

E indicates bits transmitted/received per second for a beacon message. 

2.5 Selfishness vs. Altruism Behavior Model 

A selfishness vs. altruism behavior model describes the behavior of a node as it switches between selfish and 

altruistic behavior to balance its individual welfare vs. the system global welfare. It is an input to our trust management 

protocol. We derive a selfishness vs. altruism behavior model from the classic demand and pricing (DP) model in the 

field of economics [3], [22]. Henceforth, we will refer it as the DP behavior model. In the literature, the DP model has 



 

been applied extensively to practical real-world scenarios in demand vs. resource consumption behavior in applications 

such as radio resource allocation in multimedia communication systems [41], [43], distributed energy resource 

allocation in information and communication systems [42], and admission control for pricing optimization of multiple 

service classes in wireless networks [23]. We apply the DP model to describe the practical relationship between a 

node’s selfish behavior vs. its energy status, the mission status, and the environment condition. 

The basic formula to represent the relationship between demand and pricing in a market is given by: 

     (  )
   

 
(18)  

where    is the demand arrival rate of service i and    is the pricing of service i while    and    are constants correlating 

to    and   . Service demand is affected by pricing changes where the elasticity constant    is a key determinant. 

Customers tend to purchase a product when they can afford to buy it or need it. If the increasing speed of demand is 

slower than that of pricing of a product, consumers are considered as inelastic to price changes. Conversely, if the 

increasing speed of demand is faster than that of pricing of a product, consumers are regarded as elastic to pricing 

changes. Usually the elasticity    is greater than 1 in order to follow the general trend that a lower price increases 

consumer demand. The elasticity    can be obtained from statistical data describing past market conditions.  

We adopt the DP theory to model the behavior of a participating node particularly on whether it should behave 

selfishly or altruistically based on both individual benefit (i.e., saving energy) and global interest (i.e., serving tasks). 

To apply Equation 18 to model the selfish behavior of a node, we use a transition T_SELFISH in our SPN model 

(discussed later in Section 3) to model a node’s changing behavior from altruistic to selfish and vice versa. The 

transition rate for T_SELFISH indicates how often a node will switch from altruistic to selfish behavior and is modeled 

by: 

    (         )  
 (       ) (           ) (       )

   
     

(19)  

Applying the DP theory discussed in Equation 18, we use  ( )       where a node is more likely to be selfish with 

large γ and small ε while it is less likely to be selfish with small γ and large ε.         represents the level of current 

energy (mark(energy)),             is the difficulty level of a given mission where a higher number indicates a tougher 

mission with more workload, and         is the degree of selfishness where a higher number refers to more selfishness. 

We define         as the degree of selfish nodes to unselfish nodes among 1-hop neighbors. Note that when x in f(x) is 

large, then a node is more likely to be altruistic. That is, when        ,             or         is large, then a node tends 

to be altruistic because it has a sufficient level of energy, the mission is difficult, or few neighboring nodes are available 

to serve the mission. On the other hand, when a node has low energy, the mission is light-workload, or many altruistic 

neighbors are around, the node is more likely to be selfish so as to save energy to participate in mission execution.  The 

DP theory is utilized to model a selfishness vs. altruism behavior scenario in which nodes attempt to achieve both 

individual benefit (i.e., saving energy) and global interest (i.e., serving tasks). 



 

We use three different thresholds to order the degrees of these three environmental conditions. Thus,        , 

           , and         are in the range of 1, 2, or 3. The multiplication by       is to consider an interval of 

disseminating a group communication packet where a node’s selfishness can be observed. Equation 19 implies the 

following physical meanings: 

  (       ): If a node has a higher level of energy, it is less likely to be selfish. 

  (           ): If a node is assigned a tougher mission, it is less likely to be selfish (so it would not risk mission 

failure). 

  (       ): If a node observes high selfishness among its 1-hop neighbors, it is less likely to be selfish (so it would 

not risk mission failure). 

Similarly, we use a transition T_REDEMP in the SPN model (shown in Section 3.1) to model the redemption of a 

node changing its behavior from selfish to altruistic. The rate to transition T_REDEMP is modeled as: 

    (        )  
 (         ) (         ) (       )

       
     

(20)  

                is the level of consumed energy (          (      )),           is the easiness level of a given 

mission where a higher number indicates an easier mission with less workload, and         is the degree of 

unselfishness where a higher number means more unselfishness of 1-hop neighbors. We define         as the degree 

of unselfish nodes to selfish nodes among 1-hop neighbors. The redemption rate is high when a node has a sufficient 

energy, a difficult mission is given, or less healthy (or more selfish) nodes are available around the node, and 

vice-versa, applying the same rationale in Equation 19.  A node is given a chance to be redeemed (from selfish to 

altruistic) in every revaluation period        , corresponding to the status exchange interval for trust evaluation. 

Equation 20 carries the following physical meanings: 

  (         ): If a node has consumed more energy, it is less likely to redeem itself. This means that if a node has 

low energy, it may want to further save its energy by remaining selfish. 

  (         ): If a node is assigned to an easier mission, it is less likely to redeem itself (as this would not risk 

mission failure). 

  (       ): If a node observes high unselfishness among its 1-hop neighbors, it is less likely to redeem itself and 

may continue to stay selfish in order to save its energy (as this would not risk mission failure). 

3. Performance Model 

3.1 Hierarchical Modeling using SPN 

We develop a mathematical model based on SPN techniques [37] to analyze a GCS with nodes switching between 

selfish and altruistic behavior based on the DP theory and identify design conditions under which the selfish vs. 

altruistic behaviors can be balanced. With the trust-based system lifetime and the mission success probability as our 

reliability metrics, we show that the DP behavior model outperforms one that only encourages altruistic behaviors. We 



 

use SPN as our modeling tool due to its efficient representation of a large number of states where the underlying models 

are semi-Markov models. We develop a hierarchical modeling technique to avoid state explosion problems and to 

improve solution efficiency for realizing and describing a large scale GCS.  

We first develop a “node” SPN subnet to describe a single node’s lifetime behavior. We assume that the 

operational area is a square-shaped area comprising m×m sub-grid areas with the width and height equal to the wireless 

radio range (R). Initially the location of each node is randomly distributed over the operational area based on uniform 

distribution. A node randomly moves to one of four locations in four directions (i.e., north, west, south, and east) in 

accordance with its mobility rate. The speed of each node is chosen from [0, 2) m/s based on uniform distribution at the 

beginning of network deployment, and is then fixed during its lifetime. The boundary grid areas are wrapped around 

(i.e., a torus is assumed) to reuse the operational area. The SPN subnet for node i computes the probability that node i is 

in a particular grid area j at time t. This information along with the information of other nodes’ location information at 

time t provides actual status information about a node’s n-hop neighbors at time t, which we will use to compute the 

“objective” trust metric. Since node movements are assumed to be independent, the probability that two nodes are in a 

particular location at time t is given by the product of the two individual probabilities. The node SPN subnet describes 

a node’s lifetime behavior and can be used to obtain each node’s status information (e.g., amount of energy left, 

unselfishness status, and closeness status) to derive the trust relationship with other nodes in the system. There are N 

such SPN subnets, one for each node in the network.  

Iterative techniques are used for each node SPN subnet to obtain other nodes’ information from other node SPN 

subnets since one subnet only describes one node’s lifetime. In the first round of iterations, there is no information 

available about 1-hop neighbors, so it is assumed that each area has an equal number of nodes and all nodes are 

unselfish. In the second round of iterations, based on the information collected (e.g., number of unselfish or selfish 

1-hop neighbors) from the first round, each node knows how many nodes are 1-hop neighbors that can directly 

communicate with it, and whether or not they are members of the GCS or selfish. A node also knows how many n-hop 

neighbors it has at time t. It then adjusts the status of 1-hop neighbors at time t with the output generated from the j
th
 

round of iterations as input to the (j+1)
th
 round of iterations. This process continues until a specified convergence 

condition is met. The Mean Percentage Difference (MPD) is used to measure the difference between critical design 

parameter values, including the energy level, selfish probability, and closeness probability of a node at time t in two 

consecutive iterations. The iteration stops when the MPD is below 1% for all nodes in the system to assure accuracy. 

The calculation of the MPD of trust property x of node i is given by: 

    
   

∑   
 ( )   
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(21)  

where   
  
( ) indicates the value of trust property x of node i at time t in the j

th
 round of iterations, max is the maximum 

time measured, and           is the number of time points. We compute the MPD of trust property x including the 

energy level, selfish probability, and closeness probability of a node. The node SPN subnet after convergence yields 

actual status expressed in terms of the probabilities for various trust components (i.e., unselfishness, energy, and 



 

closeness) as output. Leveraging the SPN model output, we are able to calculate subjective and objective trust values as 

explained earlier in Section 2.3. 

 

Fig.  1. Node SPN Subnet for Describing the Behavior of a Node. 

Fig. 1 shows the node SPN subnet. The subnet describes a node’s mobility behavior, join and leave events (i.e., 

GCS membership status), energy consumption, and selfish behaviors with a redemption mechanism provided. Place 

Location holds the location ID (one of the m×m subareas each having a distinct location ID). If the current location ID 

is 3, there will be 3 “tokens” in Location. The transition T_LOCATION is triggered when a node moves to a randomly 

selected area in one of four different directions from its current location with the rate calculated as       ⁄  based on an 

initial speed (     ) and wireless radio range (R). For example, if a node moves downward from location 3 to location 8, 

then the number of tokens in Location is changed from 3 to 8 to reflect the location change. Hence, by examining the 

number of tokens in Location, we know a node’s current location. 

Place Member indicates whether a node is a member or not, with one token indicating yes and zero token indicating 

no. We assume that inter-arrival times of a node’s join and leave requests are exponentially distributed with rates λ and 

μ, applying to transitions T_JOIN and T_LEAVE, respectively.  

Place Energy represents the current energy level of a node. An initial energy level is assigned according to node 

heterogeneity information. In our analytical model, we randomly generate a number between 6 to 12 hours of energy 

based on uniform distribution. A token representing an energy unit is taken out when transition T_ENERGY fires. The 

transition rate of T_ENERGY is adjusted on the fly based on a node’s status: it is lower when a node becomes selfish to 

save energy or when a node changes its membership from a member to a non-member, following the energy 

consumption model explained in Section 2.4. We assume that T seconds will be taken to consume one energy token 

when a member node has no selfish 1-hop neighbors. We use our energy consumption model (see Section 2.4) for 

adjusting the time taken to consume one token in place Energy based on a node’s status: a token is taken out of place 

Energy after T (i.e., (    )  ) seconds if the node is an unselfish member, (    )          if it is a selfish 

member, and (    )              if the node is a non-member. Therefore, depending on the node’s status, its 

energy consumption rate is dynamically changed.  

Place Selfish indicates whether a node is selfish or not, with one token in place Selfish representing it is selfish and 

zero token otherwise. If a node becomes selfish, a token goes to Selfish by triggering T_SELFISH. When a node 

becomes altruistic again, transition T_REDEMP is triggered. A node switches between selfish and altruistic following 

Equations 19 and 20. To model a compromised node, we disable T_REDEMP for a compromise node whose initial 

status is “selfish,” having a token in place Selfish from the beginning. 

Energy 

T_ENERGY 

Member 

T_LEAVE 

  Selfish 

T_SELFISH T_REDEMP 

Location 

T_LOCATION T_JOIN 



 

3.2 Calculation of Trust  

Subjective trust evaluation is performed by individual nodes at runtime. Essentially subjective trust is calculated by 

Equation 1. Objective trust, on the other hand, is calculated by Equation 7. Recall that objective trust is calculated based 

on actual status and is used as a baseline case against which accuracy is assessed. To apply Equations 1 and 7, we need 

to know node i’s actual status in trust component x at time t (with x=energy, unselfishness or closeness), i.e., 

  
      ( ),   

         ( ) and   
         ( ). This can be achieved by means of a reward assignment technique described 

below. Specifically, the average value of a physical property at time t, Z(t), is the state probability weighted sum of the 

values at various states, i.e.,  

 ( )  ∑(        ( ))

   

 (22)  

where  ( ) represents the average value of a general physical property at time t, S is a set of states that meet particular 

conditions,      ( ) is the probability that the system is in state j at time t (which is output of our SPN model), and    is 

the “reward” or “value” assigned to the physical property at state j. The reward assignment technique allows us to 

compute a node’s average energy level probability (       ( )), unselfish probability (          ( )), the probability of 

being in area k (      ( )),            
     ( ) and         

     ( ) needed in the computation of subjective trust (Equation 1) and 

objective trust (Equation 7). Also with knowledge of the probability of a node being in area k at time t (      ( )) 

obtained above, we can compute     
     ( ) from Equation 3 as well as           ( ) from Equation 5. Note that here 

we omit the subscript i (to refer to node i) for simplicity. 

Table 1 specifies the conditions to be satisfied for states in set S in calculating        ( ),           ( ),       ( ), 

          
     ( )  and         

     ( ) as output of our SPN model. When the conditions specified are satisfied, a reward of 1 is 

assigned; 0 otherwise.   

Table 1: Reward Function 

Component Reward returned based on conditions in S 

       ( )     (      )    

          ( ) (    (      )   )   (    (       )    )   (    (      )   ) 

      ( ) (    (        )    )   (    (      )   )   (    (      )   ) 

          
     ( ) (    (      )   )   (    (       )    )   (    (      )   )   (    (        )    ) 

        
     ( ) (    (      )   )   (    (       )   )   (    (      )   )   (    (        )    ) 

3.3 Calculation of Trust-based Reliability 

We develop a computational procedure for assessing the mission reliability based on the trust level required for 

successful mission execution. The reliability of node j at time t, denoted by   ( )  is the probability that node j meets 

the required trust level for mission execution over time [0, t], calculated as follows: 
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(23)  

In Equation 23, t is the current time point and       is a past time point, D1 is the drop dead trust level, and D2 is the 

desired trust level for successful mission execution. The physical meaning is that if j’s trust level is below the drop dead 

trust threshold (D1) at any time during [0, t] then   ( ) is zero; otherwise,   ( ) is the expected trust level scaled over 

the desired trust level (D2). Knowledge of   ( ) thus can be obtained by node i (the commander node) based on its 

subjective trust toward node j (    
     (  ) over [0, t]) according to Equation 23 to decide if it should include node j as 

a group member to execute a mission assigned to ensure successful mission execution. 

4. Numerical Results and Analysis 

In this section, we present numerical results to compare subjective trust     
     ( ) through Equation 1, objective 

trust   
   ( ) through Equation 7 and the reliability of node j at time t,   ( ), through Equation 23. We use SPNP as a 

tool to implement the SPN model developed and compute     
     ( )   

   ( ) and   ( ) based on reward assignments 

as described in Section 3.2. Table 2 summarizes the default parameter values used in this paper.  

Table 2: Default Parameter Values Used 

Parameter Value Parameter Value Parameter Value 

       3 N 150 D1 / D2 0.5 / 0.85 

R 250 m         600 s     1/3 

  1/3600         120 s γ 0.01 

  1/14400 T 60*60 s ε 2 

  0.8       (0, 2) m/s       [6, 12] hrs 

   
   600 s    

   360 s    
   120 s 

∆t 600 s   1/3600 n (TC) 4 

In our case study, we assume that a mission requires the same level of importance in three dimensions of trust (i.e., 

energy, unselfishness, and closeness). The example military mission scenario can be found in navigating and/or 

monitoring for locations or events in enemy sides where effective and efficient communications are vital to mission 

success [46]. In these types of missions, all closeness, energy level, and cooperativeness (unselfishness) are critical 

fundamental capabilities to make communication effective, leading to successful mission completion. Thus, we weigh 

all trust components equally, setting        to compute the overall trust based on Equation 1. To combine both 

direct evidence and indirect evidence to compute the overall trust, we weigh direct trust with β = 0.8 and indirect trust 

with 1- β = 0.2, at which the trust bias (i.e., the discrepancy between actual objective trust and measured subjective 

trust) is minimized at the optimal trust chain length of 4 (TC=4). The reason direct trust (through observations) is 

weighted more than indirect trust (through recommendations) is that trust based on indirect evidence decays over space 



 

as it propagates along the trust chain especially as more intermediate nodes are on the trust chain. We control trust 

decay over time for a node with little interaction with others based on Equation 2; the trust decay factor ρ is set to 

1/3600 so that trust decay over time is limited by a ratio of 1- (   ) in 1 hour. 

The following three behavior models are being evaluated to test their effects on subjective trust and, through 

Equation 23, on the mission success probability: 

1. DP: This behavior model uses the demand and pricing (DP) theory to balance selfishness and altruism behavior of 

a node based on the environmental and operational conditions, as described in Section 2.5; 

2. ALT: This is the behavior model where nodes are always altruistic by being cooperative (i.e., serving all requests) 

all the time; and 

3. SELF: This is the behavior model where nodes are 50% selfish by dropping 50% of received packets.  

Mission workload is regarded as one of most critical characteristics in military tactical environments [39], [40]. In this 

work, we particularly consider mission workload in terms of packet transmission to reveal the tradeoff between 

altruism by cooperatively executing a mission vs. selfishness by energy conservation to prolong node lifetime, as we 

take both factors into consideration in our composite trust metric. Specifically, we consider three mission types (M1, 

M2, and M3) demanding different workloads, with M1 requiring the least workload while M3 requiring the most 

workload (i.e., M1 < M2 < M3). In Table 2,    
  ,    

   and    
   are the service request inter-arrival times (for group 

communication)  for M1, M2, and M3, respectively. These will be used in place of     in Equation 19 to calculate rate 

(T_SELFISH). 

 

Fig. 2. Trust value vs. length of a trust chain (TC) over time: one node’s evaluation toward another node.  

We first demonstrate that subjective trust obtained through Equation 1 evolves over time and depends on the length 

of the trust chain (called TC for short). Fig. 2 shows the trust value of a trustee node as evaluated by a trustor node using 

the proposed trust metric calculation when the DP behavior model is used with the mission type being M1 demanding 

the lightest workload among three mission types considered. We aim to select an optimal TC to meet the acceptable 

trust accuracy level such that subjective trust does not exceed objective trust (OT) but is closest to OT. When subjective 

trust is higher than OT, it will reveal risk vulnerability by possible betrayal of collaborative parties [31]. From Fig. 2, 
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we observe that using TC = 4 gives the most accurate subjective trust but reveals little risk from overestimating 

objective trust. This result can be applied to a mission execution situation in which the mission type is known (M1 as in 

Fig. 2) to set the maximum trust chain length (the n parameter) equal to the optimal TC length identified (e.g., 4 above 

in Fig. 2) so as to provide the best trust assessment accuracy without introducing risk due to overestimation. 

   

Fig. 3. Trust values obtained vs. 

time under various behavior 

models with mission type M1: 

one node’s evaluation toward 

another node. 

Fig. 3. Trust values obtained vs. 

time under various behavior models 

with mission type M2: one node’s 

evaluation toward another node. 

Fig. 4. Trust values obtained vs. 

time under various behavior models 

with mission level M3: one node’s 

evaluation toward another node. 

Next we show the resulting subjective trust obtained under three different selfishness vs. altruism behavior models 

(DP, ALT, and SELF) when different mission types (M1, M2, and M3) are given. Figs. 3, 4 and 5 graph the subjective 

trust value obtained vs. time under various behavior models when the mission types are M1, M2 and M3, respectively.  

We only show trust values above ignorance (0.5 in our trust scale [0, 1]) over the time range [0, 1000] minutes, since 

trust less than ignorance is not meaningful for a node to be regarded as trustworthy for mission execution.  

In Fig. 3, we see that when time is sufficiently small, say t < 250 min, ALT performs the best among the three 

behavior models. This is because in the beginning, most nodes have high energy, so unselfishness is the main factor 

among three trust components to determine trust. However, as time progresses (i.e., t ≥ 250 min.), DP performs the 

best. This is because in ALT nodes always altruistically serve requests, so energy is easily depleted, thus resulting in a 

lower trust level after t > 250 min. When t is very large, t ≥ 950 min in Fig. 3, SELF performs the best. This is because 

nodes in SELF have saved sufficient energy over a long period, compared with those in other models, so while nodes in 

DP or ALT consume most energy, nodes in SELF still maintain relatively high energy, resulting in a higher trust level. 

Note that in all three behavior models, trust is above ignorance (0.5) over the entire mission period, i.e., [0, 1000] min. 

Figs. 4 and 5 exhibit a similar trend as Fig. 3 except that the cross-over time point at which DP starts to perform 

better than ALT decreases as the mission type goes from M1 (Fig. 3) to M2 (Fig. 4) and M3 (Fig. 5). We see that the 

cross-over time point goes from 250 min. (Fig. 3) to 220 min. (Fig. 4) and 130 min. (Fig. 5). This is due to the fact that 

as we have a more difficult mission with a higher workload demand, nodes in ALT exhaust energy quickly. On the 

contrary, nodes in DP are able to exploit the tradeoff between selfishness (for their own welfare) and altruism (for 

global welfare) to save energy while providing cooperativeness when necessary. As a result, DP catches up with ALT 

after a shorter time span as the mission types goes from M1 to M2 and M3. In particular, we see from Fig. 5 that when 
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the mission demands a high workload (i.e., under M3), SELF with 50% selfishness behavior provides the lowest trust 

level among three since 50% cooperativeness hurts both energy and cooperativeness, resulting in a low trust level 

under SELF, compared with that under ALT or DP. The effect is especially manifested as the mission time increases.  

We can apply the results obtained here in two ways: (a) we can have some idea of the trust level obtainable under a 

behavior model (e.g., ALT) for design decision making; and (b) we can decide the mission execution time period such 

that trust is above a minimum threshold trust level (e.g., D2) before the mission execution period is expired. 

 

Fig. 6. A node’s unselfishness trust under various behavior models and mission types. 

In Fig. 6, we show the probability of a node’s unselfishness under three behavior models and three mission types. 

We observe that as the mission’s workload increases (i.e., from M1 to M2 and M3), a node’s unselfishness trust in DP 

is not significantly different from the one in ALT. This is because a node in DP autonomously adjusts its selfishness vs. 

altruism behavior based on environmental and operational conditions including its own energy level, other nodes’ 

selfishness status, and the mission type. For a highly demanding mission (say M3), nodes in DP will tend to be altruistic 

to serve other nodes’ requests as much as ALT does for global welfare. Thus, we do not see much discrepancy in 

unselfishness between DP and ALT under M3. However, for a less demanding mission (say M1), nodes in DP tend to 

be somewhat selfish for individual welfare without compromising global welfare. Thus, we observe there is a subtle 

difference in unselfishness between DP and ALT under M1, i.e., ALT’s unselfishness (or cooperativeness) trust is 

higher than DP. 

   

Fig. 7. A node’s trust-based reliability 

R(t) over time under M1 under 

various behavior models. 

Fig. 8. A node’s trust-based reliability 

R(t) over time under M2 under 

various behavior models. 

Fig. 9. A node’s trust-based reliability 

R(t) over time under M3 under 

various behavior models. 
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Based on Equation 23, we test the effect of the selfishness vs. altruism behavior model on a node’s trust-based 

reliability R(t) under three mission types (M1, M2, and M3) with D1=0.5 and D2=0.85. Figs. 7, 8, and 9 graph R(t) vs. 

time under three behavior models for mission types M1, M2 and M3, respectively. Here we omit the subscript j in   ( ) 

for simplicity. When the mission has a relatively low degree of difficulty with a low workload (i.e., M1 or M2), the 

benefit of DP in terms of R(t) is pronounced. This is because DP can best balance selfishness vs. altruism behavior to 

gain a trust level above D2 compared with the other two extreme behavior models (ALT and SELF). As we go from M1 

to M2 and M3, a node in DP for global welfare becomes more altruistic to serve requests received, thus mimicking the 

behavior of an altruistic node. Moreover, as the mission workload increases (from M1 to M3), we observe that ALT 

even performs better than DP because unlike in ALT, a node in DP is not 100% altruistic and its unnecessary selfish 

behavior decreases the trust level needed for achieving M3.  Among all, SELF is the worst in terms of R(t) because 

50% selfishness behavior achieves little trust in terms of both energy and cooperativeness properties, the effect of 

which is especially pronounced for a mission (M3) demanding a high workload. Note that here we only graph the 

results for which R(t) is above 0.9 as presumably only a node with reliability above 0.9 is qualified for mission 

execution.  

 

Fig. 10. A comparative performance analysis of DP vs. ALT over all mission scenarios. 

Existing work in trust/reputation systems [13]-[19] focused on cooperativeness or altruism which is considered as 

the global welfare of a system. Thus, we consider ALT representing existing schemes and compare it against our DP 

behavior scheme. Fig. 10 compares ALT with DP in the mission reliability, the overall trust, and the unselfishness trust, 

covering all mission scenarios. We observe that although ALT dominates DP in altruism (unselfishness), DP 

outperforms ALT in both the overall trust and the mission reliability, especially when the mission is less difficult to 

execute (i.e., M1). This is because altruism (unselfishness) does not guarantee mission success. Excessive altruism 

quickly drains energy, thus shortening a node’s lifetime that leads to its incapacitation to execute the mission. We 

conclude that it is not necessarily always desirable to encourage cooperative behavior.  

Our work identifies the intelligent altruism vs. selfishness behavior of a node modeled based on the DP theory to 

maximize the mission reliability and the overall trust over time. In practice, given knowledge of a team composition 
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(e.g., a mobile group coalition comprising several nodes following the DP behavior model) for accomplishing a 

mission, one can parameterize ε and γ for modeling selfishness vs. altruism behaviors. Then, given knowledge of node 

selfishness vs. altruism behaviors for a mission with a certain degree of difficulty (M1, M2 or M3) as input, one can use 

the model-based analysis methodology presented in the paper to assess trust vs. time, and   ( ) vs. time, and, 

consequently, the mission success probability. 

To show worthiness and usefulness of our analysis methodology, we conduct sensitivity analyses of the analysis 

results (unselfishness trust, overall trust, and mission success reliability) with respect to ε and γ in Equations 19 and 20 

in the DP behavior model. These two parameters control the change rate of selfishness and altruism.   

 
 

Fig. 11. Sensitivity of selfish rate as (ε, γ) varies. Fig. 12. Sensitivity of redemption rate as (ε, γ) varies. 

Fig. 11 and Fig. 12 show the sensitivity of the altruistic to selfish switch rate (called selfish rate in our SPN model), 

and the selfish to altruistic switch rate (called redemption rate in our SPN model), respectively, with respect to (ε, γ), 

assuming that the same (ε, γ) is used for both rates. We observe that as either ε or γ increases, the selfish rate (or 

redemption rate) also increases. The impact of γ is more significant than the impact of ε, implying that γ is a more 

important parameter of the DP behavior model than ε in modeling a node’s altruism vs. selfishness behavior.  

 

Fig. 13. Impact of (ε, γ) on unselfishness trust, overall trust and mission reliability. 

Fig. 13 vividly shows the resulting unselfishness trust, overall trust and mission reliability with ε and γ given as 

input. We again observe that γ has a higher impact than ε on the unselfishness trust and overall trust. As expected, the 
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mission reliability increases as the overall trust increases. However, we observe that the mission reliability decreases as 

node altruism (unselfishness) increases. This verifies our hypothesis that cooperative behavior does not always 

increase system performance as high service availability can unnecessarily shorten node lifetime. 

 

 

Fig. 14. A comparative performance analysis of DP vs. ALT over all mission scenarios in the presence of 20% 

compromised nodes. 

Next we analyze the effect of compromised nodes in Figs 14 and 15. 

Fig. 14 shows the performance comparison of DP and ALT schemes in the mission reliability, the overall trust, and 

the unselfishness trust in the presence of 20% compromised nodes in the network for the beginning 2 hrs of the mission 

period.  In Fig. 14, we still observe a similar trend with Fig. 10 in that DP outperforms ALT. However, this result shows 

less sensitivity of using a different mission given because showing unselfish behavior is mainly controlled by the 

reduced number of unselfish neighboring nodes, leading to little adjustment of being selfish due to less unselfish nodes 

around each node. 

Fig. 15 demonstrates the performance comparison of DP and ALT schemes in the three metrics under varying the 

percentage of compromised nodes in the network for the beginning 2 hrs of the mission period. Under each network 

hostility environment, DP performs better than ALT similar to the results shown in Figs. 10 and 14. We observe that 

DP shows its maximum unselfishness trust when the percentage of compromised nodes is 10%. However, afterwards, 

the unselfishness trust decreases trends after the maximum at 10 % of compromised nodes. This is because in DP a 

node can behave selfishly in the absence of compromised nodes (i.e., a sufficient number of unselfish neighbors) while 

it can increase its unselfishness as more compromised nodes exist in the network. However, as more compromised 

nodes are in the system (i.e., above 10% of compromised nodes), the selfish behaviors of the compromised nodes are 

pronounced, lowering the average unselfishness trust in the system.  
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Fig. 15. A comparative performance analysis of DP vs. ALT under varying % of compromised nodes. 

5. Conclusions and Future Work 

In this paper, we developed and analyzed a trust management protocol for a mission-driven GCS in MANETs 

based on the demand and pricing (DP) theory to model node selfishness or altruism behaviors to balance individual 

welfare (i.e., saving energy) versus global welfare (i.e., serving tasks and completing the mission). We developed a 

probability model based on SPN to describe the behaviors of a large scale GCS operating under the proposed trust 

management protocol in MANETs. The results showed that the DP behavior model exploiting the tradeoff between 

selfishness vs. altruism outperforms one that only encourages altruistic behaviors, or one that only encourages 

selfishness, especially when the mission demands a light to medium workload. We attribute the superiority of the DP 

behavior model to its ability to explore the tradeoff between energy saved due to selfishness versus quick energy 

drainage due to altruism for mission execution. 

Our proposed behavior model based on DP theory can be applicable particularly in resource-restricted 

environments with a large number of nodes. For example, Kumer et al. [47] addresses security requirements for health 

monitoring systems using a large number of medical sensors on Telos-mote. Polastre et al. [48] initially presented 

Telos, a low power wireless sensor module (“mote”) where one of goals is minimum power consumption. In addition, 

Kioumars and Tang [49] proposed a wireless sensor developed based on the ATmega micro-controller and XBee 

protocol for health monitoring system that enable low power consumption. Our proposed DP model can contribute 

further to achieving both low power consumption and reliable service provision based on the balance between altruism 

and selfishness adapting to network dynamics. 

As future work, we plan to develop a more sophisticated mission model considering the effect of mission attributes 

such as the risk, deadline, and specific workload requirements. In addition, we plan to investigate a hybrid scheme that 

allows the system with fuzzy failure criteria [45] to adaptively switch between DP and ALT trust management to 

maximize the system reliability for mission execution and to achieve survivability. In this paper we have adopted a 

random mobility model for node movements. This yields the “closeness” trust component ineffective in our trust 
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management protocol. In the future, we plan to enhance our analysis with mobility models or traces that can better 

describe node movements of mission group.  
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