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Abstract—While smart farm technologies significantly aid in
reducing costs and boosting productivity for farmers, they often
lack the necessary robustness against cyberattacks and adaptabil-
ity to dynamic environmental changes. We propose a solar sensor-
based smart farm system to provide high monitoring quality
while preserving sensor energy in the presence of adversarial
attacks. In a smart farm system, solar sensors are attached
to animals (e.g., cows) to monitor their health under varying
weather conditions to provide energy-adaptive and high-quality
monitoring services. Further, a smart farm system should be
robust against adversarial attacks aiming to disrupt monitoring
quality. We use deep reinforcement learning (DRL) to identify the
optimal policy for maximizing monitoring quality and prolonging
the system’s lifetime while maintaining sufficient energy. We
introduce transfer learning (TL) into the DRL process to achieve
fast learning without experiencing a cold start problem in DRL.
In addition, we develop an uncertainty-aware anomaly data
detection method to filter out deceptive data caused by adver-
sarial attacks. Via extensive comparative performance analysis
conducted based on real datasets, we demonstrate the superior
performance of our proposed TL-based DRL strategies over
existing competitive counterparts in system lifetime, monitoring
quality, learning convergence time, and energy consumption.

Index Terms—Smart farm, energy-aware, transfer learning,
deep reinforcement learning, solar sensors, cyberattacks.

I. INTRODUCTION

A. Motivation & Goal

Worldwide, the Food and Agriculture Organization (FAO)
forecasts that the global consumption of meat proteins will
increase by 14% over the next decade based on statistics from
2018 to 2020, mainly led by the growth of population and
income [1]. To accommodate this growth, animal agriculture
has evolved a characteristic that increases the efficiency and
quality of monitoring animals while expanding the scale
and quantity. Animals are managed as large groups to im-
prove productivity instead of individuals, requiring intelligent
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monitoring methods to reduce labor costs. The appearance
of the sensor-based animal monitoring system satisfies this
demand efficiently and cost-effectively, a major component
of smart farm technologies. Smart farm technologies leverage
the cooperation of sensors, Internet-of-Things (IoT), edge, and
cloud computing techniques. Although smart farm research
has been conducted to monitor animal conditions and control
the environment, there is still a lack of research considering
security-aware and energy-adaptive smart farm technologies in
energy-constrained environments.

In a smart farm, each animal has a small sensor attached to
its ear collecting data, such as heartbeat and body temperature,
for monitoring the animal’s health and behavior remotely.
To avoid laborious and extravagant efforts of replacing the
battery of sensors, we consider solar-powered sensors instead
of batteries. However, constrained by the solar panel’s size,
each sensor’s energy fluctuates and is relatively limited, which
requires an intelligent policy to enhance the lifetime of each
sensor to sustain a long but uninterrupted operational period.

In addition, we consider the presence of adversarial attack-
ers that aim to disrupt monitoring quality and thus disable the
normal operation of a smart farm system. With the increasing
vulnerability of smart farm technologies to a wide array of
cyberattacks, there is a pressing need for a smart farm system
designed to be resilient against such attacks. This system
is crucial for maintaining the sustainability and reliability
of monitoring animal conditions. Consequently, our research
addresses not only the broad spectrum of attacks peculiar
to smart farm settings but also devises appropriate defenses
to guarantee the uninterrupted operation of the monitoring
system. See Section IV-C for the types of attacks considered
on a smart farm in our work. This research aims to develop
an attack-resilient and energy-adaptive monitoring system for
smart farms. We found that a rule-based approach cannot
solve the problem due to the complexity and dynamics of
the system. A rule-based system requires extensive manual
tuning and updating as the environment changes, rendering
it less adaptable to new, dynamic environments. Moreover, it
cannot handle inherent uncertainty with deterministic rules.
In environments constrained by energy resources, smart farm
systems face the significant challenge of balancing monitoring
quality with energy consumption to achieve optimal operations
and ensure sustainability. Traditional heuristic methods aim
to simplify complex decision-making by establishing rules,
especially when finding an optimal solution is unfeasible.
However, the intricate and dynamic nature of smart farm
environments, influenced by factors such as animal movements



and varying weather conditions, renders simple rule-based
solutions ineffective. These complexities introduce a level of
unpredictability that heuristic approaches struggle to manage,
highlighting the necessity for our DRL-based methodology
to provide precise and adaptable solutions. Additionally, in
addressing the dynamic challenges of smart farm monitoring
with solar sensors under adversarial threats, Deep Reinforce-
ment Learning (DRL) proves superior to Model Predictive
Control (MPC). DRL’s adaptability enables continuous strat-
egy updates in response to unpredictable changes, which is a
vital asset in the complex, nonlinear realm of smart agriculture.
Moreover, DRL’s scalability and robustness against adversarial
threats provide effective, resilient monitoring solutions [2, 3].
In contrast, MPC’s static, model-dependent approach and
computational demands make it less viable for the flexible,
evolving needs of modern smart farms [4, 5]. Thus, DRL
not only fulfills the system’s adaptive control and scalability
but also offers strategic defenses against security threats,
affirming its selection as the best approach. Therefore, we pro-
pose a deep reinforcement learning (DRL)-based monitoring
approach for dynamic and autonomous decision-making for
achieving a high monitoring quality of animal conditions while
maintaining the energy level for sensors under adversarial
attacks causing uncertainties in transmitted data.

B. Key Contributions

Our work has the following key contributions:
• We propose an attack-resilient, energy-adaptive monitoring

system with solar sensors in a wireless sensor network for
smart farms. This research represents the inaugural effort to
develop an energy-adaptive monitoring system incorporating
solar sensors and animal behavior analytics, designed to
optimally leverage limited and variable energy resources for
superior monitoring quality.

• We leverage transfer learning-based deep reinforcement
learning (TL-DRL) to accelerate training time under fluctu-
ating energy levels and adversarial attacks. In addition, we
validate the robustness and effectiveness of our proposed
DRL agents with extensive experiments on real datasets [6],
demonstrating the outperformance of our proposed TL-
DRL-based approach over existing, competitive counterparts
in system lifetime, monitoring quality, learning convergence
time, and energy consumption.

• We propose an uncertainty-aware monitoring opinion update
method to quantify the uncertainty in the proposed monitor-
ing system. Moreover, we develop a Subjective Logic-based
deceptive data detection algorithm that can detect anomaly
data from compromised sensor nodes based on a new design
notion of the degree of conflict estimated from the distance
between opinions obtained from different gateways.

• We consider a full set of adversarial attacks that can hap-
pen to a smart farm, including a neural trojan attack, a
fast gradient sign method (FGSM) attack, and a projected
gradient descent adversarial attack (PGDA), as described
in Section IV-C. To our knowledge, no prior work has
considered these adversarial attacks to ensure monitoring
quality for smart farms.

C. Structure of the Paper

The paper is structured as follows: Section II reviews the
literature on smart sensor systems, energy-efficient monitor-
ing, and transfer learning. Section III outlines the problem
statement. Section IV describes the system model. Section V
details our DRL-based TL approach for smart farm monitor-
ing. Section VI discusses parameterization, experimental set-
tings, metrics, and comparison schemes. Section VII presents
comparative and sensitivity analyses of the results. Finally,
conclusions and key findings are summarized in Section VIII.

II. BACKGROUND & RELATED WORK

A. Smart Sensor Systems

Smart sensor systems have been mainly studied for energy-
adaptive designs. Kumar et al. [7] proposed an IoT-based
monitoring system, called gCrop, to measure conditions
of leaf growth and then predict the age of leaves using
ML and computer vision techniques. The system deployed
a low-powered training model in energy-aware or resource-
constrained environments. Liu et al. [8] proposed a meta-
heuristics solution to improve the performance of dynamic,
wireless sensor networks. They deployed an agent-assisted
Quality-of-Service (QoS)-based routing algorithm to identify
an optimal route that maximizes QoS and minimizes complex-
ity. Unlike [7, 8], our work aims to develop energy-adaptive,
secure, and robust transfer learning (TL) mechanisms (to be
surveyed later in this section) for building a resilient smart
farm against adversarial attacks. In addition, we are the first to
consider how to expedite the learning convergence in resource-
constrained and adversarial environments.

Cybersecurity for wireless sensor networks (WSNs) has
been studied for decades. However, cybersecurity for smart
sensor systems (e.g., smart farms) has emerged recently.
Gupta et al. [9] identified cybersecurity concerns related to
data and network attacks in smart farm fields. Saheed and
Arowolo [10] developed a cyber attack detector to prevent the
Internet-of-Medical-Things (IoMT)-smart environments from
various cyberattacks. They deployed a bio-inspired optimiza-
tion algorithm to effectively and efficiently train the proposed
deep recurrent neural network (RNN) for attack detection by
refining features in sensor data. Chae and Cho [11] introduced
a P2P-based smart farm system to prevent attackers from
managing the communication and data stored in the smart farm
system. They developed an efficient authentication method to
reduce the operation time relatively compared to the traditional
encryption/decryption. Relative to the cited works above,
which focused on authentication/detection, our work addresses
a full set of security threats in smart farm systems. Further, we
apply TL first to achieve energy-efficient and attack-resilient
monitoring quality for smart farm systems.

Aliyu and Liu [12] and Vangala et al. [13] proposed
a blockchain-based smart farm system to improve security
and privacy. The system can detect and respond to security
threats by integrating blockchain transactions on smart farming
requests. Although blockchain technology has been used to
enhance security in smart systems, its high computational cost
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and its adverse impact on system performance cannot provide
practical solutions in resource-constrained WSNs.

Alemayehu and Kim [14] proposed a heuristic traveling
salesman problem algorithm to improve data acquisition la-
tency in WSNs. Their approach effectively eliminates du-
plicate sensor nodes in the data transmission path to not
only conserve energy but also maximize data freshness within
a fairly large transmission range. Since they proposed the
adaptive-energy-distance (AED)-based monitoring system, we
consider [14] as the state-of-the-art counterpart solution for
performance comparison in Section VII. Unlike [14] focusing
on performance issues in resource-constrained wireless sensor
networks, our work considers both performance (including
both energy and latency) and security issues of monitoring ser-
vices in response to network dynamics in resource-constrained
solar sensor-based smart farm systems, which has not been
considered in the existing smart farm research.

Akhter et al. [15] developed a real-time smart system
for water quality monitoring using multifunctional sensors
and LoRa technology to measure various water attributes,
including temperature and nutrient levels, applying a KNN
model for nutrient prediction. Nagarajan et al. [16] introduced
an IoT-based food supply chain for smart cities, enhancing
food quality, vehicle routing, and contamination source tracing
with a routing optimization algorithm. Aggarwal and Sharma
[17] proposed a deep learning-enhanced smart home voice
recognition system, utilizing a DNN to reduce noise and
echo for improved performance in challenging conditions.
Fan et al. [18] developed a BA-TENG-based smart glove,
employing sensors and machine learning to recognize user
finger movements. Li et al. [19] introduced a wearable sensor
system for real-time health monitoring, diagnosing diseases
from collected data like human breath. Catalano et al. [20] and
Ghazal et al. [21] focused on smart agriculture and IoT device
security, respectively, the former on machine learning-based
anomaly detection to enhance data accuracy and the latter on
a DDoS detection mechanism using an ensemble technique
for improved accuracy against diverse malware activities.
Numerous strategies have been developed to enhance smart
sensor systems’ efficiency, yet many overlook the challenges
presented by resource-limited settings and the broad spectrum
of security threats inherent to sensor technologies.

B. Energy-efficient Monitoring Systems

Saba et al. [22] introduced an energy-efficient IoMT frame-
work (SEF-IoMT) to cut communication costs and energy use
in patient health monitoring, employing Kruskal’s algorithm
for optimal routing. Lilhore et al. [23] enhanced a genetic
algorithm for energy-efficient routing, selecting only optimum
energy nodes to lessen data transmission and improve energy
efficiency. Zhuo et al. [24] tackled underwater acoustic sensor
networks (UWSNs) energy limitations with an optimization
model for efficient data collection, minimizing energy use
by identifying the shortest paths for autonomous underwater
vehicles (AUVs). Similarly, Bharany et al. [25] optimized
communication via an energy-efficient clustering protocol us-
ing glowworm swarm optimization for optimal cluster head
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Fig. 1. The Process of Traditional Learning vs. Transfer Learning.

selection. Haseeb et al. [26] developed an IoT-based wireless
sensor network (WSN) for smart agriculture, introducing a
decision function for efficient cluster head selection to mini-
mize energy consumption. Kocherla et al. [27] proposed an
energy-efficient routing algorithm for surveillance systems,
focusing on minimizing energy consumption amidst dynamic
environmental challenges. Our work diverges by developing
energy-adaptive strategies for environments with fluctuating
energy resources, aiming for high-quality monitoring in com-
plex and dynamic settings, incorporating solar sensors and
animal behavior analysis—marking a pioneering approach to
addressing smart farm uncertainties with an energy-adaptive
system.

C. Transfer Learning

Transfer learning (TL) is a learning mechanism that uses
learned knowledge from one problem solved previously to
solve a different but related problem [28], as described in
Fig. 1. Given a source domain DS , and a learning task TS ,
a target domain DT , and a learning task TT , TL aims to
improve the learning of the target predictive function, 𝑓𝑇 (·),
in DT using the knowledge in DS and TS , where DS ≠ DT
and TS ≠ TT . TL research has mainly addressed what-to-
transfer and how-to-transfer in the unexplored area of when-
to-transfer, assuming that there exists a relationship between
the source domain and the target domain. To answer these
questions, TL has been mainly studied by the settings of
the domains and tasks: inductive TL, transductive TL, and
unsupervised TL. Each TL approach is detailed below.

1) Inductive TL: TL under inductive settings can be
applied when TS ≠ TT , for the case in which the source
task and the target task are different. Inductive TL is studied
based on four types. The first type is instance-based TL
(ITL), which reuses some parts of the data in the source
domain for learning in the target domain. The main two
techniques used in ITL are instance reweighting and impor-
tance sampling [28]. Dai et al. [29] proposed a boosting-
based learning approach called TrAdaBoost to reduce the
differences in the distributions between the outdated data
and new data by setting weights to these training instances
to reduce their impact on the model. The second type is
feature-based TL (FTL), which transfers the learned feature
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representation to a target domain [28]. Argyriou et al. [30]
proposed a learning algorithm for feature representations with
regularization and optimization techniques. They aimed to
identify common features in both source and target tasks and
determine the optimal representation for features. The third
type is parameter-based TL (PTL) which considers the learn-
ing parameters of a model. For example, van Kasteren et al.
[31] developed a parameter-based TL technique applied to
real-world applications for activity recognition. Their approach
relaxed the assumption that data are in identical-independent
distribution (IID), and thus unlabelled data can be utilized to
learn the parameters of a model. They used multiple source
models to learn hyperparameters of the prior distribution. After
then, they determined the parameters for the target model and
all available data. The fourth type is relation-based TL (RTL)
which learns the relations of knowledge across domains. To
overleap the initial steps of learning new tasks in machine
learning (ML), Mihalkova et al. [32] developed a transfer
system based on Markov Logic Network (MLN) to transfer
relations as knowledge across domains. After constructing the
MLN from source domains, the system can automatically map
to the target domain.

2) Transductive TL: This can be applied when the source
task and the target task are the same while the source domain
and the target domain are different [33], i.e., TS = TT and
DS ≠ DT . Under this setting, two main TL approaches,
instance-based and feature-based, are considered. Leveraging
instance-based TL, Dai et al. [34] developed an algorithm ap-
plied on Expectation Maximization (EM)-based Naı̈ve Bayes
classifiers for text classifications. The main idea is to minimize
the differences between distributions of train and test data
using Kullback-Leibler divergence as a measurement. Zhang
et al. [35] employed feature-based TL to develop a deep TL
(DTL) framework using automation techniques in tuning pa-
rameters called DeepRisk. They constructed and transformed
feature vectors and learned the optimal weights of nodes in
networks through a set of neural networks. To our knowledge,
no existing parameter-based or relation-based TL approach has
been conducted under transductive settings.

3) Unsupervised TL: This approach can be used for cases
in which the source task is different from the target task
while there is no labeled data that can be observed in the
training stages. Song and Zhang [36] proposed a technical
called transferred dimensionality reduction. It can be used for
the case when existing labeled data are not in the same domain
so they can be considered as unlabeled data. They proposed
a transferred discriminative analysis method for determining
and transferring valuable information from labeled classes to
unlabeled classes in the target domain while improving the
accuracy of clustering with unlabeled classes.

Coraci et al. [37] proposed an Online Transfer Training
(OTL) strategy, enhancing learning efficiency and scalability
for smart building systems. They trained DRL agents on
various buildings as the pre-trained model, using OTL to fine-
tune control policies to minimize electricity costs in a target
building without prior knowledge. Gamrian and Goldberg
[38] introduced Analogy-based Zero-Shot Transfer, a transfer
learning method for overcoming generality issues in variants
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Fig. 2. The considered Multi-agent DRL environment.

of the Breakout game. This approach enables the agent to
generate analogies between the target and source domains,
mapping similar states to facilitate policy learning. Anwar
and Raychowdhury [39] applied TL strategies to value-based
DRL for autonomous navigation, significantly reducing energy
consumption and training latency despite drone dynamics.
Ke et al. [40] integrated TL into a Double Deep Q Net-
work (DDQN)-based approach for variable speed limit (VSL)
control, successfully transferring knowledge across multiple
target domains in freeway merging scenarios. Additionally,
Ciabatti et al. [41] evaluated the effectiveness of TL in
a Deep Deterministic Policy Gradient (DDPG)-based DRL
setting for landing tasks. Their findings indicated that landers
(e.g., robotics) could perform tasks with high reward values
on different celestial bodies, such as Mars and the Moon.
Despite various advancements in combining TL and DRL,
there remains a gap in addressing security concerns within
systems and applying such integrations in smart farm systems.

TL has been used commonly to achieve faster learning
convergence by transferring knowledge from one context to
another context. However, there has been no prior work using
TL to ensure high monitoring quality for an Internet-of-Things
(IoT)-based smart environment under fluctuating energy and
adversarial attacks. We fill this gap by proposing an efficient
and secure monitoring system for a resilient smart farm by
leveraging the merit of TL.

III. PROBLEM STATEMENT

The proposed smart farm system aims to maximize the mon-
itoring quality and the remaining energy level of solar sensors
in the presence of adversarial attacks and energy fluctuations.
To attain this goal, we leverage multi-agent DRL, as described
in Fig. 2, to identify the optimal policy 𝜋 : S × A → [0, 1],
𝜋(𝑠, 𝑎) = 𝑃𝑟 (𝐴𝑡 = 𝑎 | 𝑆𝑡 = 𝑠) by:

arg max
a∗

𝑇∑︁
𝑡=1

𝑤1MQ(𝑎𝑡 ) + 𝑤2RE(𝑎𝑡 ), (1)

where a∗ denotes the optimal set of actions selected by an
agent to maximize the combined metrics of MQ(𝑎𝑡 )+RE(𝑎𝑡 )
at any given time 𝑡, here, MQ(𝑎𝑡 ) represents the monitoring
quality at time 𝑡, and RE(𝑎𝑡 ) signifies the average remaining
energy level of sensor nodes at time 𝑡. The coefficients 𝑤1 and
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𝑤2 are weights allocated to each respective term. In our model,
MQ(𝑎𝑡 ) and RE(𝑎𝑡 ) are assigned equal importance, high-
lighting our prioritization of maintaining both high monitoring
quality and energy efficiency concurrently. Furthermore, we
normalize these terms to fall within the [0, 1] range, ensuring
the reward function remains non-negative. This normalization
is crucial as it does not impede the DRL agent’s learning
progression. The essence of DRL lies in acquiring the optimal
policy by maximizing expected returns (rewards) consequent
to actions taken [42]. Therefore, the differentiation in reward
values across various actions will guide the DRL agent toward
a policy that optimizes the reward function. MQ(𝑎𝑡 ) refers to
the monitoring quality at time 𝑡, estimated by:

MQ =

∑𝑇
𝑡=1

∑𝑋
𝑖=1

∑𝑑
𝑗=1 mq(𝑖, 𝑗)

|𝑋 | × 𝑑 , (2)

where 𝑇 is the system’s total operation period, 𝑋 is the number
of sensed data, 𝑑 is the number of attributes for each animal,
described in Table I, 𝐺𝑇𝑖, 𝑗 is the 𝑖th ground truth data for 𝑗 th
attribute, and 𝑥𝑖, 𝑗 is our observed data. The mq(𝑖, 𝑗) indicates
the degree of monitoring quality in a 𝑗 th attribute compared to
the 𝑖th ground truth data and returns 1 when 𝑥𝑖, 𝑗 == 𝐺𝑇𝑖, 𝑗 ; 0
otherwise. In addition, RE(𝑎𝑡 ) refers to sensor nodes’ average
remaining energy level at time 𝑡, given by:

RE = 1 −
(
ESG + ESS + Eactive + Esleep

)
(3)

= 1 − ( (𝑒SG + 𝑒SS)
𝐸S

+ 𝑇𝑢

𝐸S
(𝑑active + 𝑑sleep)),

where 𝑒SG and 𝑒SS are the energy consumed per data trans-
mission from a sensor to a gateway and a sensor to a sensor,
respectively. The 𝑑active and 𝑑sleep are energy levels consumed
per second in active and sleep modes. The 𝐸S indicates the
energy level when a sensor is fully charged.

A smart farm typically leverages Long Range (LoRa) tech-
nologies [43] to transfer sensed data of animal conditions
to LoRa gateways and then to the cloud server through the
Internet. This work develops an energy-aware DRL algorithm
to identify the optimal policy of a given smart farm system
where the optimal policy indicates a set of low-energy sensor
nodes to transmit data to LoRa gateways by asking nearby
high-energy sensor nodes to transmit their data. This involves
effective and efficient designs of energy policy and TL-based
DRL, uncertain data aggregation and update under adversarial
attacks, and detection of deceptive data, detailed in Section V.

To enhance readability, Table I is provided to summarize all
the notations and corresponding meanings used in this work.

IV. SYSTEM MODEL

A. Network Model

The network comprises solar-powered sensors, LoRa gate-
ways, and a cloud server, as described in Fig. 3. Sensors
transmit data on animals’ conditions to gateways or between
them on request. A gateway aggregates sensed data as all
animals’ average conditions and periodically transfers them
to the cloud server. Hence, a gateway connects sensors and
the cloud server, enabling connectivity for IoT devices to be
less expensive and have a longer range.

TABLE I
NOTATIONS & THEIR DEFINITIONS

Notation Definition
HES High energy sensor node
LES Low energy sensor node

MQ(𝑎𝑡 ) Monitoring quality by taking action 𝑎 at time 𝑡

RE(𝑎𝑡 ) Average remaining energy level of sensor nodes by
taking action 𝑎 at time 𝑡

𝑒SG/𝑒SS Energy consumed per data transmission from a sensor
to a gateway/a sensor to a sensor

𝑑active/𝑑sleep Energy levels consumed per second in active/sleep
modes

𝐸S Energy level when a sensor is fully charged
E𝑆𝐺 Energy consumption for transmitting data from a sen-

sor node to a gateway
ESS Energy consumption for transmitting data through

BLE (from a sensor node to a nearby sensor node)
Eactive Energy drained in active mode in a time interval
Esleep Energy drained in sleep mode in a time interval
S𝑡 State space
A𝑡 Action space
𝑟𝑡 Immediate reward
R𝑡 Accumulated reward

𝑉𝑖 (𝑠) Total number of times the student agent 𝑖 has visited
state 𝑠

𝜋 Policy learned by a DRL agent
𝜔𝐴

𝑋
Aagent 𝐴’s opinion about a given proposition 𝑋

a𝑋 Base rate (i.e., prior belief) distribution of variable 𝑋

b𝑋 Belief masses distribution
𝑢𝑋 Uncertainty mass
DC degree of conflict
PD Projected distance
𝐶𝑇 Convergence time

DQN Deep Q-Network
PPO Proximal Policy Optimization

TL-DQN Transfer learning-based DQN
TL-PPO Transfer learning-based PPO
TFT-PPO Transfer learning with fine-tuning-based PPO

AED Adaptive-Energy-Distance
FE Fixed-energy

A TL model will be deployed on the gateways to maintain
the monitoring system’s normal operation. We assume that the
communication between sensors and LoRa gateways may be
vulnerable to cyberattacks [44] as the system does not use data
encryption because encryption is not a viable solution under
severe resource constraints in IoT environments. Therefore,
multiple adversarial attacks (see Section IV-C) may exist
in data transmission to influence the quality of sensed data
transferred from gateways to the cloud server. Our work
investigates the robustness of our proposed approach to ensure
monitoring quality under such threats.

B. Node Model

In a smart farm environment, sensors have the ability
to transmit data to other sensors or LoRa gateways based
on requests received. The sensors’ energy levels constantly
change from sunrise to sunset and are influenced by envi-
ronmental conditions, such as the positions of animals and
nodes’ temperature, because of the characteristics of solar-
powered sensor nodes. Thus, the system is required to have
the ability to keep its monitoring quality while maintaining
sufficient sensors’ energy levels. We define sensor node 𝑖 at
time 𝑡, denoted by sn𝑖𝑡 , with four attributes:

sn𝑖𝑡 = [temp𝑖𝑡 , hb𝑖𝑡 ,ma𝑖𝑡 , bl𝑖𝑡 ], (4)
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where temp𝑖𝑡 is the temperature of sensor node 𝑖 at time 𝑡,
hb𝑖𝑡 is the heartbeat of node 𝑖 at time 𝑡, ma𝑖𝑡 refers to the
moving activity of node 𝑖 at time 𝑡, and bl𝑖𝑡 means sensor
node 𝑖’s battery life. The ma𝑖𝑡 and bl𝑖𝑡 are scaled in [0, 1],
respectively, as percentage. Moreover, some sensor nodes are
regarded as monitor nodes with a network-based intrusion
detection system (NIDS) deployed. We describe how the NIDS
is considered in Section IV-D. We describe the energy model
used for LoRa, the procedures of Bluetooth low-energy data
transmission, and the simulation settings in Section VI-A.

C. Attack Model

We consider the following adversarial attack behaviors that
may disturb the normal monitoring services of the smart farm
system concerned in this work.

1) False data injection attacks: This attack is performed
by a compromised sensor node sending falsified or modified
data to gateways [45]. Furthermore, when man-in-the-middle
attacks occur, attackers can intercept our data and transmit
their information to high-energy sensor (HES) nodes. We
model this attack based on the probabilities of data to be
affected by both inside and outside attackers.

2) Non-compliance to the protocol: A compromised
sensor node may not comply with a given data delivery
protocol [46]. We apply this attack that can request the
sensor node to send its sensed data to a LoRa gateway. The
compromised sensor node may be selfish and not transmit its
sensed data to save energy. Further, it may discard the request
from another low-energy sensor (LES) node, aiming to make
the compromised sensor node transmit its sensed data.

3) Denial-of-Service (DoS): A compromised HES node
can perform a DoS attack [47] by requesting its neighbor
nodes to transmit its sensed but falsified data to a gateway
even if it has a sufficient level of energy. This can expedite
the energy depletion of other sensor nodes in the system. The

DoS attacks can only be performed on healthy HES sensor
nodes, as other compromised nodes will discard the request
easily. We also consider distributed DoS (DDoS) attacks by
allowing multiple compromised sensor nodes to perform DoS
attacks on legitimate, healthy nodes. Since each node is limited
in processing capacity, it may introduce errors in transmitting
legitimate data to the LoRa gateways.

4) Sensor data obstruction: This is one impact of the
WiFi Deauthentication attacks as a major availability attack
in the smart farm environment [47]. Such an attack prevents
sensor nodes from connecting to the network, making it lose
real-time communication with other sensor nodes and LoRa
gateways. The compromised HES nodes are disconnected from
the network so that their sensed data cannot reach the gateways
and be utilized in the decision-making and monitoring process.

5) Neural Trojan Attack: This attack inverses the neural
networks (NNs) to produce a general Trojan trigger, a small in-
put data [48]. After that, the attacker uses reverse engineering
to inject malicious behaviors into the NN model. The model
shows the malicious behaviors only when the Trojan trigger
is activated on the input data. This attack is performed by a
compromised gateway.

6) Fast Gradient Sign Method (FGSM): This attack is
initially designed to disrupt an image classification model [49].
An inside attacker computes a loss function from input data
(e.g., image) and generates an adversarial image to maximize
the loss. This attack aims to mislead an agent to consider
the worst action the most preferred. Thus, the actions can be
considered class labels using an RL-based model while we
can still determine the gradients by our initial loss function
for the TL model. A compromised gateway can perform this
attack to mislead the agents to act unwillingly.

7) Projected Gradient Descent Adversarial Attack
(PGDA): This gradient-based adversarial attack is based on
the Projected Gradient Descent (PGD) optimization technique
to cause misclassification in classification tasks [50]. The
attacker performs PGDA attacks by iteratively computing the
sign of gradient with a small step size. In DRL settings, PGDA
can mislead agents into taking poor or suboptimal actions.
Compromised RoLa gateways may perform the PGDAs to
force the agents to move to a certain action, impacting the
system’s monitoring performance.

In our model, we posit that a predetermined proportion
of sensors, specifically 30%, are designated as compromised
at the onset of the network’s initial bootstrapping phase, a
parameter we denote as 𝑃𝐴𝐸 . This parameter, 𝑃𝐴𝐸 , represents
the critical threshold—the maximum quota of compromised
sensors that the system is engineered to withstand without
hindering its operational integrity. A Byzantine failure scenario
ensues if the count of compromised nodes surpasses this
threshold. This scenario pertains to a critical challenge within
distributed systems, wherein nodes must achieve consensus or
collective decision-making [51]. Byzantine failures signify a
system’s inability to maintain consensus due to malfunctioning
or malicious nodes exceeding the tolerable limit, 𝑃𝐴𝐸 . We
model a compromised sensor performing an attack with the
probability of 𝑃𝐴%. We summarize all the considered attack
behaviors in Table II.

6



TABLE II
DESCRIPTIONS OF ATTACK BEHAVIORS (HES: HIGH ENERGY SENSOR; LES: LOW ENERGY SENSOR; LG: LORA GATEWAY)

Node type Attack type Meaning
Healthy HES Outside false data

injection attacks
A healthy HES’s data is intercepted by the outside attackers (e.g., man-in-the-middle-attacks)

and sent to gateways; send correct data otherwise.

Compromised HES Non-compliance A compromised HES does not send its own and other LESs’ data to gateways
Inside false data injection

attacks
A compromised HES’s data is intercepted by the inside attackers and sent the data to

gateways; send correct data otherwise.
DoS attacks A compromised HES sends fake requests to nearby LESs

Sensor data obstruction A compromised HES is prevented from connecting to the network, resulting in its data not
reaching the gateways.

Healthy LES Outside false data
injection attacks

A healthy LES’s data is intercepted by outside attackers (e.g., man-in-the-middle-attacks) and
sent to healthy HES, which can deliver the data to gateways; otherwise, send correct data.

Compromised LES Non-compliance A compromised LES does not send its sensed data to HESs
Inside false data injection

attacks
A compromised LES’s data is intercepted by the inside attackers and sent to a healthy HES,

which can deliver the data to the gateway; otherwise, send correct data.

Compromised LG

Neural Trojan attacks A compromised LG can inject malicious behaviors into the NN model deployed on DRL
agents; otherwise, it does not affect the NN model.

FGSM attacks A compromised LG can mislead DRL agents to take unwilling actions; DRL agents perform
correctly.

PGD attacks A compromised LG forces DRL agents to take undesired actions; DRL agents take correct
action.

D. Defense Model

This section describes intrusion detection and intrusion
response mechanisms considered in this work.

1) Intrusion Detection: Our proposed system will detect
deceptive data received on each LoRa gateway. We assume that
each gateway has an intrusion detection engine to monitor data
coming from sensor nodes and detect the anomaly traffic and,
accordingly, compromised sensor nodes. Hence, the gateways
will reject any deceptive data if a sensor node is detected as
sending 𝛿 (e.g., 5) times of rejected data, considering the node
being compromised. We provide the details of the detection
algorithm for deceptive data in Section V-F. To mitigate the
impact of sensor data obstruction attacks, we introduced data
redundancy in monitoring information, enabling a sensor node
to broadcast its data to all gateways within its transmission
range. This redundancy significantly enhances the system’s re-
silience to such attacks. Furthermore, our IDS has been refined
to detect compromised nodes by identifying selfish behaviors
and DoS attacks, quantifying the detection accuracy with false
positive (FP) and false negative (FN) rates set at 0.05 each.
This setting ensures that the IDS system accurately identifies
healthy sensor nodes as healthy with a 95% probability and
correctly flags compromised nodes with the same level of
precision.

2) Intrusion Response: Upon detecting a compromised
sensor node, the system will take action to recover or remove
the compromised sensor node. We consider the following
actions to make the system secure and free from the com-
promised nodes [52]: The recovery action is selected based
on the remaining energy of the compromised sensor node. If
the compromised node has the remaining energy above 40%,
it should be repaired; it will be replaced otherwise. To be
specific, we will have the following defenses:
• Repair: A compromised node will be assessed if it can be

repaired. Since repairing too many sensor nodes simultane-
ously may break down the monitoring system, we consider a
probability threshold (i.e., Z1 ∈ [0, 1]) to determine whether
to repair the compromised node. If the system decides to
repair the compromised node, it will need to allow the node’s

downtime, 𝑇repair, impacting the monitoring quality of the
animal with the compromised sensor node.

• Replace: If the compromised node is determined as ‘not
repaired’ due to its low remaining energy, it must be replaced
with a new sensor. Since there will be a delay in replacing
the sensor, it will need to allow the node’s downtime,
𝑇replace (e.g., 1-6 hours), which can also affect the monitoring
quality of the animal with the compromised sensor node.
3) Adversarial training: In addition, we have imple-

mented adversarial training techniques for DRL agents to
counteract adversarial attacks on gateways, such as those
executed via the Fast Gradient Sign Method (FGSM). This
training approach equips DRL agents to learn from both
standard and adversarially perturbed data inputs, enhancing
their robustness and resilience against such attacks [53].

V. DRL-BASED TL FOR MONITORING SMART FARMS

A. Energy Policy

We denote the minimum battery level of a sensor node that
can send its sensed data to gateways by 𝐿𝑏𝑙 . If a node’s battery
level is higher than 𝐿𝑏𝑙 , then it is an HES, transmitting sensed
data regularly per interval (e.g., 30 seconds). Otherwise, it is
an LES and will send its data to a nearby HES. To extend a
sensor’s battery lifetime, which will significantly impact the
lifetime of the proposed monitoring system, we develop an
intelligent energy policy that determines what sensed data a
sensor node should update to gateways and when to update
them. The key idea is to keep a list of nearby sensors ordered
by their remaining energy in ascending order. Based on the
sensors’ battery levels and the system’s current monitoring
quality, the policy determines a set of LES nodes based on
threshold 𝜌. Only the top 𝜌 percentage of the LESs can
transmit its data to the nearby HES nodes. We use a DRL
algorithm to optimize the energy policy further to reduce the
frequency of data transmissions and save energy when the
monitoring system can properly operate without degrading the
system’s monitoring quality. We normalize the level of energy
consumption to [0, 1]. A fully charged sensor node will be set
to 1, which is set as the initial state.
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We have four energy consumption levels for both data
transmission and energy drainage under active mode and sleep
mode over time. A sensor node is normally operated in an
active mode with a battery level greater than 𝐿𝑏𝑙 . When
a sensor node does not have the ability to transmit data,
𝑏𝑙 < 𝐿𝑏𝑙 , it goes to sleep mode. As discussed above, when
a sensor node’s battery level, 𝑏𝑙, is higher than 𝐿𝑏𝑙 , it will
transmit data to gateways per time interval, 𝑇𝑢 (e.g., 30 sec.).
We denote a fully charged sensor’s energy by 𝐸𝑆 and energy
consumed to send a data packet from a sensor to a gateway
and another sensor through BLE by 𝑒𝑆𝐺 and 𝑒𝑆𝑆 , respectively.
We define the amount of energy drained per second under
active mode and sleep mode by 𝑑active and 𝑑sleep, respectively.
For simplicity, we normalize the energy consumption by (1)
E𝑆𝐺: Energy consumption for transmitting data from a sensor
node to a gateway, calculated by 𝑒SG/𝐸𝑆; (2) ESS: Energy
consumption for transmitting data through BLE (from a sensor
node to a nearby sensor node), calculated by 𝑒SS/𝐸𝑆; (3)
Eactive: Energy drained in active mode in a time interval,
calculated by (𝑑active𝑇𝑢)/𝐸𝑆; and (4) Esleep: Energy drained
in sleep mode in a time interval, estimated by (𝑑sleep𝑇𝑢)/𝐸𝑆 .

B. DRL-based Monitoring System

In our smart farm framework, environmental dynamics play
a pivotal role in influencing both monitoring quality and en-
ergy consumption. For example, the efficiency of sensor node
charging decreases in overcast conditions or when animals
seek shade, directly impacting the sensors’ energy reserves
and, subsequently, the monitoring quality. Traditional static or
rule-based energy management strategies are inadequate for
maintaining peak system performance over time due to these
fluctuations. To overcome this, we have adopted a dynamic
energy policy tailored for sensor data transmission, which is
further refined by our DRL agent. This refinement process
ensures optimal monitoring quality and energy efficiency,
allowing for real-time adjustments to environmental variations
and ensuring the system’s responsiveness to such changes.
Additionally, our DRL agents are equipped with adversarial
training that incorporates both conventional and adversarial
updates, including those from FGSM attacks, as elaborated
in Section IV.D (Defense Model). This method significantly
bolsters the system’s defense mechanisms, augmenting its
resilience to cyber threats.
• State space (S𝑡 ): Each LoRa gateway maintains a local

database to record all sensed data received from sensor
nodes. Each DRL agent on the gateway will compute and
update a set of opinions from sensed data. Each DRL agent’s
ability to observe the monitoring environment is limited, and
each DRL agent can only access its dataset. However, since
our uncertainty-aware system uses the degree of conflict (see
Section V-D1) to identify if received data is compromised,
the DRL agent is required to periodically request another
DRL agent which receives sensed data from the same node
to share its opinion with it to determine if it supposes to
accept the new data or not. In a system state, the DRL
agent can also observe each sensor’s remaining energy level
within its transmission range. We define the state space at

time step 𝑡 by S𝑡 = {𝑠𝑡1, 𝑠
𝑡
2, . . . , 𝑠

𝑡
𝑛}, where 𝑛 is the total

number of DRL agents running on LoRa gateways in the
given smart farm network. Each state in state space S𝑡 is
denoted by 𝑠𝑡

𝑖
= {{re𝑡1, o

𝑡
1}, . . . , {re

𝑡
𝑗
, o𝑡

𝑗
}}, where o𝑡

𝑗
is the

opinion computed for animal 𝑗 at time 𝑡, and re𝑡
𝑗

is a list of
remaining energy on each sensor node close to sensor node
𝑗 at time 𝑡.

• Action space (A𝑡 ): Our proposed smart farm monitoring
system aims to maximize the monitoring quality of animals’
status as well as the lifetime of the monitoring system
with healthy sensor nodes which are not compromised
by attackers and not energy-depleted. To ensure sensor
nodes are not being energy-depleted, we use a threshold
𝜌 representing a percentage threshold of LESs to determine
which sensor nodes have sufficient energy to transmit data.
At each step, we first rank LESs by their remaining energy,
and only the top 𝜌 percentage of the LESs can send their
request to nearby HESs. After the initial value of 𝜌 is
given, it can be adjusted over time by the DRL agents,
which can identify an optimal 𝜌. Identifying an optimal
𝜌 is critical because HES can transmit LES’s data when
the LES requests the data transmission to a nearby HES.
We define the action space with three discrete actions at
time 𝑡, A𝑡 = {increase, decrease, stay} with the increment or
decrement with 𝜏 (e.g., 0.05 where the 𝜌 is scaled in [0, 1] as
a real number), in which the DRL agent can select an action
in each step per update interval. A low 𝜌 value means fewer
sensor nodes can send out their data to gateways, resulting
in lower monitoring quality but higher remaining energy. On
the other hand, a high 𝜌 value will result in high monitoring
quality at the expense of a lower remaining energy level,
which may shorten the system’s lifetime.

• Immediate reward (𝑟𝑡 ): The DRL agent will receive
the immediate reward after taking action at time 𝑡, 𝑟𝑡 =

MQ(𝑎𝑡 ) + RE(𝑎𝑡 ). MQ(𝑎𝑡 ) is the monitoring quality at
time 𝑡 and RE(𝑎𝑡 ) is sensor nodes’ average remaining
energy levels at time 𝑡 (see Eqs. (2) and (4)).

• Accumulated reward (R𝑡 ): The DRL agent will select
an action to maximize the accumulated expected return,
formulated by R𝑡 =

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡 , where 𝑟𝑡 is a reward at time
𝑡, 𝛾 is a discount factor, and 𝑇 is the period of an episode.

C. Transfer Learning for Robust Monitoring

To identify the source and target domains in our monitoring
system, we run TL agents on the three LoRa gateways. Two
LoRa gateways will each run a target TL agent, while one
LoRa gateway will run a source TL agent. In applying the TL
algorithm, we use the following protocol to determine when-
to-transfer and what-to-transfer.

1) When-to-Transfer: This operation determines how of-
ten a source agent transfers its knowledge to a target agent.
For example, source agents can periodically transfer their
knowledge about a sequence of states to target agents. This
approach allows target agents to obtain additional knowledge
from source domains. However, the proactive nature of peri-
odic knowledge transfer may increase the computing time and
overload target agents to determine which part of knowledge
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Fig. 4. Process of Transfer Learning.

should be leveraged. For efficient knowledge transfer, it is
critical to identify when the source agent has meaningful
knowledge to share with a target agent.

We call an agent sharing knowledge a teacher agent and
an agent receiving the knowledge a student agent. When a
system is initialized or has not received any data due to poor
environmental conditions, such as rainy or snowy days, no
teacher agent may be available for knowledge transfer. To
handle such situations, we will employ a pre-trained model
with a set of policies learned by each agent. Before training
our agents, each agent will select an optimal policy using a
semi-Markov decision process value learning method [54]. In
this method, an agent will follow each policy by taking a
few steps further respectively, and choose a policy with the
highest accumulated rewards. On the other hand, when the
system operates normally by receiving data collected by solar
sensors, we will leverage a visited-based advising method [55].
This approach will allow each agent to periodically ask other
agents to provide advice based on their current states. At each
time step, each student agent 𝑖 will calculate the probability it
will use a teacher model in another DRL agent 𝑗 , denoted by
𝑃𝑠 . Agent 𝑖 will ask agent 𝑗’s advice based on the frequency
agent 𝑗 has visited the current state 𝑠. This means teacher
agent 𝑗 has sufficiently visited state 𝑠. We define a probability
that agent 𝑖 becomes a student agent by:

𝑃𝑖 (𝑠,Υ𝑖) = (1 + a𝑖)−Υ𝑖 (𝑠) , (5)

where a𝑖 is a scale factor and Υ𝑖 (𝑠) is a confidence function of
current state 𝑠 by the student model in agent 𝑖. We formulate
Υ𝑖 (𝑠) by:

Υ𝑖 (𝑠) =
√︁
𝑉𝑖 (𝑠), (6)

where 𝑉𝑖 (𝑠) is the total number of times the student agent
𝑖 has visited state 𝑠. The teacher agent 𝑗 will calculate the
probability of being a teacher agent to the student agent 𝑖
for current state 𝑠. Agent 𝑗 will use a confidence function
to determine if it can provide useful knowledge to other
agents. The confidence function Ψ 𝑗 (·) representing that agent
𝑗 becomes a teacher agent is calculated by:

Ψ 𝑗 (𝑠) = log2𝑉 𝑗 (𝑠), (7)

Then, the probability that agent 𝑗 provides advice to a student
agent is formulated by:

𝑃 𝑗 (𝑠,Ψ) = 1 − (1 + a 𝑗 )−Ψ 𝑗 (𝑠) , (8)

where a 𝑗 is the scale factor. A larger a 𝑗 means a higher
probability that an agent provides its knowledge to other agents
while it has high confidence in the current state 𝑠. Note
that each agent can be a teacher agent and a student agent
simultaneously in TL where the student agent can learn from
the teacher agent to refine its model. Although an agent cannot
manage its current state, it may learn something valuable for
the current state other agents visit, as described in Fig. 4.

2) What-to-Transfer: After a source agent decides to
transfer knowledge to target agents, we need to determine what
knowledge to transfer that can be meaningful and valuable
for the target agents’ learning process. After the target agents
receive knowledge, they will determine if they should accept
or discard it. If the target agents have no prior knowledge,
they simply accept the knowledge. Otherwise, the target agents
will aggregate the received knowledge with their current
knowledge. The key decision criterion to accept or discard
received knowledge from the source agent is how much the
state will be changed close to the goal state (i.e., a converged,
optimal state). To this end, we employ the trust region
optimization method [56] based on Kullback-Leibler (KL)-
Divergence, which is a measure of minimizing the distance
between source agents’ policy distribution and target agents’
current policy distribution. We use the KL-divergence of the
two distributions as our loss function to minimize by:

Minimize KL(𝜋𝑠 ∥ 𝜋𝑡 ) =
∑︁
𝑥∈𝑋

𝜋(𝑥) log
( 𝜋𝑠 (𝑥)
𝜋𝑡 (𝑥)

)
, (9)

where 𝜋𝑡 is the policy of source agent, and 𝜋𝑠 is the policy
of target agent. We keep updating the target agent’s policy,
𝜋𝑡 , until the distance between these two policy distributions is
sufficiently small. After the target agents learn the new policy,
they should check if it leads to the converged state. It will
take several steps to check if the state value approaches the
convergence value. This guarantees that the TL agents will not
cause negative transfers resulting in performance degradation
due to transfer learning.

D. SL-based Opinion Formulation

At each gateway, the DRL agent runs and aggregates
observations of animal conditions sent by solar sensors in the
smart farm system. This section discusses how to aggregate the
collected observations by considering the uncertainty caused
by a lack of evidence and dissonance.

1) Aggregation of Uncertain Observations: Each record
of animal conditions will be regarded as evidence to update
information about a given animal’s condition. The DRL agents
will form an opinion about the animal’s condition using a
belief model, called Subjective Logic (SL), to explicitly deal
with multiple types of uncertainty. In SL, an agent 𝐴 can
form its opinion about a given proposition 𝑋 , denoted by
𝜔𝐴

𝑋
= {b𝑋, 𝑢𝑋,a𝑋}, where b𝑋 is belief masses distribution,

𝑢𝑋 is the uncertainty mass, and a𝑋 is the base rate (i.e., prior
belief) distribution of variable 𝑋 . The components satisfy the
additivity requirement with 𝑢𝑋 +∑

b𝑋 (𝑥) = 1. Each evidence
of the animal’s condition (e.g., temperature) will be recorded
as one of the 𝐾 classes of the range, e.g., for the temperature,
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𝐾 = 3, meaning that there are 3 classes of ranges: 37 or
below as lower than normal, 38-41 as normal, 42 or above
as higher than normal. In this case, without prior knowledge,
we initialize the base rate equally for each belief mass, i.e.,
𝑎𝑋 (𝑥𝑖) = 1/𝐾 for any 𝑥𝑖 .

2) Opinions of Animal Conditions’ Attributes: We sum-
marize each attribute of animal conditions in Table III, for-
mulated using SL-based opinions in this work. When sensors
transmit sensed data to gateways within their wireless radio
range, the DRL agent in each gateway will formulate an
opinion based on the received data from each sensor. For LESs,
it is possible to request sending their data to multiple nearby
HESs, resulting in a gateway with two opinions about the same
animal. In this case, we need to conduct an aggregation of
opinions using SL. When multiple sensors send their sensed
data of the same animal, we will use a consensus operator,
called the cumulative fusion operator [57], which combines
two opinions, 𝜔𝐴

𝑋
and 𝜔𝐵

𝑋
, held by two different sources (i.e.,

different sensor nodes). The cumulative fusion opinion of 𝜔𝐴
𝑋

and 𝜔𝐵
𝑋

is denoted as 𝜔𝐴
𝜒 ⊕ 𝜔𝐵

𝜒 = {b𝐴
𝜒 (𝑥) ⊕ b𝐵𝜒 (𝑥), 𝑢𝐴𝜒 ⊕

𝑢𝐵𝜒 ,a
𝐴
𝜒 (𝑥) ⊕ a𝐵

𝜒 (𝑥)} where

b𝐴
𝜒 (𝑥) ⊕ b𝐵𝜒 (𝑥) =

b𝐴
𝜒 (𝑥)𝑢𝐵𝜒 + b𝐵𝜒 (𝑥)𝑢𝐴𝜒
𝑢𝐴𝜒 + 𝑢𝐵𝜒 − 𝑢𝐴𝜒𝑢𝐵𝜒

,

𝑢𝐴𝜒 ⊕ 𝑢𝐵𝜒 =
𝑢𝐴𝜒𝑢

𝐵
𝜒

𝑢𝐴𝜒 + 𝑢𝐵𝜒 − 𝑢𝐴𝜒𝑢𝐵𝜒
, (10)

a𝐴
𝜒 (𝑥) ⊕ a𝐵

𝜒 (𝑥) =


a𝐴
𝜒 (𝑥)𝑢𝐵

𝜒 +a𝐵
𝜒 (𝑥)𝑢𝐴

𝜒−(a𝐴
𝜒 (𝑥)+a𝐵

𝜒 (𝑥))𝑢𝐴
𝜒 𝑢

𝐵
𝜒

𝑢𝐴
𝜒 +𝑢𝐵

𝜒 −2𝑢𝐴
𝜒 𝑢

𝐵
𝜒

,

if 𝑢𝐴𝜒 ≠ 1 ∨ 𝑢𝐵𝜒 ≠ 1,
a𝐴
𝜒 (𝑥)+a𝐵

𝜒 (𝑥)
2 if 𝑢𝐴𝜒 = 𝑢𝐵𝜒 = 1,

in the case for 𝑢𝐴𝜒 ≠ 0 ∨ 𝑢𝑏𝜒 ≠ 0.
3) Dissonance Uncertainty in SL-based Opinions: Dis-

sonance indicates uncertainty due to conflicting evidence and
is estimated based on the distance between different belief
masses in a given multinomial opinion, 𝜔𝑋 and domain X by:

¤𝑏Diss
𝑋 =

∑︁
𝑥𝑖 ∈X

©«
b𝑋 (𝑥𝑖)

∑
𝑥 𝑗 ∈X\𝑥𝑖

b𝑋 (𝑥 𝑗 )Bal(𝑥 𝑗 , 𝑥𝑖)∑
𝑥 𝑗 ∈X\𝑥𝑖

b𝑋 (𝑥 𝑗 )
ª®®¬ , (11)

where the relative mass balance between a pair of belief
masses b𝑋 (𝑥 𝑗 ) and b𝑋 (𝑥𝑖) is expressed by:

Bal(𝑥 𝑗 , 𝑥𝑖) = 1 −
|b𝑋 (𝑥 𝑗 ) − b𝑋 (𝑥𝑖) |
b𝑋 (𝑥 𝑗 ) + b𝑋 (𝑥𝑖)

. (12)

The relative mass balance has its maximum at 1 when
b𝑋 (𝑥 𝑗 ) = b𝑋 (𝑥𝑖). The relative mass balance has the minimum
at 0 when one of the belief masses equals 0.

E. Uncertainty-Aware Monitoring Opinion Update

Whenever a gateway receives new evidence on an animal’s
condition, it needs to update the uncertain opinion 𝜔𝐴

𝑋
about

the corresponding animal. We will estimate two types of un-
certainty: vacuity and dissonance. Vacuity refers to uncertainty
caused by a lack of evidence, which is uncertainty mass, 𝑢𝑋,
in an opinion. Dissonance is caused by conflicting evidence,
estimated by Eq. (11).

TABLE III
EVD DATASET DESCRIPTION

Metric Description
Serial A unique animal identifier
HR Heart Rate of the animal

Average temperature Average body temperature in Celsius
Min-temperature Minimum temperature in Celsius
Max-temperature Maximum temperature in Celsius
Average-activity Average activity recorded by the number

of steps taken
Battery-level Residual battery life
Timestamp Date and time of transmission

After receiving a sufficient amount of evidence from sen-
sors, the opinion update may be terminated because uncer-
tainty is minimized. Since vacuity is zero or close to zero,
no further significant update can be made. However, even
with a sufficient amount of evidence, one may not be able
to make a decision when the received evidence supports the
two opposite beliefs (almost) equally. To make the opinion
keep being updated by new evidence received and resolve
the inconclusive opinion due to high dissonance, we use
an uncertainty (vacuity) maximization technique [57] for the
opinion to be updated by applying new evidence. Given
opinion 𝜔𝑋 = (b𝑋, 𝑢𝑋,a𝑋) where P𝑋 = b𝑋 + a𝑋 · 𝑢𝑋 for
a domain X, the corresponding vacuity-maximized opinion is
denoted by ¥𝜔𝑋 = ( ¥b𝑋, ¥𝑢𝑋,a𝑋) where ¥𝑢𝑋 and ¥b𝑋 are given by:

¥𝑢𝑋 = min
𝑖

[P𝑋 (𝑥𝑖)
a𝑋 (𝑥𝑖)

]
, (13)

¥b𝑋 (𝑥𝑖) = P𝑋 (𝑥𝑖) − a𝑋 (𝑥𝑖) · ¥𝑢, for 𝑥𝑖 ∈ X.

The vacuity maximization is performed with a threshold 𝜙,
which the above Eq. (13) will only be performed when 𝑢𝑋 < 𝜙
where 𝜙 is sufficiently low (e.g., 0.05).

F. Detection of Deceptive Data

Adversarial attacks can poison data transmitted to gate-
ways and thus can introduce conflicting evidence, resulting
in degrading monitoring quality. To tackle this problem, we
introduce a measure of the degree of conflict (DC) in SL [57]
to identify suspicious data gateways received from compro-
mised sensors (i.e., compromised HESs or LESs) performing
false data injection. Specifically, we use projected distance
(PD) [57] to measure the difference between a given opinion,
𝜔𝐴

𝑋
, and other opinions formulated by:

�̂�𝐷 (𝜔𝐴
𝑋) =

∑
𝑗∈𝐵 𝑃𝐷 (𝜔𝐴

𝑋
, 𝜔

𝑗

𝑋
)

|𝐵 | , (14)

where 𝑃𝐷 (𝜔𝐴
𝑋, 𝜔

𝑗

𝑋
) =

∑
𝑥∈X | 𝜔𝐴

𝑋
(𝑥) − 𝜔 𝑗

𝑋
(𝑥) |

2
,

where 𝜔𝐴
𝑋

and 𝜔 𝑗

𝑋
(where 𝑗 ∈ 𝐵) are opinions of agent 𝐴 and

𝑗 , respectively, for proposition 𝑋 . Each gateway will update its
opinion every time receiving sensed data from sensor nodes.
After updating, we compute the DC based on �̂�𝐷 (𝜔𝐴

𝑋
, 𝜔𝐵

𝑋
). If

the estimated PD exceeds threshold 𝜙 ∈ [0, 1], we consider the
sensed data from 𝐴 suspicious and possibly modified because
𝐴 is compromised or the data is modified or forged by external
attackers. We keep track of the number of times the sensed
data by each sensor node is discarded as the ratio to the total
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number of data transmission times. Then, we use this record
to detect whether the node is compromised. If the percentage
of discarding for a node exceeds a threshold b, we consider
this node compromised.

VI. EXPERIMENTAL SETUP

A. Parameterization

The farm is a square area of 40 acres (i.e., ∼160K square
meters) with each side of length 400 meters. The farm has
20 cows and is fully covered by three gateways. We obtained
real-world datasets from a smart farm operated by Virginia
Tech’s College of Agriculture and Life Sciences to conduct our
simulations [6]. These datasets were collected from various de-
vices, including EmbediVet Implantable Temperature Devices
(EVD), Halter Sensors, Heart Rate Sensors, and Implantable
Temperature Sensors, whose attributes are summarized in
Table III. Each DRL agent running on a gateway will hold
an opinion for each cow’s condition attributes, including heart
rate, temperature, and activity. We define three beliefs for each
attribute: lower than normal, normal, or higher than normal.
For a healthy cow, the normal ranges of its temperature, heart
rate, and moving activity are given respectively as [37.8, 39.2]
Celsius, [48, 84] beats per minute, and [1, 2] meters per sec.
Since there may be some sick cows on the farm, their attributes
may not be in the normal range of the healthy cows. For
a sick cow with Bovine Viral Diarrhoea, the most common
disease in cows, its temperature range is [40.0, +∞] Celsius
as the sign of disease. Other attributes have no big difference
from the normal ranges. We also use 𝑃𝑖

𝑚𝑣 for cow 𝑖’s moving
probability. We assume cows move in a random pattern with a
normal distribution of their speeds with an average of 1.5 𝑚/𝑠
and a standard deviation of 0.1 𝑚/𝑠. The whole simulation is
considered a 24-hour monitoring period. Each gateway selects
an action to identify the optimal number of LES to send data
with the interval 𝑇𝑎 = 60 𝑠𝑒𝑐. We assume there are 5 HES
with initial energy level 1 and 15 LES with random initial
battery levels in [0, 𝐸𝐿𝐸𝑆

𝑖𝑛𝑖𝑡
] in the monitoring area. Table IV

summarizes the key design parameters, meanings, and default
values used for our experiments.

B. Energy Consumption in LoRa Gateway and BLE

In the considered wireless solar sensor-based smart farm
environment, there are two conditions: a sensor node transmits
sensed data either regularly to LoRa gateways or a nearby
node via Bluetooth Low Energy (BLE). The LoRa protocol
is deployed for long-distance communication, usually with
a distance of 5 to 15 𝑘𝑚 and a data transfer speed of 27
𝑘𝑏𝑝𝑠 [43]. By comparison, the BLE protocol is for short-
distance communication with a distance of 100 meters and
a transfer speed of 2 𝑀𝑏𝑝𝑠. Regarding energy consumption,
the LoRa radio of SAM R34/35 consumes 170 mW for trans-
mitting data while BLE radio dissipates 11𝑚𝑊 . In this case,
transmission for one-bit data through LoRa radio consumes
1,100 times more energy than through BLE radio [58]. A fully
charged sensor node has 5 𝑘𝑊 as the initial energy level, and
the efficiency of solar power under outdoor light and indoor
light is around 10𝑚𝑊/𝑐𝑚2 and 0.1𝑚𝑊/𝑐𝑚2, respectively.

TABLE IV
KEY DESIGN PARAMETERS, THEIR MEANINGS, AND DEFAULT VALUES

Notation Meaning Value
𝑛 Total number of sensors(cows) 20

𝑃1
𝑚𝑣 Probability of cow 𝑖 to move [0.3,0.7]
𝜌 Percentage of the LESs can send data 0.8
𝜏 Adjust step size when an agent takes action 0.1
𝜙 Acceptable degree of conflict 0.3
b Threshold determining if a node is

compromised
0.6

Z1 Probability determining if a node should be
repaired

0.3

𝛿 Threshold counting the number of rejected
data to detect a compromised node

5

𝑃𝐴 Probability for an attacker or a compromised
node to perform a certain attack

0.3

𝑃𝐴𝐸 Probability for a compromised gateway to
perform a certain attack

0.3

𝑇𝑢 Time interval for a sensor to send sensed data 30 s
𝑇𝑎 Time interval for an agent to select an action 60 s
𝐿𝑏𝑙 Threshold determining if a sensor is LES 0.3

𝐸𝐿𝐸𝑆
𝑖𝑛𝑖𝑡

Initial energy level of low energy sensors [0.1,0.2]

Specifically, we simulate the charging behavior of our
solar-powered sensors as follows: we define 𝑃(𝑥, 𝑦, 𝑡) as the
probability that a sensor located at (𝑥, 𝑦) charges at time 𝑡. This
probability is calculated using a quadratic form 𝑃(𝑥, 𝑦, 𝑡) =

max[0,− 1
6 (𝑡 − 𝑡𝑥𝑦)

2 + 1], where 𝑡𝑥𝑦 is the time corresponding
to the location (𝑥, 𝑦), calculated as 𝑡𝑥𝑦 =

𝑡0
𝑑
(𝑥 − 𝑑

2 ) +12. Here,
𝑡0 is a hyperparameter, 𝑑 represents the length of the farm’s
operation area, and both 𝑡 and 𝑡𝑥𝑦 are scaled within the 24-
hour day range. To incorporate weather conditions into our
simulation, we modify the charging probability by applying
the sun exposure rate 𝛼, which ranges from 0 (overcast) to
1 (sunny). The final charging probability is then given by
𝛼𝑃(𝑥, 𝑦, 𝑡), influencing the policy determined by the DRL
agents based on varying animal locations.

C. Metrics

We use the following metrics for our experiments.
• Accumulated Reward (R): This represents the sum of

accumulated reward in all simulation runs based on our
discussion in Section V-B.

• Remaining Energy (RE): This measures the degree of
remaining energy in LESs per time interval, 𝑇𝑢. At each time
interval, there are four possible events on sensors consuming
energy: data transmission through LoRa (ESG) and BLE
(ESS), and, energy drained in active mode (Eactive) and sleep
mode (Esleep). RE is calculated by Eq. (4).

• Model Convergence Time (𝐶𝑇 ): This measures the time
spent from the beginning of the training process to the time
the loss function reaches its minimum. This is estimated
by: 𝐶𝑇 = 𝑇𝑐 − 𝑇𝑏, where 𝑇𝑐 is the time the model reaches
a convergence, and 𝑇𝑏 is the starting time of the training
process. We define 𝑇𝑐 as the time when the immediate
reward settles to within a range [−1, +1] around the final
value for at least 10 episodes.

• Monitoring Quality (MQ): This estimates the monitoring
quality during the system’s operating times, where this
metric indicates monitoring accuracy based on the amount of
true sensed data received. It is given as Eq. (2) in Section III.

11



D. Comparing Schemes

We consider the following schemes for evaluation:
• Deep Q-Network (DQN) [3]: DRL agents select the best

action from the learned Q-table. In the multi-agent environ-
ment, each agent learns its own local Q-function.

• Proximal Policy Optimization (PPO) [59]: DRL agents
select the optimal actions based on learned policy. The PPO
uses an actor-critic style algorithm deploying multiple echos
of stochastic gradient ascent to update the policy.

• TL-DQN: DQN DRL agents obtain knowledge from their
learning and other agents’ experience using our proposed
TL to learn their local Q-function.

• TL-PPO: PPO DRL agents learn knowledge from each
other using our proposed TL to update their policy.

• TFT (TL with Fine-Tuning)-PPO [60]: PPO DRL agents
learn hyper-parameters from other agents via fine-tuning.

• Adaptive-Energy-Distance (AED) [14]: Agents select an
action to achieve both a high remaining energy level (RE)
and low total transmission distance (D) for reducing the
data acquisition latency efficiently. The (D) is defined by
the total distance between each LES and its nearby HES,
D =

∑
𝑖 𝑑 (𝑝𝑖 , 𝑞), where 𝑝𝑖 is the position of a LES 𝑖, and

𝑞 is the position of LES 𝑖’s nearby HES. The agents will
select an action with the maximum value of RE − D.

• Random: Agents will randomly select an action from the
action space at each step.

• Fixed-energy (FE): Agents will choose top 30% of sensor
nodes with least remaining energy.

As discussed in Section II, Alemayehu and Kim [14] proposed
an energy-efficient monitoring mechanism called AED for a
wireless sensor network whose aim aligns well with our work
in terms of energy preservation and latency reduction. Thus,
we chose AED [14] as a state-of-the-art counterpart scheme for
performance comparison. Altogether, our experiments conduct
a comparative performance analysis of our proposed DRL-
based schemes (i.e., DQN, PPO, TL-DQM, TL-PPO, and TFT-
PPO) against the state-of-the-art heuristic-based (i.e., AED)
and baseline (i.e., Random, FE) schemes.

VII. NUMERICAL RESULTS & ANALYSIS

We run 100 simulations to evaluate the performance of the
proposed TL-based schemes and the 4 baseline schemes based
on the parameter settings described in Section VI-A. Each
data point represents the average results obtained from the 100
simulation runs. For PPO, TL-PPO, and TFT-PPO, we set the
batch size and learning rate to 500 and 0.008, respectively. For
DQN and TL-DQN, we set the batch size and learning rate to
500 and 0.02, respectively. These hyperparameter settings are
chosen based on each scheme’s optimal performance.

A. Comparative Performance Analysis During Training Time

Fig. 5 demonstrates the DRL training process of the eight
schemes in Section VI-D with 𝑃𝐴 = 0.1, as default. The
training curve through episodes for the Random, FE, and
AED schemes is a horizontal line, with the converging time
being zero since they do not have a learning process. One

thing that is noteworthy is that FE performs worse than
Random since FE does not take any action at each step,
while Random has a probability of approximately 0.3 to take
the best action. Assuming the system’s inherent vulnerability
with a default presence of attackers (encompassing 30% of
sensors compromised and an attack severity level of 0.1), the
superior performance of our DRL-based approaches underlines
the system’s robustness and adaptability. This adaptability is
crucial for adjusting to and determining the energy policy
that ensures optimal monitoring quality and energy conser-
vation amidst adversarial conditions. The scheme’s ability to
converge despite adversarial attacks further emphasizes its re-
silience. We also observe that PPO-based schemes outperform
DQN-based schemes, respectively, for metrics accumulated
reward (R) in Fig. 5(a), monitoring quality (MQ) in Fig. 5(b),
and model convergence time (𝐶𝑇 ) in Fig. 5(d), while it is
just the opposite in the remaining energy (RE) in Fig. 5(c).
This is because our objective function has two conflicting
objectives (i.e., more energy-consuming operations can lead to
higher monitoring quality and vice-versa), leading to different
policies. In the given environment, the increase of monitoring
quality by receiving data from a sensor node is much larger
than the cost of that sensor to send data. For example, TL-
PPO has the lowest remaining energy while outperforming
other schemes in accumulated reward. In addition, TL-PPO
performs better than TFT-PPO and PPO, while TL-DQN
performs better than DQN because leveraging TL effectively
accelerates the training process of DRL agents. This proves
TL can significantly contribute to increased performance in R,
MQ, and RE. The overall performance order of the proposed
schemes is TL-PPO ≥ TFT-PPO ≥ PPO ≥ AED ≈ TL-DQN ≥
DQN ≥ Random ≥ FE. Fig. 5(d) shows that the convergence
time order of the proposed scheme is Random = FE = AED ≤
TL-PPO ≤ TL-DQN ≤ PPO ≤ DQN. Overall, PPO performs
better than DQN because PPO can directly learn from the
environment, making the smart farm system highly adaptive
to ensure its performance and security under non-stationary
settings. This is also the reason why the rule-based approach
results in a similar approach to the DQN-based approach, but
worse performance than the PPO-based. It has a lack of ability
to deal with uncertainty and to update rules to accommodate
new scenarios.

B. Sensitivity Analyses

1) Effect of Varying Attack Severity (𝑃𝐴) on Sensors:
Fig. 6 shows the effect of varying attack severity (𝑃𝐴) on
the performance metrics in Section VI-C. Higher 𝑃𝐴 leads
to decreasing monitoring quality (MQ) because Higher 𝑃𝐴

introduces more compromised data. In addition, higher 𝑃𝐴

introduces higher remaining energy (RE) for all schemes
because sending more data may introduce the increased com-
promised data. Therefore, less energy is consumed considering
the utility of data transmission. DRL approaches using TL (i.e.,
TL-DQN and TL-PPO) outperform their counterparts (i.e.,
DQN and PPO). Under varying 𝑃𝐴, the overall performance is
observed in the following order: TL-PPO ≥ TFT-PPO ≥ PPO
≥ AED ≈ TL-DQN ≥ DQN ≥ Random ≥ FE.
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Fig. 5. Comparative performance analysis during training time with 𝑃𝐴 = 0.1.
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Fig. 6. Effect of Varying Attack Severity (𝑃𝐴) on Solar Sensors.

2) Effect of Varying Attack Severity (𝑃𝐴𝐸) on Gateways:
Fig. 7 shows how the varying attack level (𝑃𝐴𝐸) performed
on gateways affects the system performance in terms of the
performance metrics. For this performance analysis, we only
consider DRL-based approaches because these attacks (see the
attacks under compromised LG in Table II) are performed
in disrupting DRL operations. Higher 𝑃𝐴𝐸 results in lower-
ing accumulated reward (R) and monitoring quality (MQ)
while increasing remaining energy (RE). This is because the
poisoned data by this adversarial attack can mislead DRL
agents to use a different policy which may not be optimal
to its true state. We notice the critical impact of 𝑃𝐴𝐸 on the
convergence time (𝐶𝑇 ) for DQN and TL-DQN. DQN’s 𝐶𝑇

is the shortest among all under attacks while the converged
reward is not optimal, showing the lowest R. The reason is
that the attacks on gateways greatly influence the DRL agent’s
exploration ability of DQN. Once the DQN agent is misled to
an undesired state, it cannot find an optimal state again. Thus,
when attacks are performed in the DQN training process, even
though the training curve converges fast, it may not converge
to an optimal state. With respect to varying 𝑃𝐴𝐸 , the overall
performance is observed in the following performance order:
TL-PPO ≥ PPO ≥ TL-DQN ≥ DQN.

3) Effect of Varying Cyber Attack (𝑃𝐴) and Adversarial
Example (𝑃𝐴𝐸) Severity: Fig. 8 demonstrates the effects
on the performance of DRL-based schemes while varying
both 𝑃𝐴 and 𝑃𝐴𝐸 . We observe more severe attacks lead to
lower accumulated rewards (R) in Fig. 8(a) and monitoring

quality (MQ) in Fig. 8(b), and higher remaining energy level
(RE) in Fig. 8(c) and the convergence time (𝐶𝑇 ) in Fig. 8(d)
for all DRL schemes. Regarding accumulated rewards, the
TFT-PPO and TL-PPO have almost the same performance
since they are both PPO-based DRL schemes with different
TL strategies having the potential to learn similar policies.
Concerning varying both 𝑃𝐴 and 𝑃𝐴𝐸 , the overall performance
of the proposed schemes is ordered as TL-PPO ≥ TFT-PPO
≥ PPO ≈ TL-DQN ≥ DQN.

4) Effect of the Varying Initial Energy Level of LESs
(𝐸𝐿𝐸𝑆

𝑖𝑛𝑖𝑡
): Fig. 9 shows how sensors’ different initial energy

levels (𝐸𝐿𝐸𝑆
𝑖𝑛𝑖𝑡

) impact the system’s performance in the four
metrics. As shown in Figs. 9(a)-(b), higher 𝐸𝐿𝐸𝑆

𝑖𝑛𝑖𝑡
leads to

a higher R and MQ because more energy is available for
sensor nodes to send data. The remaining energy (RE) is
the least sensitive to the changes in 𝐸𝐿𝐸𝑆

𝑖𝑛𝑖𝑡
, as shown in

Fig. 9(c). Although the upper and lower bounds of the initial
energy level are different, the range size is the same in the
analysis. With the same range size, different DRL schemes
will determine a very similar policy, showing almost the same
performance. The convergence time with an initial energy level
interval (0.05, 0.15] is much higher than others because, with
a low energy level, a policy preferred not to send data can
be determined. DRL agents obtain fewer data per step, which
requires more training episodes to converge.

Our analysis, which adjusts for variations in attack sever-
ity and the system’s energy levels, consistently shows our
proposed schemes outperforming both baseline and heuristic
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Fig. 7. Effect of Varying Adversarial Example Severity (𝑃𝐴𝐸 ) on Gateways.
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Fig. 8. Effect of Varying Cyber Attack (𝑃𝐴) and Adversarial Example (𝑃𝐴𝐸 ) Severity.
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Fig. 9. Effect of the Varying Initial Energy Level of LESs (𝐸𝐿𝐸𝑆
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) .

TABLE V
ALGORITHMIC ASYMPTOTIC COMPLEXITY ANALYSIS

Scheme Complexity
TL-PPO 𝑂 (𝑇𝐿 [𝑛𝑒 ] × 𝑇𝑝𝑝𝑜 × 𝑛𝑠)
TL-DQN 𝑂 (𝑇𝐿 [𝑛𝑒 ] × 𝑇𝑑𝑞𝑛 × 𝑛𝑠)
TFT-PPO 𝑂 (𝑇𝐹𝑇 [𝑛𝑒 ] × 𝑇𝑝𝑝𝑜 × 𝑛𝑠)

PPO 𝑂 (𝑛𝑒 × 𝑇𝑝𝑝𝑜 × 𝑛𝑠)
DQN 𝑂 (𝑛𝑒 × 𝑇𝑑𝑞𝑛 × 𝑛𝑠)
FE 𝑂 (𝑛𝑠)

Random 𝑂 (𝑛𝑠)
AED 𝑂 (𝑛𝑠)

models. This underscores our system’s proficiency in adapting
the optimal policy to uphold normal operations even under
severe and challenging conditions.

C. Algorithmic Asymptotic Complexity Analysis

Table V summarizes the algorithmic asymptotic complexity
where 𝑛𝑒 is the number of episodes in the training process,
𝑇𝐿 [𝑛𝑒] and 𝑇𝐹𝑇 [𝑛𝑒] means the number of episodes using TL
and TFT. Since TL improves the efficiency and performance
of both PPO and DQN, it requires fewer episodes to converge.
Thus, when TL is used, we use 𝑇𝐿 [𝑛𝑒] and 𝑇𝐹𝑇 [𝑛𝑒] to
distinguish it from 𝑛𝑒 with 𝑇𝐿 [𝑛𝑒] ≪ 𝑛𝑒 ≪ 𝑇𝐹𝑇 [𝑛𝑒], thus
manifesting the effectiveness of TL implementation. The 𝑇𝑝𝑝𝑜
and 𝑇𝑑𝑞𝑛 are the training times per episode using the PPO
algorithm and DQN algorithm, respectively. The 𝑛𝑠 is the
number of simulation times. It is proven that the PPO is more
resilient in a complex environment, in which 𝑇𝑝𝑝𝑜 ≪ 𝑇𝑑𝑞𝑛.
FE, Random, and AED algorithms only depend on 𝑛𝑠 , showing
the highest efficiency among all, while their performance is the
worst among all, as demonstrated in Figs. 5, 6, and 9.
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VIII. CONCLUSION & FUTURE WORK

The advent of IoT technologies has spurred extensive re-
search within smart environments, with a significant focus
on enhancing monitoring systems through reduced commu-
nication costs. Contrasting with these studies, our research
introduces an energy-adaptive and attack-resilient methodol-
ogy tailored for smart farming. This approach ensures the
system’s energy sufficiency and high monitoring performance,
even amidst cyberattacks and energy variability. Our empirical
findings underscore the efficacy of our strategy, demonstrating
the system’s capability to sustain normal operations against
both cyber threats and environmental challenges.

We obtained the following key findings from this work: (1)
Our TL-based DRL agents tend to trade energy consumption
for achieving high monitoring quality as the optimal policy in
data transmission, especially when the environment is highly
dynamic and hostile. This is because the benefit of high
monitoring quality with fresh data often outweighs the energy
consumption cost for data transmission. (2) Our proposed TL-
PPO scheme (with PPO as the scheme for DRL) has the best
performance in finding the optimal policy that maximizes the
monitoring quality while preserving energy. (3) Using TL in
DRL reduced the training time significantly for both PPO and
DQN, as it takes much fewer training episodes for learning
convergence. (4) Our proposed TL-PPO scheme is robust and
outperforms all state-of-the-art counterpart schemes in the
presence of adversarial attacks.

For future work, we plan to explore the following research
directions: (1) We will further improve the proposed TL-based
DRL scheme to identify and prevent negative transfer in the
learning process to see if agents can learn a better policy.
(2) We will investigate the scalability issue of deploying our
proposed TL-based DRL scheme with more DRL agents in a
large, dynamic, and complex smart farm system.
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