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Resource constrained Internet-of-Things (IoT) devices are highly likely to be compromised by attackers
because strong security protections may not be suitable to be deployed. This requires an alternative approach
to protect vulnerable components in IoT networks. In this paper, we proposed an integrated defense technique
to achieve intrusion prevention by leveraging cyberdeception (i.e., a decoy system) and moving target defense
(i.e., network topology shuffling). We evaluated the effectiveness and efficiency of our proposed technique
analytically based on a graphical security model in a software defined networking (SDN)-based IoT network.
We developed four strategies (i.e., fixed/random and adaptive/hybrid) to address “when” to perform network
topology shuffling and three strategies (i.e., genetic algorithm/decoy attack path-based optimization/random)
to address “how” to perform network topology shuffling on a decoy-populated IoT network, and analyze
which strategy can best achieve a system goal, such as prolonging the system lifetime, maximizing deception
effectiveness, maximizing service availability, or minimizing defense cost. We demonstrated that a software
defined IoT network running our intrusion prevention technique at the optimal parameter setting prolongs
system lifetime, increases attack complexity of compromising critical nodes, and maintains superior service
availability compared with a counterpart IoT network without running our intrusion prevention technique.
Further, when given a single goal or a multi-objective goal (e.g., maximizing the system lifetime and service
availability while minimizing the defense cost) as input, the best combination of “when” and “how” strategies
is identified for executing our proposed technique under which the specified goal can be best achieved.
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1 INTRODUCTION
Internet-of-Things (IoT) has received significant attention due to their enormous advantages.
Advances in IoT technologies can be easily leveraged to maximize effective service provisions
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to users. However, due to the high heterogeneity and resource constraints of composed entities
in a large-scale network, we face the following challenges [Roman et al. 2013]: (1) distributed
technologies for communications, data filtering, processing, and disseminationwith various forms of
data (e.g., text, voice, haptics, image, video) in a large-scale IoT network with heterogeneous entities
(i.e., devices, humans); (2) severely restricted resources in battery, computation, communication (e.g.,
bandwidth), and storage, causing significant challenges in resource allocation and data processing
capabilities; (3) highly adversarial environments with compromised, deceptive entities and data,
which may result in detrimental impacts on the capabilities of critical mission-related decision
making; and (4) highly dynamic interactions between individual entities, data, and environmental
factors (e.g., network topology or resource availability), where each factor itself is also highly
dynamic in time/space. Due to these characteristics of IoT environments, highly secure, lightweight
defense mechanisms are in need to protect and defend the system (or network) against potential
attacks. As a solution to protect and defend a system against inside attacks, many intrusion detection
systems (IDSs) have been developed to identify and react to the attacks. However, the core idea of
IDSs is reactive in nature and even though it detects intrusions which have already been in the
system. Hence, this reactive mechanism normally would be late and ineffective reacting to actions
by agile and smart attackers. To overcome the inherent limitation of IDSs due to this reactive
nature, intrusion prevention systems (IPSs) have been developed to thwart potential attackers
and/or mitigate the impact of the intrusions before they penetrate the system [Cho and Ben-Asher
2018]. In this work, we are interested in developing an integrated intrusion prevention mechanism
based on cyberdeception (i.e., a decoy system) and moving target defense (MTD) and evaluating
their effectiveness and efficiency by a graphical security model (GSM)-based evaluation framework
in a Software Defined Networking (SDN)-based IoT network via simulation.

1.1 Research Goal & Contributions
We propose an integrated proactive defense system based on cyberdeception and MTD techniques
as intrusion preventive mechanisms to minimize the impact of potential attackers trying to pene-
trate into IoT systems via multiple entries. We consider a SDN-based IoT system as a deployment
network environment to support MTD in our work. The key merits of SDN technology are pro-
grammability and controllability, enabling the development of defense techniques integrating MTD
with cyberdeception over a wide range of conditions. MTD can be applied in traditional networks
with the support of hardware-based middleboxes. However, this potentially increases operational
cost and overhead that affects normal functionality [Sengupta et al. 2020].

We made the following key contributions in this work:
• We are the first to propose an integrated proactive defense system by shuffling the topology
of an IoT network consisting of both decoy and real nodes to create maximum hurdles and/or
complexity to the attackers while minimizing the defense cost for executing MTD operations.

• We address the issues of “when” to perform network topology shuffling and “how” to perform
network topology shuffling on a decoy-populated IoT network. We consider four “when-to-
shuffle” strategies (i.e., fixed, random, adaptive, and hybrid) and three “how-to-shuffle” strategies
(i.e., genetic algorithm, decoy attack path-based optimization, and random).

• We obtain security and performance measures, including the number of attack paths toward
decoy targets, mean time to security failure (i.e., MTTSF or system lifetime), and defense cost, to
analyze and identify which strategy can best achieve a system goal.

• We develop a graphical security model (GSM) to evaluate the proposed cyberdeception and MTD
technique. The GSM offers design solutions to consider attack graphs (AGs) and/or attack trees
(ATs) which can provide efficient methods to calculate the potential security (or vulnerability)
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levels of attack paths. This allows us to analytically evaluate the effectiveness of the proposed
cyberdeception and MTD integrated technique in a large IoT network.

A preliminary version of this work appeared in [Ge et al. 2020]. We have substantially ex-
tended [Ge et al. 2020] in algorithm design and evaluation, including: (1) development of a new
“when-to-shuffle” strategy based on adaptive shuffling; (2) development of a new “how-to-shuffle”
strategy based on decoy attack path-based optimization which is efficient in topology computation
and able to scale to large IoT networks with thousands of nodes by setting threshold values for
outgoing connections of nodes and the maximum path length; (3) usage of a new metric, packet
delivery ratio, to measure the service availability in the presence of attacks; and (4) comparative per-
formance analysis for 12 schemes resulting from a combination of four “when-to-shuffle” triggering
strategies and three “how-to-shuffle” strategies.

1.2 Structure of This Paper
The rest of this paper is organized as follows. Section 2 provides a brief overview of the related
work. Section 3 gives an overview of the system model. Section 4 describes the design of our
proposed integrated proactive defense mechanism in detail. Section 5 shows evaluation results
and analyzes the results observed. Section 6 discusses limitations and suggests future research
directions. Section 7 summarizes key findings.

2 RELATEDWORK
We briefly survey related work in three areas: (1) existing MTD and cyberdeception techniques
for IoT; (2) security models and metrics; and (3) SDN technology for IoT. All the techniques and
models can be applied to non-IoT networks (e.g., Cloud [Alavizadeh et al. 2020]). We focus on the
current state-of-the-art research in IoT rather than other contexts because the proposed defense
mechanism is designed for IoT networks to address unique challenges faced by IoT.

2.1 MTD and Defensive Deception Techniques for IoT
The concept of moving target defense (MTD) has been emerged to support the goal of proactive
intrusion prevention. The basic idea behind MTD is to defend against attackers by continuously
changing attack surface (e.g., system/network configurations) so as to increase attack complex-
ity/cost and also invalidate the system intelligence collected by the attackers [Cho et al. 2020;
Hong and Kim 2015]. MTD has been discussed with three main classes: shuffling, diversity, and
redundancy. Shuffling-based MTD aims to confuse attackers by changing network/system configu-
rations such as network addresses (e.g., IP addresses, MAC addresses, or port numbers), software
migration, or network topology configuration. Diversity-based MTD increases attack complexity by
using various types of system components (e.g., software, operating systems) which provide same
functionalities. Lastly, Redundancy-based MTD provides security protections by dynamically using
multiple replicas of system components in a network for the purpose of maintaining high system
reliability [Cho et al. 2020].

Several existing MTD techniques have been developed to provide security protection for resource-
constrained IoT environments. Ge et al. [2017] investigated address space layout randomization
(ASLR) and evaluated its performance using the proposed Hierarchical Attack Representation Model
(HARM). Several lightweight MTD techniques are also proposed by randomly choosing different
types of cryptographic primitives [Plaga et al. 2018] or both cryptosystems and firmwares [Casola
et al. 2013] for wireless sensor networks. Sherburne et al. [2014] proposed a dynamically changing
IPv6 address assignment approach over the IoT devices using Low-Powered Wireless Personal
Area Networks (LPWPANs) protocol to defend against various network attacks. Zeitz et al. [2017]
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extended the work in [Sherburne et al. 2014] by presenting a design based on address rotation to
obscure the communications among IoT devices. However, both do not have any experimental
validation of the design. Mahmood and Shila [2016] developed anMTD security framework based on
context-aware code partitioning and code diversification for IoT devices to obfuscate the attackers.
Zeitz et al. [2018] developed micro MTD IPv6 as a solution to provide privacy and defense services to
resource constrained devices by limiting the time available to an attacker performing reconnaissance
attacks. Kouachi et al. [2018] proposed the anonymization of packet flow for IoT devices via micro
One Time Address that changes the structure of IPv4 packets; however, the change of IP header
requires re-configuring all the routers. Nizzi et al. [2019] provided a lightweight solution to change
the addresses of IoT devices through network-wide address shuffling. Kahla et al. [2018] proposed
live migrations as an MTD technique to move applications in a self-configuring fog architecture
to provide security and trust; however, the overhead of migrations was not considered in their
work. Wang et al. [2019] proposed a game theoretic zero-determinant approach for MTD in IoT
to minimize extra operations required by Markov gaming while dominating the game based on
a Zero-Determinant (ZD) strategy. Almohaimeed et al. [2019] proposed a model that prevents
attackers from discovering device addresses in IoT networks by transmitting data via a dedicated
MTD channel. Lin et al. [2019] proposed the migration of virtual security functions upon changes
in traffic states to protect SDN enabled smart grid from resource exhaustion attacks. Hamada
et al. [2018] proposed an honeypot-like MTD management framework which dynamically projects
cell phones as fake and real gateways and sensors and creates real and fake sub-nets to deceive
attackers. Similarly, Vuppala et al. [2019] proposed an MTDmechanism against side channel attacks
by calculating the interval required for encryption re-keying after collecting a minimum number
of trace leakages so as to reduce computation overhead.
Defensive deception techniques provide proactive defense services by adding an extra layer

of defense on top of traditional security solutions (e.g., IDSs, firewalls, or endpoint anti-virus
software) [Miyazaki et al. 2014]. La et al. [2016] introduced a game theoretic method to model the
interaction between an attacker who can deceive a defender with suspicious or seemingly normal
traffic and a defender in honeypot-enabled IoT networks. Anirudh et al. [2017] used honeypots
for online servers to mitigate Distributed Denial of Service (DDoS) attacks launched from IoT
devices. Dowling et al. [2017] created a ZigBee honeypot to capture attacks and used it to identify
the DDoS attacks and bot malware. However, none of the works cited above analyzed the impact
of deception techniques on system-level security and considered the tradeoff between defense
cost vs. system-level security for an IoT system which allows distributed decoy deployment to
achieve adequate coverage and provide cost-effective defense service [Pingree 2016]. Cho and
Ben-Asher [2018] investigated an integrated defense system to identify what components of each
defense mechanism can provide the best solution for ‘defense in breadth’ considering both enhanced
security and defense cost. However, their work is based on model-based analysis without empirical
verification. [Liu et al. 2020] implemented an SDN-based architecture to enable cyberdeception for
legacy IP-based IoT devices where SDN-enabled honeypots can share attack information with SDN
controllers to block attack traffics through updating flow rules on the switches.

All the works cited above focused on either MTD or cyberdeception. All MTD-based approaches
applied to IoT did not consider network topology shuffling which can effectively interrupt the
attack actions using compromised IoT devices as stepping stones. Furthermore, there is no current
work on developing an integrated defense system equipped with both MTD and defensive deception
techniques. With the deployment of decoys, the network shuffling-based MTD can not only confuse
the attacker with changing connections among IoT devices but also provide a false view of the
network and divert the attacker from actual IoT devices. This can effectively increase the attack effort
and cost while decreasing the chances of real IoT devices to be compromised. Therefore, relative to
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the works cited above, we propose an integrated proactive defense based on cyberdeception and
MTD techniques as intrusion preventive mechanisms that can effectively and efficiently mitigate
the adverse effect of attackers before the attackers penetrate a target IoT system.

2.2 Security Models and Metrics
Graphical security models, including attack graphs (AGs) [Sheyner et al. 2002] and attack trees
(ATs) [Saini et al. 2008], have been widely employed for security analysis in various types of
networks. Several factors can contribute to the development and adoption of graphical models
for security analysis: (1) with the advancement of Internet technologies, computer systems do
not operate in isolation but interact with each other, resulting in increased attack surface; (2)
quantitatively formulating attack behavior is critical for in-depth understanding of an attacker’s
goal, motivation, and tactics; and (3) identifying relevant system aspects to thwart attacks is
critical for determining an effective security budget. Therefore, graphical security models can offer
intuitive and systematic directions for assessing security vulnerabilities of systems and applying
potential defense mechanisms [Hong et al. 2017]. In specific, an attack graph (AG) shows all
possible sequences of the attack actions that eventually reach the target based on the vulnerability
information and connectivity of the computer systems. As the network size increases, the size of an
AG can grow exponentially, thus limiting its applicability. An attack tree (AT) is a tree with nodes
representing the attacks and the root representing the goal of attacks. It systematically presents
potential attacks in the network. However, AT is also not scalable with the growth of network size.
In order to address the scalablity issue, a two-layer Hierarchical Attack Representation Model

(HARM) was introduced in [Hong and Kim 2015] by combining various graphical security models
onto different layers. In a two-layer HARM, the upper layer captures the network reachability
information and the lower layer represents the vulnerability information of each node in the
network. The layers of the HARM can be constructed independently of each other. This decreases
the computational complexity of calculating and evaluating the HARM compared with that of the
existing single-layered graphical security models. [Ge et al. 2017; Hong and Kim 2015] investigated
the effectiveness of defense mechanisms based on HARM. [Ge et al. 2017] developed a framework
to automate security analysis of an IoT system by which HARM is used to assess the effectiveness
of both device-level and network-level defense mechanisms based on various performance metrics
such as attack cost and attack impact. [Hong and Kim 2015] evaluated MTD techniques in a
virtualized system based on HARM using a risk metric. However, three different MTD techniques,
including shuffling, diversity and redundancy, were separately evaluated without considering
an integrated defense system. Relative to the works cited above, we also leverage HARM as our
graphical security model since it scales with large IoT systems. Unlike the cited works above, we
develop a HARM model specifically for security analysis of our proposed integrated defense system
using both cyberdeception and MTD techniques.
In the literature, a risk-based security model has also been used to assess the effectiveness of

defense mechanisms [Abie and Balasingham 2012; Rullo et al. 2017; Savola et al. 2012]. Abie and
Balasingham [2012] proposed a risk-based security framework for IoT environments in the eHealth
domain to measure expected risk and/or potential benefits by taking a game theoretic approach
and context-aware techniques. Savola et al. [2012] proposed an adaptive security management
scheme considering security metrics to deal with the challenges in eHealth IoT environments.
However, only high-level ideas about the metrics were described without taking into account key
characteristics of IoT environments that would require lightweight solutions. Rullo et al. [2017]
proposed a method to come up with the optimal security resource allocation plan for an IoT network
consisting of mobile nodes using a risk metric estimated by reflecting an economic perspective.
However, only device-level evaluations were considered without showing system-level evaluations.
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Relative to works cited above, we develop a scalable lightweight HARM model to evaluate the
deployment of an integrated defense mechanism for an IoT environment by meeting both system
security and performance requirements.

2.3 SDN Technology for IoT
Software defined networking (SDN) is a promising technology to flexibly manage complex networks.
In the SDN-based architecture, the control logic is decoupled from the switches and routers and
implemented in a logically centralized controller; the controller communicates with the data
forwarding devices via the southbound application programming interface (API) and provides
the programmability of network applications using the northbound API. OpenFlow (OF) is the
most widely used southbound API which provides the specifications for the implementation of OF
switches (including the OF ports, tables, channels, and protocols) [Foundation 2012]. Some SDN
solutions are applied to IoT networks for data flow control among IoT devices [De Oliveira et al.
2015], data exchange reduction in wireless sensor networks [Galluccio et al. 2015], wireless access
networks [Lei et al. 2014], mobile networks [Bernardos et al. 2014], smart urban sensing [Liu et al.
2015], and topology reconfiguration decision making in wireless sensor networks [Ge et al. 2018].
Unlike the above cited works, our work considers a general IoT network with the support of SDN
functionality for network topology shuffling where an IoT network consists of both decoy nodes
and real nodes.

3 SYSTEMMODEL
In this section, we discuss our systemmodel, including (1) the network model in an IoT environment
with the support of SDN technology; (2) the attack model describing the attacker’s capabilities and
attack goals considered in this work; and (3) the defense model addressing defense mechanisms
deployed in the given network.

3.1 Network Model
In this work, we consider an IoT network (e.g., a smart hospital) which consists of servers and IoT
nodes. IoT nodes collect data and periodically deliver them to servers via single or multiple hops for
further processing. IoT nodes of different functionalities and servers are placed in different Virtual
Local Area Networks (VLANs) in the given network. We assume SDN technology [De Oliveira
et al. 2015; Galluccio et al. 2015; Gärtner 2003; Lei et al. 2014] is applied to the IoT network in order
to effectively and efficiently manage and control nodes. We consider one SDN controller to be
deployed in a remote server. The SDN controller communicates with SDN switches and manages
flows between IoT nodes and servers which are connected to switches. Users from the Internet
can request services from the servers and will not interact with IoT nodes directly. We will further
detail the network scenario in our case study in Section 5.1.

3.2 Node Model
We characterize a node’s attributes by four aspects: (1) whether a node is compromised or not
(i.e., ni .c = 1 for compromised; ni .c = 0 otherwise); (2) whether a node is a real node or a decoy
(i.e., ni .d = 1 for a decoy; ni .d = 0 for a real node); (3) whether a node is a critical node with
confidential information that should not be leaked out to unauthorized entities (i.e., ni .r = 1 for a
critical node; ni .r = 0 otherwise); and (4) a list of vulnerabilities that a node is vulnerable to (i.e.,
ni .v = {v1, ...,vm} wherem is the total number of vulnerabilities). Hence, node i’s attributes are
represented by:

Ani = [ni .c,ni .d,ni .r ,ni .v]. (1)
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3.3 Attack Model
In this work, we consider the following attacks that may lead to breaching system security goals:
• Reconnaissance attacks: Outside attackers are able to perform scanning attacks to identify vulner-
able targets (e.g., a server) and then break into a system (or a network). The success of this attack
demonstrates the successful identification and compromise of vulnerable targets by the outside
attacker and leads to the loss of system integrity. This is related to triggering the system failure
based on the security failure condition 1 (SFC1) in Section 3.5.

• Data exfiltration attacks: Inside, legitimate attackers are able to use credentials (e.g., login cre-
dentials or a legitimate key to access resources) obtained from a compromised node to leak
confidential information to unauthorized, outside entities. The success of this attack results in the
leakage of confidential information to unauthorized parties and leads to the loss of confidentiality.
This is related to triggering the system failure based on the security failure condition 2 (SFC2) in
Section 3.5.
We make the following assumptions on attack behaviors and goals to characterize attackers:

• An attacker is assumed to have limited knowledge on whether a given node is decoy (i.e., a fake
node mimicking a real node) or not. The attacker’s capability to detect the deception depends
on the knowledge gap between the attacker and the real system state (i.e., how effectively the
deployed decoy system mimics the real system in a sophisticated manner). We characterize the
level of an attacker’s intelligence in detecting a decoy node by the degree (or probability) at
which the attacker interacts with the decoy node, as described in Section 3.4.

• An attacker’s behavior is monitored after interacting with a decoy. If the attacker realizes the
existence of a decoy, it terminates interactions with the decoy immediately and attempts to find
a new target to break into the system.

• An attacker’s ultimate goal is to compromise servers to leak confidential information to unautho-
rized entities outside the IoT network.

• An attacker is capable of identifying and compromising unpatched exploitable vulnerabilities or
unknown vulnerabilities in a given IoT network.

• An attacker is highly unlikely to compromise servers directly as each server is assumed to have
strong protection mechanisms. Therefore, the attacker can exploit vulnerable IoT nodes as entry
points, move laterally within the network after the exploitation, and eventually compromise
servers by identifying and exploiting unpatched or unknown vulnerabilities.

• The SDN controller is assumed to be well-protected where communications between the SDN
controller and SDN switches are secure [Gärtner 2003].

3.4 Defense Model
We assume traditional defense mechanisms are in place in the IoT network, including a network-
based IDS, firewalls, and anti-virus software on servers. The IDS is capable of monitoring the
whole IoT network and creates alerts on detected intrusions for incident responses. This work
focuses on two types of intrusion prevention mechanisms, namely, cyberdeception and MTD, to
divert attackers from real IoT nodes and dynamically change the attack surface to increase attack
complexity.

3.4.1 Decoy System as Defensive Deception. A defender (i.e., system) can defensively deceive
attackers with the purpose of luring them into a decoy system and interacting with them to capture
and analyze malicious behaviors and reveal intentions/strategies. The decoy system is deployed
independently from the real system. Accordingly, we assume that normal, legitimate users are not
aware of the existence of the decoy system while the defender will receive alerts caused by the
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malicious intrusions if an attacker breaks into the decoy system. We consider two types of decoys
utilized throughout an IoT network in this work:
(1) Emulation-based decoys: This type of decoys allows defenders to create a variety of fake

assets and to provide a large-scale coverage across the network.
(2) Full OS-based decoys: This type of decoys enables the replication of actual operating system

and software running on production devices to increase the engagement possibility of the
attacker.

Both emulation-based and full OS-based decoys can be autonomously created to fit within the
environment without changing the existing infrastructure. To increase overall chances of exploiting
decoys by attackers, a combination of diverse forms of decoys with various interactive capabilities
can be created to resemble legitimate nodes. There exists an intelligence center performing the
following tasks: (1) create, deploy, and update a distributed decoy system; (2) provide automated
attack analysis, vulnerability assessment, and forensic reporting; and (3) integrate the decoy system
with other prevention systems (e.g., security incident and event management platform, firewalls)
to block attackers. The module for the decoy node deployment can be implemented and placed
in a remote server. We create a design parameter, Pd , indicating the probability that an attacker
interacts with an individual decoy node. To be specific, we consider Pemd as the probability that
an attacker interacts with an emulation-based decoy and Posd as the probability that an attacker
interacts with a full OS-based decoy (Pemd ≤ Posd as full-OS-based decoys are considered as having
more sophisticated services with more cost).

3.4.2 Network Topology Shuffling-based MTD. We consider Network Topology Shuffling-based
MTD (NTS-MTD) to change the topology of a given IoT network. NTS-MTD is to be triggered
following the concept of event-based MTD in that the network topology changes upon the occur-
rence of an event. We assume that the SDN controller can control and change flows among nodes
in an SDN-based IoT system. We combine cyberdeception and NTS-MTD by means of network
topology shuffling to change the attack surface of the IoT network populated with both real and
decoy nodes. The details of the proposed decoy system and the event-based NTS-MTD will be
described in Section 4.

3.5 Security Failure Conditions
A system fails when either of following two conditions is satisfied:
• Security Failure Condition 1 (SFC1): This system failure is closely related to the attacker’s
successful reconnaissance attacks and accordingly their successful compromise of system com-
ponents. We define this system failure based on the concept of Byzantine Failure [Gärtner 2003].
That is, when more than one third of legitimate nodes are compromised, the system fails due to
the loss of system integrity.

• Security Failure Condition 2 (SFC2): This system failure occurs when confidential information
is leaked out to unauthorized entities by inside attackers (or compromised nodes), which perform
data exfiltration attacks. Th system fails due to the loss of data confidentiality.

4 PROPOSED PROACTIVE DEFENSE MECHANISMS
In this section, we describe our proposed NTS-MTD technique in five main aspects: (1) deployment
of decoy nodes; (2) when to perform network topology shuffling with decoy nodes; (3) how to
perform topology network shuffling with decoy nodes; (4) performance metrics to measure security,
performance, and service availability of proposed proactive defense mechanisms; and (5) graphical
security model for security analysis.
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4.1 Deployment of Decoy Nodes
In this section, we describe the initial deployment of decoy nodes in an IoT network. Both server
and IoT nodes are deployed in the IoT network. As the network is divided into different virtual local
area networks (VLANs), we place IoT decoy nodes into each VLAN based on the deployment of real
nodes in the corresponding VLAN. At least one decoy server needs to be deployed to interact with
the attacker and reveal the attacker’s intent. Note that we can deploy more decoys if the VLAN
has a large number of real nodes with different types. When adding decoy nodes, we connect real
IoT nodes with decoy nodes by directing fake traffic to decoys (e.g., through deploying a script on
real IoT nodes by the intelligence center to generate traffic or placing a fake credential on real IoT
nodes that diverts the attacker to decoys) in order to lure attackers into the decoy system. The SDN
controller controls flows from real IoT nodes to decoy nodes or from decoy nodes to decoy nodes,
and also from real IoT nodes to real IoT nodes through updating flow tables in SDN switches. There
will be no flows from decoy nodes to real nodes as decoy nodes are used to divert attackers from
the real system; once the attacker is lured into the decoy system, it will be diverted to other decoys
within the decoy system by SDN switches based on the flow table updated by the SDN controller
while the behavior will be monitored by the intelligence center explained in Section 3.4.1; if the
attacker detects a decoy node, it will terminate the interaction with the decoy node and look for a
new target to break in. In this work, we consider changing connections from real nodes to both real
and decoy nodes to increase the complexity of connection changes. The reason is that an intelligent
attacker may observe the pattern of traffic flows among nodes through statistical analysis once
inside the network and infer the trap (i.e., diversion to the decoy system) if only connections from
real nodes to decoys are shuffled.
Updated flows (either addition or removal) may affect normal flows from IoT nodes to servers

for service delivery. In practice, IoT nodes will consume more energy to deliver more flows and
may delay the time to send normal packets toward the server. We use packet delivery ratio as a
metric for measuring service availability, as discussed in Section 4.4.
Initially we create decoy nodes with added connections to some randomly chosen real nodes

based on the deployment of real nodes in each VLAN. The randomly generated network topology
will be used as the initial topology and then fed into the shuffling optimization algorithm to identify
an optimal network topology.

4.2 When to Perform Network Topology Shuffling with Decoy Nodes
We can use a fixed time interval to execute NTS-MTD. Apparently the fixed time interval is the
most important parameter of this strategy because if the interval is too short, the defense cost
will be high although the system lifetime may be prolonged because frequent topology shuffling
can mislead the attacker to decoy paths and nodes and thus keep real nodes from the attacker. On
the other hand if the fixed time interval is too long, it will adversely shorten the system lifetime
because of infrequent network shuffling. We call this strategy the fixed time interval strategy or just
“fixed” for short. A variation of this “fixed” strategy is to have the time interval follow a distribution
with the mean being the same as the fixed time interval used by the fixed strategy. This will add
some stochastic nature to the time interval which is treated as a random variable. We will call this
strategy “random” for short.

Alternatively, we can execute NTS-MTD when a condition is detected true, for example, based on
the system security vulnerability level detected by the system. We will call this strategy “adapative”
for short. To be specific, the system security vulnerability level at time t , denoted by SSV (t), is
measured by two dimensions: (1) how many legitimate, inside nodes are compromised until time t ,
which is associated with SFC1; and (2) how many neighboring nodes of a critical node (i.e., ni .r = 1)
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within k hops from the critical node i are compromised until time t , which is related to SFC2.
Of course we do not know which node is actually compromised unless the IDS has detected it.
However, given the list of vulnerabilities that a node is vulnerable to, as discussed in Section 3.2
and the compromise rate for each vulnerability which is documented in several sources such as
[NIST 2005] we can estimate the probability that a node is compromised at time t . Note that when
the system meets either SFC1 or SFC2, the system fails, leading to SSV (t) = 1. Otherwise, SSV (t) is
computed by:

SSV (t) = w1
CN (t)

N
+w2

CNck (t)

Nck (t)
(2)

Here w1 and w2 are weights to consider SFC1 and SFC2, respectively, where w1 + w2 = 1. N is
the total number of real nodes which is known at deployment time and CN (t) is the number of
compromised, real nodes at time t which may be estimated from the compromise rate of each
vulnerability that a node is vulnerable to. (See more about this in Section 5.1.) Nck (t) is the total
number of real nodes within k hops from given critical nodes at time t which may be obtained
from the topology shuffled at time t while CNck (t) is the total number of compromised, real nodes
within k hops from critical nodes which again can be estimated from the compromise rate of each
vulnerability that a node is vulnerable to. Since there may be multiple critical nodes which have
confidential information that should not be leaked to outside unauthorized parties, we estimate
CNck (t) by:

CNck (t) =
∑

i ∈Lk (t )

ni .c(t) (3)

where Lk (t) is the number of real nodes that belong to neighbors of any critical nodes within k
hops from them at time t and ni .c(t) refers to whether node i is compromised (ni .c(t) = 1) or not
(ni .c(t) = 0) at time t . The cardinality of Lk (t) (i.e., |Lk (t)|) yields Nck (t). Note that as the network
topology keeps changing due to the execution of NTS-MTD, both Nck (t) andCNck (t) are functions
of time to reflect their dynamic changes. If Lk (t) includes any critical nodes being compromised,
the system meets SFC2 and fails. That is, SSV (t) = 1 and no further detection of system security
level is needed.
Lastly we can have a hybrid strategy that will degenerate to the adaptive strategy when the

triggering time as determined by the adaptive strategy is smaller than the fixed time interval used
by the fixed strategy and will degenerate to the fixed strategy otherwise. The four “when-to-shuffle”
strategies will be more formally defined and labeled later in Section 5.2 when we perform evaluation.

4.3 How to Shuffle Network Topology with Decoy Nodes
We develop three strategies to address how to perform network shuffling when it is time to execute
NTS-MTD. The basic idea of our design is to maximize the chance of the attacker exploiting decoy
targets, thus effectively deterring or preventing its security attacks to real nodes. In order to reach
a target node, an attacker could exploit a node as an entry point and use it as the stepping stone
to compromise other nodes and further compromise the target. It may be able to find multiple
attack paths via one or multiple entry points. An attack path describes a sequence of nodes that
an attacker could compromise to reach the target node. We consider a set of attack paths AP for
an attacker to reach all targets from all possible entry points. Each attack path ap is a sequence
of nodes along the path. We use APr to represent a set of attack paths with real nodes as targets
and APd to denote a set of attack paths with decoy nodes as targets. APr only contains real nodes
while APd contains both real and decoy nodes. To be specific, if an attacker finds a real node as the
entry point and compromises other real nodes until reaching a real target node, this is counted as
an attack path in APr ; however, it could be diverted to a decoy node. Once the attacker is lured
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into the decoy system, it will be diverted to other decoy nodes within the decoy system. If the
attacker reaches a decoy target node, this is counted as an attack path in APd ; however, if the
attacker figures out the decoy node and terminates its interaction, it is not counted as an attack
path because the attacker does not reach the decoy target node. Besides, decoy nodes could be
updated or cleared once it is detected compromised by the intelligence center in which case the
attacker will not recognize the same decoy node during subsequent attacks.

To maximize the chance of the attacker being misled to decoy targets, we develop the following
two “how-to-shuffle” strategies:
• GA-based optimization: We design three metrics to be optimized in the algorithm: (1) The
number of attack paths toward the decoy targets (NAP

DT ); (2) Mean Time To Security Failure
(MTTSF); and (3) Defense cost (CD ). Computations of these metrics are described in Section 4.4.

• Decoy path-based optimization: Due to the high computational complexity of GA, we design
a simple heuristic algorithm to provide a close-to optimal solution in topology shuffling. The
algorithm takes a path-based optimization approach in two ways: (i) Shuffle edges (connections)
from real IoT nodes to decoy nodes to randomize decoy connections; and (ii) Shuffle edges
(connections) among real IoT nodes to maximize the number of attack paths toward decoy targets.
Pseudocode and implementation can be found in GitHub [Ge 2020].
The third strategy is a baseline strategy that generates a network topology based on a connection

probability of a real/decoy node being connected to another decoy node. We call this strategy
“random” meaning that the connection probability is a random variable in the range of [0, 1] which
determines if a connection from a real/decoy node to another decoy node should be created in the
resulting topology. The three “how-to-shuffle” strategies will be more formally defined and labeled
later in Section 5.2 when we perform evaluation.

4.4 Metrics
We use the following metrics to measure security, performance, and service availability of the
proposed proactive defense mechanisms:
• Number of attack paths toward decoy targets (NAP

DN ): This metric indicates the level of
deception that diverts an attacker from the real system. NAP

DN is calculated by |APd | to sum attack
paths toward the decoy targets.

• Mean Time To Compromise (MTTC): This metric refers to the total amount of time that an
attacker takes to compromise a series of nodes within the network until the system reaches a
certain security vulnerability level SSV . MTTC is estimated by:

MTTC =
∑
i ∈S

Si

∫ ∞

t=0
Pi (t)dt (4)

where S refers to a set of all system states and Si is 1 when in state i the system does not reach
the given SSV level and is 0 otherwise. Pi (t) is the probability of the system being in state i at
time t .

• Mean Time To Security Failure (MTTSF): This metric measures the system lifetime indicating
how long the system prolongs until the system reaches either SFC1 or SFC2 (described in Section
3.5). That is, MTTSF measures the system lifetime without occurring any security failure. MTTSF
is measured by:

MTTSF =
∑
i ∈S

(1 − SFi )

∫ ∞

t=0
Pi (t)dt (5)

where S is a set of all system states and SFi returns 1 when system state i reaches either SFC1 or
SFC2; 0 otherwise. Pi (t) indicates the probability of the system being in state i at time t .
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Fig. 1. Workflow for the security analysis.

• Defense Cost (CD ): This metric depicts the cost associated with shuffling operations. That is, we
count the number of edges shuffled (i.e., from connected to disconnected or from disconnected
to connected) by:

CD =

∫ MTTSF

t=0
CS (t) (6)

where CS (t) refers to the number of shuffled edges at time t . Note that the same edge can be
shuffled multiple times over time and each shuffling is counted as a separate MTD operation
during the system uptime.

• Packet Delivery Ratio (PDR): This metric measures service availability affected by topology
shuffling. Because of topology shuffling, attackers tend to compromise nodes on attack paths. For
each attack path in APr , a compromised node along the path may drop or manipulate packets
travelling through it, thereby affecting service availability for service packets passing through
the attack path. If packets are not dropped or manipulated by compromised nodes along the path
(because the attacker may not want to get caught by the IDS) or if there is no compromised node
along the attack path, then the path will be able to successfully deliver service packets. At each
shuffling operation, we count the number of attack paths that can successfully do packet delivery
and divide it by the total number of attack paths |APr |. When the system reaches either SFC1
or SFC2, we calculate the mean PDR over all shuffling operations. The focus of our work is to
analyze the effect of attacks on service availability which can be disrupted due to packet loss
caused by attacks. We assume that packet losses caused by collisions or errors will be handled by
data link layer and network layer packet retransmission protocols and would not affect service
availability represented by the packet delivery ratio metric.

4.5 Graphical Security Model for Security Analysis of NTS-MTD
We develop a graphical security model based on HARM to assess the security of an IoT network.
Fig. 1 describes the workflow of our security analysis in five phases: network generation, topology
generation, security model generation, shuffling mechanism evaluation, and shuffling optimization.
(1) Phase 1: The security decision maker provides the IoT Generator with the system infor-

mation (i.e., an initial network topology and node vulnerability) to construct an IoT network.
(2) Phase 2: Given the network and initial deployment of decoys, the Topology Generator

randomly generates a set of different topologies for GA-based shuffling and one topology for
decoy path-based shuffling (i.e., add connections from real nodes to decoys/real nodes).

(3) Phase 3: The Security Model Generator takes the shuffled network as input and automat-
ically generates a HARM model that captures all possible attack paths. We use a two-layer
HARM as our graphical security model, with the upper layer capturing the node connectivity
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information (i.e., nodes connected in the topological structure) and the lower layer denoting
the vulnerability information of each node.

(4) Phase 4: The Shuffling Evaluator takes the HARM model as input along with evaluation
metrics and computes results which are then fed into the Optimization Module.

(5) Phase 5: For GA-based shuffling, based on the initial set of shuffled topologies and associated
evaluation results, the Optimization Module applies the multi-objective GA to compute
the optimal topology for the IoT network. For decoy path-based shuffling, the Optimization
Module takes the randomly shuffled topology from the Topology Generator and runs the
heuristic algorithm to compute the close-to optimal topology.

5 NUMERICAL RESULTS & ANALYSIS
In this section, we first describe the simulation setup, introduction of 12 schemes, parameter table,
implementation detail, and data collection process. Then we conduct a comparative performance
analysis of 12 schemes of when and how to execute our proposed NTS-MTD technique.

5.1 Simulation Setup

Fig. 2. A software-defined IoT network.

We use an IoT network shown in Fig. 2 in our simula-
tion and assume SDN is deployed to support connection
changes. We consider a smart hospital scenario in the
IoT context. Specifically, the network consists of four
VLANs. There are two Internet of Medical Things (i.e.,
MRI and CT Scan) in VLAN1 (e.g., medical examina-
tion rooms), a smart thermostat, a smart meter, and
a smart camera in VLAN2 (e.g., medical care units), a
smart TV and a laptop in VLAN3 (e.g., staff office) and a
server located in VLAN4 (e.g., server room). At the ini-
tial deployment, VLAN4 is connected with other three
VLANs as IoT devices need to deliver information to the
server for further processing. VLAN2 is also connected
to VLAN3 for applications running on the laptop to
control smart sensors as well as receive videos from
the smart camera.

Table 1. Real node and vulnerability information.

Real Node VLAN CVE ID CVSS Exploitability Compromise Rate
MRI VLAN1 CVE-2018-8308 6.8 0.006

CT Scan VLAN1 CVE-2018-8308 6.8 0.006
Smart Thermostat VLAN2 CVE-2018-11315 6.5 0.006

Smart Meter VLAN2 CVE-2017-9944 10.0 0.042
Smart Camera VLAN2 CVE-2018-10660 10.0 0.042
Smart TV VLAN3 CVE-2018-4094 8.6 0.012
Laptop VLAN3 CVE-2018-8345 4.9 0.004
Server VLAN4 CVE-2018-8273 10.0 0.042

We collect software vulnerabilities from Common
Vulnerabilities and Exposures (CVE)/National Vulnerability Database (NVD) [NIST 2005]. We
assume each real node has one vulnerability that could be exploited by the attacker to gain a root
privilege. More vulnerabilities could be chosen for nodes in the future work. This research work
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Table 2. Decoy Node and Vulnerability Information.

Decoy Node VLAN CVE ID CVSS Exploitability Compromise Rate

CT Scan VLAN1
CVE-2018-8308 6.8 0.006
CVE-2018-8136 8.6 0.012

Smart Camera VLAN2
CVE-2018-6294 10.0 0.042
CVE-2018-6295 10.0 0.042
CVE-2018-6297 10.0 0.042

Smart TV VLAN3
CVE-2018-4094 8.6 0.012
CVE-2018-4095 8.6 0.012

Server VLAN4
CVE-2016-1930 10.0 0.042
CVE-2016-1935 8.6 0.012
CVE-2016-1962 10.0 0.042

focuses on proposing and evaluating the integrated proactive defense mechanism, rather than
demonstrating capabilities of the graphical security model to analyze the security posture of the
IoT network with multiple vulnerabilities. The vulnerability information of real nodes (i.e., CVE ID)
is presented in Table 1. We also assume the compromise rate of each vulnerability. The compromise
rate represents the frequency that an attacker could successfully exploit the vulnerability to gain
root privilege per time unit (i.e., hour). We estimate the mean vulnerability exploitation time
according to the exploitability metric of the base score from the Common Vulnerability Scoring
System (CVSS) and calculate the compromise rate using the inverse of the mean vulnerability
exploitation time. Specifically, we estimate the compromise rate as once per day (i.e., 1/24 = 0.042)
if the exploitability value is 10.0, twice per week (i.e., 1/84 = 0.012) if the value of is around 9.0, once
per week (i.e., 1/168 = 0.006) if the value is around 7.0, and once per 10 days (i.e., 1/240 = 0.004) if
the value is around 5.0. This value will be used to calculate Mean Time to Compromise (MTTC)
and Mean Time to Security Failure (MTTSF) by the HARM model. Once a node is compromised
it can perform packet dropping or manipulating attacks to affect service availability. In practice,
however, a compromised node may not drop or manipulate a packet passing through it, so it won’t
get caught by the network IDS. In our simulation, we consider a packet drop probability Pda and a
packet manipulation probability Pma by the attacker.
We put one decoy node in each VLAN in the initial deployment of the decoy system. In order

to lure attackers, each decoy is assumed to be configured to have multiple vulnerabilities. An
attacker could exploit any vulnerability to gain the root permission of the node. The vulnerability
information of decoys is listed in Table 2. We use emulated decoys for the CT scan, smart camera,
smart TV, and full-OS based server.
We ran all simulations on a HPC cluster with Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz (28

physical cores) and 256GB RAM. We use Ubuntu 18.04.4 LTS and PyCharm with Python 3.7.3.
Simulation code (i.e., implementation of the system model and proposed mechanisms) can be found
in GitHub [Ge 2020]).

5.2 Twelve Schemes to Execute NTS-MTD based on When and How Strategies
We investigate two aspects of NTS-MTD: (i) when-to-shuffle a network topology (in an interval or
in an adaptive manner); and (ii) how to select a network topology (by a GA-based optimization, a
decoy path-based optimization, or random shuffling).

Four strategies regarding when-to-shuffle a network topology are:
• Fixed Shuffling (FS): This strategy is to execute NTS-MTD in a fixed time interval, γ1, to shuffle
the network topology.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: December 2020.



Proactive Defense for Internet-of-Things: Moving Target Defense with Cyberdeception 15

• Random Shuffling (RS): This strategy is to execute NTS-MTD in a random interval based on
exponential distribution with mean λ.

• Adaptive Shuffling (AS): This strategy is to execute NTS-MTD in an adaptive manner based
on SSV (t) with two given thresholds: (1) β to check the decrease of the SSV during a checking
interval ∆; and (2) ρ to check the current system security vulnerability, SSV (t), as described in
Section 4.2. NTS-MTD is executed when the condition, (SSV (t) −SSV (t −∆) > β) ∧ (SSV (t) > ρ),
is true. This condition is checked whenever the system detects a compromised real node, thus
reflecting the nature of an event-driven adaptive MTD.

• Hybrid Shuffling (HS): This strategy is a mixture of AS and FS. Since AS triggers the execution
of NTS-MTD until the event condition is detected, it may delay the execution of NTS-MTD
unnecessarily especially in the beginning because security vulnerability does not necessarily
increase rapidly in the beginning. To remedy this, we introduce an upper bound time limit (i.e.,
the maximum delay) for NTS-MTD execution. Specifically, the time interval to execute NTS-MTD
is set to min[Int(AS),γ2] where Int(AS) returns a time interval when AS is used and γ2 is the
fixed time interval for the maximum delay when FS is used.
Three strategies regarding how to select a network topology are:

• Random Network Topology (RNT): This strategy is a baseline strategy that selects a network
topology based on a rewiring probability Pr of a node being connected with another node. Here
Pr is critical in determining the overall network density in a given network.

• GA-based Network Topology (GANT): This strategy selects a network topology that maxi-
mizes objective functions used in the GA, as discussed in Section 4.2.

• Decoy Path-optimized Network Topology (DPNT): This strategy selects a network topology
that maximizes the number of decoy paths for each real IoT node, as discussed in Section 4.2.
Since we have four “when” strategies and three “how” strategies for NTS-MTD execution, there

are 12 schemes resulting from the combination of one “when” strategy and one “how” strategy,
viz., FS-RNT (i.e., execution of NTS-MTD based on Fixed Shuffling (FS) and Random Network
Topology (RNT)), RS-RNT, AS-RNT, HS-RNT, FS-GANT, RS-GANT, AS-GANT, HS-GANT, FS-DPNT,
RS-DPNT, AS-DPNT, and HS-DPNT.

5.3 Parameter Table, Implementation Detail, and Data Collection Process
Table 3 summarizes the model parameters, their meanings, and default values used in our simulation
runs. We used equal weights for w1/w2 and wN /wM /wC , respectively, where the values can be
adjusted based on the importance of a given component. Low intelligent attacker (Pemd = 0.9 and
Posd = 1.0) with medium attack severity (Pda = Pma = 0.5) is used in the baseline scenario. We
analyzed the impact of attacker’s intelligence and severity in Section 5.4.2 and 5.4.3. We set k = 1
due to the current topology of the example IoT network where a larger value can be selected for a
larger network. Regarding parameters in GANT, we chose maximum generation Nд = 100 with a
fairly high crossover rate to produce new offspring while choosing a low mutation rate to prevent
the convergence to a local optimal (i.e., a high mutation rate may turn GA into random search,
which needs to be avoided). We set Pr = 0.5 in RNT to avoid a minimal change of the network
topology by a low value and high shuffling cost by a high value. In AS/HS, we set β = 0.01 to trigger
the shuffling. We set ρ = 0.1 to represent a low tolerance of attacks. We conducted sensitivity
analysis of varying ρ in Section 5.5.2. We set shuffling time intervals γ1 and λ as 24 hrs in FS
(shuffling once per day) and RS, respectively, in the baseline scenario to avoid high cost introduced
by frequent shuffling and high delay of shuffling. We set maximum delay γ2 as 120 hrs (shuffling
once per 5 days) in HS because a low value may turn HS into FS while a high value may turn HS
into AS. We conducted sensitivity analysis of varying γ2 in Section 5.5.1.
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Table 3. Design parameters, their meanings and default values.

Param. Meaning Value
w1 A weight to consider the security vulnerability associated with SFC1 0.5
w2 A weight to consider the security vulnerability associated with SFC2 0.5
P emd Interaction probability of an attacker with an emulated decoy 0.9
Posd Interaction probability of an attacker with a full-OS based decoy 1.0
Pda Probability of a packet to be dropped 0.5
Pma Probability of a packet to be manipulated 0.5
k Number of hops to determine a node’s ego network 1
N Total number of network topologies with initial decoy deployment and randomly gener-

ated connections between real and decoy nodes used in GANT
100

wN A weight to consider in objective function used in GANT 1/3
wM A weight to consider in objective function used in GANT 1/3
wC A weight to consider in objective function used in GANT 1/3
Nд Maximum number of the generation used in GANT 100
rc Crossover rate used in GANT 0.8
rm Mutation rate used in GANT 0.2
Pr Probability of an edge being shuffled in RNT (i.e., add/remove an edge) 0.5
β Threshold used to estimate the decrease of the system security vulnerability level during

the time used in AS/HS
0.01

ρ Threshold of tolerating system security vulnerability used in AS/HS 0.1
γ1 Fixed shuffling time interval used in FS (hour) 24
γ2 Fixed shuffling time interval (maximum delay) used in HS (hour) 120
λ Mean value used for exponential distribution in RS (hour) 24

Our proposed NTS-MTD technique is implemented based on the workflow shown in Fig. 1. The
Optimization Module implements the algorithms to execute the three “how” strategies, i.e., RNT,
GANT, and DPNT, as discussed in Section 5.2.

We assume that there is an attacker exploiting node vulnerabilities. The vulnerability exploitation
attack is implemented via the HARMmodel that computes potential attack paths. In each simulation
run, the attacker will randomly choose an entry point from one attack path and compromise nodes
along the attack path with behaviors defined in Section 3.3 until either SFC1 or SFC2 (see Section 3.5)
is met. For each node to be compromised, we implemented the behavior of the attacker based on two
steps: (1) check the privilege of the vulnerability; and (2) add the mean vulnerability exploitation
time to MTTC if the required privilege is lower than what the attacker has (i.e., the exploitation
of a vulnerability requires no authorization or user/administrator/root privilege). The attacker’s
intelligence, estimated by Pemd and POS

d (see Section 3.4), is incorporated into the calculation of
MTTC as well as MTTSF. We assume the system will clear decoy nodes once the intelligence center
detects the attacker’s interaction with the decoy target. Therefore, the attacker will not recognize
the same decoy node in its subsequent action. Decoy nodes are also cleared at each shuffling. This
is implemented by only marking the compromised real nodes as being compromised in the attack
paths. By using FS/RS strategies, the network may be shuffled periodically or randomly right at
the moment a node is under attack. We assume that the attacker is forced to quit the network due
to lost connections and needs to find other ways to break into the network. This is implemented
by checking the shuffling time interval with the mean vulnerability exploitation time of the node
under compromise and forcing the attacker to randomly choose another entry point among the
attack paths if the interval is met. In the subsequent attack after shuffling, the attacker could
continue its previous attack action once it encounters the same real node next time (i.e., MTTC for
the real node is accumulated throughout the MTTSF). By using the AS strategy, the network is
shuffled due to changes to SSV being detected by the defender. The attacker is also forced to quit
the network after each shuffling due to lost connections and needs to find ways to re-enter the
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network. Each newly shuffled network is modeled by a new HARM model for calculating potential
attack paths. We encode each shuffling solution for the whole network as a binary valued vector
with 1 representing the existence of an edge between two nodes and 0 representing no edge. We
limit potential connections to be edges from real IoT nodes to either decoy nodes or real IoT nodes.
Hence, to optimize the defense cost, we aim to maximize CT (t) −CD (t) where CT (t) refers to the
total defense cost (i.e., the total number of potential edge changes at time t ) andCD (t) is the number
of edges changed by executing NTS-MTD at time t (see Section 4.4).

For GANT, we aim to solve a multi-objective optimization (MOO) problem with three objectives
to maximizeNAP

DN andMTTSFwhile minimizingCD (or maximizingCT (t)−CD (t)). The optimization
problem is to compute a set of Pareto optimal solutions (or Pareto frontier) [Cho et al. 2017b]. In
order to choose one optimal solution among the Pareto frontier, we first normalize three metrics,
denoted by �NAP

DN , �MTTSF and, C̃D , and then assign a weight to each metric based on scalarization-
based MOO technique to transform the MOO problem to a single-objective optimization (SOO)
problem [Cho et al. 2017a]. The normalized metric, X̃ , is given by:

X̃ =
X

Xmax
(7)

where X is the original metric value and Xmax is the maximum metric value of the corresponding
fitness function in the final population in the GA-based algorithm.

The objective function we aim to maximize is represented by:

max wN
�NAP
DN +wM �MTTSF +wCC̃D (8)

where wN , wM , and wC are weights to the three metrics with wN +wM +wC = 1. The optimal
solution is the network topology with the maximum objective value.
In each simulation run, we collect data to calculate the mean time to security failure, MTTSF,

the number of attack paths toward decoy targets, NAP
DT , the defense cost per time unit, CD , and the

packet delivery ratio, PDR. We run the simulation 100 times using random seeds in each simulation.
After 100 runs, we collect the means of MTTF, NAP

DT , CD , and PDR for performance analysis.

5.4 Comparative Performance Analysis
In this section, we conduct a comparative performance analysis of the 12 schemes discussed in
Section 5.2. We follow the parameter table in Table 3. We vary the level of attackers’ intelligence
in detecting decoy nodes (i.e., Pemd and Posd ), attack severity (i.e., packet drop probability Pda and
packet manipulation probability Pma ), the number of decoys in each VLAN, and the number of real
IoT nodes to analyze their effects on performance in terms of the mean time to security failure,
MTTSF, the number of attack paths toward decoy targets, NAP

DT , the defense cost per time unit, CD ,
and the packet delivery ratio, PDR.

5.4.1 Comparison of Schemes under the Baseline Scenario. We first consider a baseline scenario
in which there is only one decoy in each VLAN and the attacker intelligence is low characterized
by its high interaction probabilities with decoys, i.e., Pemd =0.9 for an emulated decoy and Posd =1.0
for a full-OS based decoy. Recall that a high interaction probability means that the attacker must
interact with a decoy node intensively in order to detect it is a decoy.
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(a) NAP
DT (b) MTTSF (c) CD (d) PDR

Fig. 3. Comparison of schemes under the baseline scenario.

Fig. 3 compares the performance characteristics of the 12 schemes discussed in Section 5.2 for
executing our proposed NTS-MTD technique under the default parameters presented in Table 3.
• Fig. 3a compares the number of attack paths toward decoy targets NAP

DT (the higher the better)
representing deception effectiveness. In the “when-to-shuffle” category, fixed/random shuffling
(FS/RS) based schemes perform comparably among themselves. On the other hand, in the “how-
to-shuffle” category, the genetic algorithm network topology (GANT) scheme performs the best
in deception effectiveness, followed by the decoy path-optimized network topology (DPNT)
scheme and the random network topology (RNT) scheme. This indicates how-to-shuffle the
network has a major impact on deception effectiveness.

• Fig. 3b compares MTTSF (the higher the better) representing the system lifetime before the system
experiences a failure. In the “when-to-shuffle” category, fixed/random shuffling (FS/RS) based
schemes significantly outperform adaptive/hybrid shuffling (AS/HS) based schemes in MTTSF.
One factor is system failure in AS/HS is determined by either SFC1 or SFC2 being triggered, or
SSV exceeding the threshold. In the current setting, AS/HS uses a low SSV threshold (i.e., 0.1),
which indicates a low tolerance on SFC1 and SFC2. This means system status could be considered
as failure based on SSV threshold before either SFC1 or SFC2 is triggered. Another factor is that
in FS/RS based schemes, a node may be under attacks while the network is shuffled because
the fixed/random interval for topology shuffling could be much smaller than the MTTC of the
node at which time topology shuffling is triggered by AS/HS. After each shuffling, the attacker
is forced to quit the network due to lost connections and needs to re-enter the network by
randomly choosing entry points to compromise. After re-entering, the attacker could continue
its previous attack once it encounters the same real node next time or launch a new attack for a
decoy node as decoys are cleared at each shuffling. This could effectively lead to an increase of
MTTSF over time in order to meet either SFC1 or SFC2 security failure condition. We see that
RS produces the highest MTTSF among all. In the “how-to-shuffle” category, GANT and DPNT
perform comparably among themselves and both outperform RNT.

• Fig. 3c compares the defense cost CD (the lower the better). Since the defense cost is inversely
related to the number of attack paths toward decoy targets (i.e., deception effectiveness), we
expect the trend for defense cost is just opposite to that in Fig. 3a for deception effectiveness. This
is indeed the case. In the “when-to-shuffle” category, adaptive/hybrid shuffling (AS/HS) based
schemes perform comparably among themselves and outperform fixed/random shuffling (FS/RS)
based schemes, a trend that is opposite to that for deception effectiveness. In the “how-to-shuffle”
category, DPNT performs the best in defense cost among all, followed by GANT and RNT. This
is also a trend that is in line with that exhibited in Fig. 3a for deception effectiveness. DPNT has
the lowest CD among all due to less edge changes made during topology shuffling compared to
GANT and RNT.

• Fig. 3d compares packet delivery ratio PDR (the higher the better) representing service availability.
In the “when-to-shuffle” category, adaptive/hybrid shuffling (AS/HS) based schemes perform
comparably among themselves and outperform fixed/random shuffling (FS/RS) based schemes.
The reason is that AS/HS produces a smaller number of attack paths toward decoy targets than
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FS/RS, so the attacker has a smaller chance to drop or manipulate packets passing through the
attack paths. In the “how-to-shuffle” category, GANT, DPNT and RNT perform comparably
among themselves.
Summarizing above, there is no winner that can achieve the goal of maximizing deception

effectiveness (see Fig. 3a), MTTSF (see Fig. 3b), and service availability (see Fig. 3d) while minimizing
defense cost (see Fig. 3c). However, we could identify DPNT as the best “how-to-shuffle” strategy
that can maximize MTTSF and minimize defense cost, while maintaining comparable service
availability. We explore optimal parameters of DPNT-based schemes in Section 5.5 and compare
the IoT network with and without these DPNT-based schemes in Section 5.6. We also note that RS
performs better than FS even the mean time interval for executing topology shuffling in RS is the
same as the fixed time interval for executing topology shuffling in FS (see Table 3). We attribute
this to the fact that the execution time interval in RS follows exponential distribution and this
stochastic nature matches better with the stochastic nature of attack behavior.

5.4.2 Analysis on Impact of Attacker’s Intelligence. We use the baseline scenario and consider the
attackers can exhibit different levels of intelligence. We consider three levels of attack intelligence
represented by four pairs of interaction probabilities with decoys (Pemd for an emulated decoy,
Posd for a full-OS based decoy): low intelligence (0.9, 1.0), medium intelligence (0.3, 0.9), medium
intelligence (0.5, 0.7), and high intelligence (0.1, 0.3). We consider two cases of medium intelligence:
the case 1 is for a medium-intelligence attacker that can easily recognize an emulated decoy but
can hardly recognize a full OS-based decoy and the case 2 is for a medium-intelligence attacker
that can only modestly recognize an emulated decoy or a full OS-based decoy, respectively. For
other design parameters, we follow their default values summarized in Table 3. Without loss of
generality, we consider AS-DPNT and HS-DPNT to analyze the impact of attack intelligence.

(a) NAP
DT (b) MTTSF (c) CD (d) PDR

Fig. 4. Performance analysis on impact of an attacker’s intelligence.

Fig. 4 shows how AS-DPNT and HS-DPNT perform in terms of the mean time to security failure,
MTTSF, the number of attack paths toward decoy targets, NAP

DT , the defense cost per time unit,
CD , and the packet delivery ratio, PDR. In Fig. 4a, with the decreasing attack intelligence, NAP

DT
fluctuates for each scheme as this metric is related to the shuffling algorithm (i.e., DPNT in this
case study). In Fig. 4b, for each scheme, MTTSF reaches the highest when the attacker has low
intelligence. This implies the potential attacker with higher intelligence in detecting decoys hurts
the system lifetime as measured based on MTTSF. However, both AS-DPNT and HS-DPNT are
resilient under high-intelligent attacks without much reduction of MTTSF compared with the case
of low-intelligent attacks. In Fig. 4c,CD has an increasing trend for both schemes when intelligence
increases. In Fig. 4d, PDR remains at 1.0 for both schemes. One reason is that in adaptive/hybrid
shuffling, critical nodes may not be compromised when the SSV threshold is small (e.g., ρ = 0.1).
Even if some neighbor nodes are compromised, there are still some clean neighbor nodes to be able
to deliver packets. Another reason is that in our simulation setting, Pda = 0.5 and Pma = 0.5 to avoid
detection, so compromised nodes will only drop half of the packets passing through them.
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(a) NAP
DT (b) MTTSF (c) CD (d) PDR

Fig. 6. Performance comparative analysis of the variants of DPNT schemes under different decoy deployment
scenarios.

In summary, attack intelligence has a moderate degree of impact (10-20%) on MTTSF and CD
because high intelligent attackers are capable of detecting decoys early on. This allows them to
have more interactions with real nodes early on, thereby leading to shorter lifetime and forcing
the system to trigger costly shuffling operations to prevent security attacks. Attack intelligence,
however, has little impact on NAP

DT and PDR.

5.4.3 Analysis on Impact of Attack Severity on Service Availability. We use the baseline scenario,
except considering attacks with different levels of severity that would affect service availability.
We consider three levels of attack severity represented by three pairs of packet drop probability
Pda and packet manipulation probability Pma : low severity (0.1, 0.1), medium severity (0.5, 0.5) and
high severity (1.0, 1.0). For other design parameters, we follow their default values summarized in
Table 3. We again apply DPNT-based schemes to analyze the impact of attack severity on packet
delivery ratio (PDR) representing service availability.

Fig. 5. Comparative performance analysis
of the variants of DPNT schemes under the
different attack severity.

Fig. 5 shows the effect attack severity on PDR for DPNT
based schemes. We observe that PDR remains at 1.0 for
AS-DPNT and HS-DPNT while steadily decreases for FS-
DPNT and RS-DPNT as the attack severity increases. This
demonstrates resilience of adaptive shuffling schemes
(i.e., AS/HS) in response to increasing attack severity
because critical nodes are well protected from security
attacks by setting a low SSV threshold (e.g., ρ = 0.1).

5.4.4 Analysis on Impact of Decoy Node Population. We
increase the number of decoy nodes in each VLAN to
analyze the impact of decoy node population. The base-
line scenario has (1, 1, 1, 1) decoy nodes for (CT scan,
smart camera, smart TV, server). We consider two more
scenarios: (2, 2, 2, 1) and (3, 3, 3, 1) where random connections among decoy IoT nodes are also
added. For other design parameters, we follow their default values summarized in Table 3. We
consider AS-DPNT and HS-DPNT to analyze the impact of decoy population.

Fig. 6 shows how AS-DPNT and HS-DPNT perform in terms of the mean time to security failure,
MTTSF, the number of attack paths toward decoy targets, NAP

DT , the defense cost per time unit,
CD , and the packet delivery ratio, PDR, as the decoy population changes. In Fig. 6a, NAP

DT increases
slightly with the increasing number of decoys within each scheme. The reason is that as the number
of decoys increases, DPNT also increases the number of attack paths toward the decoy target. In
Fig. 6b, MTTSF remains steady as the number of decoys increases. We attribute this to the design of
DPNT algorithm which only focuses on maximizing the number of decoy paths. There may be many
paths with a majority of real IoT nodes on the paths. Attackers could still be able to compromise a
large portion of real IoT nodes thus leading to system failure because MTTSF is calculated based on
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compromised real nodes within the network. In Fig. 6c, CD also increases as the number of decoys
increases. This is due to the fact that a lot of edges need to be changed with additional decoy nodes.
In Fig. 6d, PDR remains at 1.0 across all scenarios as PDR is related to service availability among
real nodes, so it is little affected by decoys especially when SSV threshold is low (e.g., ρ = 0.1 in
our test case). In summary, decoy node population impacts NAP

DT and CD while it does not largely
improve MTTSF or PDR.

5.4.5 Analysis on Impact of Network Size. We increased the number of nodes in each VLAN to
analyze the impact of network size. The baseline scenario has (2, 3, 2, 1) real IoT nodes for (MRI/CT
scan, smart thermostat/meter/camera, smart TV/laptop, server) and (1, 1, 1, 1) decoy nodes for
(CI scan, smart camera, smart TV, server). We consider two more scenarios: (4, 300, 200, 1) real
nodes and (2, 50, 50, 1) decoy nodes vs. (4, 1200, 800, 1) real nodes and (2, 100, 100, 1) decoy nodes
respectively. The number of medical devices in VLAN1 is kept in a low number as they are rarely
deployed in a large scale due to their high price. Therefore, we have three scenarios with the number
of real nodes as 8, 505, and 2005, respectively. We apply the HS-DPNT algorithm to analyze the
impact of the network size with default parameters specified in Table 3. To reduce the computational
complexity of attack paths, we constrained the out-degree of a real IoT node (i.e., the number of
outgoing connections to other real nodes) and the maximum path length in the DPNT algorithm.
We do not set any constraint for the baseline scenario while using 2 as the maximum outgoing
connections and 5 as the maximum path length for the other two scenarios.

Table 4. Analysis on impact of network size.

Metric No. of nodes (real, decoy)
(8, 4) (505, 103) (2005, 203)

NAP
DT 2586.9 2822521.4 88128332.3

MTTSF 145.0 2767.1 11297.9
CD 0.28 84.2 602.7
PDR 1.0 0.97 0.97

Table 4 shows the effect of network size on perfor-
mance in terms of the mean time to security failure,
MTTSF, the number of attack paths toward decoy tar-
gets, NAP

DT , the defense cost per time unit, CD , and the
packet delivery ratio, PDR. We see that NAP

DT has a sig-
nificant jump when the network size increases while
MTTSF grows relatively steadily. As the number of
real and decoy IoT nodes increases, the number of
decoy paths with real IoT nodes acting as entry points and intermediate nodes increases and more
decoy paths/edges are also created. CD rises dramatically from the baseline scenario to the second
scenario and then increases gradually in the third scenario. Lastly, the network size has little effect
on Packets Delivery Ratio (PDR). The reason is that more real nodes introduce more paths towards
the real target but more decoy nodes also introduce more paths towards the decoy target even if
some real nodes along paths towards the real target can be compromised. In summary, network
size has a high impact on NAP

DT , MTTSF, and CD , but little impact on PDR.

5.5 Sensitivity Analysis
In this section, we examine the sensitivity of the performance results with respect to the maximum
delay parameter (γ2) and the security vulnerability level (SSV) threshold parameter (ρ) to identify
the optimal parameter setting under which the system performance can be maximized. These two
parameters are used in two “when-to-shuffle” strategies, namely, adaptive shuffling and hybrid
shuffling (AS/HS). Without loss of generality, we consider HS-DPNT in the sensitivity analysis
since earlier we have identified DPNT as the best “how-to-shuffle” strategy that can maximize
MTTSF and minimize defense cost, while maintaining comparable service availability.

5.5.1 Sensitivity Analysis of Maximum Delay. We use the baseline scenario in Section 5.4.1, except
that we vary the maximum delay parameter, γ2, when performing hybrid shuffling. The reason we
use a maximum delay is to avoid the situation in which an incremental increase of SSV does not
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(a) NAP
DT (b) MTTSF (c) CD (d) PDR

Fig. 7. Effect of the maximum delay (γ2) on the performance of HS-DPNT (identified as the best scheme)
under the baseline scenario.

(a) NAP
DT (b) MTTSF (c) CD (d) PDR

Fig. 8. Effect of the system security vulnerability (SSV ) threshold ρ on the performance of HS-DPNT (identified
as the best scheme) under the baseline scenario.

reach the threshold, thus delaying the execution of DPNT. We consider the following values for γ2
in the sensitivity analysis: 48, 72, 96, 120, 144, 168 (hours). These values are related to the scenario
and could change due to different scenarios. For other design parameters, we follow their default
values summarized in Table 3.

Fig. 7 shows the sensitivity of the performance results in terms ofNAP
DT , MTTSF,CD , and PDRwith

respect to the maximum delay parameter (γ2) in hybrid shuffling (HS). Intuitively, a shorter delay
may cause the network to be shuffled more often which makes HS similar to fixed/random shuffling
(FS/RS) while a longer delay may delay shuffling thus degenerating HS to adaptive shuffling (AS).
In Fig 7a, NAP

DT fluctuates as the metric is related to how-to-shuffle instead of when-to-shuffle. In
Fig. 7b, MTTSF fluctuates slightly from 48 to 120 with a local optimal value of 162 hours at 72,
reaches the peak of 170 hours at 120 and then drops to 124 hours at 168. In Fig. 7c, CD has the
opposite trend of MTTSF (the higher the frequency of shuffling and longer MTTSF, the lower the
cost per hour). In Fig. 7d, PDR remains at 1.0. The reason is the same as stated in Section 5.4.2.
Summarizing above, if the goal is to maximize MTTSF, setting the maximum delay at 120 could be
considered as optimal for HS-DPNT.

5.5.2 Sensitivity Analysis of the System Security Vulnerability (SSV) Threshold. We use the baseline
scenario in Section 5.4.1, except that we vary the SSV threshold values, ρ, in the range of [0.1, 0.9]
with 0.1 as the increment. For other design parameters, we follow their default values summarized
in Table 3. We again apply HS-DPNT in our sensitivity analysis.
Fig. 8 shows the sensitivity of the performance results in terms of NAP

DT , MTTSF, CD , and PDR
with respect to the SSV threshold parameter ρ. In Fig. 8a, NAP

DT fluctuates as NAP
DT is related to

how-to-shuffle instead of when-to-shuffle. In Fig. 8b, MTTSF jumps from 163 at 0.2 to 310 at 0.3,
slightly increases to 321 as the peak when ρ is 0.4, and then varies between 286 and 312 when
ρ increases. In Fig. 8c, CD decreases to 0.21 when ρ increases to 0.3 and then stays stable with
increasing ρ. In Fig. 8d, PDR drops to 0.72 when ρ is 0.3 and stays stable afterwards. The reason is
the same as stated in Section 5.4.2. Summarizing above, if the goal is to maximize MTTSF, setting
the SSV threshold parameter at 0.4 could be considered as optimal for HS-DPNT.
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5.6 Performance Comparison of IoT Networks with vs. without NTS-MTD Running
and/or Decoy Deployment

In this section, we compare the performance of IoT networks with vs. without our proposed network
topology shuffling-based MTD (NTS-MTD) technique running and/or decoy deployment. That
is, the baseline IoT network has no decoy nodes deployed and no proposed network topology
shuffling-based MTD (NTS-MTD) technique running for intrusion prevention, referred to as no
defense. We also consider two single defense schemes deployed on the baseline IoT network: (1)
only decoy nodes deployed and connections from real nodes to decoy nodes being randomly added
upon the decoy deployment, referred to as only deception; (2) only NTS-MTD technique applied
via random shuffling algorithm with a fix interval, referred to as only MTD. We use the same
baseline scenario as before with the same attack model applied. We collected performance data for
computing NAP

DT , MTTSF, CD , and PDR based on 100 times of simulation runs. We computed the
optimal fix interval at 48 hours for only MTD scheme and compare the baseline, only deception,
and only MTD schemes with DPNT based schemes running at optimal settings identified in the
sensitivity analysis study of Section 5.5 (i.e., FS-DPNT with the optimal fixed interval at 72 hours,
RS-DPNT with the optimal mean interval at 72 hours, AS-DPNT with the optimal SSV threshold at
0.3, and HS-DPNT with the optimal SSV threshold at 0.4).

(a) NAP
DT (b) MTTSF

(c) CD (d) PDR

Fig. 9. Performance Comparison of IoT Networks with vs. without NTS-MTD Running.

Fig. 9 shows the performance comparison results in NAP
DT , MTTSF, CD , and PDR over all DPNT

based schemes considered in this work. The baseline IoT system is labeled with “No defense” and
the other two single defense schemes are labeled with “Only deception” and “Only MTD” in Fig. 9.
We observe that all DPNT-based schemes significantly outperform the counterpart baseline IoT
system regarding NAP

DT , MTTSF, and PDR. In particular, HS-DPNT has the highest increase (28%) in
MTTSF while FS-DPNT has the highest increase (59%) in PDR. All DPNT-based schemes incur much
higher NAP

DT compared with only deception scheme and maintain much lower cost compared with
only MTD scheme. All DPNT-based schemes incur higher MTTSF compared with single defense
schemes while FS-DPNT and RS-DPNT have highest PDR. These results demonstrate that an IoT
network running our intrusion prevention technique at the optimal parameter setting prolongs
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system lifetime, increases attack complexity of compromising critical nodes (so that the system
lifetime is prolonged), and maintains good service availability compared with a counterpart baseline
IoT network without running our intrusion prevention technique and single defense schemes.

6 DISCUSSION & FUTUREWORK
In this section, we discuss the reproduciblility of the simulation results, limitations of the proposed
integrated mechanism, possible evasion techniques by attackers, and present the future work.

Reproducibility of results: Simulation results are reproducible using the simulation code on
a specified platform. There will be a variation of the values within a reasonable range by: (1)
probability of random shuffling in RNT (i.e., Pr ); (2) random generation of an initial population
in GANT; (3) random generation of connections from real IoT nodes to decoy nodes in DPNT; (4)
random selection of entry points by the attacker at each shuffling and each simulation run; and (5)
interaction probabilities with decoy nodes (i.e., Pemd and Posd ).

Scalability: We imposed two constraints on the DPNT algorithm (i.e., the maximum outgoing
connections and path length) to limit the complexity of an attack path calculation in the HARM
and conducted simulations on networks with a maximum of two thousand nodes. The growing
network size (to tens of thousands of nodes or more) will introduce higher computational overhead
and memory consumption. This can be reduced by dividing the network into sub-networks and
adopting distributed MTD operations discussed in Section 7.

Decoy deployment: We applied one full OS-based server decoy and emulated IoT decoys in
the example IoT network. A full OS-based decoy may require additional hardware to replicate
the production service while an emulation-based decoy runs in the virtual machine. Therefore, in
reality, the deployment of full OS-based decoys can be restricted by the budget and actual network
configurations. We have completed a preliminary research on the optimal deployment of patch
and decoys by considering decoy cost in [Ge et al. 2018]. This can be integrated with the proposed
mechanism to explore the optimal topology via shuffling under environments with various decoys
and cost constraints or their combinations.

Applicability of SDN: We discussed different SDN solutions applied to IoT networks in Sec-
tion 2.3. However, SDN is still an emerging technology in network management for IoT and not
applicable in all application domains of IoT (e.g., smart home) due to the additional cost of SDN
controller and switches to replace traditional network devices.

Implication on results:We use SDN technology to simulate the example IoT network to which
we apply the proposed defense mechanisms. The network shuffling-based MTD can be integrated
with the functionality of open source SDN controller as an application. We consider the testbed
development with MTD and deception integration as future work discussed in Section 7. The
simulation results demonstrated the optimal combination among “when-to-shuffle” and “how-to-
shuffle” strategies and implied a promising security improvement achieved through MTD and
deception.

Evasion techniques by attackers: We designed and implemented adaptive/hybrid shuffling
(AS/HS) strategies under the condition that each shuffling is triggered by detecting compromised
real nodes by the IDS. Any IDS evasion techniques by intelligent attackers (e.g., APT attacks) can
lead to evasion of triggering AS/HS. Therefore, hybrid shuffling is recommended to enable shuffling
upon a maximum delay even if the IDS evasion is successful.
As our future work, we plan to explore the following research areas: (1) setup of a cloud-based

testbed with virtual devices to simulate IoT behaviors and virtual decoys where an SDN-based
environment is considered by leveraging an open source SDN controller to support packet control
and virtual switches to perform packet forwarding actions and the network shuffling-based MTD as
an application is integrated with the SDN controller; (2) development of distributed MTD operations
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with decentralized SDN controllers through dividing an IoT network into multiple sub-networks
which can be controlled by different SDN controllers with the aim of providing lightweight shuffling-
based MTD solutions; (3) investigation of machine/deep learning-based approaches to compute
an optimal network topology in network shuffling-based MTD (e.g., graph neural networks to
model complex relationships and learn information structured as graphs [Rusek et al. 2019]); and
(4) incorporation of machine/deep learning-based network topology generation technology with
the graphical security model (GSM) to determine the optimal network topology by reconstructing
GSM and developing new security metrics for solution optimization (e.g., the average number of
decoy nodes on an attack path).

7 CONCLUSIONS
In this paper, we proposed an integrated proactive defense mechanism by utilizing cyberdeception
and network topology shuffling and completed a comprehensive analysis via simulation. We
considered a smart hospital scenario within the IoT context. The proposed approach could be
applied to any IoT environment. From this study, we obtained the following key findings:

• In the “when-to-shuffle” category, adaptive/hybrid shuffling (AS/HS) based schemes outperform
fixed/random shuffling (FS/RS) based schemes in defense cost. On the contrary, FS/RS based
schemes outperform AS/HS based schemes in the average number of attack paths toward decoy
targets (i.e., deception effectiveness). Choices of fixed/mean interval used by FS/RS and SSV
threshold used by AS/HS have significant impact on MTTSF and service availability and need
to be properly determined. The analysis performed in this paper can help the system designer
determine the best interval by FS/RS and best SSV threshold by AS/HS to maximize MTTSF.

• In the “how-to-shuffle” category, decoy path-optimized network topology (DPNT) based schemes
perform comparably with genetic algorithm network topology (GANT) based schemes in MTTSF
(i.e., system lifetime) and packet delivery ratio. On the other hand, DPNT incurs less defense
cost than GANT since GANT tends to create more attack paths toward decoy targets (i.e.,
deception effectiveness). Both DPNT and GANT based schemes outperform random network
topology (RNT) shuffling schemes in MTTSF and the number of attack paths toward decoy
targets (deception efficiency). Consequently, if MTTSF is the goal, DPNT should be chosen over
GANT because it incurs less defense cost while achieving comparable MTTSF.

• If maximizing MTTSF is the most important goal, while maximizing deception effectiveness
and service availability and minimizing defense cost are sub-goals, HS-DPNT with an optimal
SSV threshold (with HS as the “when-to-shuffle” strategy and DPNT as the “how-to-shuffle”
strategy) emerges as the best scheme among the 12 schemes investigated for executing our
proposed NTS-MTD technique because it can maximize MTTSF (even the number of attack paths
toward decoy targets generated by DPNT is low) and minimize defense cost, while maintaining
comparable service availability.

• Among the 12 schemes investigated for executing our proposed NTS-MTD technique, AS-
DPNT/HS-DPNT (with AS/HS as the “when-to-shuffle” strategy and DPNT as the “how-to-shuffle”
strategy) can achieve high MTTSF and deception effectiveness, while maintaining low defense
cost and high service availability. Further, AS-DPNT/HS-DPNT are resilient against attackers
with increasing intelligence capability of detecting decoy nodes. There exist an optimal setting for
the system security vulnerability level threshold parameter and the maximum delay parameter
for maximizing MTTSF. The analysis performed in this paper can help the system designer
identify the best parameter setting under which MTTSF may be maximized.
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