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Abstract. The physical world can be monitored by ubiquitous Internet of Things 

(IoT) devices through participatory sensing by which a huge amount of data is 

collected and analyzed in the cloud for hazard detection and response. In this 

paper, we propose a Trust as a Service (TaaS) cloud utility leveraging a cloud 

hierarchy for assessing service trustworthiness of IoT devices so as filter out un-

trustworthy sensing data before hazard detection and response are taken. We 

demonstrate that our TaaS utility achieves accuracy, convergence, and resiliency 

compared with contemporary IoT/P2P distributed trust protocols while achieving 

scalability to cope with a huge number of IoT devices. We demonstrate the fea-

sibility with an air pollution detection and response application. 
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1 Introduction 

The physical world can be monitored by ubiquitous Internet of Things (IoT) devices 

through participatory sensing by which a huge amount of data is collected and analyzed 

for hazard detection and response [1]. One possible IoT participatory sensing applica-

tion is environmental monitoring where IoT devices (e.g., smart phones carried by hu-

mans) collect environmental data (noise, air pollution, temperature, humidity, light, 

etc.) and submit via wireless data communication links to a processing center located 

in the cloud for environmental data analysis [2]. In return, a user (e.g., emergency re-

sponse personnel) can send a query to the cloud to query a location’s air pollution levels 

of CO, NO2, SO2, and O3. Another possible application is road/traffic monitoring by 

which traffic flows, pot-holes, bumps, braking, and honking information reported from 

IoT devices (smart phones carried by passengers/drivers in a car) are aggregated by a 

data processing center located in the cloud to unveil traffic patterns previously unob-

served with existing monitoring infrastructure. This is especially useful in disaster re-

sponse situations after the occurrence of a public hazard such as a hurricane or a terror-

ist attack.  

mailto:jjptsai@gmail.com


The major challenges for detection and response participatory sensing applications 

are scalability and selection of trustworthy participants [3]. Scalability is needed con-

sidering that the number of IoT devices will grow exponentially in the next decade. 

Selection of trustworthy participants is needed because not all IoT devices will be trust-

worthy and some IoT devices may behave maliciously to disrupt the network or service 

(e.g., in a terrorist attack scenario) or just for their own gain (e.g., in an evacuation 

scenario following a disaster).   

While selection of trustworthy participants has attracted some attention [4-9], scala-

bility remains an open problem. In this paper, we develop a “Trust as a Service” (TaaS) 

cloud utility leveraging a cloud hierarchy so as to cope with a huge number of IoT 

devices to address the scalability issue. We also demonstrate that as an added benefit, 

TaaS addresses the selection of trustworthy participants issue better than existing dis-

tributed IoT trust protocols because it is able to aggregate broad evidence from all nodes 

having interaction experiences with a target IoT device.    

The rest of the paper is organized as follows. Section 2 discusses how TaaS is im-

plemented leveraging a cloud hierarchy. Section 3 demonstrates the utility of TaaS with 

an air pollution detection and response IoT application for which TaaS is shown to 

outperform existing non-scalable distributed IoT trust protocols. Section 4 summarizes 

the paper and outlines future work. 
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Figure 1: Hierarchical Cloud Architecture for Hazard Detection and Response. 

2 TaaS Cloud Utility Leveraging a Cloud Hierarchy 

Our TaaS cloud utility leverages a cloud hierarchy as illustrated by Figure 1 for in-

tegrated mobility, service, and trust management of a huge number of IoT devices [10]. 

We label the clouds from top to bottom as nation, state, county, and city clouds as would 

be needed in a federal emergency assessment, management, and response system. The 

city and county clouds can be base stations and routers owned by mobile network op-

erators, while state and nation clouds can be mini and big data centers owned by cloud 

service providers. Each city cloud at the bottom layer can be just a base station covering 

a geographical region, providing a communication path for IoT devices (e.g., sensors, 



smart phones, vehicles) in a region to interact with the cloud via wireless communica-

tion. 

Each user is associated with a family of “home” clouds, starting from the home city 

cloud (base station) at the bottom layer, home county cloud (router) at the second bot-

tom layer, home state cloud at the second top layer, and home nation cloud at the top 

layer. These home clouds are assigned based on the “home” geographical location of 

an IoT device similar to the home location register (HLR) in mobile networks [11, 12]. 

When an IoT device moves from one region to another region (if the IoT device is 

mobile), a “mobility handoff” ensues by which the city cloud which the IoT device just 

roams into will inform all home clouds of the IoT device of the new location.  

An IoT device will only interact with its current city cloud for service invocation to 

minimize energy consumption and service latency. There are two standard cloud com-

puting operations to be performed by a city cloud, store-process-forward and forward-

wait-reply, described as follows. The local city cloud will examine a service request 

from an IoT device. If the service request is to report new service data such as a feed-

back or a sensing outcome, the current city cloud will follow the store-process-forward 

procedure. i.e., it will store a replicated copy of the service data, process it locally as 

needed, and pass the new service data to the home clouds of the IoT device. If the 

service request is a query regarding a target IoT device, then the current city cloud will 

follow the forward-wait-reply procedure. That is, the query will be forwarded to the 

least common “home” cloud of the requesting IoT device and the target IoT device. If 

the service request involves several IoT devices some of which are not under the current 

city cloud, then the city cloud will pass the request to the least common “home” cloud 

of these IoT devices for processing because the least common “home” cloud will store 

location and service data of these IoT devices. Then it will wait for a reply to return to 

it after which it will forward the reply to the requesting IoT device. A “service handoff” 

is triggered when an IoT device goes to a new city cloud, necessitating the migration 

of the virtual machine for cloud computing.  

Our TaaS cloud utility is implemented utilizing the standard store-process-forward 

and forward-wait-reply procedures described above. Specifically, IoT device i (acting 

as a service requester) can simply report to its current city cloud a user satisfaction 

report of its service trustworthiness assessment toward IoT device j who just completed 

a sensing service of a specific air pollutant level (e.g., sensing CO air pollution) in the 

form of (i, j, Tij, apts, ls, ts) where Tij (in [0, 1]) is the sensing result trustworthiness of j 

as assessed by i, apts is the air pollutant type (e.g., apts = “CO”), ls is the location at 

which sensing is perform, and ts is the time of sensing. Tij can be assessed after fact, 

i.e., after i itself experiences it or verifies it after reading official reports about the level 

of this particular air pollutant at the particular location and particular time. If neither is 

accessible, Tij can be assessed by the discrepancy between j’s sensing result from the 

average sensing result from all sensing results received by i for the same location at the 

same time. Tij is set to 1 and can go down to 0 proportional to the amount of discrepancy 

detected. The city cloud upon receiving a user satisfaction report would follow the 

standard store-process-forward procedure described earlier to store the user satisfaction 

report to all home clouds of IoT device i.  



An IoT device (on behalf of its owner) can simply query its local city cloud about 

the trustworthiness of a target IoT device for providing sensing service of a specific 

pollutant type. The current city cloud would follow the standard forward-wait-reply 

procedure described earlier. The least common home cloud of the requesting IoT device 

and the target IoT upon receiving the query will simply use all user satisfaction reports 

stored in its local store and apply a trust computation method such as Beta Reputation 

[5] or Adaptive IoT Trust [9] to assess the trustworthiness of the target node. When the 

trust assessment is completed, the home cloud will return the response (i.e., the trust-

worthiness of the target IoT device for providing service) to the city cloud who received 

the query who in turn will forward the response to the requesting IoT device for deci-

sion making. 

3 Case Study: Air Pollution Detection and Response 

The case study is for the Fairfax County Hazard Detection and Response Team 

charged to monitor the pollution levels of CO, NO2, SO2, and O3 for all cities under the 

county so as to take appropriate actions if the air pollution level is above a tolerance 

threshold. Since the area to be covered is rather large, the county officials only install 

a few county-sensors in more strategic and populated areas to collect air pollution data. 

To cover the whole county area air quality detection, the county officials also encourage 

environment-health-conscious civilians driving or carrying air pollution detection ca-

pable vehicles or smartphones [2] to report air pollution data.  

In case of emergency, the county officials can request IoT devices in a particular 

location to immediately report their sensing results to their respective city clouds, as 

the cloud hierarchy knows the locations of all home county IoT devices. Also the county 

officials send queries via TaaS to get the trustworthiness scores of these IoT devices. 

To know if a location has acceptable air quality, the county officials (running as node 

i) accept results (𝑆𝑗) from 200 most trustworthy IoT devices (which have the highest 

𝑇𝑖𝑗  trust values) for the air quality detection service out of a total of 2000 nodes, and 

compute a trust-weighted average ∑ (𝑇𝑖𝑗/ ∑ 𝑇𝑖𝑗) 200
𝑗=1 × 𝑆𝑗  200

𝑗=1 for each air pollutant (e.g., 

CO). If the level exceeds a minimum threshold (e.g., above 70 ppm for CO), the county 

officials push alerting text to IoT devices in the affected area.  

We simulate the above system populated with 2000 IoT devices capable of detecting 

and reporting CO air pollutant levels using the ns3 simulator. The CO level is simulated 

to be in the range of [60, 70 ppm] in various locations. The percentage of bad nodes is 

set at PM in the range of [0, 30%]. A malicious node always reports CO readings above 

70 ppm in the range of [70, 120 ppm] regardless of location in order to confuse the 

county official. It can perform attacks on and off in order to evade detection. We sim-

ulate this by a random attack probability Pa in the range of [0, 100%]. Also a malicious 

node always performs bad-mouthing attacks (saying a good node’s sensing result is not 

trustworthy in the user satisfaction report) and ballot-stuffing attacks (saying a bad 

node’s sensing result is trustworthy). 

We compare our cloud hierarchy based TaaS with existing non-scalable distributed 

IoT/P2P management protocols including EigenTrust [6], PeerTrust [7], ServiceTrust 



[8], and Adaptive IoT Trust [9] for which each IoT device keeps own trust data based 

on own experiences and service satisfaction feedbacks from its peers that it encounters. 

For fair comparison, the environment is setup as in [9] and we also adopt Adaptive IoT 

Trust in [9] for trust computation. We measure two performance metrics for perfor-

mance analysis: (a) the trust-weighted average CO reading vs. ground truth (i.e., the 

actual CO level at a specific location and a particular time); (b) the accuracy of selecting 

trustworthy participants.   

 

Figure 2: Performance Comparison of Trust-Weighted Average CO Readings of the Air 

Pollution Detection and Response Application. 

Figure 2 shows the trust-weighted average CO readings vs. time (each time point is 

a CO detection service request) with the percentage of bad nodes PM set at 30% and Pa 

set at 100%. We observe TaaS (red line) levering the proposed cloud hierarchy can 

provide CO readings very close to ground truth (black line) as time progresses. Further, 

our TaaS cloud utility outperforms EigenTrust, PeerTrust, ServiceTrust, and Adaptive 

IoT Trust in terms of accuracy, convergence, and resiliency due to its ability to effec-

tively aggregate trust evidence from all nodes in the system through the simple standard 

store-process-forward and forward-wait-reply cloud computing paradigms.  

Figure 3 shows the percentage of bad nodes selected to provide sensing results. TaaS 

outperforms EigenTrust, PeerTrust, ServiceTrust, and Adaptive IoT Trust as time pro-

gresses because unlike Adaptive IoT Trust [9], TaaS can leverage cloud service to ag-

gregate broad evidence from all nodes having service experiences with IoT devices 

reporting sensing results. 

 

Figure 3: Percentage of Bad IoT Devices Selected to Provide CO Sensing Service for the 

Air Pollution Detection and Response Application. 
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4 Conclusion 

In this paper we developed a scalable TaaS cloud utility leveraging a cloud hierarchy 

that can provide integrated mobility, service, and trust management of a huge number 

of IoT devices. Through an air pollution detection and response IoT application, we 

demonstrated that our TaaS cloud utility outperforms existing distributed IoT/P2P trust 

protocols while achieving scalability and accuracy of selecting trustworthy participants, 

because it can leverage simple yet powerful store-process-forward and for-ward-wait-

reply cloud computing paradigms to aggregate broad service evidence from all nodes 

in the system.  

In this paper we only conducted performance comparison of TaaS against existing 

distributed IoT trust protocols in terms of the accuracy of selecting trustworthy partic-

ipants. In the future, we plan to conduct more experiments to quantify the gain of our 

scalability design in terms of performance metrics such as resource overhead, energy 

consumption, and service latency.  
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