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Abstract—In this paper we analyze the effect of intrusion
detection and response on the reliability of a cyber physical
system (CPS) comprised of sensors, actuators, control units,
and physical objects for controlling and protecting a physical
infrastructure. We develop a probability model based on
stochastic Petri nets to describe the behavior of the CPS in
the presence of both malicious nodes exhibiting a range of
attacker behaviors, and an intrusion detection and response
system (IDRS) for detecting and responding to malicious events
at runtime. Our results indicate that adjusting detection and
response strength in response to attacker strength and behavior
detected can significantly improve the reliability of the CPS. We
report numerical data for a CPS subject to persistent, random
and insidious attacks with physical interpretations given.

Index Terms - Intrusion detection, intrusion response, cyber
physical systems, performance analysis.

ACRONYMS

CPS Cyber physical system
IDRS Intrusion detection and response system
IDS Intrusion detection system
RTU Remote terminal unit
MTU Master terminal unit
MTTF Mean time to failure
SPN Stochastic Petri net

NOTATION

TIDS Intrusion detection interval
Xb Compliance degree of a bad node
Xg Compliance degree of a good node
Xi Compliance degree of arbitrary node i
CT System minimum compliance threshold
ci ith compliance degree output
x̂ Estimate of x
pfn Per-node host IDS false negative probability
pfp Per-node host IDS false positive probability
Pfn System IDS false negative probability
Pfp System IDS false positive probability
prandom Random attack probability by a

random attacker
pa Attack probability by an insidious attacker
λc Per-node capture rate
λif Impairment rate for an attacker to cause

severe functional impairment
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I. INTRODUCTION

A cyber physical system (CPS) is typically comprised of
sensors, actuators, control units, and physical objects for
controlling and protecting a physical infrastructure. Because
of the dire consequence of a CPS failure, protecting a CPS
from malicious attacks is of paramount importance. In this
paper, we address the reliability issue of a CPS designed
to sustain malicious attacks over a prolonged mission period
without energy replenishment. A CPS often operates in a rough
environment wherein energy replenishment is not possible,
and nodes may be compromised (or captured) at times. Thus,
an intrusion detection and response system (IDRS) must
detect malicious nodes without unnecessarily wasting energy
to prolong the system lifetime.

Intrusion detection system (IDS) design for CPSs has
attracted considerable attention [1], [7]. Detection techniques
in general can be classified into three types: signature based,
anomaly based, and specification based techniques. In the area
of signature based IDS techniques, Oman and Phillips [22]
study an IDS for CPSs that tests an automated XML profile
to Snort signature transform in an electricity distribution
laboratory. Verba and Milvich [26] study an IDS for CPSs
that takes a multitrust hybrid approach using signature based
detection and traffic analysis. Our work is different from these
studies in that we use specification based detection rather
than signature based detection to deal with unknown attacker
patterns.

In the area of anomaly based IDS techniques, Barbosa
and Pras [2] study an IDS for CPSs that tests state machine
and Markov chain approaches to traffic analysis on a water
distribution system based on a comprehensive vulnerability
assessment. Linda, et al. [18] study an IDS for CPSs that uses
error-back propagation and Levenberg-Marquardt approaches
with window based feature extraction. Gao, et al. [16] study
an IDS for CPSs that uses a three stage back propagation
artificial neural network (ANN) based on Modbus features.
Bellettini and Rrushi [4] study an IDS for CPSs that seeds
the runtime stack with NULL calls, applies shuffle operations,
and performs detection using product machines. Yang, et
al. [28] study an IDS for CPSs that uses SNMP to drive
prediction, residual calculation, and detection modules for an
experimental testbed. Bigham, et al. [5] study an IDS for
CPSs that demonstrates promising control of detection and
false negative rates. Tsang and Kwong [25] study a rich
multitrust IDS for CPSs that uses a novel machine learning
approach. Xie, et al. [27] survey anomaly detection techniques,



and advocate an anomaly based layered approach. Our work
is different from these studies in that we use specification
based rather than anomaly based techniques to avoid using
resource-constrained sensors or actuators in a CPS for profiling
anomaly patterns (e.g., through learning), and to avoid high
false positives (treating good nodes as bad nodes).

In the area of specification-based IDS techniques, Cheung,
et al. [12] study a specification based IDS that uses PVS
to transform protocol, communication pattern, and service
availability specifications into a format compatible with
EMERALD. Carcano, et al. [6] propose a specification based
IDS that extends [15]; it distinguishes faults from attacks,
describes a language to express a CPS specification, and
establishes a critical state distance metric. Zimmer, et al.
[29] study a specification based IDS that instruments a
target application, and uses a scheduler to confirm timing
analysis results. Our work is also specification based. However,
our work is different from these prior studies in that
we automatically map a specification into a state machine
consisting of good and bad states, and simply measure a
node’s deviation from good states at runtime for intrusion
detection. Moreover we apply specification-based techniques
to host-level intrusion detection only. To cope with incomplete,
uncertain information available to nodes in the CPS, and to
mitigate the effect of node collusion, we devise system-level
intrusion detection based on multitrust to yield a low false
alarm probability.

While the literature is abundant in the collection and
analysis aspects of intrusion detection, the response aspect
is little treated. In particular, there is a gap with respect to
intrusion detection and response. Our IDRS design addresses
both intrusion detection and response issues, with the goal to
maximize the CPS lifetime.

Our methodology for CPS reliability assessment is model-
based analysis. Specifically, we develop a probability model
to assess the reliability property of a CPS equipped with
an IDRS for detecting and responding to malicious events
detected. Untreated in the literature, we consider a variety
of attacker behaviors including persistent, random, and
insidious attacker models, and identify the best design settings
of the detection strength and response strength to best
balance energy conservation versus intrusion tolerance for
achieving high reliability, when given a set of parameter
values characterizing the operational environment and network
conditions. Parameterization of the model using the properties
of the IDS system is one major contribution of the paper.

The rest of the paper is organized as follows. Section II gives
the system model. Section III develops a mathematical model
based on stochastic Petri nets [23], [11], [10] for theoretical
analysis. Section IV discusses the parameterization process
for the reference CPS. Section V presents numerical data
with physical interpretations given. Finally, Section VI outlines
some future research areas.

II. SYSTEM MODEL/REFERENCE CONFIGURATION

A. Reference CPS

Our reference CPS model is based on the CPS infrastructure
described in [21] comprising at the sensor layer 128 sensor-
carried mobile nodes. Each node ranges its neighbors
periodically Each node uses its sensor to measure any
detectable phenomena nearby. Each node transmits a CDMA
waveform. Neighbors receiving that waveform transform the
timing of the PN code (1023 symbols) and RF carrier
(915 MHz) into distance. Essentially, each node performs
sensing and reporting functions to provide information to
upper layer control devices to control and protect the CPS
infrastructure, and in addition utilizes its ranging function for
node localization and intrusion detection.

The reference model is a special case of a single-enclave
system with homogeneous nodes. The IDS functionality is
distributed to all nodes in the system for intrusion and
fault tolerance. On top of the sensor-carried mobile nodes
sits an enclave control node responsible for setting system
parameters in response to dynamically changing conditions
such as changes of attacker strength. The control module is
assumed to be fault and intrusion free through security and
hardware protection mechanisms against capture attacks and
hardware failure.

Fig. 1. Reference CPS.

Fig. 1 contextualizes our reference CPS which is comprised
of 128 sensor-carried mobile nodes, a control unit, and
physical objects for controlling and protecting a physical
infrastructure. The mobile nodes are capable of sensing
physical environments, as well as actuating and controlling
the underlying physical objects in the CPS. They function
as sensors and actuators, each carrying sensors for sensing
physical phenomena, as well as actuating devices for
controlling physical objects. The CPS literature identifies these
mobile nodes as RTUs. Sitting on top of these mobile nodes
is a control unit which receives sensing data from the mobile
nodes and determines actions to be performed by individual
nodes or a group of mobile nodes. This triggers their actuating
devices to control and protect the physical objects in the CPS.



We exemplify a number of applications to which our reference
CPS can apply.

1) Disaster recovery (say after an earthquake) might involve
a group of mobile nodes with motion and video sensing
and actuating capabilities cooperating under the control
of a disaster corrective control unit to protect and
recover physical objects (e.g., people or a physical
infrastructure).

2) Emergency rescue (say a burning building) may require
a group of mobile fighters equipped with motion and
video sensing and fighting capabilities cooperating under
the control of a control unit to rescue physical objects
(e.g., people trapped or seized).

3) Military patrol (combat or reconnaissance) [13] might
consist of a group of mobile patrol nodes equipped with
motion sensing and fighting capabilities cooperating
under the control of a control unit to protect and
control physical objects (e.g., geographic areas or critical
resources).

4) Pervasive healthcare [19] might use a group of mobile
medical personnel equipped with motion and video
sensing and actuating capabilies cooperating under the
control of a control unit to protect and provide healthcare
to physical objects (e.g., patients or medical devices).

5) Unmanned aircraft systems [20] might consist of a group
of unmanned aerial vehicles equipped with sensing
and aircraft fighting capabilities cooperating under the
control of a remote control unit to control and protect
physical objects (e.g., geographic areas).

The control unit contains control logic and provides
management services. The CPS literature identifies this
control unit as an MTU. In contrast with the RTUs, an
MTU implements the broad strategic control functions. Our
reference CPS is distinct from Wireless Sensor Networks
(WSNs); WSNs are resource constrained, mostly stationary,
and have a specific traffic profile. On the other hand, our
reference CPS is safety-critical, mobile, and uses ad hoc
networking with bidirectional flows. We do not make any
assumptions regarding the network structure used to connect
nodes in a CPS. In our reference CPS, nodes are mobile,
and they are connected through wireless links to the control
node. Our host IDS design (Section II.D) is based on local
monitoring, and our system-level IDS design (Section II.E) is
based on the voting of neighbor monitoring nodes. Both IDS
techniques can be generically applied to any network structure
(such as a star configuration) used in a CPS.

B. Security Failure

While our approach is general enough to take any security
failure definition, we consider two security failure conditions.
The first condition is based on the Byzantine fault model [17].
That is, if one-third or more of the nodes are compromised,
then the system fails. The reason is that once the system
contains 1/3 or more compromised nodes, it is impossible
to reach a consensus, hence inducing a security failure. The
second condition is impairment failure. That is, a compromised

CPS node performing active attacks without being detected can
impair the functionality of the system and cause the system to
fail. Impairment failure is modeled by defining an impairment-
failure attack period by a compromised node beyond which the
system cannot sustain the damage.

Specifically, a control unit in our reference CPS would
take in multiple sensor readings (from sensor-carried mobile
nodes) sensing the same physical phenomena to make a
decision on actions to be performed by a set of actuators
(also mobile nodes). The first failure mode, Byzantine failure,
accounts for the condition that the control unit is not able to
obtain any sensor reading consensus. The second failure mode,
impairment failure, accounts for the condition that impairment
by a bad node (especially an actuator) over an impairment-
failure period without being detected will severely impair the
system and cause the system to fail.

C. Attack Model

The first step in investigating network security is to
define the attack model. We consider capture attacks which
turn a good node into a bad insider node. At the sensor-
actuator layer of the CPS architecture, a bad node can
perform data spoofing attacks (reporting spoof sensor data)
and bad command execution attacks. At the networking
layer, a bad node can perform various communication
attacks including selective forwarding, packet dropping, packet
spoofing, packet replaying, packet flooding, and even Sybil
attacks to disrupt the system’s packet routing functionality. At
the control layer, a bad node can perform control-level attacks
including aggregated data spoofing attacks, and command
spoofing attacks. Nodes at the control layer, however, are
less susceptible to capture attacks because they are normally
deployed in a physical confine which protects them from
tampering. For this reason, in this paper, our primary interest
is on capture attacks of sensor-actuator nodes performing basic
sensing, actuating, and networking functions.

We consider three attacker models: persistent, random,
and insidious. A persistent attacker performs attacks with
probability one (i.e., whenever it has a chance). The primary
objective is to cause impairment failure. A random attacker
performs attacks randomly with probability prandom. The
primary objective is to evade detection. It may take a longer
time for a random attacker to cause impairment failure because
the attack is random. However, random attackers are hidden
so it may increase the probability of Byzantine security failure
once the number of bad nodes equals or exceeds 1/3 of the
node population. An insidious attacker is hidden all the time to
evade detection until a critical mass of compromised nodes is
reached to perform “all in” attacks. The primary objective is to
maximize the failure probability caused by either impairment
or Byzantine security failure.

D. Host Intrusion Detection

Our host intrusion detection protocol design is based
on two core techniques: behavior rule specification, and
vector similarity specification. The basic idea of behavior



rule specification is to specify the behavior of an entity (a
sensor or an actuator) by a set of rules from which a state
machine is automatically derived. Then, node misbehavior
can be assessed by observing the behaviors of the node
against the state machine (or behavior rules). The basic idea
of vector similarity specification is to compare similarity of
a sequence of sensor readings, commands, or votes among
entities performing the same set of functions. A state machine
is also automatically derived from which a similarity test
is performed to detect outliers. More specifically, the states
derived in the state machine would be labeled as secure
versus insecure. A monitoring node then applies snooping
and overhearing techniques observing the percentage of time a
neighbor node is in secure states over TIDS. A longer sojourn
time in secure states indicates greater specification compliance,
while a shorter sojourn time indicates less specification
compliance. If Xi falls below CT , node i is considered
compromised. We apply these two host IDS techniques
to the reference CPS as follows. (a) A monitoring node
periodically determines a sequence of locations of a sensor-
carried mobile node within radio range through ranging, and
detects if the location sequence (corresponding to the state
sequence) deviates from the expected location sequence. (b)
A monitoring node periodically collects votes from neighbor
nodes who have participated in system intrusion detection
(described below), and detects dissimilarity of vote sequences
among these neighbors for outlier detection.

The measurement of compliance degree of a node frequently
is not perfect, and can be affected by noise and unreliable
wireless communication in the CPS. We model the compliance
degree by a random variable X with G(·) = Beta(α, β)
distribution [24], with the value 0 indicating that the output is
totally unacceptable (zero compliance), and 1 indicating the
output is totally acceptable (perfect compliance), such that
G(a), 0 ≤ a ≤ 1, is given by

G(a) =

∫ a

0

Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 dx, (1)

and the expected value of X is given by

EB [X] =

∫ 1

0

x
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 dx =

α

α + β
.

(2)
The α and β parameters are to be estimated based on the
method of maximum likelihood by using the compliance
degree history collected during the system’s testing phase
in which the system is tested with its anticipated attacker
event profile, and where the compliance degree is assessed
using the specification-based host IDS technique described
earlier. A node’s anticipated event profile describes a node’s
behaviors, and predicts the next state the node will be
entering upon an event occurrence, given that the node is
in its current state. For example, a persistent attacker will
likely go to another bad state because it performs attacks
continuously. A random attacker will likely go to a bad state
in accordance to its random attack probability because it
performs attacks randomly. A good node on the other hand

will likely go to another good state because it complies with its
behavior rules, unless the detection of its behaviors is hindered
by noise or wireless channel error. The compliance degree
history collected this way is the realization of a sequence of
random variables (c1, c2, ..., cn), and n is the total number of
compliance degree outputs observed. The maximum likelihood
estimates of α and β are obtained by numerically solving

n∂Γ(α̂+β̂)
∂α̂

Γ(α̂ + β̂)
−

n∂Γ(α̂)
∂α̂

Γ(α̂)
+

n
∑

i=1

log ci = 0

n∂Γ(α̂+β̂)

∂β̂

Γ(α̂ + β̂)
−

n∂Γ(β̂)

∂β̂

Γ(α̂)
+

n
∑

i=1

log(1 − ci) = 0 (3)

where
∂Γ(α̂ + β̂)

∂α̂
=

∫

∞

0

(log x)xα̂+β̂−1e−xdx.

A less general though simpler model is to consider a single
parameter Beta(β) distribution with α equal to 1. In this case,
the density is β(1 − x)β−1 for 0 ≤ x ≤ 1, and 0 otherwise.
The maximum likelihood estimate of β is

β̂ =
n

n
∑

i=1

log(
1

1 − ci

)

(4)

Host intrusion detection is characterized by pfn and pfp.
While many detection criteria [3], [8], [9] are possible, we
consider a threshold criterion in this paper. That is, if Xb is
higher than CT , then there is a false negative. Suppose that Xb

is modeled by a G(·) = Beta(α, β) distribution as described
above. Then pfn is given by

pfn = Pr{Xb > CT } = 1 − G(CT ). (5)

On the other hand, if Xg is less than CT then there is
a false positive. Again suppose that Xg is modeled by a
G(·) = Beta(α, β) distribution. Then pfp is given by

pfp = Pr{Xg ≤ CT } = G(CT ). (6)

Here we observe that these two probabilities are largely
affected by the setting of CT . A large CT induces a small
false negative probability at the expense of a large false
positive probability. Conversely, a small CT induces a small
false positive probability at the expense of a large false
negative probability. A proper setting of CT in response
to attacker strength detected at runtime helps maximize the
system lifetime.

E. System Intrusion Detection

Our system IDS technique is based on majority voting
of host IDS results to cope with incomplete and uncertain
information available to nodes in the CPS. Our system-
level IDS technique involves the selection of m detectors
as well as the invocation interval TIDS to best balance
energy conservation vs. intrusion tolerance for achieving
high reliability. Each node periodically exchanges its routing



information, location, and identifier with its neighbor nodes. A
coordinator is selected randomly among neighbors so that the
adversaries will not have specific targets. We add randomness
to the coordinator selection process by introducing a hashing
function that takes in the identifier of a node concatenated
with the current location of the node as the hash key. The
node with the smallest returned hash value would then become
the coordinator. Because candidate nodes know each other’s
identifier and location, they can, without trading information,
execute the hash function to determine which node would
be the coordinator. The coordinator then selects m detectors
randomly (including itself), and lets all detectors know each
others’ identities so that each voter can send its yes or no vote
to other detectors. Vote authenticity is achieved via preloaded
public keys. At the end of the voting process, all detectors
will know the same result; the node is diagnosed as good, or
as bad based on the majority vote.

The system IDS is characterized by Pfn and Pfp. These two
false alarm probabilities are not constant but vary dynamically,
depending on the percentage of bad nodes in the system
when majority voting is performed. We will derive these two
probabilities in the paper.

F. Intrusion Response

Our IDRS reacts to malicious events detected at runtime
by adjusting CT . For example, when it senses an increasing
attacker strength, it can increase CT with the objective to
prevent impairment security failure. This approach results in
a smaller false negative probability, which has a positive
effect of reducing the number of bad nodes in the system,
and decreasing the probability of impairment security failure.
However, it also results in a larger false positive probability,
which has the negative effect of reducing the number of
good nodes in the system, and consequently increasing the
probability of Byzantine security failure. To compensate for
the negative effect, the IDRS increases the audit rate (by
decreasing the intrusion detection interval) or increases the
number of detectors to reduce the false positive probability
at the expense of more energy consumption. The relationship
between the minimum compliance threshold CT set versus
pfn and pfp must be determined at static time so the system
can adjust CT dynamically in response to malicious events
detected at runtime.

III. MODEL AND ANALYSIS

Table I lists the set of parameters used in our model-
based analysis of intrusion detection and response designs. The
parameter N defines the starting network size (i.e., the number
of nodes). The hostility of the network is characterized by λc;
the impairment rate for a bad node to cause severe functional
impairment is λif ; pfp and pfn are host IDS false positive and
false negative probabilities, respectively, while Pfp and Pfn are
system-level IDS false positive and false negative probabilities,
respectively; TIDS is the intrusion detection interval; m is the
number of detectors used in the system IDS.

TABLE I
PARAMETERS USED FOR ANALYSIS OF INTRUSION DETECTION AND

RESPONSE DESIGN

Parameter Meaning Type
N number of nodes in a CPS input
λc per node compromise rate (Hz) input
λif per node impairment rate (Hz) input
pfp probability of per-host IDS false positive input
pfn probability of per-host IDS false negative input
TIDS intrusion detection interval (s) input
m number of detectors in the system IDS input
Pfp probability of system IDS false positive derived
Pfn probability of system IDS false negative derived
prandom random attack probability by a random attacker input
pa attack probability by an insidious attacker derived
NIDS maximum IDS cycles before energy exhaustion derived
MTTF system lifetime output

TABLE II
TRANSITION RATES OF THE SPN MODEL.

Transition Name Rate
TENERGY 1

NIDS×TIDS

TCP Ng × λc

TFP Ng×Pfp

TIDS

TIDS Nb×(1−Pfn)
TIDS

TIF pa × Nb × λif

Our theoretical model utilizes stochastic Petri net (SPN)
techniques [14]. Fig. 2 shows the SPN model describing the
ecosystem of a CPS with intrusion detection and response
under capture, impairment, and Byzantine security attacks.
The underlying model of the SPN model is a continuous-
time semi-Markov process with a state representation (Ng ,
Nb, Ne, impaired, energy) where Ng is the number of good
nodes, Nb is the number of bad nodes, Ne is the number of
nodes evicted (as they are considered as bad nodes by intrusion
detection), impaired is a binary variable with 1 indicating
impairment security failure, and energy is a binary variable
with 1 indicating energy availability and 0 indicating energy
exhaustion.

Fig. 2. SPN Model for Intrusion Detection and Response.

Table II annotates transitions, and gives transition rates
used in the SPN model. The SPN model shown in Fig. 2
is constructed as follows.

• We use places to hold tokens, each representing a node.
Initially, all N nodes are good nodes (e.g., 128 in our



reference CPS), and put in place Ng as tokens.
• We use transitions to model events. Specifically, TCP

models good nodes being compromised; TFP models a
good node being falsely identified as compromised; TIDS
models a bad node being detected correctly.

• Good nodes may become compromised because of
capture attacks with rate λc. This assumption is modeled
by associating transition TCP with an aggregate rate
λc × Ng . Firing TCP will move tokens one at a time
(if it exists) from place Ng to place Nb. Tokens in place
Nb represent bad nodes performing impairment attacks
with probability pa.

• When a bad node is detected by the system IDS as
compromised, the number of compromised nodes evicted
will be incremented by 1, so place Ne will hold one
more token. On the other hand, the number of undetected
compromised nodes will be decremented by 1, i.e., place
Nb will hold one less token. These detection events are
modeled by associating transition TIDS with a rate of
(Nb × (1−Pfn))/(TIDS) with 1−Pfn accounting for the
system IDS true negative probability.

• The system-level IDS can incorrectly identify a good
node as compromised. This is modeled by moving a good
node in place Ng to place Ne from firing transition TFP
with a rate of (Ng × Pfp)/(TIDS), with Pfp accounting
for the system IDS false positive probability.

• The system energy is exhausted after time NIDS ×
TIDS, where NIDS is the maximum number of intrusion
detection intervals the CPS can possibly perform before
it exhausts its energy due to performing ranging, sensing,
and intrusion detection functions. It can be estimated
by considering the amount of energy consumed in
each TIDS interval. This energy exhaustion event is
modeled by placing a token in place energy initially, and
firing transition TENERGY with rate 1/(NIDS × TIDS).
When the energy exhaustion event occurs, the token in
place energy will be vanished, and the system enters
an absorbing state meaning the lifetime is over. This
condition is modeled by disabling all transitions in the
SPN model.

• When the number of bad nodes (i.e., tokens in place
Nb) is at least 1/3 of the total number of nodes (tokens
in places Ng and Nb), the system fails because of a
Byzantine failure. The system lifetime is over, and is
modeled again by disabling all transitions in the SPN
model.

• Bad nodes in place Nb perform attacks with probability
pa, and cause impairment to the system. After
an impairment-failure time period is elapsed, heavy
impairment due to attacks will result in a security failure.
We model this situation by firing transition TIF with a rate
of pa×Nb×λif indicating the amount of time needed by
paNb bad nodes to reach this level of impairment, beyond
which the system cannot sustain the damage. The value
of λif is system specific, and is determined by domain
experts. A token is flown into place impaired when

such a security failure occurs. Once a token is in place
impaired, the system enters an absorbing state, meaning
the lifetime is over. Again, it is modeled by disabling all
transitions in the SPN model.

Here we note that the last two bullet points cover the two
conditions that would cause a security failure.

We utilize the SPN model to analyze two design tradeoffs.
• Detection strength vs. energy consumption – As we

increase the detection frequency (a smaller TIDS) or the
number of detectors (a larger m), the detection strength
increases, thus preventing the system from running into a
security failure. However, this increases the rate at which
energy is consumed, thus resulting in a shorter lifetime.
Consequently, there is an optimal setting of TIDS and m
under which the system MTTF is maximized, given the
node capture rate and attack model.

• Detection response vs. attacker strength – As the random
attack probability pa decreases, the attacker strength
decreases, thus lowering the probability of security failure
due to impairment attacks. However, compromised nodes
become more hidden and difficult to detect because they
leave less evidence traceable, resulting in a higher per-
host false negative probability pfn, and consequently
a higher system-level false negative probability Pfn.
This increases the probability of security failure due to
Byzantine attacks. The system can respond to a detected
instantaneous attacker strength, and adjust CT to trade
a high per-host false positive probability pfp for a low
per-host false negative probability pfn, or vice versa, so
as to minimize the probability of security failure. Hence,
there exists an optimal setting of CT as a function of
attacker strength detected at time t under which the
system security failure probability is minimized.

Let L be a binary random variable denoting the lifetime of
the system such that it takes on the value of 1 if the system is
alive at time t, and 0 otherwise. Then, the expected value of
L is the reliability of the system R(t) at time t. Consequently,
the integration of R(t) from t = 0 to ∞ gives the mean time
to failure (MTTF) or the average lifetime of the system we
aim to maximize. The binary value assignment to L can be
done by means of a reward function assigning a reward ri of
0 or 1 to state i at time t as

ri =

{

1 if system is alive in state i,
0 if system fails due to security or energy failure.

A state is represented by the distribution of tokens to places
in the SPN model. For example, with the SPN model defined
in Fig. 2, the underlying state is represented by (Ng , Nb,
Ne, impaired, energy). When place energy contains zero
tokens, it indicates energy exhaustion. When Ng is less than
or equal to twice Nb, it indicates a Byzantine failure. When
place impaired contains a token, it indicates a security failure
due to significant functional impairment. Once the binary value
of 0 or 1 is assigned to all states of the system as described
above, the reliability of the system R(t) is the expected value
of L weighted on the probability that the system stays at a



particular state at time t, which we can obtain easily from
solving the SPN model using SPNP [14]. The MTTF of the
system is equal to the cumulative reward to absorption, i.e.,

MTTF =

∫

∞

0

R(t)dt, (7)

which we can again compute easily using SPNP.

IV. PARAMETERIZATION

TABLE III
PARAMETERS AND THEIR VALUES FOR THE REFERENCE CPS.

Parameter Meaning Default value
N number of nodes or network size 128
n̄ number of neighbors within radio range 32
pfn per-host false negative probability [1-20%]
pfp per-host false positive probability [1-20%]
λc per-node capture rate 1/[1-24hr]
λif per-node impairment rate 1/[12-48hr]
TIDS intrusion detection interval [1-60min]
m number of intrusion detectors per node [3,11]
α number of ranging operations 5
Et energy for transmission per node 0.000125 J
Er energy for reception per node 0.00005 J
Ea energy for analyzing data per node 0.00174 J
Es energy for sensing per node 0.0005 J
Eo initial system energy 16128 kJ

We consider the reference CPS model introduced in Section
II operating in a 2 × 2 area with a network size (N ) of 128
nodes. Hence, the number of neighbors within radio range,
denoted by n̄, initially is about 128/4=32 nodes. Our IDS
design is based on local monitoring, so it can be generically
applied to any network structure. A node in our reference CPS
uses a 35 Wh battery, so its energy is 126000 J. The system
energy initially, denoted by Eo, is therefore 126000 J × 128
= 16128000 J. Table III lists the set of parameters and their
values for the reference CPS.

A. System-Level IDS Pfn and Pfp

We first parameterize the system IDS Pfn and Pfp given per-
host IDS false positive probability pfp and per-host IDS false
negative probability as input. We first note that Pfn and Pfp

highly depend on the attacker behavior. A persistent attacker
constantly performs slandering attacks such that it will vote a
bad node as a good node, and conversely a good node as a
bad node, to eventually cause a security failure. However, a
random or an insidious attacker will only perform slandering
attacks randomly with probability pa to avoid detection.

We first differentiate the number of active bad nodes, Na
b ,

from the number of inactive bad nodes, N i
b , with Na

b + N i
b =

Nb, such that at any time

Na
b = pa × Nb (8)

N i
b = (1 − pa) × Nb (9)

The difference between an active bad node and an inactive bad
node is that an inactive bad node behaves as if it were a good
node to evade detection, including casting votes the same way

as a good node would, when it participates in the system-level
IDS voting process.

For a persistent attacker, pa = 1. For a random attacker,
pa = prandom. For an insidious attacker, to maximize
the benefit of colluding attacks, a compromised node stays
dormant until a critical mass of compromised nodes is gathered
so that pa = 1 when Nb ≥ NT

b , and pa = 0 otherwise, where
NT

b is a parameter reflecting the insidiousness degree. In other
words, all bad nodes engage in active attacks when there is a
critical mass of compromised nodes in the system.

We calculate Pfn by (10). The equation for Pp
fp is the same

except replacing pfn by pfp in the right hand side expression.
We explain (10) for obtaining Pfn in detail below. The

explanation for Pfp follows the same logic. In (10), m this
is the number of detectors, and ma is the majority of m. The
first summation aggregates the probability of a false negative
stemming from selecting a majority of active bad nodes. That
is, it is equal to the number of ways to choose a majority of
m nodes from the set of active bad nodes times the number of
ways to choose a minority of m nodes from the set of good
nodes, and inactive bad nodes divided by the number of ways
to choose m nodes from the set of all good and bad nodes.
The second summation aggregates the probability of a false
negative stemming from selecting a minority of m nodes from
the set of active bad nodes which always cast incorrect votes,
coupled with selecting a sufficient number of nodes from the
set of good nodes and inactive bad nodes which make incorrect
votes with probability pfn, resulting in a majority of incorrect
votes being cast.

B. Host IDS pfn and pfp

Next, we parameterize the host IDS false negative
probability pfn and false positive probability pfp for persistent,
random, and insidious attacks. The system, after a thorough
testing and debugging phase, determines a minimum threshold
CT such that pfn and pfp, measured respectively based on (5)
and (6), are acceptable to system design. Let pp

fn and pp
fp be the

false negative probability and the false positive probability of
the host IDS when pa = 1 (e.g., under persistent attacks). Let
the minimum threshold CT value set for the persistent attack
case be denoted by Cp

T .
Let pr

fn, and pr
fp respectively be the false negative

probability, and the false positive probability of the host IDS
when pa < 1 (e.g., under random attacks). For the case
of random attacks with probability pa < 1, conceivably the
amount of evidence observable from a bad node would be
diminished proportional to pa. Consequently, with the same
minimum threshold Cp

T being used, the host false negative
probability would increase. We again utilize (5), and (6)
to respectively obtain pr

fn, and pr
fp for each given pa value

during the testing and debugging phase. Here we note that
the host false positive probability would remain the same,
i.e. pr

fp = pp
fp, because the attacker behavior does not affect

false positives, given the same minimum threshold Cp
T being

used.
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TABLE IV
β IN BETA(1,β) AND RESULTING pfn , AND pfp VALUES UNDER VARIOUS

ATTACK MODELS.
Attack Type β pfn pfp

Random with Pa=1.000 (Persistent) 1.20 6.3% 7.3%
Random with Pa=0.800 1.00 10.0% 7.3%
Random with Pa=0.400 0.75 17.8% 7.3%
Random with Pa=0.200 0.50 31.6% 7.3%
Random with Pa=0.100 0.20 63.1% 7.3%
Random with Pa=0.050 0.13 74.1% 7.3%
Random with Pa=0.025 0.09 81.3% 7.3%
Insidious 0; 1.20 100%; 6.3% 7.3%

Lastly, let pi
fn, and pi

fp be respectively the false negative
probability, and the false positive probability of the host
IDS under insidious attacks. Obviously, the false positive
probability is not affected, so pi

fp = pp
fp. Because insidious

nodes stay dormant until a critical mass is achieved to perform
“all in” attacks, the false negative probability is one during the
dormant period, and is equal to that under persistent attacks
during the “all in” attack period. Specifically,

pi
fn =

{

pp
fn if Nb ≥ NT

b ,
1 otherwise. (11)

Here we note that pfn and pfp obtained above for persistent,
random, or insidious attacks would be a function of time as
input to (10) for calculating system-level IDS Pfn and Pfp

dynamically.
We apply the statistical analysis described by (1)-(4) to get

the maximum likelihood estimates of β (with α set as 1) under
each attacker behavior model, and then utilize (5) and (6) to
yield pfn and pfp. The system minimum threshold CT is set
to Cp

T = 0.9 to yield pp
fn = 6.3%, and pp

fp = 7.3%. Table
IV summarizes β values, and the resulting pfn and pfp values
under various attacker behavior models. The persistent attack
model is a special case in which pa = 1. The insidious attack
model is another special case in which pa = 1 during the “all
in” attack period, and pa = 0 during the dormant period.

C. Parameterizing CT for Dynamic Intrusion Response

The parameterization of pfn and pfp above is based on a
constant CT being used (i.e., Cp

T = 0.9). A dynamic IDS
response design is to adjust CT in response to the attacker
strength detected with the goal to maximize the system
lifetime. The attacker strength of a node, say node i, may be

estimated periodically by node i’s intrusion detectors. That is,
the compliance degree value of node i, Xi(t), as collected by
m intrusion detectors based on observations collected during
[t − TIDS, t], is compared against the minimum threshold
Cp

T set for persistent attacks. If Xi(t) < Cp
T , then node i

is considered a bad node performing active attacks at time
t; otherwise, it is a good node. This information is passed
to the control module who subsequently estimates Na

b (t),
representing the attacker strength at time t.

In this paper, we investigate a simple yet efficient IDS
response design. The basic idea is to decrease the per-host false
negative probability pfn when the attacker strength is high, so
we may quickly remove active attackers from the system to
prevent impairment failure. This goal is achieved by increasing
the CT value. Conversely, when there is little attacker evidence
detected, we lower CT so we may quickly decrease the
probability of a good node being misidentified as a bad node,
i.e., lowering the per-host false positive probability, to prevent
Byzantine failure.

While there are many possible ways to dynamically control
CT , in this paper we consider a linear one-to-one mapping
function as

CT (t) = Cp
T + δCT

× (Na
b − 1) (12)

Here CT (t) refers to the CT value set at time t as a response to
the attacker strength measured by Na

b (t) detected at time t; Cp
T

is the minimum threshold set by the system for the persistent
attack case; and δCT

is the increment to CT per active bad
node detected. Essentially we set CT to Cp

T when Na
b (t)

detected at time t is 1, and linearly increase (or decrease)
CT with increasing (or decreasing) attacker strength detected.
With Cp

T = 0.9 in our CPS reference system, we set δCT
= 0.5

and parameterize CT (t) as

CT (t) =















0.85 if Na
b = 0

0.90 if Na
b = 1

0.95 if Na
b = 2

0.99 if Na
b ≥ 3

(13)

Note that when CT is closer to 1, a node will more likely
be considered as compromised even if it wanders only for a
small amount of time in insecure states. A large CT induces
a small per-host false negative probability pfn at the expense
of a large per-host false positive probability pfp.



D. Energy

Lastly, we parameterize NIDS, the maximum number of
intrusion detection cycles the system can possibly perform
before energy exhaustion, as

N =
Eo

ETIDS

(14)

where Eo is the initial energy of the reference CPS. ETIDS
is

the energy consumed per TIDS interval due to ranging, sensing,
and intrusion detection functions, calculated as

ETIDS
= n × (Eranging + Esensing + Edetection) (15)

where Eranging, Esensing, Edetection stand for energy spent for
ranging, sensing, and intrusion detection in a TIDS interval,
respectively. Here the energy spent per node is multiplied with
the node population in the CPS to get the total energy spent
by all nodes per cycle.

In (15), Eranging stands for the energy spent for periodic
ranging. It is calculated as

Eranging = α × [Et + n̄ × (Er + Ea)] (16)

Here a node spends Et energy to transmit a CDMA waveform.
Its n̄ neighbors each spend Er energy to receive the waveform,
and each spend Ea energy to transform it into distance. This
operation is repeated for α times for determining a sequence
of locations. In (15), Esensing stands for the amount of energy
consumed due to periodic sensing. It is computed as

Esensing = n̄ × (Es + Ea). (17)

Here a node spends Es energy for sensing navigation and
multipath mitigation data, and Ea energy for analyzing sensed
data for each of its n̄ neighbors. Finally, Edetection stands for
the energy used for performing intrusion detection on a target
node. It can be calculated by

Edetection = m×(Et+n̄·Er)+m×(Et+(m−1)·(Er+Ea)).
(18)

Here we consider the energy required to choose m intrusion
detectors to evaluate a target node (the first term), and the
energy required for m intrusion detectors to vote (the second
term). Specifically, the first term is the number of intrusion
detectors times the cost of transmitting plus the number of
nodes in radio range times the cost of receiving. The second
term is the number of intrusion detectors times the cost of
transmitting plus the number of peer intrusion detectors times
the cost of receiving plus the cost of analyzing the vote.

V. NUMERICAL DATA

In this section, we present numerical data for reliability
assessment as a result of executing intrusion detection and
response in a CPS. Our objective is to identify optimal
design settings in terms of the optimal values of TIDS, m,
and CT under which we can best trade energy consumption
versus intrusion detection, as well as response effectiveness
versus impairment security failure, to maximize the system
MTTF, when given a set of parameter values characterizing
the operational and networking conditions.

A. Effect of Intrusion Detection Strength

We first examine the effect of intrusion detection strength
measured by the intrusion interval, TIDS, and the number
of intrusion detectors, m. We only present results for the
reference CPS under persistent attacks, as the results for other
types of attacks show similar trends.

Fig. 3 shows MTTF versus TIDS as the number of detectors
(m) in the system-level IDS varies over the range of [3,11] in
increments of 2. We see that there exists an optimal TIDS value
at which the system lifetime is maximized to best tradeoff
energy consumption versus intrusion tolerance. Initially, when
TIDS is too small, the system performs ranging, sensing,
and intrusion detection too frequently, and quickly exhausts
its energy, resulting in a small lifetime. As TIDS increases,
the system saves more energy, and its lifetime increases.
Finally, when TIDS is too large, although the system can save
even more energy, it fails to catch bad nodes often enough,
resulting in the system having many bad nodes. Bad nodes
through active attacks can cause impairment security failure.
Furthermore, when the system has 1/3 or more bad nodes out
of the total population, a Byzantine failure ensues. We observe
that the optimal TIDS value at which the system MTTF is
maximized is sensitive to the m value. The general trend is
that, as m increases, the optimal TIDS value decreases. Here
we observe that m = 7 is optimal to yield the maximum MTTF
because too many intrusion detectors would induce energy
exhaustion failure, while too few intrusion detectors would
induce security failure. Using m = 7 can best balance energy
exhaustion failure versus security failure for high reliability.

 20

 40

 60

 80

 100

 120

 140

 160

 0  5  10  15  20
TIDS (min)

MTTF (min)

network size n = 128
CT = 0.90
adversary type = PERSISTENT
capture rate λc = 1/hour
impairment rate λif = 1/(48 hours)
static CT

m = 3
m = 5
m = 7
m = 9

m = 11

Fig. 3. MTTF vs. TIDS and m.

Fig. 4 shows MTTF versus TIDS as the compromising rate
λc varies over the range of once per 4 hours to once per 24
hours to test the sensitivity of MTTF with respect to λc (with
m fixed at five to isolate its effect). We first observe that, as
λc increases, MTTF decreases because a higher λc will cause
more compromised nodes to be present in the system. We also
observe that the optimal TIDS decreases as λc increases. This
happens because, when more compromised nodes exist, the
system needs to execute intrusion detection more frequently to
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maximize MTTF. Fig. 4 identifies the best TIDS to be used to
maximize the lifetime of the reference CPS to balance energy
exhaustion versus security failure, when given CT and λc

characterizing the operational and networking conditions of
the system.

B. Effect of Attacker Behavior

In this section, we analyze the effect of various attacker
behavior models, including persistent (with pa = 1, pi

fn and
pi
fp given as input), random (with pa = prandom, pr

fn, and
pr
fp given as input), and insidious attacks (with pa = 1 when

Nb ≥ NT
b = 10 and pa = 0 otherwise, pi

fp, and pi
fn defined

by (11) given as input). The analysis conducted here is based
on static CT . In the next section, we will analyze the effect
of dynamic CT as a response to attacker strength detected at
runtime.

Fig. 5 shows MTTF versus TIDS with varying prandom

values. We first observe that the system MTTF is low when
prandom is small (e.g., prandom = 0.025). This happens
because, when prandom is small, most bad nodes are dormant
and remain in the system without being detected. Thus, the
system suffers from Byzantine failure quickly, leading to a low
MTTF. As prandom increases from 0.025 to 0.2, the system
MTTF increases because of a higher chance of bad nodes
being detected and removed from the system, thus reducing the
probability of Byzantine security failure. As prandom increases
further, however, the system MTTF decreases again because of
a higher probability of impairment security failure as there will
be more bad nodes actively performing impairment attacks.
In the extreme case of prandom = 1, all bad nodes perform
attacks, and the system failure is mainly caused by impairment.
The maximum MTTF occurs when prandom = 0.2, at which
point the probability of security failure due to either type of
security attacks is minimized. Here we should note that the
result of prandom = 0.2 yielding the highest MTTF is a balance
of impairment security failure rate versus Byzantine failure
rate dictated by the parameter settings of the reference CPS
as given in Tables III and IV.

 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50  60  70  80
TIDS (min)

MTTF (min)

network size n = 128
m = 5
adversary type = RANDOM
capture rate λc = 1/(16 hours)
impairment rate λif = 1/(24 hours)
static CT

prandom = 0.025
prandom = 0.050
prandom = 0.100
prandom = 0.200
prandom = 0.400
prandom = 0.800
prandom = 1.000

Fig. 5. MTTF vs. TIDS and prandom.

Fig. 6 compares the MTTF versus TIDS of the reference
CPS under the three attacker types head-to-head. It shows
that the MTTF is the highest for the reference CPS under
random attacks. The MTTF of the CPS under persistent attacks
is the second highest. As expected, the reference CPS under
insidious attacks has the lowest MTTF. We attribute this
result to the fact that, unlike persistent attacks which aim to
cause impairment failure, insidious attacks while dormant can
cause Byzantine failure, and while “all in” can also cause
impairment failure. The extent to which the system MTTF
differs depends on the relative rate at which impairment failure
versus Byzantine failure occurs. The former is dictated by λif ,
and the latter is dictated by how fast the Byzantine failure
condition is satisfied. The result that the MTTF difference
between persistent attacks (the second curve) and insidious
attacks (the last curve) is relatively significant is due to a large
Byzantine failure rate compared with the impairment failure
rate. On the other hand, the reference CPS under random
attacks can more effectively prevent either Byzantine failure
or impairment failure from occurring by removing bad nodes
as soon as they perform attacks. The system MTTF difference
between random versus persistent attacks again depends on
the relative rate at which impairment failure versus Byzantine
failure occurs.

C. Effect of Intrusion Response

In this section, we analyze the effect of intrusion response,
i.e., dynamic CT as a response to attacker strength detected
at runtime, on the system MTTF.

Fig. 7 shows MTTF versus TIDS under the static CT design
and the dynamic CT design for the persistent attack case. We
see there is a significant gain in MTTF under dynamic CT

over static CT . The reason is that, with persistent attacks, all
bad nodes are actively performing attacks, so the system is
better off by increasing CT to a high level to quickly remove
bad nodes to prevent impairment failure. We also observe that,
in the case the optimal TIDS at which MTTF is maximized
decreases compared with the static CT case so to as quickly
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remove bad nodes from the system.
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Fig. 8 shows the MTTF versus TIDS under the static CT

design and the dynamic CT design for the random attack
case with prandom = 0.2. We pick the case of prandom = 0.2
because it yields the highest MTTF among all random attack
cases in the reference CPS system (see Fig. 5). Here again we
observe that dynamic CT performs significantly better than
static CT , when operating at the identified optimal TIDS value.
The optimal TIDS value under dynamic CT design again is
smaller than that under static CT design to quickly remove
nodes that perform active attacks.

Fig. 9 shows the MTTF versus TIDS under the static CT

design and the dynamic CT design for the insidious attack
case. Here we observe the MTTF difference is relatively small
compared with persistent or random attacks. The reason is that
bad nodes do not perform active attacks until a critical mass is
reached, so dynamic CT would set a lower CT value during the
dormant period while rapidly setting a higher CT value during
the attack period. Because the attack period is relatively short
compared with the dormant period, the gain in MTTF isn’t
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very significant. Nevertheless, we observe, even for insidious
attacks, dynamic CT still performs better than static CT .

As our CT dynamic control function (12) adjusts CT solely
based on the attacker strength detected regardless of the
attacker type, we conclude that the dynamic CT design as a
response to attacker strength detected at runtime can improve
MTTF compared with the static CT design.
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VI. FUTURE WORK

In this paper, we developed a probability model to analyze
the reliability of a cyber physical system in the presence of
both malicious nodes exhibiting a range of attacker behaviors,
and an intrusion detection and response system for detecting
and responding to malicious events at runtime. For each
attacker behavior, we identified the best detection strength (in
terms of the detection interval and the number of detectors),
and the best response strength (in terms of the per-host
minimum compliance threshold for setting the false positive
and negative probabilities), under which the reliability of the
system may be maximized.



There are several future research directions, including (a)
investigating other intrusion detection criteria (e.g., based on
accumulation of deviation from good states) other than the
current binary criterion used in the paper based on a minimum
compliance threshold to improve the false negative probability
without compromising the false positive probability; (b)
investigating other intrusion response criteria (e.g., exponential
increase of the minimum compliance threshold) other than the
linear function used in the paper, and analyzing the effect on
the system lifetime; (c) exploring other attack behavior models
(e.g., an oracle attacker that can adjust the attacker strength
depending on the detection strength to maximize security
failure), and investigating the best dynamic response design to
cope with such attacks; (d) developing a more elaborate model
to describe the relationship between intrusion responses and
attacker behaviors, and justifying such a relationship model
by means of extensive empirical studies; and (e) extending
the analysis to hierarchically-structured intrusion detection and
response system design for a large CPS consisting of multiple
enclaves each comprising heterogeneous entities subject to
different operational and environment conditions and attack
threats.
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