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Modeling and Analysis of Attacks and Counter
Defense Mechanisms for Cyber Physical Systems

Robert Mitchell and Ing-Ray Chen, Member, IEEE

Abstract—In this paper, we develop an analyticalmodel based on
stochastic Petri nets to capture the dynamics between adversary be-
havior and defense for cyber physical systems.We consider several
types of failures including attrition failure, pervasion failure, and
exfiltration failure which can happen to a cyber physical system.
Using a modernized electrical grid as an example, we illustrate
the parameterization process. Our results reveal optimal design
conditions, including the intrusion detection interval, and the re-
dundancy level, under which themodernized electrical grid'smean
time to failure is maximized. Further, there exists a design tradeoff
between exfiltration failure, attrition failure, and pervasion failure
when using redundancy to improve the overall system reliability.
Index Terms—Cyber physical systems, intrusion detection, re-

dundancy engineering,mean time to failure,modeling andanalysis.

ACRONYMS AND ABBREVIATIONS

CPS Cyber physical system
IDS Intrusion detection system
MTTF Mean time to failure
SPN Stochastic Petri net

NOTATION

S, C, A Sensors, control nodes, actuators
INITx Initial node type count
MINx Minimum node type count
PBADx Compromised node type count
PGOODx Uncompromised node type count

Sensing interval
Exfiltration rate
Node type false negative probability
Node type false positive probability
Node type audit interval
Node type redundancy factor
Node type compromise rate
Node type aggregate compromise rate
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Node type aggregate false positive rate
Node type aggregate detection rate
Node type aggregate exfiltration rate

I. INTRODUCTION

W HILE the importance of the survivability of cyber phys-
ical systems (CPSs) against malicious attacks is well

recognized, the literature is thin in modeling and analysis of
attacks and counter countermeasures for CPSs [1], [2]. To date,
there are two lines of research in modeling and analysis of CPSs.
The first line of work focused on a formal process or framework
for designing and engineering a CPS [3]–[6]. The basic idea for
this line of work is to formalize safety and functional require-
ments utilizing formal modeling and analysis tools, and then
perform rigorous model verification. The second line of work
focused on a mathematical model for analyzing the system's
response behavior in the presence ofmalicious nodes performing
variousattacks [7]–[11].Thebasic idea is todevelopastate-based
stochastic process to model a CPS equipped with an intrusion
detection system (IDS) presented with various types of attacks,
including random, opportunistic, and insidious, with the objec-
tive to improve IDS designs so as to prolong the system lifetime.
We follow the second line of research work with the primary

objective to capture the dynamics between adversary behavior
and defense for survivability of CPSs. The end product is a tool
that is capable of analyzing a myriad of attacker behaviors, and
seeing the effectiveness of countering adaptive defense strate-
gies which incorporate attack-response dynamics. Relative to
the works cited above, our contribution is threefold.
• First, we study the effect of attack and countermeasures on
the survivability of CPSs. To the best of our knowledge,
we are the first to develop an analytical model to capture
the dynamics between adversary and defense for CPSs, as
a result of applying attacks and countermeasures.

• Second, we define three failure types in CPSs, namely,
attrition, pervasion, and exfiltration failure which can
happen to a cyber physical system. Using a modernized
electrical grid as an example, we illustrate the param-
eterization process. Our results reveal optimal design
conditions, including the intrusion detection interval, and
the redundancy level, under which the modernized elec-
trical grid's mean time to failure (MTTF) is maximized.

• Third, our analytical model paves the way to answerwhat if
questions. In this paper, we determine if using redundancy
to cope with attacks for system survivability is viable in a
CPS. Our result reveals that there exists a design tradeoff
between exfiltration, attrition, and pervasion failure when
using redundancy to improve the overall system reliability.
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Fig. 1. Abstraction model for a modernized electrical grid.

The rest of the paper is organized as follows. In Section II,
we introduce the system model including the abstraction model
of a CPS, system failure definitions, attacker behaviors, and
countermeasures considered in this paper. In Section III, we de-
velop an analytical model based on stochastic Petri net (SPN)
techniques [12]–[14] for modeling and analysis of attacks and
counter countermeasures for CPSs. In Section IV, using a mod-
ernized electrical grid as an example, we illustrate the parame-
terization process, i.e., assigning model parameters with values,
and present numerical results. Finally, in Section V, we con-
clude the paper, and outline future areas.

II. SYSTEM MODEL

A. System Description
A modernized electrical grid is a smart grid that uses digital

information and communications technology to gather and act
on information, such as information about the behaviors of sup-
pliers and consumers, in an automated fashion to improve the
efficiency, reliability, economics, and sustainability of the pro-
duction and distribution of electricity [15]. Our intention is to
provide an abstraction model for a modernized electrical grid
equipped with specific physical devices to illustrate the effect
of attacks and countermeasures on system survivability.
Fig. 1 illustrates the abstraction model for a modernized elec-

trical grid. For ease of disposition, this paper is particularly con-
cerned with five types of physical devices: centralized man-
agement nodes, sensors, distributed control nodes, actuators,
and communication links. This classification can frame most
real and imagined attack scenarios. Centralized management
nodes are attended, physically secure, and high-performance;
they perform system-wide management functions. Sensors are
unattended, physically vulnerable, and economical; they trans-
late measurements of the physical world into the cyber domain.
Distributed control nodes are also unattended, physically vul-
nerable, and economical. These nodes serve as agents for the
centralized management nodes; they also execute control algo-
rithms on sensor data, and apply the results to the actuators. Ac-
tuators are also unattended, physically vulnerable, and econom-
ical; they translate decisions made in the cyber domain into the
physical world. Communication links connect centralized man-
agement nodes, sensors, control nodes, and actuators.

B. System Failure Definition
We consider three types of system failure.
• Attrition failure occurs when themodernized electrical grid
doesn't have enough control nodes or actuators to accom-
plish its intended functions. Intuitively, no evicted or com-
promised nodes work toward the objective. Our model
doesn't consider sensors in attrition failure. On one hand, if
a sensor is evicted, the short-term impact is minimal: any
control loop can run free of external input long enough to
restore the evicted sensor. On the other hand, if a sensor is
compromised, it can do little more than send illegitimate
data to a control node where its dissenting voice will be
drowned out by the preponderance of uncompromised sen-
sors sending legitimate data.

• Pervasion failure occurs when the density of compromised
control nodes or actuators is too high. In this situation,
compromised nodes collude to overwhelm the other nodes.
We don't consider sensors in pervasion failure, because a
compromised sensor has no means to directly or indirectly
attack the modernized electrical grid. In terms of Fig. 1,
an adversary would prosecute pervasion failure via an un-
compromised control node tasking an uncompromised ac-
tuator. An attack using two uncompromised, but adver-
sary-compliant, nodes simultaneously is a fragile propo-
sition, so our model doesn't include it.

• Exfiltration failure occurs when the aggressor secretes
enough modernized electrical grid data to achieve an
intelligence victory, or leaks enough surveillance data to
instrument a devastating attack. Unlike the direct mission
impact that attrition failure requires, and the direct means
to damage the modernized electrical grid that pervasion
failure requires, exfiltration is perfectly suited to compro-
mised sensors because receiving raw data is a sensor's sole
purpose. After gathering sensing reports, a compromised
control node can also leak information. We consider sen-
sors and control nodes in the exfiltration failure analysis.
The basic sequence of events in an exfiltration attack is
1) the aggressor is authenticated on the victim network,
2) the aggressor finds valuable data,
3) the aggressor connects with an aggressor-owned server

outside of the victim network,
4) the aggressor transmits the valuable data, and
5) the victim experiences exfiltration failure.

C. Attacker Behavior Modeling
1) Surveilling Attacker: This brand of attacker seeks to gain

information about or information residing on the target system.
A surveillance aircraft is a kinetic warfare analog to this type of
attacker. In the commercial domain, a company would do this to
steal trade secrets from a competitor. This brand of attacker is in-
terested in long-term operations so they will go to great lengths
(even degrading their own mission) to avoid detection. In terms
of Fig. 1, the surveilling attacker has more interest in centralized
management nodes, communication links, and sensors; and less
interest in actuators, and control nodes.
2) Destructive Attacker: This brand of attacker seeks to dis-

rupt the target system. A bomb is a kinetic warfare analog to this
case. In the law enforcement domain, a political group would
do this to disrupt some entity with a different worldview. This
brand of attacker is not concerned with discretion, and will act
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TABLE I
COUNTERMEASURES, MEANINGS, AND DESIGN PARAMETERS

TABLE II
ATTACK BEHAVIOR, SYSTEM FAILURE TYPE, COUNTERMEASURE AND VULNERABLE DEVICES

with impunity. In terms of Fig. 1, the destructive attacker has
more interest in actuators, centralized management nodes, and
control nodes; and less interest in communication links, and sen-
sors. One way to disrupt the system is to reduce the number of
control nodes and actuators operating correctly. Another way to
disrupt the system is to pervade control nodes and actuators dis-
creetly. In these scenarios, the centralized management nodes
are not likely targets because they are physically controlled,
highly reliable, and under close scrutiny from computer secu-
rity software.

D. Countermeasures
1) Intrusion Detection: The CPS has an IDS applying

anomaly or signature based detection techniques [1], [16], [17]
to detect and evict suspicious nodes. The intrusion detection
quality is characterized by the false negative probability ,
and false positive probability with for
sensors, control nodes, and actuators, respectively. The former
quality metric defines the probability that a malicious node is
misdetected, while the latter quality metric defines the proba-
bility that a good node is misidentified as a malicious node. We
assume that , and with are inputs to
our model.
The countermeasure employed by the CPS to detect and evict

malicious devices is to apply the optimal detection interval
for periodic intrusion detection with ,

for sensors, control nodes, and actuators, respectively. When
is low, the system can benefit from a small intrusion

detection interval because malicious nodes can be detected and
evicted often. On the other hand, when is high, the system
can benefit from a large intrusion detection interval because
good nodes won't be misidentified as malicious nodes, and
mistakenly evicted often. Hence, identifying and applying the
optimal detection interval to best balance and
can enhance the system MTTF.
2) Data Leak Rate Control: The CPS prevents or delays ex-

filtration failure by data leak rate control. To cope with com-
promised sensors and control nodes, it runs an inward facing
firewall. In the scenario described in Section II.B, when the ag-
gressor attempts to connect to a server outside of the network,
the firewall may deny the connection because it is not autho-
rized, or the IP address of the server is not on a whitelist. Even

TABLE III
PLACES IN THE SPN PERFORMANCE MODEL

if these rules are not active on the firewall, it may throttle the
outbound session (e.g., 100 kbps). If the valuable dataset is, for
example, a 1 GB dataset, this would buy the victim almost 24
hours to detect the leak and evict the aggressor. The critical de-
sign parameter of this countermeasure is a maximum transmis-
sion rate of bits per second.
To cope with compromised sensor nodes leaking sensing re-

sults, the system limits the data leak rate by rotating one sensor
among all sensors measuring the same physical phenomenon, to
do sensing and data transmission per sensing interval .
The critical design parameter of this countermeasure is ,
over which data leakage is possible only when the compromised
sensor node is rotated in to do sensing. If a sensor performs
data transmission in every interval, the IDS generates
a detection.
3) Redundancy: Modern electrical grid systems use some de-

gree of redundancy to counterbalance failed, evicted, and com-
promised nodes. The critical design parameter of this coun-
termeasure is the redundancy factor over the minimum
number of nodes (MINx) required for functionality such that
the number of nodes initially put into the system is

(1)

where . We aim to analyze the design parameter
settings for performance maximization in terms of the MTTF.
Table I provides additional detail on the countermeasures we
consider.
Table II summarizes the relationship between the attack be-

havior, countermeasure, and malfunctioned device type causing
a system failure.
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TABLE IV
TRANSITIONS IN THE SPN PERFORMANCE MODEL

TABLE V
ENABLING FUNCTIONS IN THE SPN PERFORMANCE MODEL

Fig. 2. SPN model.

III. PERFORMANCE MODEL

In this section, we develop a performance model as shown in
Fig. 2 based on SPNmodeling techniques to describe the system
behavior in the presence of attacker behavior and countermea-
sures. Tables III and IV annotate the physical meanings of places
and transitions in the SPN model. Table V defines the enabling
functions for firing transitions in the SPN model. For simplicity,
we consider three devices: sensors, control nodes, and actuators.
The underlying semi-Markov model has a 9-state represen-

tation: (PATTRIT, PGOODS, PGOODC, PGOODA, PBADS,
PBADC, PBADA, PLEAK, PPERVADE). The underlying
model would be Markov if transition times were exponentially
distributed. However, this is a strong assumption, so we use

a semi-Markov model to underlie the SPN to accommodate
generally distributed transition times.
The underlying semi-Markov model has nine places. The

PATTRIT place, if holding a token, represents a system failure
resulting from too many control nodes or actuators being
evicted or compromised. The PGOODS, PGOODC, and
PGOODA places hold the count of un-evicted and uncom-
promised sensors, control nodes, and actuators, respectively.
Similarly, the PBADS, PBADC, and PBADA places hold the
count of un-evicted and compromised sensors, control nodes,
and actuators, respectively. The PPERVADE place, if holding
a token, represents a system failure resulting from a high ratio
of compromised to uncompromised control nodes or actuators.
The PLEAK place, if holding a token, represents a system
failure resulting from compromised sensors and control nodes
exfiltrating too much data.
The SPN model is constructed as follows.
• The first event is the system initialization by which we
populate the system with INITx nodes with ,
for sensors, control nodes, and actuators, respectively. We
use places to hold tokens with each token representing one
node. Initially, all nodes are uncompromised, and put in
places PGOODx as tokens.

• The next event we consider is the adversary compromising
an uncompromised node. Transitions TCPx model this
event with , for sensors, control nodes,
and actuators, respectively. Uncompromised nodes may
become compromised because of capture events. We
assume that the time for the adversary to capture a node
of type x (which may be a sensor, a control node, or
an actuator) and convert it into a malicious node is a
random variable following a distribution function (e.g.,
an exponential distribution). This event is modeled by
associating transitions TCPx with rates . Firing
TCPx will move tokens (if available) one at a time from
place PGOODx to place PBADx. Tokens in place PBADx
represent unevicted compromised nodes. Fig. 3 illustrates
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Fig. 3. Node captures in the underlying semi-Markov model.

Fig. 4. False positives in the underlying semi-Markov model.

Fig. 5. Detections in the underlying semi-Markov model.

these transitions. For example, if in state (0, ,
0, 0, 0, 0, 0), an uncompromised sensor node is compro-
mised, a token will flow from PGOODS to PBADS, and
the resulting state is (0, , 1, 0, 0, 0, 0).

• The third event we consider is the IDS incorrectly evicting
an uncompromised node. Transitions TFPx model this
event with , for sensors, control nodes, and
actuators, respectively. Uncompromised nodes may be
evicted because of intrusion detection error. This event
is modeled by removing an uncompromised node from
place PGOODx by firing transitions TFPx with rates of

. Fig. 4 illustrates these transitions. For example, if
in state (0, , 0, 0, 0, 0, 0) the IDS misdetects and
evicts an uncompromised actuator, a token will flow from
PGOODA, and the resulting state is (0, , 0,
0, 0, 0, 0).

• The next event we consider is the IDS correctly evicting
a compromised node. Transitions TIDx model this event
with , for sensors, control nodes, and actu-
ators, respectively. When a compromised node is detected
as compromised, the number of unevicted compromised
nodes will be decremented by one, i.e., place PBADx will
hold one less token. This event is modeled by associating
transitions TIDx with rates . Fig. 5 illustrates these
transitions. For example, if in state (0, , 0, 1,
0, 0, 0) the IDS detects and evicts a compromised control
node, a token will flow from PBADC, and the resulting
state is (0, , 0, 0, 0, 0, 0). The physical
meaning of the TIDx timed transitions is the rate that the
modernized electrical grid IDS generates true positives for
compromised sensors, control nodes, and actuators.

• The fifth event we consider is the system failing due to
attrition. That is, the system fails when the number of nodes
with node type x is less than the minimum specified by
MINx. TATTRITx models this attrition failure event with

, for control nodes, and actuators, respectively.
Table V lists the enabling functions governing the firing
of TATTRITx. When TATTRITx is enabled, that is, the
attrition failure condition is true, then the corresponding

Fig. 6. Attrition failure in the underlying semi-Markov model.

Fig. 7. Pervasion failure in the underlying semi-Markov model.

enabling function returns true. This condition will put a
token into place PATTRIT, representing that an attrition
failure has occurred. Physically, the transition TATTRITx
is enabled and fired when the number of nodes is less than
MINx. Fig. 6 illustrates this event from the perspective of
the underlying semi-Markov chain.

• The next event we consider is the system failing due to
pervasion. TPERVADEx models this pervasion failure
event, with , for control nodes, and actuators,
respectively. When uncompromised control nodes and
actuators introduced in Fig. 1 transition to compromised
(PBADx), they degrade the defense of the network by
falsely endorsing their confederates, and falsely reporting
uncompromised nodes as compromised. Also, when the
modernized electrical grid evicts uncompromised nodes
(TFPx), this reduces the preponderance of uncompromised
nodes counterbalancing the false endorsements and false
alerts. This defense can be defeated when at least 1/3 of the
control nodes or actuators introduced in Fig. 1 are com-
promised (PBADx) following the definition of Byzantine
failure [18]. The enabling functions of TPERVADEx with

are defined in Table V governing the firing of
TPERVADEx. When TPERVADEx is enabled, that is, the
pervasion failure condition is true, then the corresponding
enabling function returns true. This action will put a token
into place PPERVADE, representing that a pervasion
failure has occurred. Fig. 7 illustrates this event from the
perspective of the underlying semi-Markov chain.

• The seventh event we consider is the system failing due to
extensive exfiltration. TLEAKx models this failure event,
with for sensors, and control nodes, respec-
tively. When compromised sensor nodes (PBADS) dis-
creetly transmit or compromised control nodes (PBADC)
discreetly relay the confidential data of a modernized elec-
trical grid outside the system, competitors and criminals
learn valuable business intelligence, and guerrillas and na-
tion-states learn of system vulnerabilities. Data leak rate
controls (i.e., and ) are our countermeasures
for this threat. This defense can be defeated given enough
time for data exfiltration. The physical meaning of the
TLEAKx transition is the event that the aggressor secretes
enough data to cause an exfiltration failure. Fig. 8 illus-
trates this event from the perspective of the underlying
semi-Markov chain.
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TABLE VI
INPUT AND DESIGN PARAMETERS AND THEIR VALUES FOR A MODERNIZED ELECTRICAL GRID

TABLE VII
PARAMETERIZATION OF TRANSITION RATES IN THE SPN MODEL

Fig. 8. Exfiltration failure in the underlying semi-Markov model.

IV. PERFORMANCE ANALYSIS

A. Model Parameterization

Table VI lists the input parameters and their default values
or ranges of values used for the modernized electrical grid de-
scribed in our system model. A design parameter is one that the
system manager can choose. On the other hand, an input param-
eter is one that the operating environment dictates.
We perform the parameterization processes (i.e., give values

to model parameters) for the transition rates in the SPN model.
Let be the transition rate of transition T in the SPN model.
Table VII summarizes the parameterization of

, and from the input and design parameters
listed in Table VI. Below we provide physical explanations.

can be derived using the formulation

(2)

where is the number of uncompromised nodes of
device type x, and is the per-node compromise rate for device
type x. Intuitively, more uncompromised sensors, control nodes,
or actuators translates to more opportunities for compromise.

can be derived using the formulation

(3)

where is the number of compromised nodes, is
the false negative probability, and is the IDS detection
interval for device type x. Intuitively, in every interval, a
bad node of type x will be correctly identified as a bad node with
probability , so the aggregate rate at which bad nodes
are detected and evicted correctly is multiplied with

.
can be derived using the formulation

(4)

where is the number of uncompromised nodes,
is the false positive probability, and is the IDS

detection interval for device type x. Intuitively, in every
interval, a good node of type x will be misidentified as a bad
node with probability , so the aggregate rate at which good
nodes suffer from false positives is multiplied with

.
can be derived using the formulation

(5)

where the first term is for a compromised sensor node to ro-
tate in for reporting sensing data, the second term is for the rate
at which sensing reporting occurs, and the third term is for the
maximum number of leaks (so MAXLEAKS is an input param-
eter) the system can tolerate before an exfiltration failure occurs.
Note that, in the above formulation, MAXLEAKS is an input
parameter.

can be derived using the formulation

(6)
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Fig. 9. MTTF vs. with varying .

where is the data transmission rate per node allowable,
and MAXLEAKC is the maximum data amount leaked beyond
which an exfiltration failure occurs. Note that, in the above for-
mulation, MAXLEAKC is an input parameter.

B. Results
In this section, we present numerical data for MTTF

assessment as a result of applying countermeasures de-
scribed in Section II-D against attack behavior described in
Section II-C causing attrition, pervasion, or exfiltration system
failure. Our objective is to analyze the effect of countermea-
sures in terms of , and on MTTF, when
given a set of parameter values characterizing the operational
and networking conditions.
Let L be a binary random variable denoting the lifetime of

the system such that it takes on the value of 1 if the system is
alive at time t, and 0 otherwise. Then, the expected value of
L is the reliability of the system R(t) at time t. Consequently,
the integration of R(t) from to 1 gives the MTTF or
the average lifetime of the system we aim to maximize. The
binary value assignment to L can be done by means of a reward
function assigning a reward of 0 or 1 to state at time as

The MTTF computation methodology defined above requires
the probability of the system being in state at time , be
known. This requirement is obtained by defining a SPN model
using SPNP [19], and then solving the underlying semi-Markov
model utilizing solution techniques such as SOR, Gauss Seidel,
or Uniformization [19].
1) Effect of a Detection Interval : Fig. 9 shows MTTF

versus (assuming ) with
varying attack intensity . We set , and

to isolate out their effects. From left to right, the four
graphs are for the cases of attrition failure only, exfiltration
failure only, pervasion failure only, and combined failure,
respectively. We first observe that MTTF decreases as the
attacker strength increases, as expected, for all failure types. An
important observation is that, except for attrition failure, there
is an optimal value under which the MTTF is maximized.
We explain the reason as follows.
• The reason that the MTTF under attrition failure increases
monotonically as increases (in the leftmost graph)
is due to the setting of . That
is, the probability that a good node is misidentified as a
bad node is higher than the probability that a bad node is
missed. Consequently, a higher frequency of intrusion de-
tection, i.e., a smaller , will cause more good nodes to

be evicted than bad nodes evicted, thus causing the system
to fail faster due to attrition failure because of a lack of
good nodes in the system.

• The reason that theMTTF under exfiltration failure is max-
imized at the optimal value identified (in the second
leftmost graph) is due to the fact that the exfiltration failure
rate is mainly affected by the bad node ratio, i.e., the ratio
of the number of bad nodes to the total number of bad
and good nodes, as explained in Table VII. Therefore, to
maximize the MTTF under exfiltration failure, one needs
to minimize this ratio. The optimal that maximizes
the MTTF under exfiltration failure exists because the bad
node ratio minimizes with this optimal value.

• The reason that the MTTF under pervasion failure is max-
imized at the optimal value identified (in the second
rightmost graph) is due to the fact that pervasion failure
occurs when the bad node ratio is at least 1/3. Therefore,
to prevent pervasion failure, the bad node ratio must be
kept below 1/3. The optimal value that maximizes
the MTTF under pervasion failure exists because, with this
optimal value, the bad node ratio is the lowest.

The rightmost graph shows the system MTTF versus
when all failure types are considered. The MTTF curve in the
rightmost graph essentially combines the three MTTF curves
to the left. An important observation is that there still exists an
optimal for the MTTF curve under combined failure. Our
model allows such an optimal value to be identified when
given a set of parameter values characterizing the operational
and networking conditions.
2) Effect of False Positive Probability : Fig. 10 shows

MTTF versus (assuming )
with varying false positive probability . We set

, and to isolate their effects. From
left to right, the four graphs are again for the cases of attrition
failure only, exfiltration failure only, pervasion failure only, and
combined failure, respectively. We first observe that MTTF de-
creases as increases for all failure types because, as
increases, there is a higher probability of a good node being
misidentified as a bad node and evicted. We observe the same
trend as before. That is, except for attrition failure, there is an
optimal value under which the MTTF is maximized. The
same physical explanations can be applied here. We also ob-
serve that the optimal value for MTTF maximization in-
creases as increases. This result happens because, as
increases its magnitude relative to , intrusion detection may
be detrimental to system reliability if it is performed too often
because the rate at which good nodes are misidentified as bad
nodes and evicted will increase relative to the rate at which bad
nodes are detected and evicted. Consequently, as increases
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Fig. 10. MTTF vs. with varying .

Fig. 11. MTTF vs. with varying .

Fig. 12. MTTF vs. with varying .

its magnitude relative to , the optimal value increases
so as to minimize the bad node ratio. The rightmost graph of
Fig. 10 shows the system MTTF versus when all failure
types are considered. We again observe that there still exists an
optimal for the MTTF curve under combined failure.
3) Effect of False Negative Probability : Fig. 11 shows

MTTF versus (assuming ) with
varying false negative probability . We set

, and to isolate their effects. From left to
right, the four graphs are again for the cases of attrition failure
only, exfiltration failure only, pervasion failure only, and com-
bined failure, respectively. The trend exhibited in Fig. 11 for
the effect of is remarkably similar to that in Fig. 10 for the
effect of except that the MTTF is less sensitive to . In
particular, the MTTF under attrition failure (the leftmost graph)
is insensitive to . The reason is that attrition failure depends
on the number of good nodes remaining in the system. Hence,
attrition failure is only sensitive to the good node compromising
rate, i.e., , which determines how fast a good node is com-
promised into a bad node, as well as the false positive rate, i.e.,

, which determines how fast a good node is misidentified as
a bad node and evicted. The rightmost graph of Fig. 11 shows
the system MTTF versus when all failure types are con-
sidered. We again observe that there exists an optimal for
the MTTF curve under combined failure.
4) Effect of Redundancy Factor : Fig. 12 shows MTTF

versus with varying redundancy . We set

, and to isolate their effects.
From left to right, the four graphs are again for the cases of attri-
tion failure only, exfiltration failure only, pervasion failure only,
and combined failure, respectively. The redundancy factor de-
termines the number of nodes initially (INITx) with

(where ), and MINx is the minimum
number of control nodes or actuators, respectively, required to
prevent attrition failure. Because attrition failure depends on
the number of good nodes remaining in the system, putting in
more initial nodes can better prevent attrition failure from oc-
curring. Therefore, the MTTF under attrition failure (the left-
most graph) increases as increases. It is interesting to ob-
serve from Fig. 12 that the MTTF under exfiltration failure (the
second leftmost graph) decreases as increases. This rather
counter-intuitive result is due to the nature of exfiltration failure
by control nodes or sensors. Specifically, there are two ways
by which exfiltration failure can occur. One way is through
TLEAKC which depends on the absolute number of bad con-
trol nodes (see Table VII for the TLEAKC rate ).
The other way is through TLEAKS which depends on the bad
node ratio of sensors (also see Table VII for the TLEAKS rate

). Among these two rates, increases as the
initial number of control nodes (that is, INITC) increases, i.e., as

increases, because this increases the chance of bad control
nodes being produced due to node compromising events. The
other rate, , increases as the bad node ratio of sensor
nodes increases, which does not depend on . Consequently,
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the MTTF under exfiltration failure (the second leftmost graph)
decreases as increases. We also observe that the MTTF under
pervasion failure (the second rightmost graph) increases as in-
creases. This event happens because pervasion failure depends
on the bad node ratio which decreases as more initial nodes are
put in the system, especially if the detection interval is
large. Finally, the overall system MTTF (the rightmost graph)
curve combines all MTTF curves to the left. We again observe
that there exists an optimal that maximizes the MTTF of
the CPS against all attacks causing attrition, pervasion, or exfil-
tration system failures.

V. CONCLUSION
In this paper, we developed an analytical model based on

SPNs to capture the dynamics between adversary behavior
and defense for CPSs. Using a modernized electrical grid as
an example, our results revealed optimal design conditions,
including the intrusion detection interval, and the redundancy
level under which the modernized electrical grid's MTTF is
maximized. Further, we discovered that redundancy should
be used with caution, because while it suppresses attrition
and pervasion failure, it also induces exfiltration failure. The
analytical model developed in this paper allows the optimal
design parameter settings for maximizing the MTTF of the CPS
to be identified, when given a set of input parameter values
characterizing the operational and environment conditions.
In the future, we plan to investigate how control theory or

game theory principles [20]–[22] controlling the attack-defense
dynamics can further improve the CPS survivability.
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