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Abstract—In this paper, we propose an adaptive specification-
based intrusion detection system (IDS) for detecting malicious
unmanned air vehicles (UAVs) in an airborne system in which
continuity of operation is of the utmost importance. An IDS
audits UAVs in a distributed system to determine if the UAVs are
functioning normally or are operating under malicious attacks.
We investigate the impact of reckless, random and opportunistic
attacker behaviors (modes which many historical cyber attacks
have used) on the effectiveness of our behavior rule-based UAV
IDS (BRUIDS) which bases its audit on behavior rules to quickly
assess the survivability of the UAV facing malicious attacks.
Through a comparative analysis with the multi-agent system/ant-
colony clustering model (MAS/ACCM), we demonstrate a high
detection accuracy of BRUIDS for compliant performance. By
adjusting the detection strength, BRUIDS can effectively trade
higher false positives for lower false negatives to cope with more
sophisticated random and opportunistic attackers to support
ultra safe and secure UAV applications.

Index Terms—Intrusion detection, Unmanned air vehicles,
security.

I. I NTRODUCTION

Unmanned air vehicles (UAVs) comprise a large part of
the warfighting capability of modern militaries. Also, theyare
emerging in civilian applications such as surveillance forlaw
enforcement, situational awareness for emergency services,
content for news outlets and data collection for researchers.
While they pose the same risk as piloted aircraft, the operator
is removed from the vehicle in time and space which calls
for enhanced automated security systems to guarantee the
safe operation. Intrusion detection systems (IDSs) are security
appliances that review audit data to identify cyber attacks
that jeopardize this safe operation. Our goal in this work
is to provide a general framework for intrusion detection of
malicious UAVs in an airborne system.

In this paper, we propose a specification-based IDS called
Behavior Rule-based Unmanned Air Vehicle (UAV) Intrusion
Detection System (BRUIDS). It requires minimal run time
resources and is adaptive, i.e., it can adapt to the attackertype
and environment changes by adjusting its intrusion detection
strength dynamically, so as to satisfy the maximum false
negative rate (pfn) requirement while minimizing the false pos-
itive rate (pfp). We demonstrate that BRUIDS can effectively
trade false positive rate for true positive rate to cope with
sophisticated random and opportunistic attackers to support

ultra safe and secure UAV applications. Through a comparative
analysis, we demonstrate a high detection accuracy of our UAV
intrusion detection technique. Three major contributionsof our
paper are the behavior-rule based intrusion detection theory,
the modeling and analysis of our behavior-rule based intrusion
detection design with simulation validation and a list of rules
that describes the healthy, uncompromised behavior of a UAV.

The focus on UAV electronics protection is not well reported
in the academic literature, only [4], [14], [15], [25] have
studied this topic. However, IDS is well assessed in cyber
communications, and vehicle-based electronics protection is
well known. Blasch et al. [4] proposed a warplanning situa-
tional awareness tool that classifies outsiders in the physical
domain as friendly, neutral or belligerent. Specifically, it is not
an IDS that identifies insider attackers in the cyber domain.
Trafton and Pizzi [25] described the role of intrusion detection
in airborne military applications. The authors proposed Joint
Airborne Network Services Suite (JANSS) which provides a
framework to integrate an airborne military network. Among
other services, JANSS covers intrusion detection. However,
neither concrete solutions nor true/false positive rates were
reported. Lauf and Robinson [14], [15] investigated HybrIDS,
an anomaly-based approach. HybrIDS comprises two intrusion
detection methods: Maxima Detection System (MDS) and
Cross-Correlative Detection System (CCDS). MDS detects
single intruders using audit data after a short training phase and
accomplishes a more in-depth training phase for CCDS. CCDS
can detect cooperating intruders after the longer trainingphase
provided by MDS. HybrIDS was evaluated using a metric
called “pervasion” defined as the percentage of malicious
nodes in the system. It was reported that intruders can be
detected even with a 22% pervasion.

With the exception of [4], existing work [14], [15], [25]
had no numerical data regarding the false negative ratepfn
(i.e., missing a malicious node) and the false positive ratepfp
(i.e., misidentifying a normal node as a malicious node). In
this paper we report (pfn, pfp) UAV IDS data to analyze the
tradeoff betweenpfn andpfp obtained as a result of applying
our proposed adaptive UAV IDS techniques. When graphing
a standard ROC, we use1 − pfn versuspfp with 1 − pfn
corresponding to the “true positive rate” the literature refers
to.

The rest of the paper is organized as follows: In Section
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II, we discuss the system model, including the UAV reference
model, the threat model and the attacker archetypes. In Section
III, we describe our UAV intrusion detection design with the
goal to minimize the false negative rate without compromising
the false positive rate. In Section IV, we report numerical
data. In Section V, we perform a comparative analysis with a
multitrust-based IDS scheme and demonstrate the superiority
of our design. In Section VI, we survey related work. In
Section VIII, we conclude the paper and outline future work.

II. SYSTEM MODEL

A. Reference UAV

Fig. 1. Reference UAV Key Components.

We consider multiple UAVs each embedding cyber physical
system (CPS) physical components (sensors and actuators).
Figure 1 illustrates a reference UAV embedding physical
sensors and actuators. One cyber physical loop in this model
is the flight control system in each UAV. Inertial sensors drive
realtime adjustment of control surfaces and thrust. In addition,
locative sensors (navigational components), such as Global
Positioning System (GPS), Global Navigation Satellite System
(GLONASS), Compass, Galileo or inertial sensors drive non-
realtime adjustment of control surfaces and thrust. Another
cyber physical loop in this model is the threat countermea-
sures system. Radar components detect physical presence of
threats, and specifically tuned radios detect radio frequency
(RF) signatures of threats. These sensors drive the realtime
deployment of countermeasures like flare, chaff and electronic
countermeasures (ECM). Tian et al. [24] discussed major
issues in jamming that are associated with the communications
literature. On top of UAVs sit the historian and human machine
interface (HMI) modules which may be replicated to provide
UAV control functions over long distance; the literature also
refers to this segment as a ground control station (GCS). For
readability, we will use the terms “node” and “UAV” inter-
changeably in the paper. The UAV reference model accounts
for some general behaviors of a UAV to allow us to quickly
assess the survivability of the UAV facing malicious attacks.

B. Threat Model

It is important to define the threat model to cover system
vulnerabilities since our UAV IDS technique is based on
behavior rules specifying expected normal behaviors of a
sensor or actuator embedded in a UAV for detection of these
threats. We base this threat model on domain experience,
literature review [13], [28] and current events [9].

We consider seven threats towards a UAV:

1) The first threat is an attacker that directs a UAV’s
weapon against a friendly resource.

2) The second threat is an attacker that corrupts data the
UAV reports.

3) The third threat is an attacker that promotes confederate
UAVs and marginalizes legitimate UAVs.

4) The fourth threat is an attacker that captures a UAV by
deploying the landing gear when outside of the air base.

5) The fifth threat is an attacker that exfiltrates mission
data.

6) The sixth threat is an attacker that activates a UAV’s
countermeasures unnecessarily.

7) The seventh threat is an attacker that decreases a UAV’s
endurance by wasting its energy.

Threats 1-4 attack the integrity. Threat 5 attacks the confiden-
tiality. Threats 6 and 7 attacks the availability.

C. Monitoring Techniques

Our behavior-rule based IDS approach relies on the use
of monitor nodes. We assume that a monitor node performs
intrusion detection on a trusted neighbor node. One possible
design is to have a sensor (actuator) monitor another sensor
(actuator respectively) within the same UAV. However, this
design requires each sensor (actuator) to have multiple sensing
functionalities. Another design which we adopt is to have
a neighbor UAV or a remote HMI monitor a trusted UAV.
We model imperfect monitoring by an error parameter,perr,
representing the probability of a monitor node misidentifying
the status of the trusted node due to ambient noise and/or
wireless communication faults in airborne environments. In
general a node may deduceperr at runtime by sensing the
amount of ambient noise and wireless communication errors
around it.perr is not fixed in a particular detection scenario.
Rather,perr spans a range of values to model a dynamically
changing mis-monitoring error probability due to ambient
noise and wireless communication faults reflecting dynam-
ically changing environment conditions. Here we note that
while perr changes dynamically depending on environment
conditions, it does not depend on the state a trusted UAV is
in.

D. Attacker Archetypes

We differentiate three attacker archetypes: reckless, random
and opportunistic. A reckless attacker performs attacks when-
ever it has a chance. The main objective is to impair the UAV
functionality at the earliest possible time. A random attacker,
on the other hand, performs attacks only randomly to avoid
detection. It is thus insidious and deceptive with the objective



3

to cripple the UAV functionality. We model the attacker
behavior by a random attack probabilitypa. Whenpa = 1 the
attacker is a reckless adversary. An opportunistic attacker is the
third archetype we consider. It exploits the environment noise
modeled byperr (probability of mis-monitoring) to perform
attacks. While a random attacker’spa is fixed, an opportunistic
attacker decides its attack probabilitypa based onperr sensed.
When perr is higher, the system is more vulnerable, so its
pa is higher. An opportunistic attacker can be conservative
or aggressive. We apply the demand-pricing relation function,
i.e.,Demand = C×Pricing−ε in the field of Economics [1],
[8], [29], which describes how demand changes when pricing
changes, to model the relation between the opportunistic
attackers attack probabilitypa (mapped to demand) and the
imperfect monitoring probabilityperr (mapped to pricing). The
demand-pricing relation function predicts that demand shall
decrease when pricing increases and vice versa, the degree of
which is controlled by the elastic constantε which determines
the effect of pricing change. Because bothpa andperr are real
numbers between 0 and 1, let:

pa = C × pεerr. (1)

whereC > 0 covers both conservative and aggressive attack
behaviors:

1) ε = 1: pa increases linearly withperr; this models a
conservative opportunistic attacker.

2) ε < 1: pa increases exponentially withperr; this models
an aggressive opportunistic attacker, the extent of which
is modeled byε.

III. UAV I NTRUSION DETECTION DESIGN

A. Behavior Rules

Our IDS design for the reference UAV model relies on the
use of simple specification-basedbehavior rules for each UAV.
They are oriented toward detecting an inside attacker attached
to embedded sensors or actuators, provide a continuous output
between 0 and 1, and allow a monitor node to perform
intrusion detection on a trusted neighbor through monitoring.
Table I lists the behavior rules for detecting a malicious UAV
with the monitor being a peer UAV or an HMI (see Figure 1).
Since behavior rules are derived from the threat model, Table
I also lists the threat from which a behavior rule originates.

We prioritize the behavior rules so that more impactful rules
are searched first. Table I organizes the behavior rules by
decreasing impact. The highest priority behavior rules protect
integrity, the next priority behavior rules protect confidential-
ity, the third priority behavior rules concern availability. The
behavior rules are optimally searched with the priority criteria.

B. Transforming Rules to State Machines

Each behavior rule does not specify just one state, but a
number of states, some of which are safe states in which
normal behavior (obedience of this behavior rule) is observed,
while others are unsafe states in which malicious behavior
(violation of this behavior rule) is observed. A behavior rule
thus has a number of state variables, each with a range of

TABLE I
UAV B EHAVIOR RULES

Threat Description Priority Criteria
Index

1 safe weapons if outside integrity
battlespace

2 produce accurate data integrity
3 provide true recommendations integrity
4 stow landing gear if outside integrity

domestic air base
5 do not send to confidentiality

non-whitelisted destinations
6 turn off countermeasures if availability

no threat
7 use minimum thrust if availability

loitering

*The trusted node is a UAV, and the monitor is a peer UAV or an HMIfor
all behavior rules.

values, together indicating whether the node is in normal or
malicious behavior status (with respect to this rule).

The following procedure transforms a behavior specification
into a state machine: First we identify the attack behavior
indicator as a result of a behavior rule being violated. Then
we transform this attack behavior indicator into a conjunctive
normal form predicate and identify the involved state com-
ponents in the underlying state machine. Next we combine
the attack behavior indicators into a Boolean expression in
disjunctive normal form. Then we transform the union of
all predicate variables into the state components of a state
machine and establish their corresponding ranges. Finally
we manage the number of states by state collapsing and
identifying combinations of values that are not legitimate.

Below we exemplify how a state machine is derived from
the behavior specification in terms of behavior rules for the
reference UAV model.

1) Identify Attack Behavior Indicators: Attacks performed
by a compromised sensor (actuator) embedded in a UAV
will drive the UAV into certain attack behavior indicators
identifiable through analyzing the specification-based behavior
rules. There are seven attack behavior indicators as a result of
violating the seven behavior rules for a UAV listed in Table I.

The first UAV attack behavior indicator is that a UAV
readies its weapon when outside the battlespace (when within
its domestic air base or coalition air corridor). This indicator
catches attackers that intend to direct a UAV’s weapon against
a friendly resource; these attackers attach to the UAV weapon
module. The second UAV attack behavior indicator is that
a trusted node’s embedded sensor reading differs from the
monitor’s embedded sensor reading. The monitor is in the
neighborhood of the trusted node, measuring the same physical
phenomenon. The third UAV attack behavior indicator is that
a monitor UAV provides bad-mouthing attacks, i.e., providing
bad recommendations regarding a well-behaving trusted UAV,
or good-mouthing attacks, i.e., providing good recommenda-
tions regarding a misbehaving trusted UAV. This is detected
by comparing recommendations provided by multiple monitor
UAVs and detecting discrepancies. The fourth UAV attack
behavior indicator is that a UAV deploys landing gear when
outside its domestic air base. This indicator catches attackers
that intend to capture the UAV; these attackers control the UAV
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TABLE II
UAV ATTACK BEHAVIOR INDICATORS IN CONJUNCTIVE NORMAL FORM

Attack Expression
Behavior
Indicator

1 (Weapons = READY)∧ (Location 6= BATTLESPACE)
2 | Trusted Node Data - Monitor Data| > δ

3 Trusted Node Audit6= Monitor Audit
4 (Gear = DEPLOYED)

∧ (Location 6= DOMESTIC AIR BASE)
5 Destination6= WHITELISTED
6 (Countermeasures = ACTIVE)∧ (Threat = FALSE)
7 (Thrust> T) ∧ (Status = LOITER)

landing gear module. One way an attacker could pursue this
goal is to launch a shellcode attack that diverts the UAV to
an area they control. The fifth UAV attack behavior indicator
is that a node sends bytes to unauthorized parties. Explicitly
authorized parties are said to be “whitelisted.” This indicator
catches attackers that intend to exfiltrate mission data. The
sixth UAV attack behavior indicator is that a UAV uses
countermeasures without identifying a threat. This indicator
catches attackers that intend to increase the vulnerability and
decrease the availability of a UAV; these attackers attach to
the UAV countermeasures module. The seventh UAV attack
behavior indicator is that a loitering UAV uses more than the
minimum thrust required to maintain altitude. This indicator
catches attackers that intend to decrease a UAV’s endurance
by wasting its energy; these attackers attach to the UAV thrust
module.

2) Express Attack Behavior Indicators in Conjunctive Nor-
mal Form: Table II lists the UAV attack behavior indicators
in Conjunctive Normal Form. Here we note that each attack
behavior indicator may have several state variables. For ex-
ample, attack behavior indicator 1 in Table II has two state
variables (or components), namely, Weapons and Location, in
the underlying state machine.

3) Consolidate Predicates in Disjunctive Normal Form:
((Weapons = READY)∧ (Location 6= BATTLESPACE)) ∨
(|Trusted Node Data - Monitor Data| > δ) ∨ (Trusted
Node Audit 6= Monitor Audit) ∨ ((Gear = DEPLOYED)
∧ (Location 6= DOMESTIC AIR BASE)) ∨ (Destination 6=
WHITELISTED) ∨ ((Countermeasures = ACTIVE)∧ (Threat
= FALSE)) ∨ ((Thrust> T) ∧ (Status = LOITER))

4) Identify State Components and Component Ranges: We
limit the range of the altitude parameter to the lowest point
on Earth and maximum altitude of a large UAV.

We quantize continuous components at integer scale in
permissible ranges. For example, altitude is in the range of
[−423 m, 15000 m] and bank is in the range of[−180◦, 180◦].
Table III shows a complete list of the permissible ranges
of UAV state components. The resulting HMI and UAV
automatons have181×361×15424×361×361×361×2×2×
2×2×101×201×201×201×2×2×2×2 = 9.9553×1027

states. Both of these automata are too large; we deal with this
state explosion in the next step.

5) Manage State Space: Reducing the size of the state
machine is an important subproblem for this study. Rather
than approaching state machine reduction in an hoc fashion,

TABLE III
UAV STATE COMPONENTS

Name Control or Range
Reading

latitude reading [−90◦, 90◦]
longitude reading [−180◦, 180◦]
altitude reading [−423 m, 15000 m]
bank reading [−180◦, 180◦]
pitch reading [−180◦, 180◦]
yaw reading [−180◦, 180◦]
threat reading true, false
stall reading true, false
data reading match, mismatch
audit reading match, mismatch
thrust control [0, 100%]
aileron control [100% left, 100% right]
elevator control [100% down, 100% up]
rudder control [100% left, 100% right]
gear control deployed, stowed
countermeasure control active, inactive
weapon control safe, ready
destination control whitelisted, unauthorized

we applied this broad strategy:
1) identify maximum acceptable state machine size;
2) while the state machine is too large:

a) choose the state component with the largest do-
main;

b) compress the domain of this state component.
To manage the number of states, we reduce the size of the state
machine by abbreviating the values for and consolidating some
components. Our rules only consider three values for position
(domestic air base, coalition air corridor or battlespace), so
we consolidate latitude, longitude and altitude into a single
position component and restrict this component to three values.
Our rules only consider four values for flight status (takeoff,
travel, loiter or land), so we consolidate bank, pitch, yaw,stall,
aileron, elevator and rudder into a single status componentand
restrict this component to four values. Our rules only consider
three values for thrust (sub-stall, minimal or super-minimal)
so we restrict this component to three values. This treatment
yields a modest state machine with3 × 4 × 2 × 2 × 2 × 3 ×
2× 2 × 2 × 2 = 4608 states, out of which 165 are identified
as safe states and 4443 are unsafe states.

While this flat approach to reducing the state machine
met our needs, results with other configurations may vary.
If this strategy does not yield a reasonably sized automaton,
hierarchical state analysis is an orthogonal approach thatwill
further manage the state space.

6) Behavior Rule State Machine: For the UAV state ma-
chine, there are 165 safe states and 4443 unsafe states. First
we label these states as states1, 2, . . . , n = 4608. Next we
decidepij , the probability that statei goes to statej, for each
(i, j) pair in the state machine to reflect a normal (or malicious)
UAV’s behavior.

For a compromised UAV,pij depends on its attacker type: A
reckless attacker will not go from an unsafe state to a safe state
because it continuously attacks. Sopij = 0 if i is an unsafe
state andj is a safe state. However, the monitoring process
is imperfect with error probabilityperr, so the monitor node
may not observe exactly the same state transitions performed
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by the reckless attacker. As a result,pij = perr instead of
pij = 0 when i is an unsafe state andj is a safe state.

For a random attacker with attack probabilitypa, pij values
sum topa for a giveni for all unsafe statesj andpij values
sum to 1 − pa for a given i for all safe statesj because it
will stop attacking with probability1 − pa. With imperfect
monitoring, a monitor node sees:pij values sum topa × (1−
perr)+ (1− pa)× perr for a giveni for all unsafe statesj and
pij values sum to(1− pa)× (1− perr)+ pa× perr for a given
i for all safe statesj.

In practice, during the testing phase one will seed an
attacker and assign a monitor node to observe the states
this attacker enters to assign individualpij values. For the
special case in which every unsafe state among all is entered
with equal probability and every safe state among all is also
entered with equal probability, a compromised UAV with
random attack probabilitypa will be observed as havingpij
as((1−pa)× (1−perr)+pa×perr)/165 whenj is one of the
165 safe states, and as(pa×(1−perr)+(1−pa)×perr)/4443
whenj is one of the 4443 unsafe states. Figure 2 illustrates the
behavior rule state machine for a compromised UAV. Crossed
dotted slashes over a state indicate an unsafe state.

Here we note that the random attacker behavior-rule state
machine derived above covers all three attacker models: reck-
less for which pa = 1, random for whichpa < 1, and
opportunistic for whichpa is related toperr by Equation 1.

Fig. 2. Random Attacker Behavior Rule State Machine.

For a normal UAV, it should stay in safe states 100% of
the time; however, occasionally it may be misidentified by the
monitor node as staying in an unsafe state due to ambient
noise, temporary system faults and wireless communication
faults with error probabilityperr. For the special case in which
every unsafe state among all is entered with equal probability
and every safe state among all is also entered with equal
probability, a normal UAV node will be observed as having
pij as(1−perr)/165 whenj is one of the 165 safe states, and
asperr/4443 whenj is one of the 4443 unsafe states. Figure 3
illustrates the behavior rule state machine for a normal UAV.
Again, crossed dotted slashes over a state indicate an unsafe
state. While they look similar, Figures 2 and 3 are actually
different because the transition rates are different for a random

attacker (Figure 2) versus for a normal node (Figure 3). They
look similar because they have the same number of states as
generated from the behavior rules.

Fig. 3. Good Node Behavior Rule State Machine.

C. Collect Compliance Degree Data

Our BRUIDS relies on the use of monitor nodes, e.g., a
UAV or HMI is a monitor node of another UAV. The monitor
node knows the state machine of the trusted node assigned to
it. The monitor node periodically measures the amount of time
the trusted node stays in safe and unsafe states as the trusted
node migrates from one state to another triggered by events
causing state transitions. We consider a binary grading policy,
i.e., assigning a compliance degree of 1 to a safe state and 0
to an unsafe state.

Let c be the compliance degree of a node. The compliance
degreec of a node essentially is equal to the proportion of the
time the node is in safe states. LetS be the set of safe states
the trusted node traverses over a period of timeT . Let ti be
the amount of time that the trusted node stays in a safe state
i, as measured by the monitor node. Then the monitor node
collects an instance of compliance degreec by:

c =

∑
i∈S

ti

T
(2)

If a node stays only in safe states duringT , then by Equation
2, its compliance degreec is one. On the other hand, if a node
stays only in unsafe states only duringT , then its compliance
degreec is zero. The monitor node monitors and collects the
trusted node’s compliance degree historyc1, c2, . . . , cn for
n monitoring periods, wheren is sufficiently large, based
on which it concludes whether or not the trusted node is
compromised.

We leverage the state machines generated to collect compli-
ance degree data of a normal UAV (or a malicious UAV) dur-
ing the testing phase. Following Equation 2 which measures
compliance degree as the proportion of time a trusted UAV is
in safe states, the compliance degreec is essentially equal to
the sum of the probabilities of safe states i.e.,c =

∑
j∈S

πj ,
whereπj is the limiting probability that the node is in state
j of the state machine andS is the set of safe states in the
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state machine. We utilize Monte Carlo simulation to obtain
the limiting probabilityπj . Specifically, we collect compliance
degree historyc1, c2, . . . , cn of a UAV with n runs of Monte
Carlo simulation. In runi, given a normal (or a malicious)
UAV’s state machine as input, we start from state 0 and then
follow the stochastic process of this node as it goes from
one state to another. We continue doing this until at least
one state is reentered sufficiently often (say 100 times). Then
we calculateπj using the ratio of the number of transitions
leading to statej to the total number of state transitions.
After πj is obtained, we collectci in the ith simulation run
by

∑
j∈S

πj . We repeat a sufficiently largen test runs to
collect c1, c2, . . . , cn needed for computing the distribution of
the compliance degree of a normal UAV or a malicious UAV
performing reckless, random or opportunistic attacks.

D. Compliance Degree Distribution

The measurement of compliance degree of a node frequently
is not perfect and can be affected by noise and unreliable
wireless communication in the airborne system. We model
the compliance degree by a random variableX with G(·) =
Beta(α, β) distribution [20], with the value 0 indicating that
the output is totally unacceptable (zero compliance) and 1
indicating the output is completely acceptable (perfect com-
pliance), such thatG(a), 0 ≤ a ≤ 1, is given by

G(a) =

∫ a

0

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx (3)

and the expected value ofX is given by

EB [X] =

∫ 1

0

x
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx =

α

α+ β
(4)

The α and β parameters are to be estimated based on the
method of maximum likelihood by using the compliance
degree history collected (c1, c2, . . . , cn) during the system’s
testing phase. We choose theBeta distribution because it is
defined on the interval[0, 1], continuous and used across many
disciplines.

We consider a single parameterBeta(β) distribution with
α equal to 1. In this case, the density isβ(1 − x)β−1 for
0 ≤ x ≤ 1 and0 otherwise. The maximum likelihood estimate
of β is

β̂ =
n

n∑
i=1

log(
1

1− ci
)

(5)

E. False Positive and Negative Rates

Our intrusion detection is characterized by false negative
and false positive rates, denoted bypfn andpfp, respectively.
A false positive occurs when a normal UAV is misdiagnosed
as malicious, while a false negative occurs when a malicious
UAV is missed as normal. While neither is desirable, a false
negative is especially impactful to the system’s continuity
of operation. While many detection criteria [2], [6], [7] are
possible, we consider a threshold criterion in this paper. That
is, if a malicious node’s compliance degree denoted byXb

with a probability distribution obtained by Equation 3 is higher

TABLE IV
β IN BETA(1,β) AND RESULTING pfn AND pfp VALUES UNDER VARIOUS

RANDOM ATTACK MODELS FORUAV (CT = 0.90, perr = 0.01).

pa β pfn pfp

1.00 99.3 < 0.001% 2.30%
0.80 4.33 0.005% 2.30%
0.40 1.10 8.02% 2.30%
0.20 0.632 23.3% 2.30%
0.10 0.449 35.5% 2.30%

TABLE V
β IN BETA(1,β) AND RESULTING pfn AND pfp VALUES UNDER VARIOUS

OPPORTUNISTICATTACK MODELS FORUAV (CT = 0.90, perr = 0.01,
C = 10).

Model β pfn pfp ε pa

aggressive 0.734 18.5% 2.30% 0.8 0.251
aggressive 0.555 27.9% 2.30% 0.9 0.158
conservative 0.449 35.5% 2.30% 1.0 0.1

than a system minimum compliance thresholdCT then there
is a false negative. Suppose that the compliance degreeXb

of a malicious node is modeled by aG(·) = Beta(α, β)
distribution. Then the host IDS false negative ratepfn is given
by:

pfn = Pr{Xb > CT } = 1−G(CT ). (6)

On the other hand, if a normal node’s compliance degree
denoted byXg is less thanCT then there is a false positive.
Again, suppose that the compliance degreeXg of a normal
node is modeled by aG(·) = Beta(α, β) distribution. Then
the host false positive ratepfp is given by:

pfp = Pr{Xg ≤ CT } = G(CT ). (7)

IV. N UMERICAL DATA

We report numerical data in this section. We execute the
procedure described in Section III to collect a sequence of
compliance degree values (c1, c2, . . . , cn) for n = 1000 Monte
Carlo simulation runs for the UAV. We then apply Equation
5 to compute theβ parameter value ofG(·) = Beta(α, β)
for the probability distribution of the compliance degree for a
normal node or a malicious node. We then calculatepfn and
pfp by Equations 6 and 7, respectively. We adjust the minimum
compliance thresholdCT to controlpfn andpfp obtainable.

Tables IV and V exemplify theβ values and the resulting
pfn andpfp values obtained whenCT is 0.9 (CT is a design
parameter to be fine-tuned to trade high false positives for low
false negatives) andperr = 0.01 for random and opportunistic
attackers, respectively.

Sinceα/(α + β) (with α = 1) is the expected compliance
degree detected out of a trusted UAV, theβ value detected is
sensitive and adaptive to the attacker archetypes. A reckless
attacker withpa = 1 will reveal a low compliance degree
and, hence, will have a highβ value. A random attacker who
performs attacks only probabilistically with ratepa will have a
relatively high compliance degree and, hence, a relativelylow
β value. This trend of increasingβ with increasingpa is clearly
shown in Table IV. For opportunistic attackers, aggressive
attackers tend to reveal a relatively low compliance degree
compared with conservative attackers and, hence, a relatively
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high β value. This trend of increasingβ with increasing
aggressiveness is demonstrated in Table V.

From Table IV, we observe that when the random attack
probability pa is high, the attacker can be easily detected as
evidenced by a low false negative rate. Especially whenpa =
1, a reckless attacker can hardly be missed. On the other hand,
aspa decreases, a random attacker becomes more hidden and
insidious and the false negative rate increases.

From Table V, we observe that the resultingpfn values ob-
tained depend on the aggressiveness of opportunistic attackers.
More aggressive opportunistic attackers (those with a smaller
ε) will have a better true positive rate (1− pfn) because of a
higher attacker probabilitypa being used.

Here we note that in both Tables IV and V, the false
positive ratepfp remains the same regardless of the random
attack probability, becausepfp measures the probability of
misidentifying a normal node only.
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Figures 4, 5 and 6 illustrate the effect ofCT and perr
on pfn of different types of attackers. They show the false
negative rate decreases asCT increases; this is because as the
compliance threshold increases, a malicious node is less likely
to evade detection. While Figure 4 shows that a largerperr will
benefit a reckless attacker, a smallerperr will benefit random
and opportunistic attackers with a small attack probability pa.
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This is becauseperr will obscure some of uniformly hostile
behavior of the reckless attacker but will undermine the de-
ceptively compliant behavior of the random and opportunistic
attackers with a smallpa. Figure 5 shows that a smallerperr
will benefit random attackers whenpa is small (0.2), a larger
perr will benefit random attackers whenpa is large (0.8).
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Fig. 7. False Positive Rate Versus Compliance Threshold for aGood Node
under Varyingperr.

Figure 7 illustrates the effect ofperr on pfp for a normal
node. It shows the false positive rate increases asCT increases;
this is because as the compliance threshold increases, a normal
node is more likely to be incorrectly misidentified as a
malicious node. Also, it shows a smallerperr will benefit
a normal node; this is becauseperr distorts the uniformly
compliant behavior of a normal node.

The results obtained above can be used by the system
to adaptively select the minimumCT value dynamically to
satisfy the imposedpfn requirement while minimizingpfp as
much as possible in response to the environment condition
(e.g., ambient noise) and the suspected attacker type detected
at runtime (e.g., a random attacker). Table VI illustrates a
scenario in which the maximumpfn allowable is 1%, which
must be satisfied. Given aperr value and the attacker type
as input, there is aCT value at whichpfn = 1% as decided
from Figures 4, 5, 6 (following the horizontal dashed line at
pfn = 0.01). Then from theCT value selected, one can decide
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TABLE VI
CT TO SATISFY pfn (1%) WHILE MAXIMIZING pfp GIVEN perr AND ATTACKER TYPE AS INPUT (pa = 0.2, ε = 0.8)

Reckless Random Opportunistic
perr CT pfn pfp CT pfn pfp CT pfn pfp

0.01 0.045313 0.01 0.000468 0.999315 0.01 0.070959 0.998123 0.01 0.061446
0.02 0.088882 0.01 0.001898 0.999219 0.01 0.135857 0.977295 0.01 0.074340
0.03 0.131062 0.01 0.004335 0.999109 0.01 0.195247 0.905752 0.01 0.070442
0.04 0.171620 0.01 0.007814 0.998992 0.01 0.249849 0.749324 0.01 0.056019
0.05 0.210615 0.01 0.012370 0.998862 0.01 0.300077 0.475645 0.01 0.033407

the resultingpfp based on Equation 7. Table VI summarizes
theCT settings for all attacker types over a range ofperr. For
example, the system manager should setCT to 0.905752 when
facing an opportunistic attacker withperr = 0.03, andε = 0.8
to achievepfn = 1% andpfp = 7%. ThisCT value is obtained
by following the middle curve in Figure 6 intersecting with
the horizontal dashed line atpfn = 1%.

Table VI illustrates adaptive IDS design: the system selects
the minimumCT value that would satisfy the maximumpfn
requirement while providing apfp as small as possible, given
knowledge of the attacker type andperr. An an example,
suppose a suspected attacker is of opportunistic type whose
attacking behavior is characterized byε = 0.8 as described in
Table VI. After determiningperr = 0.01 (which is detectable),
the system would select a highCT value (i.e.,CT = 0.998123)
to yield pfn = 1% while minimizing pfp to 6.1446%. If the
attacker type is reckless, on the other hand, then the system
would select a lowCT value (i.e.,CT = 0.045313) to yield
pfn = 1% while minimizing pfp to 0.0468%.
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Fig. 8. BRUIDS Receiver Operating Characteristic Graph.

By adjusting CT , our specification-based IDS technique
can effectively trade higher false positives for lower false
negatives to cope with more sophisticated and hidden random
attackers. This is especially desirable for ultra safe and secure
UAV applications for which a false negative may have a dire
consequence. Figure 8 shows a ROC graph of true positive rate
(1−pfn) versus false positive rate (pfp) obtained as a result of
adjustingCT for reckless, random and opportunistic attackers
given differentperr. As we increaseCT , the true positive rate
increases while the false positive rate increases. We see that
with our specification-based IDS technique, the true positive
rate can approach 100% for detecting attackers when using a

sufficiently highCT , i.e., an attacker is always detected with
probability 1 without false negatives, while bounding the false
positive rate to below 0.05% for reckless attackers, below 7%
for random attackers with attack probability as low as 0.2, and
and below 6.1% for opportunistic attackers, whenperr = 1%
(the first entry in Table VI). Note the ROC surfaces for
random and opportunistic attackers cross over roughly along
a curve atperr = 0.015, indicating that whenperr < 0.015
an opportunistic attacker withε = 0.8 is more difficult to be
detected than a random attacker withpa = 0.2, and vice versa
afterperr > 0.015. The highlighted dots show the points on the
corresponding surface that meet the maximumpfn requirement
(1%) while minimizingpfp. Our adaptive IDS design allows
the system to adaptively adjustCT dynamically to satisfy the
imposedpfn requirement while minimizingpfp in response to
dynamically changing environment conditions (throughperr)
and the suspected attacker type detected at runtime (e.g., a
random attacker).

V. COMPARATIVE ANALYSIS

In this section, we compare our IDS design with a multitrust
anomaly-based IDS called Multi-agent System (MAS) devel-
oped by Tsang and Kwong [26] intended for industrial CPSs.
MAS includes an analysis function called Ant Colony Clus-
tering Model (ACCM) to reduce the characteristically high
false positive rate associated with anomaly-based approaches
while minimizing the training period by using an unsupervised
approach to machine learning. MAS uses a standard data set,
KDD Cup 1999, for testing. We use it as a benchmark against
which our IDS is compared for three reasons: First, there is
no existing UAV IDS available for performance comparison;
industrial process control environments of MAS/ACCM are
close to UAV environments with similar safety requirements.
Second, MAS/ACCM reported false positive rate and false
negative rate data for ease of comparison. Third, unlike
anomaly-based IDS approaches, ACCM generated good false
positive rates (reported 1 to 6%). We visualize Tsang and
Kwong’s results in Figure 9.

Figure 10 visually compares the ROC graphs (true positive
rate or1 − pfn versuspfp) for BRUIDS and ACCM. We set
perr = 0.010 for UAVs. This is because 1% of mis-monitoring
due to ambient noise, temporary system faults and wireless
communication faults in airborne environments is reasonable.
This is based on Ho and Shimamoto reporting a0.2 − 7.5%
packet error rate (depending on altitude, network size and
channel access technique) [11] and Palazzi et al. experimenting
with packet error rates between 0.1 and 1.0% [18]. Figure 10
shows for reckless and highly aggressive random attackers,
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BRUIDS outperforms ACCM across the domain ofpfp. Also,
it shows that BRUIDS outperforms ACCM forpfp > 0.02 for
cautious random attackers.

We first note that the coverage area (out of a one by
one area) below the ROC curve, referred to as Area Under
the Curve (AUC), measures the IDS accuracy. An area of 1
represents a perfect test; an area of 0.5 represents a worthless
test.

We clearly see that for BRUIDS withpa = 1 or 0.8, the true
positive rate is always higher than ACCM, given the same false
positive rate. Therefore the AUC of BRUIDS is clearly greater
than that of ACCM for these configurations. For BRUIDS with
pa = 0.4 (a more cunning attacker), the detection rate is not
always higher than ACCM; however, a closer look through
Figure 11 reveals that the AUC of BRUIDS is still greater.
Moreover, in the experiment conducted by Tsang and Kwong
[26], presumably only reckless attackers were considered in
which case BRUIDS with a AUC nearly equal to 1 clearly
outperforms ACCM.
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VI. RELATED WORK

The topic of IDS and airborne networks is not widely
discussed in the academic literature, so we highlight some
related examples that motivated our work. We first survey
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existing work in airborne systems IDS in the literature.
Because airborne system applications may be deployed in
mobile ad hoc networks (MANETs) with embedded CPS
physical components, we also survey related IDS techniques
in MANETs and CPSs.

A. Unmanned Aircraft Systems

Blasch et al. [4] proposes a warplanning situational aware-
ness tool that classifies outsiders in the physical domain
as friendly, neutral or belligerent. Specifically, it is notan
IDS that identifies insider attackers in the cyber domain.
The authors use several metrics to evaluate their classifier:
precision, recall, accuracy, activities of interest, timeliness and
throughput. They use ROC plots to visualize their classifier’s
effectiveness: they transform their recall metric into true
positive rate and their precision metric into the false positive
rate. In particular, Blasch et al. include a 3D ROC plot where
classification latency is the third dimension.

Trafton and Pizzi [25] did an investigation which motivated
and broadly described the role of intrusion detection in this
application but did not propose let alone measure a solution.
The authors proposed Joint Airborne Network Services Suite
(JANSS) which provides a framework to integrate an air-
borne military network. Among other services, JANSS covers
intrusion detection. They describe IDS as part of a larger
Information Assurance strategy. They only say that the IDS
should be host-based; the alternative is a network-based IDS.

Lauf and Robinson [14] investigated Distributed Apt Re-
source Transference System (DARTS). DARTS is an intrusion
tolerance strategy that reallocates resources to toleratefaults
and attacks. It built on their prior work, HybrIDS [15], which
prompts (triggers) resource reallocation. The key innovation in
DARTS is its service discovery protocol (SDP): It combines
an on-demand flooding approach with a gossip approach to
get the benefits while masking the drawbacks of each. The
drawback of an on-demand flooding SDP is an intractable
burst of communications. The drawback of a gossiping SDP
is staleness. The authors measure the effectiveness of DARTS
using communications overhead (messages exchanged for re-
allocation) and downtime (time to reallocation).
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HybrIDS is an anomaly-based approach. Specifically, Hy-
brIDS comprises two semi-supervised approaches resultingin
three operational phases: MDS training, MDS testing/CCDS
training and CCDS testing. They chose a behavior-based
approach rather than a traffic-based approach due to time
and memory constraints of an embedded system. HybrIDS is
distributed for scalability. HybrIDS comprises two intrusion
detection methods: Maxima Detection System (MDS) and
Cross-Correlative Detection System (CCDS). MDS detects
single intruders after a short training phase and accomplishes a
more in-depth training phase for CCDS. CCDS can detect co-
operating intruders after the longer training phase provided by
MDS. Lauf et al. measure the performance of HybrIDS using
pervasion, which they define as the percentage of malicious
nodes in the system. The authors could detect intruders even
with a 22% pervasion; a Byzantine fault model establishes a
theoretic limit of 33%. During the training/MDS phase, they
collect data regarding system state. They sequence the nominal
system states for use by CCDS so that the probability density
function (PDF) resembles a chi-squared distribution. Laufet
al. [15] use applications’ system call history as their audit
data. The authors identify two parameters to create an effective
IDS for a resource constrained application: audit collection
period [data collection cycle (DCC)] and audit analysis period
[data processing cycle (DPC)]. A longer DCC increases the
memory stress while increasing the detection accuracy of an
intrusion detector, and a shorter DPC increases the processor
stress while decreasing the detection latency of an intrusion
detector. No analysis was given regarding the tradeoff between
DCC and DPC. More importantly, [14], [15], [25] did not
report false negative ratepfn (i.e., missing a malicious node)
and the false positive ratepfp (i.e., misidentifying a normal
node as a malicious node).

While we address which type of style the player (UAV-
target jamming) is using, in [22], Shen et al. use game theory
to model the different types of approaches. The authors use
their model to generate flight plans for a fleet of UAVs
that will maximize target coverage and UAV survivability.
Their model has three levels: object, situation and threat.
Shen et al. consider cooperative effects of defending nodes
by distinguishing self-protection from support jamming. In
[21], Shen et al. consider six types of attack: buffer overflow,
semantic URL attack, e-mail bombing, e-mail spam, malware
attachment and DoS. The authors consider four defensive
measures: IDS deployment, firewall configuration, email-filter
configuration and server shutdown or reset.

B. Ad Hoc Networks

Existing IDS techniques for MANETs are centered around
secure routing, using monitoring techniques to detect deviation
of normal behaviors in data routing or forwarding. Often,
specific MANET routing protocols such as Dynamic Source
Routing (DSR) and Ad hoc On-Demand Distance Vector
(AODV) are being considered in IDS design.

Bella et al. [3] propose a reputation-based IDS that bases
node reputation on the energy it uses for others in comparison
with the energy it uses for itself: specifically, the ratio ofpack-
ets forwarded to packets sourced. They calculate aggregate

reputation score as the weighted sum of the locally observed
reputation score, the Neighbor Reputation Table (NRT) value,
historical global reputation score, the Global ReputationTable
(GRT) value and a third party recommendation; the design
ages scores such that the reputation of inactive nodes de-
teriorates. One con of this study is that nodes that do not
have a demand for forwarding will be penalized unfairly.
Moreover, only reputation scores over time for normal, selfish
and malicious nodes were reported, without providing false
positive rates, true positive rates or accuracy data. Theirdesign
is geared toward detection of misbehaving nodes, rather than
detection of compromised nodes.

Buchegger and Le Boudec [5] propose a distributed IDS
called CONFIDANT which extends dynamic source rout-
ing (DSR) by measuring reputation with “no forwarding”
behavior. The authors distinguish three levels of multitrust:
experienced data is a firsthand account which has the most
weight,observed data which has less weight than experienced
data happens in the neighborhood (within radio range) and
reported data which has less weight than experienced or
observed data is an account coming from outside the neigh-
borhood. Borrowing from the field of ecology, they classify
nodes into one of three categories: suckers (who always assist
neighbors), cheats (who never assist neighbors) and grudgers
(who assist neighbors until they experience non-reciprocation).
One strength of this study is the capability for reformed or
falsely detected nodes to rejoin the network. Buchegger and
Le Boudec measured packet drops, packet drop rate, goodput
(which they define as packets received over packets sourced),
throughput and overhead; time, network size and level of
network hostility were their independent variables. Again, no
data were reported on false positive rates, true positive rates
or accuracy data in this study.

Michiardi and Molva [16] propose an IDS called Collabora-
tive Reputation Mechanism (CORE). Neighbors of a suspect
calculate itssubjective reputation score from experience of
some propertyf (for example, DSR routing or packet forward-
ing) weighting earlier and later observations differently, and
nodes calculate a suspect’sfunctional reputation over multiple
f weighting variousf differently and aging (decreasing over
time) the reputations of inactive nodes. In CORE, each node
regards every other node as either trusted (positive reputation)
or misbehaving (negative reputation); nodes deny service re-
quests and ignore reputation information from misbehaving
nodes. Strengths of this study are the toleration of slander
attacks and distinct sanctions for selfish and malicious nodes.
Michiardi and Molva did not report any numerical data.

Tseng et al. [27] use an AODV-based finite state machine
(FSM) to establish a specification for a traffic-based IDS. Dis-
tributed network monitors maintain an FSM for each routing
transaction (request and reply). States are normal, alarm or
suspicious; in suspicious states, the network monitor asksits
peers for additional audit data for the transaction. The work is
specific to AODV for secure routing. However, no data were
reported on false positive and negative probabilities.

Hadjichristofi et al. [10] studied an integrated management
framework for MANET which encompasses routing, security,
resource management and network monitoring functions. The
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authors propose a novel routing protocol that informs the
resource management function. The security function includes
a trust management approach. The trust management approach
begins with authentication and updates scores based on the
trusted node’s behavior.

Kiess and Mauve [12] survey real-world implementations
of MANETs in order to identify viable test beds for MANET
research. The authors motivate this study by highlighting the
shortcomings of MANET simulations and emulations.

C. CPSs

Another broader research area that could encompass in-
trusion detection for airborne networks and communications
are CPSs. CPSs typically have multiple control loops, strict
timing requirements, a wireless network segment, predictable
network traffic and contain physical components [23]. CPSs
fuse cyber (network components and commodity servers) and
physical (sensors and actuators) domains. They may contain
human actors and mobile nodes. The focuses for CPS IDSs
are leveraging unique CPS traits (sensor inputs, algorithms and
control outputs) and detecting unknown attacks.

Porras and Neumann [19] study a hierarchical multitrust
behavior-based IDS called Event Monitoring Enabling Re-
sponses to Anomalous Live Disturbances (EMERALD) using
complementary signature based and anomaly-based analysis.
The authors identify a signature-based analysis trade between
the state space created/runtime burden imposed by rich rule
sets and the increased false negatives that stem from a less
expressive rule set. Porras and Neumann highlight two spe-
cific anomaly-based techniques using statistical analysis: one
studies user sessions (to detect live intruders), and the other
studies the runtime behavior of programs (to detect malicious
code). EMERALD provides a generic analysis framework
that is flexible enough to allow anomaly detectors to run
with different scopes of multitrust data (service, domain or
enterprise). However, Porras and Neumann did not report false
positive or false negative rate data.

Tsang and Kwong [26] propose a multitrust IDS called
Multi-agent System (MAS) that includes an analysis function
called Ant Colony Clustering Model (ACCM). The authors
intend for ACCM to reduce the characteristically high false
positive rate of anomaly-based approaches while minimizing
the training period by using an unsupervised approach to
machine learning. MAS is hierarchical and contains a large
number of roles: monitor agents collect audit data, decision
agents perform analysis, action agents effect responses, coordi-
nation agents manage multitrust communication, user interface
agents interact with human operators and registration agents
manage agent appearance and disappearance. Their results
indicate ACCM slightly outperforms the true positive rates
and significantly outperforms the false positive rates of k-
means and expectation-maximization approaches. Because of
the good false positive results reported, i.e., the ACCM false
positive rate ranges from 1 to 6%, we use [26] as a benchmark
in our comparative analysis in Section V.

Ying et al. [30] model fault diagnosis related to a medical
CPS with a Hidden Markov Model. There are critical differ-
ences between fault diagnosis and intrusion detection. Faults

may be uniformly or normally distributed, while cyber attacks
are not random. Faults do not seek to evade detection, while
intruders do. While faults cannot be attributed to a human
actor, intrusions can.

VII. L ESSONSLEARNED

One practical consideration is that behavior rules are di-
rectly derived from threats. Hence, the threat model must be
broad enough to cover all possible threats that exploit system
vulnerabilities. This places the responsibility for developing
a complete attack model with the system designers. When a
threat is overlooked, the state machine will lack unsafe states
associated with the overlooked attack behavior indicator,and
the attack will go undetected by BRUIDS. A second consider-
ation is that when new threats are discovered and introduced
to the threat model, new behavior rules corresponding to the
new threats must be added to the rule set because behavior
rules are derived directly from threats. BRUIDS allows newly
identified threats to be added to the threat model and hence the
corresponding new behavior rules to be derived from which
the state machine is automatically generated for intrusion
detection. Finally, while BRUIDS can adaptively adjust the
detection strength in terms of theCT value to satisfy the
maximum pfn requirement while providing apfp as small
as possible given knowledge of the attacker type andperr,
determination of the attacker type andperr with precision at
runtime deserves more research efforts.

VIII. C ONCLUSIONS

For UAVs, being able to detect attackers while limiting
the false positive rate is of utmost importance to protect the
continuity of operation. In this paper we proposed an adaptive
behavior-rule specification-based IDS technique for intrusion
detection of compromised UAVs using an applied rule set
derived from the UAV threat model. We demonstrated that
the true positive rate approaches one (that is, we can always
catch the attacker without false negatives) while boundingthe
false positive rate to below 0.05% for reckless attackers, below
7% for random attackers with attack probability as low as
0.2 and below 6% for opportunistic attackers, when the error
of monitoring due to environment noise is at 1%. Through
a comparative analysis, we demonstrated our behavior-rule
specification-based IDS technique outperforms an existing
multitrust anomaly-based IDS approach in detection accuracy.

In the course of this study, we identified a number of future
research areas. The first is to consider additional performance
metrics such as detection latency. The second open area
concerns the attack model. One can consider additional insider
attack behaviors such as insidious attackers that lie in wait
until they have co-opted enough nodes to launch a devastating
attack. The third line of investigation concerns the defender’s
response [17]. For example, the IDS can perform better if it
retunes its parameters (such as compliance threshold, audit
interval and state machine granularity) based on the type and
strength of adversary it faces.
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