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Abstract In this paper we address the survivability issue of a mobile cyber physical system
(MCPS) comprising sensor-carried human actors, vehicles, or robots assembled together for
executing a specific mission in battlefield or emergency response situations. We develop a
mathematical model to assess the survivability property of a MCPS subject to energy exhaus-
tion and security failure. Our model-based analysis reveals the optimal design setting for
invoking intrusion detection to best balance energy conservation versus intrusion tolerance
for achieving high survivability. We test the effectiveness of our approach with a dynamic
voting-based intrusion detection technique leveraging sensing and ranging capabilities of
mobile nodes in the MCPS and demonstrate its validity with simulation validation.

Keywords Survivability · Intrusion detection · Security attacks ·
Mobile cyber physical systems · Model-based analysis

1 Introduction

The increased presence of cyber physical systems (CPSs) in the world motivates in-depth
research on survivability to sustain potential malicious attacks. In this paper we address the
survivability issue of a mobile cyber physical system (MCPS) comprising sensor-carried
human actors, vehicles, or robots assembled together for executing a specific mission in
battlefield or emergency response situations.

MCPSs pose unique challenges to intrusion detection due to mobility, resource constraints
(which discourage excessive energy use), scale, and heterogeneity. System designers use
distributed intrusion detection applications because they are fault tolerant. Distributed loca-
tion-based intrusion detection applications benefit from a richer data set from geometrically
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diverse nodes. A MCPS often operates in a rough environment wherein energy replenishment
is not possible and nodes may be compromised (or captured) at times. Thus, high survivability
to sustain malicious attacks and energy consumption is of the utmost importance.

In the literature, [1] provides an excellent survey of security challenges of CPSs. [3]
provides a theoretical treatment of anomaly detection for discrete sequences. [10] surveys
survivability in mobile ad hoc networks designs. The authors advocate integrating intrusion
prevention, intrusion detection and intrusion tolerance. They also promote decentralization.
They distinguish two types of dynamic/responsive intrusion tolerance, namely, recovery and
adaptation, and conclude that intrusion tolerance, particularly adaptation, comprises a sig-
nificant gap in the literature. The intrusion tolerance literature falls into two categories:
static/structural and dynamic/responsive. Examples of static/structural intrusion tolerance
approaches are component redundancy, path redundancy, data redundancy, decentralization
and threshold cryptography. Examples of dynamic/responsive intrusion tolerance approaches
are self-organization, dynamic routing, backward recovery and forward recovery.

Common themes in the CPS intrusion detection/tolerance literature are: application-
specific intrusion detection, dynamic/responsive intrusion tolerance, self-organization and
decentralization. [2] advocates application-specific anomaly-based intrusion detection for
CPSs and proposes dynamic/responsive versus static/structural intrusion tolerance. [15] dis-
cusses challenges of constructing intrusion detection systems for mobile ad hoc networks and
wireless sensor networks and surveys existing intrusion detection techniques. [8] discusses
feature selection and efficiency of wireless intrusion detection systems. [17] discusses intru-
sion detection techniques specifically for wireless sensor networks. [13] identifies power
management as one critical CPS concern and proposes leveraging mobility patterns to ad-
dress it. To the best of our knowledge no approach has been proposed to best balance power
management and intrusion tolerance for achieving high survivability.

We adopt a top down approach to maximize the survivability of a MCPS. We consider
two failure conditions for a MCPS: energy exhaustion and security fault. Maximizing the
lifetime until energy exhaustion is equivalent to minimizing energy use. We consider distrib-
uted intrusion detection in the form of dynamic majority voting with the detection interval and
the number of detectors being dynamically adjusted to adapt to environment changes. The
use of dynamic majority voting also can cope with collusion for achieving a certain degree
of intrusion intrusion. Four events induce security faults: A per-node false negative means
that a single intrusion detector misidentifies a bad node as a good node. On the other hand,
if a single intrusion detector misidentifies a good node as a bad node, this is a per-node false
positive. A system-wide false negative occurs when a pool of intrusion detectors reaches an
incorrect majority decision that a bad node is good. On the other hand, if a pool of intrusion
detectors reaches an incorrect majority decision that a good node is bad, this is a system-wide
false positive. Applying more resources to intrusion detection will hasten energy exhaustion
but will delay security fault. Withholding resources from intrusion detection will extend a
MCPS lifetime at the expense of less security.

Our methodology for MCPS survivability assessment is model-based analysis with sim-
ulation validation. Specifically, we develop a mathematical model to assess the survivability
property of a MCPS equipped with dynamic voting-based intrusion detection capabilities
subject to energy exhaustion and security failure. The mathematical model reveals optimal
design settings for invoking dynamic voting-based intrusion detection to best balance energy
conservation versus intrusion tolerance for achieving high survivability, when given a set
of parameter values characterizing the operational environment and network conditions. We
conduct extensive simulation to validate the analytical results obtained.
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The rest of the paper is organized as follows: Sect. 2 gives the system model and refer-
ence MCPS configuration. Section 3 develops a mathematical model based on Stochastic
Petri Nets [4,14] for theoretical analysis. Section 4 discusses the parameterization pro-
cess for the reference MCPS and presents numerical data with physical interpretations
given. Section 5 discusses the simulation tool and environment, parameterization, specif-
ics regarding data collection and simulation results for the purpose of simulation validation
of analytical results. Finally, Sect. 6 summarizes the paper and outlines some future research
areas.

2 System Model/Reference Configuration

2.1 Reference MCPS with Sensing and Ranging Capabilities

Our reference MCPS model is based on the real-world architecture described in [16] com-
prising human-portable nodes each containing: 600 MHz Analog Devices Blackfin DSP, 8
MB Flash, 64 MB SDRAM, 902–928 MHz CDMA/TDMA radio, GPS receiver, 7.5 V / 35
Wh battery, inertial sensor, barometric sensor, physiological sensors monitoring the user and
a radiological/environmental sensor. The primary functions of this MCPS are localization
(with periodic ranging) and remote sensing.

The size of our reference MCPS is 128 sensor-carried mobile nodes. Each node ranges
its neighbors periodically. Each node uses its sensor to measure any detectable phenomena
nearby and transmits a CDMA waveform. Neighbors receiving that waveform transform the
timing of the PN code (1023 symbols) and RF carrier (915 MHz) into distance. Specifically,
the ranging algorithm used by our reference MCPS for localization has four key functions:

1. process data from inertial and barometric sensors for navigation and multipath
mitigation;

2. calculate phase shift between code and carrier of a CDMA waveform to range;
3. distinguish multipath reflections from line of sight in RF input to improve ranging;
4. blend inertial, barometric and range inputs using a Kalman filter.

2.2 Attack Model

The first step in investigating network security is to define the attack model. We consider two
forms of attack: node capture and bad data injection. Captured nodes defeat authentication.
This creates an insider threat which enables insider attacks. Injecting bad data defeats integ-
rity. This attack is prosecuted by an insider. These attacks can be organized by three criteria:
attribution (self or peer), data type (location, telemetry or environmental) and collusion (iso-
lated attacker or a group). It is impossible to prevent all attacks; therefore, intrusion detection
is necessary. It is impossible to detect all attacks without false negatives; therefore, intrusion
tolerance is necessary. While our theoretical model is general enough to take any security
failure definition, in this paper without loss of generality we use a Byzantine fault model [9]
to define a security fault, that is, if one-third or more of the nodes are compromised, then the
system fails. The reason is that once the system contains more than 1/3 compromised nodes,
it is impossible to reach a consensus, hence inducing a security failure. As we will see later
our theoretical model can easily accommodate other security failure definitions such as data
leaking, single-compromise or majority-compromise failures.
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Fig. 1 Combined intrusion detection flowchart

2.3 Intrusion Detection Techniques for MCPSs

Our dynamic voting-based intrusion detection technique builds upon per-host intrusion detec-
tion [5–7]. Per-host intrusion detection can apply anomaly detection techniques based on
event sequence matching [3]. Without loss of generality, we assume that positional disconti-
nuity [12] is being employed by which a node periodically determines a sequence of locations
of a neighbor node within radio range through ranging and detects if the location sequence
violates the law of physical continuity, or deviates from the expected location sequence if
known. Such anomaly intrusion detection technique is characterized by per-node false neg-
ative and false positive probabilities, denoted by pfn and pfp, respectively. This knowledge
can be obtained after thoroughly testing the anomaly detection technique.

Our dynamic voting-based intrusion detection technique involves the selection of m detec-
tors as well as the invocation interval TIDS to best balance energy conservation versus intrusion
tolerance for achieving high survivability. Each node periodically exchanges its routing infor-
mation, location, and identifier with its neighbor nodes. A coordinator is selected randomly
among neighbors so that the adversaries will not have specific targets. We add randomness
to the coordinator selection process by introducing a hashing function that takes in the iden-
tifier of a node concatenated with the current location of the node as the hash key. The node
with the smallest returned hash value would then become the coordinator. Because candidate
nodes know each other’s identifier and location, they can independently execute the hash
function to determine which node would be the coordinator. The coordinator then selects m
vote participants randomly (including itself), and let all voters know each others’ identities so
that each voter can disseminate its yes/no vote to other voters. Vote authenticity is achieved
via preloaded public keys. At the end of the voting process, all voters will know the same
result, that is, the node is diagnosed as good, or as bad based on the majority vote. Voting-
based intrusion detection is also characterized by system false negative and false positive
probabilities, denoted by P fn and Pfp, respectively. These two false alarm probabilities are
not constant but vary dynamically, depending on the percentage of bad nodes in the system
when majority voting is performed.

Figure 1 illustrates how our dynamic voting-based intrusion detection technique and our
per-host intrusion detection technique interoperate.

3 Theoretical Analysis

The core of our theory is to predict the number of bad nodes and good nodes in the system as a
result of compromising events happening in the system, and voting-based intrusion detection
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Fig. 2 The SPN model for describing a mobile cyber physical system

events catching and evicting bad nodes in the system. Our theoretical model requires the
knowledge of per-node false negative and false positive probabilities, pfn and pfp, as input.
It also requires the knowledge of per-node compromise rate, denoted by λ, which may be
obtained by analyzing historical data if available and may be estimated dynamically based
on the percentage of bad nodes evicted by voting-based intrusion detection.

3.1 Model

Our theoretical model utilizes Stochastic Petri Nets (SPN) techniques [14]. Figure 2 shows
the SPN model describing the ecosystem of a MCPS. The underlying model of the SPN model
is a continuous-time semi-Markov process with a state representation (Ng, Nb, Ne, energy)

where Ng is the number of good nodes, Nb is the number of bad nodes undetected, Ne is
the number of nodes evicted (as they are considered as bad nodes by intrusion detection),
and energy is a binary variable with 1 indicating energy availability and 0 indicating energy
exhaustion. Figure 3 shows the corresponding semi-Markov model of the SPN model for the
case in which the number of nodes is 128 in our reference MCPS. Note that only a part of
the underlying semi-Markov model is shown in Fig. 3 to illustrate the concept of states and
state transitions. The SPN model is constructed as follows:

• We use places to hold tokens each representing a node. Initially, all n nodes are good
nodes (e.g., 128 in our reference MCPS) and put in place Ng as tokens. The initial state
thus is (128, 0, 0, 1) in the underlying semi-Markov model shown in Fig. 3.

• We use transitions to model events. Specifically, TCP models good nodes being compro-
mised; TFP models a good node being falsely identified as compromised; TIDS models
a bad node being detected correctly.

• Good nodes may become compromised because of insider attacks with per-node com-
promising rate λ. This is modeled by associating transition TCP with an aggregate rate
λ × Ng. Firing TCP will move tokens one at a time (if it exists) from place Ng to place
Nb. Tokens in place Nb represent compromised but undetected nodes. For example, if in
state (128, 0, 0, 1) a good node is compromised, a token will flow from Ng to Nb and the
resulting state is (127, 1, 0, 1).

• When a bad node is detected as compromised, the number of compromised nodes evicted
will be incremented by 1, so place Ne will hold one more token. On the other hand,
the number of undetected compromised nodes will be decremented by 1, i.e., place Nb

will hold one less token. This event is modeled by associating transition TIDS with a
rate of Nb×(1−Pfn)

TIDS
accounting for the false negative probability of voting-based intrusion
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Fig. 3 The underlying semi-Markov model of the SPN model

detection. For example, if in state (127, 1, 0, 1) a bad node is detected and evicted, a token
will flow from Nb to Ne and the resulting state is (127, 0, 1, 1).

• Voting-based intrusion detection can also incorrectly identify a good node as compro-
mised. This is modeled by moving a good node in place Ng to place Ne from firing

transition TFP with a rate of
Ng×Pfp

TIDS
accounting for the false positive probability of

voting-based intrusion detection. For example, if in state (127, 1, 0, 1) a good node is
misdiagnosed as a bad node and evicted, a token will flow from Ng to Ne and the resulting
state is (126, 1, 1, 1).

• The system energy is exhausted after N × TIDS intervals where N is the maximum num-
ber of intrusion detection intervals the MCPS can possibly perform before it exhausts
its energy due to performing ranging, sensing, and intrusion detection functions. It can
be estimated by considering the amount of energy consumed in each TIDS interval. This
energy exhaustion event is modeled by placing a token in place energy initially and firing
transition TENERGY with rate 1

N×TIDS
. When the energy exhaustion event occurs, the

token in place energy will be vanished. For example, if in state (128, 0, 0, 1) the energy
exhaustion event occurs, the token in place energy will be vanished and the resulting state
is (128, 0, 0, 0). We use a dashed-line arrow in Fig. 3 to indicate the energy exhaustion
transition. Note that the energy exhaustion event can possibly occur in any state in which
the last state component’s value is 1, that is, when energy is still available. To avoid clutter,
we pick only 4 states in Fig. 3 to illustrate the energy exhaustion transition.

Given pfn, pfp and λ as input the underlying semi-Markov model of our SPN model can
be solved utilizing solution techniques such as SOR, Gauss Seidel, or Uniformization [14] to
yield the probability of the MCPS staying at a state at time t , as well as the expected values
of Ng, Nb, Ne and energy at time t . Once we have knowledge about Ng, Nb and Ne at time
t we can calculate system false negative and false positive probabilities, Pfn and Pfp, at time
t as a result of applying voting-based intrusion detection based on Eqs. 1 and 2 (discussed
below). Once Pfn and Pfp at time t are obtained, we dynamically adjust the transition rates
to TIDS and TFP, thus modeling changes to Pfn and Pfp as a result of executing dynamic
voting-based intrusion detection in response to changing environments.
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We make use of Eqs. 1 and 2 to dynamically calculate Pfn and Pfp. Initially there is no
bad node in the system, so at t = 0, Ng = N = 128, Nb = 0 and Ne = 0 and the initial
values of Pfn and Pfp are calculated based on Eqs. 1 and 2, respectively, with Ng = 128,
Nb = 0 and Ne = 0 as input. As time progresses, Nb > 0 because some good nodes may
be compromised, and Ne > 0 because bad nodes may be detected, and good nodes may be
misdiagnosed as bad nodes and evicted. The values of Ng, Nb and Ne at time t again can
be obtained by solving the underlying semi-Markov model of our SPN model using Unifor-
mization solution techniques [14]. The average values of Ng, Nb, and Ne at time t are then
plugged into Eqs. 1 and 2

Pfn =
m−Nmaj∑

i=0
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⎢⎢⎣
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to calculate Pfn and Pfp at time t .

3.2 False Alarm Probability

We explain Eq. 1 for obtaining Pfn in detail below. The explanation of Eq. 2 follows the
same logic. In Eq. 1, m this is the number of voters and Nmaj is the majority of m. The first
summation is the special case; it aggregates the probability of a false negative stemming
from selecting a majority of bad nodes. That is, it is equal to the number of ways to choose
a majority of bad nodes from the set of all bad nodes times the number of ways to choose
a minority of good nodes from the set of all good nodes divided by the number of ways to
choose m nodes from the set of all good and bad nodes. The second summation is the general
case; it aggregates the probability of a false negative stemming from selecting a majority of
good nodes, some of which cast incorrect votes, coupled with selecting some number of bad
nodes. That is, it is equal to the number of ways to choose a minority of bad nodes from the set
of all bad nodes times the aggregate probability of a sufficient number of good nodes casting
incorrect votes also divided by the number of ways to choose m nodes from the set of all
good and bad nodes. The aggregate probability is a nested summation of the number of ways
to choose a sufficient number of good nodes which cast incorrect votes and the remaining
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good nodes which cast correct votes. Algorithm 1 below illustrates Eq. 1 programmatically.
The algorithm for Pfp substitutes pfp for pfn.

Algorithm 1 Pfn Calculation Step by Step.
�0 = 0
�1 = 0
{Case 1: a majority of voters are intruders}
for all i such that 0 ≤ i ≤ m − Nm do

�0 = �0 + C(Nb, Nm + i) × C(Ng, m − (Nm + i))/C(Ng + Nb, m)

end for
{Case 2: a minority of voters are intruders}
for all j such that 0 ≤ j ≤ m − Nm do

σ = 0
for all k such that Nm − j ≤ k, k ≤ m − j and k ≤ Ng do

σ = σ + C(Ng, k) × pk
f n × C(Ng − k, m − j − k) × (1 − p f n)m− j−k

end for
�1 = �1 + C(Nb, j) × σ/C(Ng + Nb, m)

end for
return �0 + �1

3.3 Survivability Assessment

A MCPS fails due to either energy exhaustion or security failure. The survivability of a MCPS
is measured by its expected lifetime before it fails, or equivalently, its mean time to failure
(MTTF). For ease of analysis, let the time interval for performing voting-based intrusion
detection, TIDS, be the same as that for determining the location sequence of a neighbor
node through ranging and sensing. Naturally as TIDS decreases, the energy consumption rate
increases because the system has to invoke intrusion detection more often. The MTTF of
the MCPS can be calculated as the accumulated “reward” of the underlying semi-Markov
reward model by assigning a reward of 1 to states in which the system is alive and 0 otherwise.
Specifically, let ri be the reward (representing the contribution to system lifetime) assigned
to state i . Then,

ri =
{

1 if the system is alive in state i
0 otherwise

(3)

Intuitively this reward assignment has the effect of accumulating a unit of 1 to the MCPS
lifetime in states in which the system is still alive but accumulating nothing to the MCPS
lifetime in states in which the system fails. Here state i in Eq. 3 refers to a particular state in
the semi-Markov model shown in Fig. 3. It could be (128, 0, 0, 1), (127, 1, 0, 1), or any state
in the semi-Markov model. The probability of the MCPS stays at a particular state at time
t again can be obtained by solving the underlying semi-Markov model of our SPN model
utilizing Uniformization solution techniques [14]. Also, we know exactly whether the MCPS
fails or not in a particular state. That is, the MCPS fails when the energy is exhausted, i.e.,
when place energy does not have a token, or when the bad node population (given by the
number of tokens in place Nb) is 1/3 or more of the total population (given by Nb + Ng).
In the latter case the system fails from a Byzantine failure. With this knowledge, we can
calculate the MTTF of the MCPS numerically.

Here we note that the way we calculate MTTF is based on assigning a reward of 1 to states
in which the system is alive and 0 to states in which the system fails, with the “cumulative
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reward till absorption” being the MTTF of the MCPS. The false probabilities, i.e., Pfn and
Pfp, and TIDS affect the probability of the system staying at a particular state because they
affect the transition rates, and consequently, they affect MTTF. There is no closed-form
solution expressing MTTF as a function of Pfn, Pfp and TIDS.

4 Numerical Data

In this section we present numerical data for survivability assessment as a result of executing
voting-based intrusion detection in a MCPS. Our objective is to identify optimal design set-
tings in terms of the optimal values of TIDS and m under which we can best trade off energy
consumption versus intrusion detection to maximize the system MTTF, when given a set of
parameter values characterizing the operational and networking conditions.

4.1 Parameterization

We consider the reference MCPS model introduced in Sect. 2 operating in a 2 × 2 area
with a network size (n) of 128 nodes. Hence, the number of neighbors within radio range,
denoted by n̄, initially is about 128/4 = 32 nodes. A node in our reference MCPS uses a 35
Wh battery, so its energy is 126,000 J. The system energy initially, denoted by Eo, is therefore
126,000 J × 128 = 1,612,8000 J. Table 1 lists the set of parameters and their values for the
reference MCPS. We vary m, TIDS and λ over a range of perceivable values to test their
effects on survivability. Here we note that Pfn and Pfp are calculated by Eqs. 1 and 2. MTTF
is calculated from the SPN model by means of reward assignments in accordance with Eq. 3.
The maximum number of intrusion detection cycles the system can possibly perform before
energy exhaustion, denoted by N , is calculated as:

N = Eo

ETIDS

(4)

where Eo is the initial energy of the reference MCPS and ETIDS is the energy consumed per
TIDS interval due to ranging, sensing, and intrusion detection functions, calculated as:

ETIDS = n × (Eranging + Esensing + Edetection) (5)

where Eranging, Esensing, Edetection stand for energy spent for ranging, sensing, and intrusion
detection in a TIDS interval, respectively. Here the energy spend per node is multiplied with
the node population in the MCPS to get the total energy spent by all nodes per cycle.

In Eq. 5, Eranging stands for the energy spent for periodic ranging. It is calculated as:

Eranging = α × [Et + n̄ × (Er + Ea)] (6)

Here a node spends Et energy to transmit a CDMA waveform. Its n̄ neighbors each spend Er

energy to receive the waveform and each spend Ea energy to transform it into distance. This
operation is repeated for α times for determining a sequence of locations. In Eq. 5, Esensing

stands for the amount of energy consumed due to periodic sensing. It is computed as:

Esensing = n̄ × (Es + Ea). (7)

Here a node spends Es energy for sensing navigation and multipath mitigation data and Ea

energy for analyzing sensed data for each of its n̄ neighbors. Finally, Edetection stands for the
energy used for performing intrusion detection on a target node. It can be calculated by:
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Table 1 Parameters and their values

Parameter Meaning Default value

n Network size 128

n̄ Number of neighbors within radio range 32

pfn Per-host false negative probability [1–5]%

pfp Per-host false positive probability [1–5]%

λ Per-node capture rate [1–24]/day

TIDS Intrusion detection interval [0–700] s

m Number of intrusion detectors per node [3,11]

α Number of ranging operations 5

Et Energy for transmission per node 0.000125 J

Er Energy for reception per node 0.00005 J

Ea Energy for analyzing data per node 0.00174 J

Es Energy for sensing per node 0.0005 J

Eo Initial system energy 16,128 kJ

Pfn System false negative probability Eq. 1

Pfp System false positive probability Eq. 2

MTTF Mean time to failure Eq. 3

N Maximum cycles before energy exhaustion Eq. 4

ETIDS Energy consumed per TIDS Eq. 5

Edetection = m × (Et + n̄ · Er) + m × (Et + (m − 1) · (Er + Ea)). (8)

Here we consider the energy required to choose m intrusion detectors to evaluate a target node
(the first term) and the energy required for m intrusion detectors to vote (the second term).
Specifically, the first term is the number of intrusion detectors times the cost of transmitting
plus the number of nodes in radio range times the cost of receiving. The second term is the
number of intrusion detectors times the cost of transmitting plus the number of peer intrusion
detectors times the cost of receiving plus the cost of analyzing the vote.

4.2 Results

Figure 4 shows theoretical MTTF versus TIDS as the number of detectors (m) in voting-
based intrusion detection varies over the range of [3,11] in increments of 2. We see that
there exists an optimal TIDS value at which the system lifetime is maximized to best tradeoff
energy consumption versus intrusion tolerance. Initially when TIDS is too small, the system
performs ranging, sensing and intrusion detection too frequently and quickly exhausts its
energy, resulting in a small lifetime. As TIDS increases, the system saves more energy and its
lifetime increases. Finally when TIDS is too large, although the system can save even more
energy, it fails to catch bad nodes often enough, resulting in the system having many bad
nodes. When the system has 1/3 or more bad nodes out of the total population, a Byzantine
failure ensues. Furthermore, the optimal TIDS value is sensitive to the m value. We observe
a general trend that as m decreases, the optimal TIDS value decreases. The reason is that as
m decreases, the system has to compensate less vigorous intrusion detection (i.e., a smaller
m) by a higher invocation frequency (i.e., a smaller TIDS) to prevent security failures. For the
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Fig. 4 MTTF versus TIDS and m

reference MCPS, we also observe that m = 5 is optimal because too many intrusion detectors
would induce energy exhaustion failure, while too few intrusion detectors would induce secu-
rity failure. Using m = 5 can best balance energy exhaustion failure versus security failure
for high survivability.

Figure 5 shows MTTF versus TIDS as the compromising rate λ varies over the range of
once per hour to once per day to test the sensitivity of MTTF with respect to λ (with m fixed at
7 to isolate its effect). We first observe that as λ increases, MTTF decreases because a higher
λ will cause more compromised nodes to be present in the system. We also observe that
the optimal TIDS decreases as λ increases. This is because when more compromised nodes
exist, the system needs to execute intrusion detection more frequently to maximize MTTF.
Figure 5 identifies the best TIDS to be used to maximize the lifetime of the reference MCPS to
balance energy exhaustion versus security failure, when given pfn, pfp and λ characterizing
the operational and networking conditions of the system.

Figure 6 shows the sensitivity of MTTF with respect to pf under different m. For this
dataset, we use a TIDS of 160 s because our earlier results identified this as a near optimal
configuration. As we can see, MTTF is highly sensitive to pf and this affects the optimal m
value at which MTTF is maximized. For highly reliable IDS with low pf , a lower m benefits
the MTTF. For less reliable IDS with high pf , a higher m benefits the MTTF. The crossover
occurs in pf ∈ [0.005, 0.09].

5 Simulation

5.1 Simulation Tool and Environment Setup

We instrumented a simulation using SMPL [11]. The simulation tracks node state with com-
ponents for membership, goodness, time of last move, current location and current cell. The
simulation schedules events for node capture, intrusion detection audits and energy exhaus-
tion. A simulation run ends for one of three reasons: there is a security failure, the system
exhausts its energy or all of the nodes have been evicted.
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Fig. 6 MTTF versus pf and m

5.2 Parameter Values

We configure the simulation with the values described in Table 1. We run the simulation
over a range of values for capture rate (λ), number of intrusion detectors (m) and intrusion
detection interval (TIDS). We exercise λ over [1/day, 1/10 min], m over [3, 11] and TIDS over
[10, 1280] s.

5.3 Data Collection

We collect a MTTF observation by recording the starting simulator time, running a simula-
tion, recording the ending simulator time and calculating the difference between simulator
times. The average MTTF value reported represents a grand mean out of a large number of
MTTF observations with statistical significance.
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Fig. 7 Simulation and theoretical MTTF versus TIDS and m

Specifically, we apply batch means analysis [11] to satisfy 95% confidence level and 10%
accuracy requirements. We use a batch size of 100 MTTF observations to compute a batch
mean out of 100 MTTF observations. The general idea is that for each given configuration,
we run a number of batches to get a number of batch means. Then we calculate the grand
mean out of the batch means and determine if the grand mean falls within 10% of the true
mean with 95% confidence. If it does not, we increase our sample data by one more batch to
collect another batch mean and then compute the grand mean again. We repeat this until the
grand mean satisfies the 95% confidence level and 10% accuracy requirements.

5.4 Simulation Results

Figure 7 shows MTTF versus TIDS simulation results (the left graph) with respect to analyti-
cal results (the right graph) shown earlier in Fig. 4. The shapes of both plots are remarkably
similar: unimodal with similar kurtosis, a left/positive skew and a pronounced right tail. In
both plots, MTTF peaks near TIDS = 160 s between 9,000 and 11,000 s and m = 5 is the opti-
mal value. The mean percentage error (MPE) separating the analysis and simulation results
are between 4.60 and 7.64% curve by curve, as shown in Fig. 7. We conclude that simula-
tion results match up with analytical results very well, thereby validating our survivability
analysis methodology.

6 Conclusions

In this paper, we developed a mathematical model to analyze survivability of a mobile cyber
physical system (MCPS) comprising sensor-carried mobile nodes with voting-based intrusion
detection capabilities. Given the system failure definition caused by either energy exhaus-
tion or security failure, we identified the optimal design settings for executing voting-based
intrusion detection such that the system lifetime is maximized. We demonstrated the feasibil-
ity of our model-based analysis methodology by means of a reference MCPS for executing
emergency rescuing missions leveraging a ranging-based locational discontinuity intrusion
detection technique. Our results with simulation validation showed that, given knowledge of
per-node false alarm probabilities and pre-node compromise rates, the system can dynami-
cally select the best intrusion detection interval and the best number of detectors to balance
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energy consumption due to intrusion detection versus security failure due to security attacks
to maximize the MCPS lifetime.

In the future, we plan to develop a set of survivability-directed design principles to guide
intrusion detection protocol design for both homogeneous and heterogeneous MCPSs. We
also plan to investigate how our model-based analysis methodology can be applied to a
wider range of MCPS applications operating under such intrusion detection techniques for
survivability assessment.
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