
188 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 1, MARCH 2021

Reliability of Autonomous Internet of Things
Systems With Intrusion Detection

Attack-Defense Game Design
Ding-Chau Wang , Ing-Ray Chen , and Hamid Al-Hamadi

Abstract—In this article we develop an intrusion detection
attack–defense game for Internet of Things (IoT) systems for which
autonomous IoT devices collaboratively solve a problem. We de-
velop an analytical model to determine the conditions under which
malicious nodes have no incentives to perform attack in the intru-
sion detection attack–defense game. We also develop a stochastic
Petri net model to analyze the effect of attack–defense behaviors
on system reliability, given a definition of system failure conditions
as input. The performance evaluation results demonstrate that
our intrusion detection system (IDS) attack-defense game design
greatly improves system reliability over existing autonomous IoT
systems without gaming design consideration when attacks are
reckless and intensive.

Index Terms—Attack–defense games, autonomous systems,
Internet of Things (IoT), intrusion detection, reliability.

NOMENCLATURE

IoT Internet of Things.
IDS Intrusion detection system.
MTTF Mean time to failure.
SPN Stochastic Petri net.
Hpfn Host-level false negative probability.
Hpfp Host-level false positive probability.
P IDS
fn System-level false negative probability.

P IDS
fp System-level false positive probability.

λ Per-node capture rate.
m Number of voters during IDS voting.
TIDS IDS interval.
β Life quota decay parameter.
N Number of nodes.
Ng Number of good nodes.
Na

bad Number of bad nodes attacking during IDS voting.
N i

bad Number of bad nodes not attacking during IDS voting.

Manuscript received August 7, 2019; revised December 3, 2019 and February
21, 2020; accepted March 22, 2020. Date of publication May 11, 2020; date
of current version March 2, 2021. This work was supported in part by the
U.S. AFOSR under Grant FA2386-17-1-4076. Associate Editor: K. Goseva-
Popstojanova. (Corresponding author: Ing-Ray Chen.)

Ding-Chau Wang is with the Department of Information Management, South-
ern Taiwan University of Science and Technology, Tainan 710, Taiwan (e-mail:
dcwang@stust.edu.tw).

Ing-Ray Chen is with the Department of Computer Science, Virginia Tech,
Falls Church, VA 22043 USA (e-mail: irchen@vt.edu).

Hamid Al-Hamadi is with the Department of Computer Science, Kuwait
University, Kuwait City 12037, Kuwait (e-mail: hamid@cs.ku.edu.kw).

Color versions of one or more of the figures in this article are available online
at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2020.2983610

Lc
a Penalty applied to a bad node who decides to attack

during IDS voting when system decides to check the
voting outcome via auditing.

Lc
na Penalty applied to a bad node who decides not to attack

during IDS voting when system decides to check the
voting outcome via auditing.

Gnc
a Reward applied to a bad node who decides to attack

during IDS voting when system decides not to check
the voting outcome.

Gnc
na Reward applied to a bad node who decides not to attack

during IDS voting when system decides not to check
the voting outcome.

C Cost of performing an audit.
Pc Auditing probability.
Pmin
c Minimum Pc above which there is no incentive for a

bad node to attack during IDS voting.
Pa Attack probability.

I. INTRODUCTION

W ITH the proliferation of Internet of Things (IoT) devices,
we have witnessed the era of autonomous IoT-based

applications, including parking space finding [1], participatory
sensing of air quality [2], smart service community [3], [4],
crowdsensing for cooperative problem solving [5], [6], smart
Internet of vehicles information systems [7], IoT-embedded
cyber–physical systems (CPS) [8]–[11], etc. All these applica-
tions involve autonomous IoT devices collaborating with each
other for problem solving or decision making.

The most important requirement of such autonomous IoT
systems is that information supplied from collaborating IoT
devices must be trustworthy based on which data analysis may
be performed to solve a problem or make a correct decision.
Consequently, a central issue is whether certain IoT devices are
malicious in supplying false information for own benefits or
whether a group of malicious nodes collude with each other for
group benefits. Since potentially there will be a huge number
of IoT devices, it is highly impractical to use a centralized
entity (say sitting in the cloud) to perform intrusion detection
to filter out untrustworthy information, since the centralized
entity cannot physically perform misbehavior detection itself
and needs to collect misbehavior reports/logs from IoT devices.
This will not only introduce a large amount of traffic between
IoT devices and the centralized entity thus crippling the IoT

0018-9529 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4706-4856
https://orcid.org/0000-0003-1657-6728
https://orcid.org/0000-0002-2982-9416
mailto:dcwang@stust.edu.tw
mailto:irchen@vt.edu
mailto:hamid@cs.ku.edu.kw
https://ieeexplore.ieee.org

WANG et al.: RELIABILITY OF AUTONOMOUS IOT SYSTEMS WITH INTRUSION DETECTION ATTACK-DEFENSE GAME DESIGN 189

communication network but also consume energy of resource
constrained IoT devices. Hence, distributed misbehavior
detection is the only feasible way for autonomous IoT systems,
with the centralized entity performing auditing when necessary.

In this article we develop a lightweight intrusion detection
system (IDS) attack–defense game specifically designed for
autonomous IoT systems where autonomous IoT devices collab-
orate with each other for problem solving or decision making.
The basic idea of our lightweight IDS game design is that the
system does auditing only occasionally controlled by an auditing
probability, while leaving intrusion detection to IoT devices
themselves in a distributed manner. The game’s outcome is the
system reliability measured by the system’s mean time to failure
(MTTF), when given a definition of system failure conditions as
input.

We design our IDS attack–defense game following the design
principle of mechanism design theory (also called reverse game
theory) [12] such that every node in the system must participate
in game playing so that nodes are provided with incentives and
act in such a way to further the interest of the designer, despite
the fact that nodes are strategic and self-interested, and possess
private information [13]. Designing a game to motivate users to
follow the prescribed rules has been widely applied to commu-
nication system design including cognitive radio networks [14]
and vehicular networks [5]. To the best of our knowledge, this
is the first work for IoT IDS design.

The basic idea for our lightweight distributed IDS game is
that a target node is periodically being voted on by a group of
neighbor nodes to determine if the target node is good or bad
(i.e., malicious). The defense system (presumably sitting in the
cloud) can optionally audit the voting outcome to detect if IDS
voting is performed faithfully and correctly. A node, if invited to
determine if a target node is good or bad, uses its basic host-level
IDS functions characterized by a host-level false positive rate
and a host-level false negative rate, to cast a “yes” (meaning the
target node is good) or “no” (meaning the target node is bad)
vote. The outcome of IDS voting, gathered by the group of voting
members, shall determine if the target node should be evicted
or retained in the system, and is reported to the defense system.
Since there may be several attackers (i.e., insiders) during an
IDS voting process, they can collude with each other such that
if the target node is a good node, they vote “no” against the
good target node so as to evict the good target node from the
system, and, conversely, when the target node is a bad node,
they vote “yes” for the bad target node so as to keep the bad
target node from being evicted. To punish such misbehavior, the
defense system can perform auditing (controlled by an auditing
probability parameter) after each IDS voting event to obtain the
true outcome and penalize nodes who cast a different vote from
the auditing outcome. This forces every malicious node to decide
whether it should attack or not attack in an IDS voting cycle,
especially if the penalty is severe at the designer’s choice. The
analytical model developed in this article shall allow a designer
to determine the best penalty and the best auditing probability for
maximizing the system reliability based on the performance and
reliability characteristics of the autonomous IoT system in hand.

Our analytical model aims to determine the condition under
which malicious nodes have no incentives to perform attack

during IDS voting in our intrusion detection attack–defense
game. The condition, characterized by a set of loss and gain
payoff functions as well as the attacker’s attack probability and
the defender’s auditing probability, is analytically derived in the
article. We illustrate how our IDS attack–defense game can be
applied to an autonomous mobile CPS wherein each node is
given a “life quota” by parameterizing (i.e., giving value to)
the loss and payoff functions such that there exists a minimum
auditing probability after which an attacker would be discour-
aged to attack during IDS voting so as to maximize its own
payoff. We further develop a performance model to analyze the
effect of attack–defense behaviors as well as the attacker’s attack
probability and the defender’s auditing probability on system
reliability.

Below we briefly survey existing works in the area of intrusion
detection of IoT devices. To date, there are basically two lines
of research works. The first research line relies on the use of be-
havior rule specifications [8], [9], [21]–[23] to formally specify
the runtime behaviors of a target IoT device. The specification
is precompiled into misbehavior detection code and is placed in
a monitor IoT device’s memory to monitor a target IoT device at
runtime. With a secure computational space in place (e.g., [24])
each IoT device can possibly execute misbehavior detection
code in its own secure computation space and self-monitor itself.
The second research line relies on the creation of a lightweight
classifier based on AI techniques [25] such as machine learning
or convolutional neural networks to classify if a target IoT
device is malicious or not. The major challenge (see [26]) is to
reduce computation cost and energy consumption of training the
classifier before it can run on a resource constrained IoT device.
Relative to the two research lines discussed above which focus
on “host-level” misbehavior detection, our work in this article
focuses on “system-level” misbehavior detection by means of
IDS voting in an IDS attack–defense game setting which has
not been considered in the literature before for IoT IDS design.
Here by host-level misbehavior detection, we mean that each
node applies specification-based detection techniques (as in [8],
[9], [21]–[23]) or anomaly based detection techniques (as in
[24]) to independently and separately decide if a target node is
malicious or not. On the other hand, by system-level misbehavior
detection, we mean that a group of nodes as selected by the
system collectively decide if a target node is malicious or not
based on “majority voting” by which each node votes either yes
or no based on the detection outcome obtained from applying
host-level misbehavior detection techniques.

Our work has the following unique contributions.
1) We develop novel IDS attack–defense games that must

be played by every node of an autonomous IoT system.
We derive the exact condition under which malicious
nodes have no incentives to perform attack in the IDS
attack-defense game as well as the best defender setting
to maximize the system reliability, when given a definition
of system failure conditions as input.

2) We develop an analytical model based on stochastic Petri
Net (SPN) modeling techniques (e.g., [15]–[19]) to de-
scribe the IDS attack-defense game dynamics. The SPN
model allows one to analyze the effect of the attack prob-
ability (by an attacker), the auditing probability (by the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

190 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 1, MARCH 2021

defense system), and the penalty (to apply to nodes whose
vote mismatches with the auditing outcome) on system
reliability.

3) We put our IDS attack-defense game into practical use by
applying it to an autonomous mobile CPS [11] wherein
each node is given a “life quota” for it to remain in the
system. We compare the performance of our IDS game
with that of baseline the mobile CPS [11] without game
design.

The rest of the article is organized as follows: Section II
discusses the system model for IDS voting game playing. Sec-
tion III describes in detail of our IDS voting game design and
analytically derives the condition under which malicious nodes
have no incentives to perform attack as well as the best defender
setting to prolong the system lifetime. Section IV applies our
IDS attack-defense game to a baseline CPS application wherein
each node is given a “life quota” for it to remain in the system
and develops an SPN model based on SPNP [15] to analyze the
effect of attack-defense strategies played by attackers/defenders
on system reliability. Section V provides numerical results in-
cluding a comparative analysis of our IDS game against the
baseline IoT system without game design. Finally, Section VI
concludes this article.

II. SYSTEM MODEL

We first discuss system failure conditions for an autonomous
IoT system based on which the system MTTF is derived. Then,
we discuss the system model for the attack-defense IDS game.

A. System Failure Conditions

The following failure conditions can cause an autonomous
IoT system to fail.

1) Byzantine failure [20] occurs when one-third or more of
the nodes are compromised. The reason is that once an
autonomous system contains at least 1/3 compromised
nodes, it is impossible to reach a consensus, hence in-
ducing a system failure.

2) Energy depletion failure occurs when energy is too de-
pleted to be able to accomplish the mission. This is espe-
cially critical for an autonomous collaborative IoT system
that must complete the mission within a deadline without
energy replenishment.

B. IDS Attack-Defense Game

The attacker behavior comes in two forms. The first form of
attacker behavior derives from “capture” attacks to compromise
nodes, i.e., to turn a good node into a bad node. This is especially
true for sensor/actuator IoT devices that do not have proper
physical protection and can be easily physically captured by
intruders and converted into malicious nodes (i.e., inside attack-
ers). It is possible that viruses can also invade good nodes and
turn them into malicious nodes. We assume a per-node capture
rate of λ. The second form of attacker behavior derives from
insider attacks during IDS voting. An insider may only attack
probabilistically to evade detection. That is, a malicious node

decides to attack with probability Pa and not to attack with
probability 1− Pa during IDS voting. A goal of our IDS game
design is to discourage malicious nodes from performing attacks
such that Pa = 0 at which the system can obtain the maximum
lifetime.

The defense behavior also comes in two forms. The first form
of defense is at the host level. At the host IDS level, node i
monitors positive and negative experiences it has toward node j
when it encounters with node j (for immobile IoT devices node i
and node j would be neighbors within detection range) to judge
if node j complies with prescribed protocol execution. Anomaly
detection techniques including discrepancy of voting results dur-
ing IDS voting may be used for this purpose. Node i can use Beta
(a, b) distribution [9] to model the compliance degree of node j in
the range of (0, 1) as a random variable where a and b represent
the numbers of positive and negative experiences, respectively,
such that the estimated mean compliance degree is a/(a+b). If
node j’s compliance degree is less than a minimum compliance
degree CT , node i considers node j as bad; otherwise node i
considers node j as good. The minimum compliance degree CT

therefore decides the host-level false negative probability Hpfn

and the host-level false positive probability Hpfp. We assume
that each node is thoroughly tested for its host-level intrusion
capability before it is released to operational use. Hence, Hpfn

and Hpfp are provided as input.
The second form of defense behavior is at the system-level

via IDS voting for which the detection strength is controlled by
the number of voters (m) and how often intrusion detection is
performed (in every TIDS interval). In each IDS voting cycle,
m nodes which are neighbors of a target node will participate
in IDS voting to vote for or against the target node, based on
host-level IDS outcomes. If the majority voting outcome is “no”
then the target node is evicted; otherwise, the target node is
retained. To preserve energy of IoT nodes, the defense system
will audit the voting outcome with probability Pc and will not
audit with probability1− Pc. To punish misbehavior during IDS
voting, the defense system penalizes nodes who cast a different
vote from the auditing outcome, the severity of which is to be
determined by the system designer when the IDS attack-defense
game is setup.

C. Assumptions and Limitations

An IoT system may have many failure conditions. However,
our IDS game is specifically designed for autonomous IoT sys-
tems where autonomous IoT devices collaborate with each other
for problem solving or decision making. For such autonomous
IoT systems, the major failure conditions are: 1) Byzantine
failure where at least 1/3 are malicious nodes under which there
is no consistency view can be maintained for decision making,
and 2) energy failure where energy is depleted for autonomous
nodes to accomplish problem solving or decision making.

An assumption made by a game theoretical approach is that
all nodes are sensible, i.e., all bad nodes will act logically
toward achieving their collective overarching goal of produc-
ing a system failure such that if the payoff resulting from an
attack is negative, they shall refrain from doing it. However, a

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: RELIABILITY OF AUTONOMOUS IOT SYSTEMS WITH INTRUSION DETECTION ATTACK-DEFENSE GAME DESIGN 191

TABLE I
IDS ATTACK-DEFENSE GAME PAYOFF

common criticism is that the assumption may not be satisfied
in real-world applications since not all nodes are necessarily
sensible all the time. We deal with this assumption in two ways:
1) When this assumption is obeyed, the system can achieve its
maximum achievable MTTF by setting the auditing probability
to the optimal auditing probability identified from our analysis
(shown in Fig. 3 later); 2) When this assumption is not obeyed,
our IDS attack-defense game design can improve the system
reliability compared to a baseline IoT system without gaming
design consideration, when attacks are reckless and intensive.

A practical consideration of our proposed IDS attack-defense
game design is that the cost of performing auditing may ad-
versely drain energy of resource-constrained IoT devices and
shorten the overall system lifetime. The per-audit cost parameter
(“C”) listed under Nomenclature decides the balance point of
trading off energy consumption for performing auditing (thus
inducing energy depletion failure) for achieving a higher detec-
tion rate (thus delaying Byzantine failure) for maximizing the
system lifetime. Consequently, a limitation of our proposed IDS
attack-defense game design is that it is not suitable to be applied
to IoT systems in which the attack probability falls below a
minimum threshold because the disadvantage of high auditing
cost may offset the advantage of high detection rate when attacks
are very infrequent. In this article we develop a model to help
the system designer identify this minimum attack probability
threshold above which our proposed attack-defense game design
can be suitably applicable. This will be exemplified via empirical
testing in Section V.

III. IDS ATTACK-DEFENSE GAME

In this section, we formulate the IDS attack-defense game
based on mechanism design theory (also called reverse game
theory) [12] to model decision making between the attacker and
the defense system and then present a theoretical analysis. The
game models the relationship between the defense system and
a malicious node i who has two options: attack or not attack
during IDS voting. On the other side, from the defense system’s
perspective, it decides to audit the voting result with probability
Pc or not to audit with probability 1− Pc.

The payoff matrix for the defense system and a malicious node
i in the game model is shown in Table I. The table entry is in the
format of (defense system payoff, malicious node i payoff). For
example, if the defense system checks the voting result while
malicious node i dishonestly reports a fake report the payoff to
the defense system is Lc

a − C and the payoff to malicious node
i is −Lc

a.

We explain the payoff matrix Table I below.
According to the described game model, during IDS voting

(to determine if a target node is malicious), a malicious node i
can attack with probability Pa and not attack with probability
1− Pa. If it decides to attack, it will cast a “no” vote against a
good target node and a “yes” node for a bad target node, with
the “no” vote meaning that the target node is a bad node and
the “yes” vote meaning that the target node is a good node. If it
decides not to attack, it will behave like a good node so it will
cast a vote as what a good node would do based on its basic
host-level IDS function. On the other hand, the defense system
decides to audit the voting outcome with probability Pc and not
to audit the voting outcome with probability 1− Pc. Auditing
is an expensive operation. We denote the cost by C. The system
will have to collect relevant information from all nodes that
have had experiences with the target node. If the target node
is relatively immobile, the set of relevant nodes may be small
but for a highly mobile node, the system may have to probe all
nodes in the system that have had experiences with the target
node. The high cost is unavoidable in order to ensure that “the
auditing outcome” reflects “the true outcome” of whether the
target node is malicious or not.

There are 4 cases, as described in Table I.
Case 1: The defense system decides to audit the voting

outcome with probability Pc and a malicious node i decides
to attack with probability Pa. The defense system can detect
the true outcome (that is if the target node is good or bad) by
collecting reports from all relevant nodes in the system and then
punish the nodes who cast a different vote with a penalty denoted
by Lc

a ≥ 0 with the superscript “c” meaning that the system
“checks” the voting outcome, and the subscript “a” meaning
that the malicious node “attacks” during IDS voting. The loss
to the malicious node is treated as a gain to the defense system.
Therefore, the payoffs to the defense system and malicious node
i are Lc

a − C and −Lc
a, respectively.

Case 2: The defense system decides to audit the voting
outcome with probability Pc and a malicious node i decides
not to attack with probability 1− Pa. Again the defense system
can detect the true outcome (that is if the target node is good
or bad) and then punish the nodes who cast a different vote.
Since malicious node i acts as if it is a good node and it casts
the right vote as a normal node would do, it would not receive a
penalty. Because the defense system performs a thorough audit
of the voting outcome and follows the true voting outcome, the
defense system gains something positive in reliability denoted
by Lc

na ≥ 0 with the superscript “c” meaning that the system
“checks” the voting outcome, and the subscript “na” meaning

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

192 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 1, MARCH 2021

that the malicious node does “not attack” during IDS voting.
In practice the gain may be small. Nevertheless, the gain to the
defense system is a loss to the malicious node. Therefore, the
payoffs to the defense system and malicious node i are Lc

na − C
and −Lc

na, respectively.
Case 3: The defense system decides not to audit the voting

outcome with probability 1− Pc and a malicious node i decides
to attack with probability Pa. Since the defense system does not
audit the voting outcome, the voting outcome will be accepted
as is which may impact the system reliability. Let the impact
be represented by Gnc

a ≥ 0 (with the superscript “nc” meaning
that the system does “not check” the voting outcome, and the
subscript “a” meaning that the malicious node “attacks” during
IDS voting) which can be considered as a gain to malicious
node i. The gain to malicious node i is treated as a loss to the
defense system. Therefore, the payoffs to the defense system
and malicious node i are −Gnc

a and Gnc
a respectively.

Case 4: The defense system decides not to audit the voting
outcome with probability 1− Pc and a malicious node i also
decides not to attack with probability 1− Pa. In this case the
defense system again does not audit the voting outcome, the
voting outcome will be accepted as is which may adversely
impact the system reliability. Let the impact be represented by
Gnc

na ≥ 0 (with the superscript “nc” meaning that the system does
“not check” the voting outcome, and the subscript “na” meaning
that the malicious node does “not attack” during IDS voting)
which can be considered as a gain to malicious node i. The gain
to malicious node i is treated as a loss to the defense system.
Therefore, the payoffs to the defense system and malicious node
i are −Gnc

na and Gnc
na, respectively.

Theorem 1: To discourage malicious node i from performing
attacks during IDS voting, the following condition must satisfy:
Pc(L

c
a − Lc

na) ≥ (1− Pc)(G
nc
a − Gnc

na).
Proof: According to our game model and the payoff matrix

shown in Table I, if a malicious node does not perform attacks
during IDS voting, then its payoff is given by

Payoffna = −PcL
c
na + (1− Pc) Gnc

na. (1)

On the other hand, if a malicious node performs attacks, then
its payoff is given by

Payoffa = −PcL
c
a + (1− Pc) Gnc

a . (2)

To guarantee a malicious node i does not have the incentives
to perform attacks during IDS voting, we have Payoffna ≥
Payoffa, i.e.,

−PcL
c
na + (1− Pc)G

nc
na ≥ −PcL

c
a + (1− Pc) Gnc

a (3)

or

Pc(L
c
a − Lc

na) ≥ (1− Pc) (G
nc
a − Gnc

na) . (4)

�
Theorem 1 above provides a general rule for the design of the

loss and gain payoff functions such that a malicious node will

TABLE II
LIFE QUOTA LEFT AFTER START-UP/ATTACK EVENTS, FOR β = 1/3, 1/2, 1

not have incentives to perform attacks in our game setting. By
rearranging (4), we have

Pc ≥ (Gnc
a − Gnc

na)

(Gnc
a − Gnc

na) + (Lc
a − Lc

na)
. (5)

Condition (5) dictates that the defense system auditing prob-
ability Pc must be at least greater than the outcome of the
right-hand side expression to discourage malicious nodes from
performing attacks during IDS voting. The right-hand side ex-
pression outcome depends on the L and G payoff functions
which can be publicize to all nodes such that a malicious node
will have no incentive of performing attacks during IDS voting.
In this article we investigate a simple “life quota” system to
parameterize the L and G payoff functions and the minimum
system auditing probability for satisfying condition (5).

IV. MODELING AND ANALYSIS

We apply our IDS attack–defense game to an autonomous
IoT system wherein each node is given a “life quota” for it
to retain as a member in the system. We also develop an SPN
model to analyze the effect of attack–defense strategies played
by attackers/defenders on system reliability.

A. Life Payoffs in the IDS Attack–Defense Game

Our life quota system initially allocates a life quota of 1 to
every node. When the life quota is reduced to zero because
of penalties being applied by the defense system, a node is
identified as malicious and is removed from the system. The
speed at which a node’s life quota is reduced is driven by a life
quota decay parameter β which is the fraction of life quota taken
away from a node who cast a different vote from the auditing
outcome during IDS voting. For example, ifβ is 1/2 then a node’s
life quota is reduced to zero after 2 penalties are being applied
to the node. This parameter allows the system designer to adjust
the severity of penalty depending on the system requirement.
For the most secure system, β can be set to 1; so a single penalty
will evict a malicious node.

Table II illustrates the life quota left of a bad node at start
up as well as after performing an attack during IDS voting, i.e.,
voting “no” (“yes”) on a good (bad) target node. The first column
indicates the event scenario (startup or attack). The second, third,
and fourth columns show a bad node’s life quota remaining for

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: RELIABILITY OF AUTONOMOUS IOT SYSTEMS WITH INTRUSION DETECTION ATTACK-DEFENSE GAME DESIGN 193

three cases, i.e., β = 1/3, β = 1/2, and β = 1, respectively. At the
system start-up, all nodes have a life quota of 1. Whenβ= 1/3 (in
the second column) a bad node’s life quota will be reduced from
1 to 2/3, 1/3, and 0 after three attacks are detected via auditing,
and the maximum number of attacks detected via auditing before
a bad node’s life quota reduces to zero is 3. When β = 1/2 (in
the third column) a bad node’s life quota will be reduced from 1
to 1/2 and 0 after two attacks are detected via auditing, and the
maximum number of attacks detected via auditing before a bad
node’s life quota reduces to zero is 2. Finally, when β = 1 (in
the fourth column) a bad node’s life quota will be reduced from
1 to 0 after one attack is detected via auditing, and the maximum
number of attacks detected via auditing before a bad node’s life
quota reduces to zero is only 1.

Based on our proposed life quota scheme, we can parameter-
ize (i.e., give values to) the L and G payoff functions as follows.

1) Gnc
a : This payoff is applied to a malicious node that

performs attack (so it votes no against a good node or yes
for a bad node during IDS voting) without being detected
because the system does not perform auditing. This payoff
is set to 1 because the highest impact achievable by a
malicious node is that a good node is voted down and is
therefore evicted (so a loss of life quota of 1), or a bad
node is voted up and is therefore kept in the system (so a
gain of life quota of 1).

2) Lc
a: This payoff is applied when a malicious node is

detected as having cast a vote that is different from the
auditing outcome. It is set to be equivalent to the life quota
decay parameter β.

3) Lc
na: The payoff is applied when a malicious node decides

not to attack while the system decides to perform auditing.
This payoff is set to zero because a malicious node who
decides not to attack will not be penalized with a reduction
of life quota.

Gnc
na: This payoff is applied to a malicious node that decides

not to attack (so it acts like a good node to vote yes for a
good node, or no against a bad node during IDS voting) while
the system decides not to perform auditing of the IDS voting
outcome. This payoff is set to zero as well because the malicious
nodes does not gain anything as it does not contribute to mis-
detection, which happens due to intrinsic imperfect host-level
false negative probability Hpfn and host-level false positive
probability Hpfp.

With the L and G payoff functions defined as above, from con-
dition (5), we can set the minimum system auditing probability
(denoted by Pmin

c) as 1/(1 + β) for satisfying condition (5).
We consider smart colluding attackers such that the objective

of each and every bad node (who knows each other) is to maintain
the total lifetime quota of all bad nodes or decrease the total
lifetime quota of all good nodes in the system in order to induce
Byzantine failure which happens when the number of bad nodes
is at least 1/3 of the total number of nodes in the system. When
a bad node misbehaves but is not caught because the system
does not perform auditing, the highest impact achievable is that
a good node is voted down and is therefore evicted (so a loss of
life quota of 1), or a bad node is voted up and is therefore kept
in the system (so a gain of life quota of 1). Here we note that the

Fig. 1. SPN model for β = 1.

gain of 1 is not to the bad node itself, but to the goal of colluding
bad nodes in the system.

Here we note that there is no training or learning involved
before the IDS game is put into operational use. Therefore, our
IDS game does not affect the system run time execution. The
only runtime execution step of our IDS game is that in every
IDS cycle, a node selected to vote on a target node must vote
“yes” (meaning that the target node is good) or “no” (meaning
that the target node is bad). The IDS game parameter values for
(−Lc

a, −Lc
na, Gnc

a , Gnc
na) are set to (β, 0, 1, 0) in our proposed

life quota system and are announced to all nodes at the system
startup time, so that a malicious node knows the penalty/reward
it would get for the 4 cases discussed in Table I, as follows: 1)
if a node decides to attack and the system also decides to audit,
then the node’s lifetime is reduced by β because the node’s
vote would be different from the auditing outcome; 2) if a node
decides not to attack and the system decides to audit, then the
node’s lifetime remains the same because the node’s vote would
be the same as the auditing outcome; 3) if a node decides to
attack and the system decides not to audit, then the gain to the
bad node would be as high as 1 because the system would adopt
the voting outcome as is without auditing and in the worst case
could evict a good target node (thus losing the life quota of
a good node) or keep a bad target node (thus keeping the life
quota of a bad node); 4) if a node decides not to attack and
the system also decides not to audit, then the gain to the bad
node would be zero because the IDS voting outcome would be
correct.

B. Analyzing the Attack–Defense Game Design

To analyze the effect of attack–defense strategies played by
attackers/defenders on system reliability, we develop an analyt-
ical model based on SPNP [15] to capture IDS game dynamics.
Fig. 1 shows the SPN model for the case in which β = 1 such
that a single mismatch of the vote cast by a node during IDS
voting against the auditing vote outcome will drain the life quota
of the node and evict it from the system.

The SPN model is constructed as follows.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

194 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 1, MARCH 2021

1) We use places to hold tokens each representing a node.
Initially, all N nodes are good nodes and put in place Ng

as tokens.
2) Good nodes may become compromised with per-node

compromising rate λ. This is modeled by associating tran-
sition Tcompromise with an aggregate rate Ng × λ. Firing
Tcompromise will move tokens one at a time (if it exists)
from place Ng to place Nb. Tokens in place Nb represent
compromised but undetected nodes. The superscript of
“1” on Nb means that it holds bad nodes with a life
quota of 1.

3) Good nodes can be misidentified as bad nodes during
IDS voting especially if auditing is not performed. This
is modeled by moving a good node in place Ng to
place Ne after firing transition TfalsePositive with a rate
of Ng × P IDS

fp /TIDS where P IDS
fp is the system-level false

positive probability as a result of IDS voting (as given in
(6)) shown at the bottom of this page, and TIDS is the
intrusion detection interval. The transition rate is set in
this way because 1/TIDS is the rate at which IDS voting
is performed and each good node has a probability of
P IDS
fp to be misidentified as a bad node. Since we have

a total of Ng good nodes, we multiply the per-node false
positive rate withNg to get the aggregate rate for transition
TfalsePositive.

4) When a bad node is being evaluated by IDS voting, if the
voting outcome is negative (that is, the majority vote is
no) then the bad node is evicted from the system. This
corresponds to the case in which the system correctly
detects the bad node with probability 1− P IDS

fn where
P IDS
fn is the system-level false negative probability (as

given in (6)). We create a timed transition TtruePositive to
model this “true positive” case, with the transition rate
assigned to TtruePositive being Nb × (1− P IDS

fn)/TIDS.
The transition rate is set in this way because 1/TIDS is the
rate at which IDS voting is performed and each bad node
has a probability of 1− P IDS

fn to be correctly identified as
a bad node. Since we have a total of Nb bad nodes, we
multiply the per-node true positive rate with Nb to get the
aggregate rate for transition TtruePositive.

5) If the system misidentifies a bad node as a good node, then
the bad node will remain in the system. We create a timed
transitionTfalseNegative to model this “false negative” case,
with the aggregate transition rate assigned to TfalseNegative

being Nb × P IDS
fn /TIDS. The transition rate is set in this

way because 1/TIDS is the rate at which IDS voting is
performed and each bad node has a probability of P IDS

fn

to be misidentified as a good node. Since we have a
total of Nb bad nodes, we multiply the per-node false
negative rate withNb to get the aggregate rate for transition
TfalseNegative. All such “false negative” bad nodes flow to
a temporary place holder (the place that does not have a
label in Fig. 1) waiting to be distributed depending on the
attack–defense conditions during IDS voting.

6) The joint probability that a bad node attacks and the
defense system audits during IDS voting is PaPc. If a
system auditing is performed, the defense system will
discover that there is a mismatch between the vote cast
by the bad node and the auditing outcome. Consequently,
a reduction ofβ life quota will be applied to the bad node to
penalize this detected attack behavior during IDS voting.
Since β = 1 in Fig. 1, a bad node in this case will lose its
entire life quota and will be evicted, i.e., a bad node will
flow to place Ne. We model this behavior by creating two
“immediate” transitions (represented by two solid bars in
Fig. 1) with probabilities PaPc and 1− PaPc, allowing
a “false negative” bad node held in the temporary place
holder to flow toNe andNb, respectively. In the underlying
Markov model generated from the SPN model, a bad node
will go directly fromNb toNe if it decides to attack during
an IDS cycle and the defense system also decides to audit
in the same IDS cycle, and will remain in Nb in all other
conditions.

The intrusion detection capability of our proposed IDS voting
game is measured by the system-level false positive probability
P IDS
fp and the system-level false negative probabilityP IDS

fn which
in turn depend on the intrusion detection capability of individual
nodes measured by the host-level false negative probability
Hpfn and false positive probability Hpfp as well as the number
of bad nodes performing attacks during IDS voting

Note that the system-level false positive probability P IDS
fp is

different from the host-level false positive probability Hpfp with
the former being the result of IDS voting and the latter being
the basic per-host detection capability of each individual node
when a node is manufactured and put into operational use after a
testing phase. Equation (6) derives the false positive probability
(P IDS

fp) and false negative probability (P IDS
fn)when there areNg

good nodes and Nb bad nodes in the system. Equation (6) gives
a closed-form solution for P IDS

fp and P IDS
fn under random attack

behavior where Na
bad = PaNb and N i

bad = (1− Pa)Nb are the

P IDS
fp or P IDS

fn =

m−mmaj∑
i=0

⎡
⎢⎢⎣
C

(
Na

bad

mmaj + i

)
× C

(
Ng + N i

bad

m− (mmaj + i)

)

C

(
Na

bad +N i
bad +Ng

m

)
⎤
⎥⎥⎦

+

m−mmaj∑
i=0

⎡
⎢⎢⎣
C

(
Na

bad

i

)
× ∑m−i

j=mmaj−i

[
C

(
Ng + N i

bad

j

)
× ωj × C

(
Ng + N i

bad − j
m− i− j

)
× (1− ω)m−i−j

]

C

(
Na

bad +N i
bad +Ng

m

)
⎤
⎥⎥⎦ (6)

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: RELIABILITY OF AUTONOMOUS IOT SYSTEMS WITH INTRUSION DETECTION ATTACK-DEFENSE GAME DESIGN 195

numbers of “active” and “inactive” bad nodes, respectively;
mmaj is the minimum majority of the number of voting nodes
(m), e.g., 3 is the minimum majority of 5; ε isHpfp for calculating
P IDS
fp and is Hpfn for calculating P IDS

fn .
We explain (6) for the system-level false positive probability

P IDS
fp below. The explanation to the system-level false negative

probability P IDS
fn is similar. A false positive will result when the

majority vote is “no” against the target node (which is a good
node). The first term in (6) accounts for the case in which more
than 1/2 of the voters selected from the target node’s neighbors
are “active” bad nodes who, as a result of actively performing
attacks, will always vote against a good node as a bad node.
Since more than 1/2 of the m voters vote no, the target node
(which is a good node) is diagnosed as a bad node in this case,
resulting in a false positive. Here the denominator is the total
number of combinations to select m voters out of all neighbor
nodes, and the numerator is the total number of combinations
to select at least mmaj bad voters out of Na

bad nodes and the
remaining good voters out of Ng + N i

bad nodes.
The second term accounts for the case in which more than

1/2 of the voters selected from the neighbors are good nodes but
unfortunately some of these good nodes mistakenly misidentify
the target nodes as a bad node with host IDS false positive
probability Hpfp, resulting in more than 1/2 of the voters (al-
though some of those are good nodes) voting to evict the good
target node. Since more than 1/2 of the m voters vote to evict,
the target node (which is a good node) is also diagnosed as a
bad node in this case, again resulting in a false positive. Here
the denominator is again the total number of combinations to
select m voters out of all neighbor nodes, and the numerator is
the total number of combinations to select i “active” bad voters
not exceeding the majority mmaj j good or “inactive” bad voters
who diagnose incorrectly with i + j ≥mmaj, and the remaining
m – i – j good or “inactive” voters who diagnose correctly. Here
we note that an “inactive” bad node acts as if it is a good node
based on our IDS attack–defense game setting.

The SPN model shown in Fig. 1 models the case in which
β = 1 meaning that a single offense by a bad node during an IDS
voting cycle will result in the bad node being evicted because
it will lose its entire life quota. The SPN model can be easily
extended to other cases. Fig. 2 shows another SPN model for
modeling the case in which β = 1/2 meaning that on the first
offense, a bad node will lose 1/2 of its life quota but is still
allowed to remain in the system. However, on the second offense,
a bad node will lose its entire life quota and will be evicted from
the system. The SPN model in Fig. 2 looks similar in structure
to the SPN model in Fig. 1. The upper layer is exactly the same
except that the output place for the right immediate transition
(with probability PaPc) is N2

b which is a new place created to
hold bad nodes with a life quota of 1/2 (hence a superscript of
“2” onNb), because when β= 1/2, a bad node will not lose all its
entire life quota upon the first offense and instead will remain
in the system with 1/2 life quota. The lower layer is a mirror
image of the SPN model in Fig. 1, except that a superscript of
2 is being used to denote that all bad nodes in the lower layer
have only 1/2 life quota left.

Fig. 2. SPN model for β = 1/2.

The SPN model development can be generalized as follows: If
β = 1/n then there will be n layers in the SPN model, i.e., layers
1, 2, …, n, modeling the behaviors of bad nodes with life quota
of n/n, (n − 1)/n, (n − 2)/n, …, 1/n, respectively. For example,
Fig. 1 for β = 1/1 only has one layer for modeling bad nodes
with life quota of 1/1, and Fig. 2 for β = 1/2 has two layers for
modeling bad nodes with life quota of 2/2, and 1/2, respectively.

V. RESULTS

We apply our IDS attack–defense game design to an au-
tonomous mobile CPS [11] comprising various types of IoT
devices, including sensor-carried human actors, vehicles, and
robots, assembled together for executing a mission in battlefield
or emergency response situations. We setup testing environment
conditions and IDS attack–defense strategies as follows.

1) The team consists of N = 128 nodes moving randomly in
5 × 5 operational locations, with each location covering
R = 250 m radio range based on 802.11n. Nodes that are
in the same location at time t are considered neighbors at
time t.

2) All nodes have an equal chance to be captured by outside
attackers or virus attacks and then will be compromised
into malicious nodes. The per-node capture rate is λ.Once
a node is compromised, it becomes an inside attacker and

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

196 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 1, MARCH 2021

TABLE III
ATTACK–DEFENSE PARAMETERS FOR A BASELINE AUTONOMOUS IOT SYSTEM

performs attacks with probability Pa whenever participat-
ing in IDS voting. In the experiment, we vary Pa to test
its effect on performance.

3) IDS voting is performed periodically in every TIDS in-
terval with m being the number of neighboring nodes to
perform majority voting (toward a target node).

4) We follow the energy model of [11] to consider the cost of
each IDS voting cycle as well as the cost of each defense
system audit (the C term in Table I). We consider that every
node in the system is being voted on by m other nodes
during an IDS voting cycle. This leads to an estimate of
the overall energy consumption in each IDS voting cycle.
The cost of each audit depends on the number of nodes
being contacted to provide evidence to the defense system
to audit the voting outcome. For the baseline mobile CPS
[11], we assume that one half of all nodes are being
contacted to provide evidence. This leads to an estimate
of the overall energy consumption in each audit operation
performed by the defense system. Due to the high cost of
auditing, the defense system only performs it occasionally
with probability Pc.

5) In the experiment, we vary the defense system auditing
probability Pc to test its effect on performance. The mini-
mum auditing probability Pmin

c is set to be 1/(1 + β) for
satisfying condition (5).

6) Each node is equipped with a host-level anomaly based
IDS characterized by a false negative probability Hpfn

and a false positive probability Hpfp.
7) Byzantine failure [20] or energy depletion failure (as

discussed in Section II.A) will cause the autonomous IoT
system to fail.

Table III lists the attack–defense strategy parameters for this
autonomous collaborative IoT system. The performance metric
is the system reliability expressed in terms of MTTF. We obtain
numerical results by parameterizing model parameters of the
SPN model in Fig. 1 (when β = 1) and Fig. 2 (when β = 1/2)
and running the SPN model through the SPNP tool [15] to obtain
MTTF as the output.

Fig. 3 shows the effect of TIDS (X coordinate) on MTTF (Y
coordinate) with varying attack probability Pa for the case in
whichβ= 1 and consequently the minimum auditing probability
Pmin
c = 1/(1 + β) = 0.5 in our IDS attack–defense game.

Fig. 3. Effect of TIDS on MTTF under varying attack probability Pa. Given
Pa, there exists an optimal TIDS value for maximizing MTTF.

We first observe that an optimal TIDS (the IDS detection
interval) exists at which the MTTF is maximized to best trade
energy consumption for defense strength. When TIDS is too
small, the system performs intrusion detection too frequently
and quickly exhausts its energy, thus resulting in a small lifetime.
As TIDS increases, the system saves more energy and its lifetime
increases. On the other hand, when TIDS is too large, even
although the system can save more energy, it fails to catch
bad nodes often enough, resulting in the system having many
bad nodes. When the system has 1/3 or more bad nodes out
of the total population, a Byzantine failure occurs. We also
notice that optimalTIDS value decreases as the attack probability
Pa increases. The reason is that as the attack probability Pa

increases, the system must perform IDS voting more often to
more quickly remove malicious nodes to prevent them from
attacking during IDS voting and evicting good target nodes, thus
preventing Byzantine failures from occurring.

Here we also note that based on our IDS game design, since
we set the defense system’s auditing probability Pc = Pmin

c =
1/(1 + β) = 0.5, malicious nodes will not have incentives to
attack because the payoff is less than zero. This corresponds
to the case Pa = 0 at which the system has the highest MTTF,
as shown in Fig. 3. The reason is that when bad nodes do not
attack during IDS voting, the system is less likely to experience
Byzantine failures since good nodes would be preserved and
bad nodes would be evicted based on the host-level intrusion
detection capability as prescribed by (6).

Fig. 4 analyzes the effect of host-level false negative/positive
probability (Hpfn/Hpfp) on MTTF for the case in which the de-
fense system’s auditing probability Pc = Pmin

c = 1/(1 + β) =
0.5 and bad nodes attack half of the time, i.e., Pa = 0.5. We
see that when the host-level false negative/positive probability
(Hpfn/Hpfp) increases, the system MTTF decreases, because a
higher false negative/positive probability weakens IDS strength.
Moreover, as the host-level false negative/positive probability
(Hpfn/Hpfp) increases, the optimal TIDS value at which MTTF
is maximized also increases. The reason is that when the false
negative/positive probability is higher, there is a higher pos-
sibility that in each IDS voting cycle a good target could be

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: RELIABILITY OF AUTONOMOUS IOT SYSTEMS WITH INTRUSION DETECTION ATTACK-DEFENSE GAME DESIGN 197

Fig. 4. Effect of TIDS on MTTF under varying Hpfn and Hpfp.

Fig. 5. Effect of TIDS on MTTF under varying m.

misidentified as a bad node (because of a high false positive
probability) and got evicted from the system and conversely a
bad node could be missed and kept in the system (because of a
high false negative probability). Consequently, if IDS voting is
performed too frequently, it increases the chance of a Byzantine
failure which happens when at least 1/3 of the nodes are bad
nodes.

Fig. 5 analyzes the effect of the number of voters (m) on MTTF
again for the case in whichPc = Pa = 0.5. We see that when the
number of voters increases (m goes from 3 to 5 and 7), the system
MTTF increases, because IDS strength increases when there are
more voters to defend IDS voting attacks. We also observe that
as the number of voters (m) increases, the optimal TIDS value
under which MTTF is maximized also slightly increases. The
reason is that energy expenditure also increases as the number of
voters (m) increases because more nodes must expend energy for
performing IDS voting. Consequently, as the number of voters
(m) increases, the system is better off using a longerTIDS interval
to avoid energy depletion failures.

Fig. 6. Effect of Pc on MTTF under varying attack probability Pa. Given Pa,
there exists an optimal Pc value for maximizing MTTF.

We next analyze the effect of the auditing probability. Fig. 6
shows the effect of Pc (X coordinate) on MTTF (Y coordinate)
with varying attack probability Pa again for the case in which
β = 1 and consequently the minimum auditing probability
Pmin
c = 1/(1 + β) = 0.5 in our IDS attack–defense game.
Two special cases as follows are especially of interest.
1) Pc = 0.5: This is the optimal auditing case in which the

auditing probability Pc is set to Pmin
c = 1/(1 + β) = 0.5

to satisfy condition (5) so as to discourage malicious nodes
from performing attacks during IDS voting. Particularly,
when bad nodes are discouraged from performing attack
during IDS voting, i.e., Pa = 0, the MTTF value is the
highest MTTF value one can best hope for.

2) Pc = 0: This is the “no auditing” case in which the defense
system does not audit at all. The MTTF value represents
the MTTF value obtainable by the baseline mobile CPS
[11], which we will use for performance comparison.

Fig. 6 shows that whenPa is low, i.e., less than 0.55, the system
MTTF decreases asPc (the defense system auditing probability)
increases, because the system wastes a lot of energy performing
auditing on bad nodes which only perform attacks infrequently.
Conversely, when Pa is high, i.e., greater than 0.75, the system
MTTF increases as Pc increases, because the system is able
to detect and evict bad nodes that perform attacks frequently.
Further, given a Pa value, there is an optimal Pc value that max-
imizes the system MTTF. For example, the optimalPc values are
0, 0.3, 0.6, 0.8, and 1 (marked with bold phase) whenPa ≤ 0.55,
Pa = 0.60, Pa = 0.65, Pa = 0.7, and Pa ≥ 0.75, respectively.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

198 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 1, MARCH 2021

Fig. 7. Performance comparison of our IDS game model versus the baseline
mobile CPS [11] in MTTF percentage gain/loss under varying attack probability
Pa. Our design sets Pc = 0.5 to satisfy condition (5) at which the MTTF gain
(due to high detection rate when attack is intensive) outweighs the MTTF loss
(due to energy waste when attack is not intensive). Under the set of attack–
defense strategy parameters for this autonomous collaborative IoT system as
listed in Table III, the minimum attack probability would be Pa = 0.6 above
which our attack-defense gaming model outperforms the baseline system [11].

When Pa is low, the disadvantage of auditing (wasting energy)
outweighs the advantage of auditing (evicting bad nodes and
preserving good nodes). Consequently, the optimal Pc value is
low. Conversely, when Pa is high, the advantage of auditing
(evicting bad nodes and preserving good nodes) outweighs the
disadvantage of auditing (wasting energy) and the optimal Pc

value is high. If bad nodes attack all the time, i.e., Pa = 1, the
system is better off by performing auditing on every IDS voting
outcome. In this case the system can best prolong the system
lifetime by delaying Byzantine failure from happening at the
expense of inducing energy depletion failure caused by energy
consumption due to frequent auditing.

Fig. 7 compares our IDS attack–defense game against the
baseline mobile CPS without IDS game design [11] head-to-
head in terms of percentage gain or loss in MTTF. The MTTF
loss happens when Pa is low (Pa ≤ 0.5) due to energy wasted
for excessively auditing the IDS voting outcomes. On the other
hand, the MTTF gain happens when Pa is high (Pa > 0.5) due
to timely removal of malicious nodes who decide to perform
attacks during IDS voting. The exact point at which the tradeoff
occurs depends on the magnitude of the cost per auditing (the
C term in the IDS game). In case C is low, our IDS game will
always gain in MTTF when compared to the baseline mobile
CPS because of little risk of increasing the probability of energy
depletion failure due to auditing. In our experiment setup, we
set a high C value in order to realistically reflect the high cost
associated with each audit, i.e., half of the 128 nodes are involved
in providing evidence to the defense system to audit the IDS
voting outcome.

As shown in Fig. 7, when Pa is high, our design outperforms
the baseline system [11] and the gain of MTTF is more sig-
nificant as the auditing probability Pc increases because when
bad nodes attack often during IDS voting, the risk of Byzantine
failure is higher, so the system MTTF is higher by auditing more

frequently to prevent good nodes from being removed and bad
nodes from being retained. On the other hand, whenPa is low our
design performs worse than the baseline system [11] especially
as the auditing probability Pc increases because of unnecessary
energy waste for performing auditing leading to a high risk of
energy depletion failure. Under the set of attack-defense strategy
parameters for this autonomous collaborative IoT system as
listed in Table III with the auditing probability set at Pc = 0.5
to satisfy condition (5), the minimum attack probability would
be Pa = 0.6 above which our attack-defense gaming model
outperforms the baseline system [11].

It is noteworthy that the gain in MTTF (which happens when
Pa is high) is large in magnitude relative to the loss in MTTF
(which happens when Pa is low). This indicates that our IDS
attack-defense game is most effective in highly hostile envi-
ronments where attacks are reckless and intensive such that the
attackers are eager to bring down the autonomous IoT system, so
they perform attack whenever there is a chance. In this case, the
system can best prolong the lifetime of the IoT system by per-
forming auditing frequently even if the cost of auditing is high.

While Fig. 7 shows that the MTTF gain/loss % is a function
of both Pa and Pc, in practice we do not know Pa. Therefore,
it is not possible to dynamically set Pc to its optimal value to
maximize the system MTTF. Following our IDS game design,
the system designer should set Pc to Pmin

c = 1/(1 + β) = 0.5
to discourage bad nodes from performing attacks during IDS
voting. There are two possibilities depending on how bad nodes
react to the design that the defense system will audit 50% of the
time as follows.

1) Bad nodes are sensible and they follow the payoff logic
of our game design knowing that they should not attack
because otherwise their payoff would be less than zero
in which case the attack probability Pa is forced to set
to zero at which the system would achieve its maximum
achievable MTTF, as demonstrated in Fig. 3.

2) Bad nodes are not logical and they do not follow our
IDS game design and still attack with their original attack
probability Pa in which case we see from Fig. 7 that under
Pc = 0.5 the MTTF loss (which happens due to energy
waste when Pa is low) is negligibly small in magnitude
relative to the MTTF gain (which happens due to high
detection rate when Pa is high). Therefore, even if bad
nodes are not sensible, our IDS game design effectively
improves the system MTTF by trading off energy (thus
inducing energy depletion failure) for achieving a higher
true positive rate and a lower false positive rate (thus
delaying Byzantine failure), the effect of which is espe-
cially pronounced in hostile environments where attacks
are reckless and intensive.

VI. CONCLUSION

In this article we pioneered the concept of IDS attack–defense
games to incentivize nodes to cooperate in executing intrusion
detection with the objective to maximize the system reliability
of autonomous IoT systems. We analytically derived the exact
condition under which malicious nodes will not have the incen-
tive to attack during IDS voting. We also developed an analytical

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: RELIABILITY OF AUTONOMOUS IOT SYSTEMS WITH INTRUSION DETECTION ATTACK-DEFENSE GAME DESIGN 199

model based on SPN modeling techniques to analyze the effects
of attack-defense behaviors deriving from attack probability,
defense audit probability, IDS strength, and voting outcome
mismatch penalty on detection accuracy and system reliability.
We illustrated the practical use of our IDS attack-defense game
by applying it to a mobile CPS wherein each IoT device is given a
life quota. The results demonstrated that our IDS attack-defense
game could achieve the maximum achievable MTTF when
malicious nodes were sensible because sensible nodes would not
attack to avoid negative payoffs. When malicious nodes were not
sensible our IDS attack-defense game design greatly improved
system reliability over the baseline mobile CPS without gaming
design consideration when attacks were reckless and intensive,
by trading off energy consumption for auditing (thus inducing
energy depletion failure) for achieving a higher detection rate
(thus delaying Byzantine failure).

The baseline autonomous IoT system considered in this article
for comparative performance analysis is a homogeneous mobile
CPS, so a single SPN model can model the attack-defense behav-
ior adequately. In the future we plan to apply our IDS game to
autonomous IoT systems for which nodes are heterogeneous.
This necessitates the use of a hierarchical SPN model with the
low-level models describing diverse attack–defense behaviors
and the upper-level models describing the aggregate behaviors
and system responses.

REFERENCES

[1] J. Timpner, D. Schürmann, and L. Wolf, “Trustworthy parking commu-
nities: Helping your neighbor to find a space,” IEEE Trans. Dependable
Secure Comput., vol. 13, no. 1, pp. 120–132, Jan./Feb. 2016.

[2] J. Guo, I. R. Chen, D. C. Wang, J. J. P. Tsai, and H. Al-Hamadi, “Trust-
based IoT cloud participatory sensing of air quality,” Wireless Personal
Commun., vol. 105, no. 4, pp. 1461–1474, 2019.

[3] H. Al-Hamadi, I. R. Chen, and J. H. Cho, “Trust management of smart
service communities,” IEEE Access, vol. 7, pp. 26362–26378, 2019.

[4] I. R. Chen, J. Guo, D. C. Wang, J. J. P. Tsai, H. Al-Hamadi, and I. You,
“Trust-based service management for mobile cloud IoT systems,” IEEE
Trans. Netw. Service Manage., vol. 16, no. 1, pp. 246–263, Mar. 2019.

[5] L. Xiao, T. Chen, C. Xie, H. Dai, and H. V. Poor, “Mobile crowdsensing
games in vehicular networks,” IEEE Trans. Veh. Technol., vol. 67, no. 2,
pp. 1535–1545, Feb. 2018.

[6] L. Pu, X. Chen, G. Mao, Q. Xie, and J. Xu, “Chimera: An energy-
efficient and deadline-aware hybrid edge computing framework for ve-
hicular crowdsensing applications,” IEEE Internet Things J., vol. 6, no. 1,
pp. 84–99, Feb. 2019.

[7] L. Liang, H. Ye, and G.Y. Li, “Toward intelligent vehicular networks:
A machine learning framework,” IEEE Internet Things J., vol. 6, no. 1,
pp. 124–135, Feb. 2019.

[8] I. You, K. Yim, V. Sharma, I. R. Chen, and J. H. Cho, “Misbehavior
detection of embedded IoT devices in medical cyber physical systems,”
in Proc. IEEE/ACM Int. Conf. Connec. Health: Appl., Syst. Eng. Technol.,
Washington, DC, USA, Sep. 2018, pp. 88–93.

[9] I. You, K. Yim, V. Sharma, I. R. Chen, and J. H. Cho, “On IoT misbehavior
detection in cyber physical systems,” in Proc. 23rd IEEE Pacific Rim Int.
Symp. Dependable Comput., Dec. 2018, pp. 189–190.

[10] H. Al-Hamadi and I. R. Chen, “Trust-based decision making for health IoT
systems,” IEEE Internet Things J., vol. 4, no. 5, pp. 1408–1419, Oct. 2017.

[11] R. Mitchell and I. R. Chen, “On survivability of mobile cyber physical
systems with intrusion detection,” Wireless Personal Commun., vol. 68,
no. 4, pp. 1377–1391, 2013.

[12] L. Hurwicz and S. Reiter, Designing Economic Mechanisms, Cambridge,
U.K.: Cambridge Univ. Press, 2006.

[13] L. Canzian, Y. Xiao, W. Zame, M. Zorzi, and M. van der Schaar,
“Intervention with private information, imperfect monitoring and costly
communication,” IEEE Trans. Commun., vol. 61, no. 8, pp. 3192–3205,
Aug. 2013.

[14] J. Wang, I. R. Chen, J. J. P. Tsai, and D. C. Wang, “Trust-based cooper-
ative spectrum sensing in cognitive radio networks,” Comput. Commun.,
vol. 116, pp. 90–100, 2018.

[15] G. Ciardo, R. M. Fricks, J. K. Muppala, and K. S. Trivedi, Stochastic Petri
Net package (SPNP), Duke University, 1999.

[16] I. R. Chen and D. C. Wang, “Analyzing dynamic voting using Petri nets,”
in Proc. 15th Symp. Reliable Distrib. Syst., 1996, pp. 44–53.

[17] B. Gu and I. R. Chen, “Performance analysis of location-aware mobile
service proxies for reducing network cost in personal communication
systems,” Mobile Netw. Appl., vol. 10, no. 4, pp. 453–463, 2005.

[18] S. T. Cheng, C. M. Chen, and I. R. Chen, “Performance evaluation of
an admission control algorithm: Dynamic threshold with negotiation,”
Perform. Eval., vol. 52, no. 1, pp. 1–13, 2003.

[19] I. R. Chen and F. B. Bastani, “Effect of artificial-intelligence planning-
procedures on system reliability,” IEEE Trans. Rel., vol. 40, no. 3, pp. 364–
369, Aug. 1991.

[20] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982.

[21] V. Sharma, I. You, K. Yim, I. R. Chen, and J. H. Cho. “BRIoT: Behavior
rule specification-based misbehavior detection for IoT-embedded cyber-
physical systems,” IEEE Access, vol. 7, pp. 118556–118580, 2019.

[22] R. Mitchell and I. R. Chen, “Behavior rule specification-based intrusion
detection for safety critical medical cyber physical systems,” IEEE Trans.
Dependable Secure Comput., vol. 12, no. 1, pp. 16–30, Jan./Feb. 2015.

[23] R. Mitchell and I. R. Chen, “Adaptive intrusion detection of malicious
unmanned air vehicles using behavior rule specifications,” IEEE Trans.
Syst., Man Cybern., vol. 44, no. 5, pp. 593–604, May 2014.

[24] N. Zhang, K. Sun, W. Lou, and Y. T. Hou, “CaSE: Cache-assisted secure
execution on ARM processors,” in Proc. IEEE Symp. Secur. Privacy, 2016,
pp. 72–90.

[25] K. A. P. da Costa et al., “Internet of Things: A survey on machine learning-
based intrusion detection approaches,” Comput. Netw., vol. 151, pp. 147–
157, 2019.

[26] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convolutional
networks for classification and detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 10, pp. 1943–1955, Oct. 2016.

Ding-Chau Wang received the B.S. degree from Tung-Hai University,
Taichung, Taiwan, and the M.S. and Ph.D. degrees in computer science and
information engineering from National Cheng Kung University, Tainan, Taiwan.

He is currently an Associate Professor with the Department of Information
Management, Southern Taiwan University of Science and Technology, Tainan,
Taiwan. His current research interests include game-based learning, Internet of
Things, mobile computing, security, database systems and performance analysis.

Ing-Ray Chen received the B.S. degree from the National Taiwan University,
Taipei, Taiwan and the M.S. and Ph.D. degrees in computer science from the
University of Houston, Houston, TX, USA.

He is currently a Professor with the Department of Computer Science, Virginia
Tech, Blacksburg, VA, USA. His Current research interests include mobile
computing, wireless systems, security, trust management, and reliability and
performance analysis.

Dr. Chen currently serves as an Editor for IEEE TRANSACTIONS ON SERVICES

COMPUTING, IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT,
and The Computer Journal. He is a recipient of the IEEE Communications
Society William R. Bennett Prize in the field of Communications Networking.

Hamid Al-Hamadi received the B.S. degree in information technology from
Griffith University, Brisbane, Australia, in 2003, and the M.S. degree in infor-
mation technology from the Queensland University of Technology, Brisbane,
Australia, in 2005, and the Ph.D. degree in computer science from the Virginia
Polytechnic Institute and State University, VA, USA, in 2014.

He has experience working as a Network Engineer with Kuwait National
Petroleum Company, Ahmadi, Kuwait, and also with Tawasul Telecom, Kuwait
City, Kuwait. Currently, he is an Assistant Professor with the Department of
Computer Science, Kuwait University, Kuwait City, Kuwait. His current research
interests include Internet of Things, security, mobile cloud, trust management,
and reliability and performance analysis.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2022 at 17:31:00 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

