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Abstract—Cognitive radio is a promising solution for spectrum
scarcities in the future. Secondary users (SUs) adopt cooperative
sensing to learn the primary user’s (PU’s) occupancy activity.
This paper develops a trust-based data aggregation scheme to
cope with malicious SU attack in cooperative spectrum sensing
in cognitive radio networks. The proposed scheme combines the
first-hand and second-hand sensing evidence to guarantee the
overall performance and adopts a static game model to discourage
malicious SUs from reporting fake detection parameters. Both
theoretical and simulation results show that the proposed scheme
outperforms the traditional majority aggregation scheme despite
a high percentage of malicious node population and can effectively
distinguish malicious nodes from normal nodes by their reputation
scores.

Index Terms—Cognitive radio networks, cooperative spectrum
sensing, trust, reputation, security, mechanism design.

I. INTRODUCTION

Cognitive radio has aroused a lot of interest as a solution to
spectrum scarcity in the next generation of wireless communi-
cation. The main idea of cognitive radio is to let the secondary
users (SUs) opportunistically access the channels that are
temporarily not occupied by the preassigned primary users
(PUs). In a cognitive radio system, the access priorities of PUs
have to be guaranteed, i.e., SUs need to learn the PUs’ activities
to avoid interfering with the PUs on the band. Therefore, SUs
need to sense the PU activity on a particular spectrum before
transmitting data on that spectrum. Due to limited sensing
capabilities of individual SUs, cooperative spectrum sensing is
provided as a way to gather SUs’ sensing information in order
to increase the accuracy of PU occupancy detection. However,
cooperative spectrum sensing can be attacked by malicious SUs,
who can intentionally report fake sensing results to mislead
the final aggregated result. Therefore, how to design a secure
data fusion scheme for cooperative spectrum sensing is a big
challenge in security management of cognitive radio networks.

This paper proposes and analyzes a trust-based data fusion
scheme based on mechanism design theory (also called reverse
game theory) to aggregate the SUs’ reported outcomes in such a
way that the correctness of aggregated outcome is stable in the
presence of a high percentage of malicious SUs. Mechanism
design is a sub-field of microeconomics and game theory that
considers how to construct and implement a mechanism that
provides incentives for the users to communicate and act in

such a way as to further the interest of the designer, despite
the fact that the users are strategic and self-interested, and
possess private information [1]. We apply mechanism design
to implement a scheme providing incentives for all SUs within
the system to report their actual sensing capabilities and sensing
results, despite the fact that some of the SUs are self-interested
with malicious intention. The basic idea is that the data fusion
center (DFC) would like to know the true channel availability
but the DFC cannot completely trust sensing reports from the
SUs because it is in malicious SU’s interest to distort the truth.
With mechanism design, the DFC can design a static game
whose rules can influence the SUs to act the way it would like.
It is a static game in the sense that all SUs make decisions
(or select a strategy) simultaneously, without knowledge of the
strategies that are being chosen by the DFC.

Our trust-based data fusion scheme derived from the static
game also employs a reputation system [2]–[4] to identify
malicious SUs in the long run. During data fusion, a SU reports
its sensing capability and the sensed channel availability to
the DFC who makes a decision on the channel availability
based on majority voting of trusted SUs. The SU sensing
capability is taken into consideration in the static game in order
to differentiate a fake outcome reported by a malicious SU from
an erroneous outcome reported by a good SU with poor sensing
capability. Moreover, the DFC can elect to check the channel
availability in order to compare this first-hand evidence with
a sensing outcome reported by a SU to detect if the SU lies
about the channel availability.

The objectives of our trust-based data aggregation scheme are
threefold: (1) under the designed scheme, malicious SUs have
no incentive to report fake sensing capabilities; (2) considering
the cost endured by the DFC, the proposed scheme should min-
imize the DFC checking probability in each time slot; and (3)
the success decision rate for the data fusion outcome matching
the ground truth channel availability should be maximized.

In order to identify erroneous sensing results due to SUs’
poor sensing abilities, our scheme requires SUs to report the
sensing capability. A threshold is set to filter out the SUs with
low sensing capabilities. On the other hand, to avoid malicious
SUs from reporting fake sensing abilities, the DFC can check
the PU activity based on our static game model design. When
checking the spectrum, the DFC punishes the SUs whose
report outcomes are different by decreasing their reputation



scores based on their reported sensing capabilities. Otherwise,
if the DFC does not sense the spectrum in a particular time
slot, it aggregates the reported sensing outcomes from those
SUs whose sensing capability is over a predefined threshold,
weighed by their reputation scores.

In this paper we consider malicious attackers with intention
to disrupt cooperative spectrum sensing. We consider four types
of malicious SU attacks to test the resiliency of the proposed
data aggregation scheme: “always yes,” “always no,” “always
false,” and “always random.” Under the always yes attack
scenario, the malicious SUs always report the presence of
PUs ignoring their real sensing results. Under the always no
attack scenario, the malicious SUs always report the absence
of PUs on the channel ignoring the real detection results. Under
the always false attack scenario, the malicious SUs always
report the opposite of their sensed outcomes. Under the always
random attack scenario, the malicious SUs randomly generate
a sensing result to report to the DFC. We test the resiliency of
our trust-based data fusion scheme against these four different
attacks. We use simulation to demonstrate that our proposed
scheme outperforms a traditional approach using a majority
fusion rule under all attacking scenarios despite increasing
malicious node population. Also, the malicious nodes can be
identified through reputation scores in our scheme.

The research presented in this paper can be situated within
the broader class of opportunistic channel selection strategy
design in cognitive radio networks. The primary contributions
of this paper are as follows:

• We design a trust-based scheme for cooperative spectrum
sensing to enhance the detection accuracy of PU channel
occupancy.

• We develop a static game based on mechanism design
to discourage malicious SUs from reporting fake sensing
capability.

• We analyze the impact of SUs’ sensing capability regard-
ing channel occupancy on their ability to dynamically
exploit the band.

We begin with a brief discussion of the state of the art on
opportunistic channel selection strategy design in Section II.
Section III introduces the system model and notation used.
Our proposed scheme is described and analyzed in Section IV.
Section V presents the simulation results. We summarize our
conclusions and outline directions for future work in Section
VI.

II. RELATED WORK

In this section we summarize the state of art in trust and
security mechanisms in cognitive radio networks.

A. Security in Cognitive Radio Networks

The security of cognitive radio networks was first discussed
in [5], focusing on two security threats, i.e., incumbent emu-
lation and spectrum sensing data falsification, that may wreak
havoc on distributed spectrum sensing. After that, the security

in cognitive radio networks has attracted a lot of interest. See
[6] as a survey. [7] and [8] discussed the security and privacy
requirements, and proposed a framework for security using a
fast authentication and authorization architecture. [9] advocated
trusted computing by which a co-process regulates SU reporting
and prevents false reporting, or prevents a malicious SU from
transmitting when the PU activity is detected.

The use of trust to enhance security of cognitive radio
networks can be either centralized or distributed. [10] proposes
a system-level trust model, in which trust is used as social
capital to gain resources, based on a centralized cognitive radio
network. [11] combines certificate-based trust with behavior-
based trust in a distributed manner to establish direct and
indirect communications among the SUs.

B. Cooperative Spectrum Sensing Related Attacks

Cooperative spectrum sensing is a promising technique to
increase PU activity sensing accuracy in cognitive radio net-
works by aggregating sensing reports from different SUs. In
cooperative spectrum sensing, malicious SUs may report false
sensing data to the DFC to degrade the final aggregated sensing
outcome.

In the literature, a number of research works have been
conducted for effectively aggregating the reported outcomes
from SUs. In [12], the sensing information of SUs is weighted
to maximize the detection probability of available channels
under the constraint of a required false alarm probability.
However, the scheme only considers sensing errors from the
SUs without considering the malicious behavior of SUs. [13]
proposes a modified combinatorial optimization identification
(COI) algorithm to defend against malicious attacks. [14]
proposes an HMM-based malicious SU detection algorithm to
simultaneously estimate two HMMs without requiring sepa-
rated training sequences. [15] provides an algorithm based on
the non-parametric Kruskal-Wallis test to detect malicious users
without having a priori knowledge. [16] proposes a decen-
tralized scheme utilizing spatial correlation of received signal
strengths and aggregating decisions based on a neighborhood
majority voting approach for the secondary users to decide
malicious users. However, a common problem related to the
works cited above [12]–[16] is that they cannot distinguish
a fake sensing outcome reported by a malicious SU from an
erroneous outcome reported by a good SU with poor sensing
capability.

Recently, [17] discusses an innovative idea of decoupling
the detection ability of each SU from the reported detection
result. According to their model, each SU reports a binary
detection result, i.e., whether the targeted frequency is used
by PUs or not, together with its detection sensing power to
the DFC. The DFC considers the detection ability and trust
it has toward each SU, and applies a threshold below which
the SU’s reported result is filtered out. Therefore, the DFC’s
final decision is based on trusted SUs’ reported outcomes only.
However, their scheme may fail when there is a high percentage
of malicious SUs in the system. In particular, as each SU reports



its own sensing capability, a malicious SU may intentionally
report a higher sensing capability to get a higher impact on the
final aggregated outcome. Moreover, if malicious SUs collude
to report fake sensing capabilities, with a high percentage of
malicious SUs within the system, their reported results will
finally dominate the DFC’s decision making, which will lead
to a repeated wrong aggregated decision of the system. Our
proposed scheme, on the other hand, can deal with the fake
report problem despite the presence of a high percentage of
malicious SUs. More specifically, our designed scheme allows
the DFC to optionally sense the spectrum, then use the result
to assess trustworthiness of SUs, and finally aggregate sensing
outcomes from trusted SUs.

III. SYSTEM MODEL AND NOTATION

In this section, we discuss the system model for cooperative
sensing in cognitive radio networks. The DFC architecture
is shown in Figure 1. The notation used in the paper is
summarized in Table I. We focus on the design principle
and propose a general and flexible utility function design that
applies to many scenarios. For example, the cost and utility
functions considered in this paper (C, G and L in Table I) can
be related to power, money, and/or risk in real scenarios.

We consider a cognitive radio network with N SUs and one
DFC adopting the cooperative spectrum sensing technique to
learn the PU activities on the channel. Time is slotted in fixed
interval length. At the end of each time slot t, SU i reports its
local sensing result in the current time slot Ot

i together with
its sensing capability St

i to the DFC. More specifically, Ot
i

is a binary value with Ot
i = 1 indicating SU i sensed PU

existence in time slot t and Ot
i = 0 indicating SU i sensed

no PU activity in time slot t. During the sensing process, SU
i also knows its signal and noise level in time slot t, which
can be translated into a continuous value St

i ∈ [0, 1]. This
value indicates SU i’s certainty for its reported sensing result,
i.e., the closer St

i is to 1, the more certain SU i is about its
reported sensing outcome in time slot t. Therefore, the closer
St
i is to 1, the larger i′s reported result should be weighted in

the final aggregated outcome. However, a malicious SU i may
take advantage of this scheme by intentionally reporting a fake
and high sensing capability S

′t
i at time slot t to impact more on

the final aggregated outcome. Apparently, a malicious SU does
not want to report a low sensing capability because its sensing
report will likely be filtered out by the DFC, and would not be
able to affect the final accumulated sensing result. Therefore,
we assume S

′t
i > St

i .
After gathering the reported information from SUs, the DFC

applies data fusion rules for decision making. The data fusion
rules can be categorized into hard decision and soft decision.
Under hard decision rules, the DFC applies decision-based rules
to combine the results from SUs. Three simple decision-based
rules are "or," "and," and "majority" rules. Under soft decision
rules, the DFC often makes decisions based on the reported
energy from each SU. The soft decision rules usually have a
higher communication overhead and require a complicated ag-
gregation algorithm compared to hard decision rules. Therefore,

Figure 1: DFC Architecture.

we adopt hard decision rules in our fusion rule design. Let G
denote the aggregation function adopted by DFC to generate
the final outcome at time t, denoted by Ot

DFC ∈ {0, 1}.
Besides passively receiving reported results from SUs, the

DFC can actively sense the spectrum so as to check if a SU
lies about the sensing outcome. More specifically, the DFC
checks the PU activity on the channel with probability pt, with
pt ∈ [0, 1], in each time slot t. After checking the spectrum
availability, the DFC uses its “first-hand” evidence, denoted by
Ot

true, to punish the SUs whose reported results are different
from Ot

true based on the punishment function L. Note that
malicious nodes will not know whether the DFC will check
the PU activity on the channel in a particular slot because the
DFC checks the PU activity probabilistically with probability
pt. The punishment to SU i in time slot t is in the form
of decreasing SU i’s reputation score Rt

i with Rt
i ∈ Z for

i ∈ {1, 2, ..., N}. We assume all SUs have the same initial
reputation scores assigned by the DFC, i.e., R0

i = R0
j for

i �= j and i, j ∈ {1, 2, ..., N}. Also, the punishment level to
i is related to its reported sensing capability S

′t
i because SU

i′s erroneous sensing outcome is maybe due to its poor sensing
capability. The reason that the DFC does not check the spectrum
availability in every time slot is that the DFC spectrum sensing
is often at a high cost of equipment, technology and energy.
Moreover, when the coverage of spectrum is larger than the
sensing range of the DFC (multiple channels), the DFC may
not be able to check PU activities on all channels at the same
time. Therefore, in our scheme, we represent this sensing cost
by C which is a fixed value irrelevant of time. If in a particular
time slot t the DFC checks the PU existence, it applies the
punishment function L to decrease the reputation scores of
those SUs with a different sensing result from Ot

true; if the
DFC does not check the spectrum availability in t, it applies
the aggregation function G to aggregate the opinions from SUs
and generate the final outcome Ot

DFC .
Next, we introduce the type of malicious attacks considered

in this paper. The attackers we consider are not just self-
interested but also malicious with the intention to disrupt
cooperative spectrum sensing. In cooperative spectrum sensing,
the main attack is Spectrum Sensing Data Falsification (SSDF)
by which a malicious SU attacks by sending a false sensing



Table I: Notation.

Symbol Definition

N the number of SUs.

Ot
i The sensing result reported by SU i in time slot t.

i ∈ {1, 2, ..N} and Ot
i ∈ {0, 1}.

Ot
DFC The accumulated outcome of the DFC in time slot

t. Ot
DFC ∈ {0, 1}.

Ot
true The true PU activity outcome sensed by DFC in

time slot t. Ot
true ∈ {0, 1}.

St
i The real sensing capability of SU i in time slot t.

i ∈ {1, 2, ..N} and St
i ∈ [0, 1].

S
′t
i The reported sensing capability of SU i in time slot

t. i ∈ {1, 2, ...N}, S
′t
i ∈ [0, 1] and St

i ≤ S
′t
i

Rt
i The reputation score of SU i in time slot

t.i ∈ {1, 2, ..., N} and Rt
i ∈ Z.

pt The probability for the DFC to check the PU
activity on the spectrum in time slot t. pt ∈ [0, 1].

C The cost of the DFC for sensing the spectrum in
each time slot. C > 0.

G Aggregation function adopted by DFC in each time
slot.

L Punishment function adopted by DFC in each time
slot

report to the DFC. The SSDF attack can be further categorized
into four types:

1) "Always yes" attack: malicious SUs always report the PU
being active on the channels.

2) "Always no" attack: malicious SUs always report the
channels being idle from PUs.

3) "Always false" attack: malicious SUs always report the
opposite of their sensed channel occupancy.

4) "Always random" attack: malicious SUs report true/false
channel occupancy randomly.

Our trust-based data fusion scheme derived from mechanism
design thus has two design objectives:

• Design G and L to force malicious SUs to report the real
sensing ability, i.e. S

′t
i = St

i for i ∈ {1, ..., N}, t > 0.
• Design a scheme to allow the DFC to perform minimum

checking with the smallest probability pt.

IV. MECHANISM DESIGN FOR COOPERATIVE SENSING AND
ITS ANALYSIS

In this section, we formulate a static game based on mech-
anism design to model decision making between the DFC and
malicious SUs and then present a theoretical analysis.

We use a static game to model the relationship between the
DFC and a malicious SU i in each single time slot. From
a malicious SU i’s perspective, in time slot t, it has two
options on reporting its sensing capability: honestly reporting
its sensing capability St

i or intentionally reporting a higher
fake sensing capability S

′t
i > St

i . On the other side, from the
DFC’s perspective, in time slot t, it decides to sense the PU

activity with probability pt or not to with probability 1−pt. The
payoff matrix for the DFC and a malicious SU i in the game
model is shown in Table II. The table entry is in the format
of (DFC payoff, malicious SU i payoff). For example, if the
DFC checks the PU activity while SU i dishonestly reports
a higher fake sensing capability S

′t
i > St

i , the payoff to the
DFC is L(S

′t
i , R

t
i) − C and the payoff to malicious SU i is

−L(S
′t
i , R

t
i).

We explain the payoff matrix Table II below. According
to the described static game model of our scheme, in slot t,
each malicious SU i reports both its detected result Ot

i and its
sensing capability St

i to the DFC, who aggregates the reported
results to the final outcome based on the aggregation function
G. Therefore, the “impact” of i’s reported result to the DFC’s
aggregation result Ot

DFC can be denoted as G(S
′t
i , O

t
i , R

t
i),

which can be viewed as the gain to the malicious SU if not
caught by DFC. On the other side, in time slot t, the DFC
decides to check the spectrum with probability pt at a fixed
cost C. If the DFC decides to check the spectrum, it can detect
the true occupancy and then punish the nodes who reported a
different outcome from the detected channel occupancy signal.
Denoted by L(St

i , R
t
i) the loss to SU i being punished due to

the reported result different from that by the DFC. A malicious
SU i who reports a fake value S

′t
i will get a punishment

L(S
′t
i , R

t
i). Therefore, the payoff matrix between a malicious

SU and the DFC can be defined as in Table II.
In this game, both the malicious SUs and the DFC want to

maximize their own utility function. In particular, the malicious
SUs aim at manipulating the DFC’s aggregated outcome by
reporting higher sensing capabilities. Meanwhile, the DFC aims
to minimize the checking probability pt and leave malicious
SUs no motivation to report fake sensing capabilities.

Theorem 1 below conducts a theoretical analysis of the
aggregation function G and the punishment function L.

Theorem 1. To discourage malicious SU i from reporting a
higher sensing capability than its actual sensing capability,
i.e., S

′t
i > St

i , the DFC’s checking probability pt, aggrega-
tion function G and punishment function L should satisfy:
pt[L(S

′t
i )− L(St

i )] ≥ (1− pt)[G(S
′t
i )−G(St

i )].

Proof: According to the described static game model and
the payoff matrix shown in Table II, a malicious SU i’s payoff
of reporting St

i , i.e., ui(S
t
i , R

t
i), can be expressed as:

ui(S
t
i , R

t
i) = −ptL(St

i , R
t
i)+(1− pt)G(St

i , O
t
i , R

t
i) (1)

On the other side, if SU i reports a higher fake sensing
capability S

′t
i , the payoff to SU, i.e., i ui(S

′t
i , R

t
i), is:

ui(S
′t
i , R

t
i) = −ptL(S

′t
i , R

t
i) + (1− pt)G(S

′t
i , O

t
i , R

t
i) (2)

To guarantee that SU i has no incentive to report a higher
fake sensing capability, we need ui(S

t
i , R

t
i) ≥ ui(S

′t
i , R

t
i).

From Equations 1 and 2, we have:



Table II: The Payoff Matrix for the DFC and a Malicious SU.

SU i reports St
i SU i reports S

′t
i

DFC checks L(St
i , R

t
i)− C, −L(St

i , R
t
i) L(S

′t
i , Rt

i)− C, −L(S
′t
i , Rt

i)

DFC does not check −G(St
i , O

t
i , R

t
i), G(St

i , O
t
i , R

t
i) −G(S

′t
i , Ot

i , R
t
i), G(S

′t
i , Ot

i , R
t
i)

pt(L(S
′t
i , R

t
i)− L(St

i , R
t
i)) ≥

(1− pt)(G(S
′t
i , O

t
i , R

t
i)−G(St

i , O
t
i , R

t
i)) (3)

Theorem 1 provides a general rule for the design of the
aggregation function G and the punishment function L. Let
�G = G(S

′t
i , O

t
i , R

t
i)−G(St

i , O
t
i , R

t
i) and �L = L(S

′t
i , R

t
i)−

L(St
i , R

t
i) denote the gain and loss of malicious SU i, respec-

tively. Then, we can rewrite Equation 3 as pt�L ≥ (1−pt)�G.
That is, as long as the DFC checks the spectrum with proba-
bility no less than �G

�G+�L , a malicious SU has no motivation
to report a fake sensing capability.

Next, we analyze the checking probability pt from the DFC’s
utility perspective. In time slot t, if DFC checks the spectrum
availability, it observes the true PU activity result Ot

true. Let
N1 denote the set of malicious SUs within the system.

The DFC’s payoff for checking the spectrum in a particular
time slot can be expressed as

∑

i∈N1

L(St
i , R

t
i) − C; the DFC’s

payoff for not checking the spectrum is − ∑

i∈N1

G(St
i , O

t
i , R

t
i).

Therefore, the DFC’s utility function under checking probabil-
ity pt is:

uDFC = pt(
∑

i∈N1

L(St
i , R

t
i)− C)− (1− pt)

∑

i∈N1

G(St
i , O

t
i , R

t
i)

(4)
By taking the derivative of Equation 4 with respect to pt, we

get:

∂uDFC

∂pt =
∑

i∈N1

L(St
i , R

t
i) +

∑

i∈N1

G(St
i , O

t
i , R

t
i)− C (5)

Equation 5 indicates that the optimized checking probability
pt depends on

∑

i∈N1

L(St
i , R

t
i) +

∑

i∈N1

G(St
i , O

t
i , R

t
i) − C. In

particular, if
∑

i∈N1

L(St
i , R

t
i) +

∑

i∈N1

G(St
i , O

t
i , R

t
i) − C > 0,

the optimal pt value is 1. That is, the DFC should check the
spectrum in every time slot to maximize its payoff. On the other
side, if

∑

i∈N1

L(St
i , R

t
i)+

∑

i∈N1

G(St
i , O

t
i , R

t
i)−C < 0, the optimal

pt value is 0. Under this scenario, the DFC should not check
spectrum to maximize its payoff. However, this analysis needs
to be combined with the result generated in Theorem 1, which
requires the check probability pt to be at least maxi

�Gi
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(a) Always yes attack.
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(b) Always no attack.
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(c) Always false attack.
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(d) Always random attack.

Figure 2: Comparison of Success Decision Rate between Our
Scheme and a Traditional Aggregation Scheme with varying
Malicious Node Percentage.

V. SIMULATION RESULTS

In this section, we analyze the performance of our trust-based
data aggregation design by simulation. The performance of our
trust-based data aggregation scheme will be compared with a
traditional aggregation scheme where the DFC accumulates the
reported results from all SUs and makes the final decision based
on majority voting. In contrast, our scheme is designed based
on Theorem 1 to discourage malicious nodes from reporting
fake sensing capabilities.

We consider a cognitive radio system consisting 100 SUs and
one DFC. We run a simulation experiment with 1000 repeated
time slots. The ground truth of the channel occupancy is ran-
domly simulated (either 0 or 1) in these 1000 runs. In each time
slot, all SUs report the detected outcome (either 0 or 1) together
with their sensing capabilities (within [0, 1]) to the DFC. We
assume that malicious SUs report the highest sensing capability
(S

′t
i =1) to maximize its impact, while good SUs report its true

sensing capability (St
i following uniform distribution U[0, 1])

to the DFC. Also we assume that malicious SUs report the
channel occupancy based on their attack strategies, while good
SUs report the channel occupancy they sense.

The data aggregation function G used by the DFC to aggre-
gate SU sensing reports is based on trust-weighted majority
voting. In particular, the DFC first filters out SUs whose
reported sensing capabilities below a threshold (0.8). The DFC
then categorizes the SUs into two groups S0 and S1: S0



contains the SUs who reported no PU activity on the channel
and S1 contains the SUs who reported PU existence on the
channel. Finally, the DFC decides the aggregated outcome as
0 if

∑
i∈S0

Rt
i >

∑
i∈S1

Rt
i , and as 1 otherwise. If the DFC

does not check the spectrum, it applies the aggregation function
G based on trust-based majority voting discussed above. If the
DFC checks the spectrum in a particular time slot t, it senses
true channel occupancy Ot

true, and uses it to punish the SUs
who reported a different outcome. In particular, for a SU i with
reported sensing capability St

i and reputation Rt
i at time slot t,

the punishment function L on its reputation is Rt
i = Rt

i − St
i .

The initial reputation score for each SU is 100, i.e., R0
i = 100

for i ∈ {1, ..., N}. Finally we note that with the G and L
functions defined above, the DFC will check the spectrum in
each time slot with probability pt = 1

2 based on Theorem 1 with
the design of the aggregation function G and the punishment
function L satisfying �G = �L. Notice here, we assume
the cost for the DFC to check the channel is relatively large,
i.e.,

∑

i∈N1

L(St
i , R

t
i) +

∑

i∈N1

G(St
i , O

t
i , R

t
i) − C < 0. Therefore,

from the DFC’s perspective, it is always reluctant to check
the channel availability by itself. However, to guarantee the
malicious SUs do not have the incentive to fake sensing
capabilities, the DFC still needs to sense the PU occupancy
with the minimum checking probability given by Theorem 1.

A. Success Decision Rate

We analyze the success rate of the DFC’s decision with
respect to the percentage of malicious SUs under the four
different malicious attacks considered in the paper. We vary the
percentage of malicious SUs from 10% to 90% and calculate
the success decision rate. We also output the success decision
rate of the traditional data aggregation scheme as a comparison.
The result is shown in Figure 2. Specifically, we analyze the
performance under four types of malicious attacks: the “always
yes” attack, shown in Figure 2a, where the malicious SUs
always report the existence of PU activity; the “always no”
attack, shown in Figure 2b, where the malicious SUs always
report the absence of PU activity; the “always false” attack,
shown in Figure 2c, where the malicious SUs always report
the opposite of the sensed PU activity; the “always random”
attack, shown in Figure 2d, where the malicious SUs randomly
report a binary result as the PU activity.

From Figure 2 we see that our trust-based data aggregation
scheme derived from the static game always performs better
than the traditional approach. It especially outperforms the
traditional approach under the “always false” attack behavior
because the attackers will be caught whenever the DFC decides
to check the channel availability with probability pt. We con-
clude two observations. First, the performance of our designed
scheme (around 75%) is significantly better than that of the
traditional aggregation scheme (around 50%) over all four types
of malicious SU attacks. Secondly, under all malicious attack
scenarios, the performance of our designed scheme is stable
over a wide range of malicious node percentage.
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(a) Always yes attack.
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(b) Always no attack.
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(c) Always false attack.
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(d) Always random attack.

Figure 3: Comparison of Good Node and Malicious Node
Reputation Scores.

B. Reputation Scores

We compare the average reputation scores of the normal and
malicious nodes under each attack scenario for our scheme.
The results are shown in Figure 3 which demonstrates that
our trust scheme can effectively distinguish malicious SUs
by reputation scores. In particular, after 1000 time slots, the
average reputation score of the normal nodes is around 50
while that of the malicious nodes is around −150. It means that
when our trust-based fusion scheme is in place the malicious
node reputation scores will drop dramatically with respect to
time. Finally we also note that this reputation gap is stable with
respect to the malicious node percentage.

VI. CONCLUSION

In this paper we proposed a trust-based data fusion scheme
for cooperative spectrum sensing in cognitive radio networks to
cope with malicious SU attacks. We formulated a static game to
model decision making between the DFC and malicious nodes
and identified design conditions that could force malicious
nodes to report true sensing capabilities. We also combined
the first-hand sensing information from the DFC with the
reported sensing outcome from SUs to achieve a high success
decision rate for the data fusion outcome, despite the presence
a high percentage of malicious nodes. The simulation results
demonstrated that our scheme outperforms a traditional data
aggregation scheme when dealing with four different malicious
nodes attack behaviors regardless of the percentage of mali-
cious nodes. Moreover, our trust-based scheme is efficient in
distinguishing malicious nodes with low reputation scores.

There are several future research areas. First, we plan to ex-
tend the static game model by considering new game rules and
parameters including the minimum sensing capability threshold,
and the malicious node attack probability to further improve the



success decision rate. Secondly, we plan to explore modeling
techniques such as Stochastic Petri Nets [18]–[21] to model
behaviors of the DFC and the SUs to study the interaction and
exploit the design tradeoffs that exist in the game structure.
Lastly, we plan to further test the resiliency of our trust-
based data aggregation scheme derived from the static game
model against more complicated environmental scenarios and
more sophisticated attacks such as opportunistic and collusional
attacks [22], [23]. The emphasis will be to relate the game
theoretical model to actual systems and adversarial scenarios.
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