
A Comparative Analysis of Trust-based Service
Composition Algorithms in Service-Oriented Ad Hoc

Networks
Yating Wang, Ing-Ray Chen

Virginia Tech
Department of Computer Science

{yatingw, irchen}@vt.edu

Jin-Hee Cho
U.S. Army Research Laboratory
Computational and Information

Sciences Directorate
jinhee.cho@us.army.mil

Jeffrey J.P. Tsai
Asia University

Department of Bioinformatics and
Biomedical Engineering

 jjptsai@gmail.com

ABSTRACT
In this paper we analyze performance characteristics of trust-
based service composition and binding algorithms for composing
composite services in service-oriented ad hoc networks. We first
show that trust is an effective mechanism to cope with malicious
nodes acting for their own gain and colluding with each other to
increase their chances of being selected for service execution.
Then we perform a comparative performance analysis of single-
trust-based, multi-trust-based, and context-aware trust-based
service composition and binding algorithms for composing
composite services in service-oriented ad hoc networks. Using an
encounter-based service composition application with multi-
objective optimization goals as a running example, we show that
context-aware trust-based service composition and binding
outperforms single-trust-based and multi-trust-based counterparts
for achieving multi-objective optimization and user satisfaction.
Physical interpretations of the results are provided.

Keywords
Service-oriented ad hoc networks; service-oriented computing;
service composition; trust management.

1. INTRODUCTION
Service oriented architecture (SOA) based composite services
have been widely employed in Internet-based web service
systems. With the proliferation of smart devices carried by human
operators, SOA-based composite services now are extended to
service-oriented ad hoc networks (SOANETs). A SOANET is
populated with service providers (SPs) and service requesters
(SRs) all of which are mobile. An example SOANET is a
vehicular ad hoc network or a mobile ad hoc network populated
with smart objects. Unlike a traditional web service system in
which nodes are connected to the Internet, nodes in SOANETs are
mobile and an SR will need to request services from available SPs
with which it encounters and interacts dynamically. With a service
request in hand, an SR has to first formulate a service composition
plan based on the available SPs, and then determine the best node-
to-service binding for executing the composite service.

An effective way to deal with malicious behavior is to use trust
for decision making [1], [2], [5]. The use of trust for service
composition and binding is still in its infancy. Wahab et al. [9]
provided a comprehensive survey on service composition and
binding and discussed the associated challenges in web services.
Very recently, Wang et al. [10] considered integrity as an
additional trust metric to cope with malicious attacks in SOANET
environments. That is, “integrity trust” is used as confidence to
assess the validity of “competence trust” in that competence trust
ultimately ensures service success. Wang et al. [11] associated

context with service quality such that a SP’s service behaviors
(affecting quality of information, service delay, and service cost)
are inherently associated with rapid context environment changes
in SOANETs.

Relative to existing works cited above, our paper aims to provide
a guidance of how and what trust protocol should be used to
maximize service composition and binding application
performance under a hostile environment. This paper has the
following unique contributions:

1. We demonstrate that trust can effectively prevent malicious
nodes from disrupting composite services in SOANETs. We
conduct a detailed performance analysis and demonstrate that
trust-based service composition and binding outperforms the
non-trust-based, blacklist-based counterpart, and can
effectively filter out malicious nodes, which ultimately leads
to high user satisfaction.

2. We are the first to conduct a comparative performance
analysis of non-trust vs. single-trust (BRS [5]) vs. multi-trust
(TRM, SRM [10]) vs. context-aware trust (CATrust [11])
protocols for peer-to-peer trust evaluation in SOANETs. Our
results demonstrate that context-aware trust-based service
composition and binding (CATrust) can significantly
outperform single-trust-based (BRS) and multi-trust-based
(TRM/SRM) counterparts by leveraging the association
between context and service quality when composing
composite services in SOANETs.

2. SYSTEM MODEL
We consider three service quality criteria: QoI (quality of
information), QoS (quality of service with service delay as the
main attribute), and cost. We denote them by Q, D, and C which
may be measured after service invocations are performed. While
D and C are easily measureable physical quantities, Q is specific
to the application domain. For example, in environment
monitoring service, Q is measured by the extent to which the
output contributes to the ground truth data. The objective is to
maximize Q while minimizing D and C with multi-objective
optimization (MOO) goals.

We first scale our service quality metrics, Q, D and C, to the range
[0, 1] so that the higher the value, the better the quality, as
follows:

 𝑄� =
𝑄 − 𝑄𝑚𝑚𝑚

𝑄𝑚𝑎𝑎 − 𝑄𝑚𝑚𝑚
;

𝐷� =
𝐷𝑚𝑎𝑎 − 𝐷

𝐷𝑚𝑎𝑎 − 𝐷𝑚𝑚𝑚
; 𝐶̅ =

𝐶𝑚𝑎𝑎 − 𝐶
𝐶𝑚𝑎𝑎 − 𝐶𝑚𝑚𝑚

 .

(1)

Here 𝑄𝑚𝑎𝑎 and 𝑄𝑚𝑚𝑚, 𝐷𝑚𝑎𝑎 and 𝐷𝑚𝑚𝑚, and 𝐶𝑚𝑎𝑎 and 𝐶𝑚𝑚𝑚 are the
maximum and minimum possible values of Q, D, and C,
respectively. They are known a priori. With this normalization we
transform MOO into multi-objective maximization, i.e., from
maximizing Q and minimizing D and C, into maximizing 𝑄� ,
𝐷� and 𝐶̅. From a pragmatic perspective, scaling facilitates a fair
quantitative comparison of different service quality criteria, as
each service quality criterion is in the range of [0, 1] with a higher
value representing a higher service quality.

3. PROBLEM DEFINITION AND
METRICS
3.1 Problem Definition
We use weighted sum [8] allowing a user to express its
preferences regarding service quality criteria. Let 𝑄�𝑚, 𝐷�𝑚 and 𝐶�̅�
be the scaled Q, D, and C scores for service request m (denoted
by 𝑂𝑚 for short) obtainable after service binding. Let
𝜔𝑄,𝑚, 𝜔𝐷,𝑚and 𝜔𝐶,𝑚 be the weights associated with 𝑄�𝑚, 𝐷�𝑚 and
𝐶�̅� issued by the user, with 𝜔𝑄,𝑚 + 𝜔𝐷,𝑚 + 𝜔𝐶,𝑚 = 1. With this
simple additive weighting technique, we formulate our MOO
problem at the service-request level as:

 Maximize MOOm = 𝜔𝑄,𝑚𝑄�𝑚 + 𝜔𝐷,𝑚𝐷�𝑚 +𝜔𝐶,𝑚𝐶�̅� (2)

As there may be multiple SRs issuing service requests and
performing service composition and binding concurrently, we
formulate our MOO problem at the system level as:

Maximize MOO = �(𝜔𝑄,𝑚𝑄�𝑚 + 𝜔𝐷,𝑚𝐷�𝑚 + 𝜔𝐶,𝑚𝐶�̅�)
m∈𝒯

 (3)

where 𝒯 is the set of concurrent service requests issued by
multiple SRs who are competing for the use of SPs available to
them.

3.2 Performance Metrics
While the MOO value defined in Equation 3 above can be used to
measure MOO performance, user satisfaction ultimately
determines if a service request is a success or a failure. The user
satisfaction level of the SR toward SPs selected for executing
𝑂𝑚, denoted as 𝑈𝑈𝑚, can be measured by the ratio of the actual
service quality received to the best service quality available
among all SPs. We allow a user to specify a minimum user
satisfaction threshold, denoted as 𝑈𝑈𝑈𝑚, which specifies the
minimum service quality the user can accept. This is to be
compared against 𝑈𝑈𝑚 to decide if the service experience of the
user toward SPs selected is positive or negative. If the service
experience is negative, culprit SPs are identified and penalized
with reputation loss. Conversely, if the service experience is
positive, all constituent SPs are rewarded with reputation gain.
For notational convenience, let 𝑈𝑄����𝑚𝑅 = 𝜔𝑄,𝑚𝑄�𝑚𝑅 + 𝜔𝐷,𝑚𝐷�𝑚𝑅 +
𝜔𝐶,𝑚𝐶�̅�𝑅 denoting the actual service quality received after service
binding and execution of 𝑂𝑚, 𝑈𝑄����𝑚𝑚𝑎𝑎 = 𝜔𝑄,𝑚𝑄�𝑚𝑚𝑎𝑎 +
𝜔𝐷,𝑚𝐷�𝑚𝑚𝑎𝑎 + 𝜔𝐶,𝑚𝐶�̅�𝑚𝑎𝑎 denoting the best service quality that can
ever be achieved, and 𝑈𝑄����𝑚𝑚𝑚𝑚 = 𝜔𝑄,𝑚𝑄�𝑚𝑚𝑚𝑚 + 𝜔𝐷,𝑚𝐷�𝑚𝑚𝑚𝑚 +
𝜔𝐶,𝑚𝐶�̅�𝑚𝑚𝑚 denoting the minimum service quality that must be
obtained in order to satisfy the service request level constraint.
Then, with score scaling, 𝑈𝑈𝑚 can be computed as:

𝑈𝑈𝑚 = �
𝑈𝑄����𝑚𝑅 − 𝑈𝑄����𝑚𝑚𝑚𝑚

𝑈𝑄����𝑚𝑚𝑎𝑎 − 𝑈𝑄����𝑚𝑚𝑚𝑚 𝑖𝑖 𝑈𝑄����𝑚𝑅 ≥ 𝑈𝑄����𝑚𝑚𝑚𝑚

 0 𝑜𝑜ℎ𝑒𝑒𝑒𝑖𝑒𝑒

(4)

Here the second condition in Equation 4 is for the case in which
the received service quality is less than the required minimum
service quality. Again we note that because of scaling, the large
the Q�, D� and C� values, the better the service quality. Also note that
𝑈𝑄����𝑚𝑅 = 𝜔𝑄,𝑚𝑄�𝑚𝑅 + 𝜔𝐷,𝑚𝐷�𝑚𝑅 + 𝜔𝐶,𝑚𝐶�̅�𝑅 , so maximizing 𝑀𝑂𝑂𝑚 in
Equation 2 is equivalent to maximizing 𝑈𝑈𝑚 in Equation 4.
Therefore, the MOO problem to solve is in effect a user
satisfaction maximization problem.

4. TRUST MANAGEMENT PROTOCOLS
In this section, we describe four trust protocols to apply to the
service composition and binding application with MOO goals for
performance comparison, namely, BRS [5], TRM, SRM [10], and
CATrust [11].

4.1 Single-Trust Baseline Protocol Design
The baseline single-trust protocol (called BRS [5]) is based on
Bayesian inference with the trust value modeled as a random
variable in the range of [0, 1] following the Beta (α, β)
distribution; the numbers of positive and negative service
experiences are modeled as binomial random variables. Here
𝛼/(𝛼 + 𝛽) is the estimated mean of “direct” trust evidence of an
SP, where 𝛼 is the number of positive experiences and 𝛽 is the
number of negative experiences. Positive evidence is observed
when the service is satisfactory. More specifically, when 𝑈𝑈𝑚
exceeds 𝑈𝑈𝑈𝑚, a positive service experience is counted and 𝛼 is
incremented by 1 for all SPs in 𝑂𝑚. On the other hand, when 𝑈𝑈𝑚
is less than 𝑈𝑈𝑈𝑚, a negative service experience is counted against
all culprits with low performance (i.e., the actual service quality is
lower than the advertised service quality) and 𝛽 is increased by 1
for all identified culprits. SPs with expected performance (i.e., the
actual service quality is about the same as the advertised service
quality) are identified as benign and will not be penalized. After a
service request is completed, the SR can propagate its updated
trust of the SPs involved in the service request to other nodes in
the system as recommendations.

4.2 Multi-Trust Protocol Design
Multi-trust refers to the use of multiple dimensions of trust for
more accurately describing multiple and often distinct factors
contributing to successful service execution. TRM and SRM [10]
are based on two trust properties: competence and integrity.
Denote node 𝑖’s trust toward node 𝑗 in trust property 𝑋 (i.e., C for
competence and I for integrity) as 𝑈𝑚,𝑗𝑋 . BRS is used to assess node
𝑖′s mean direct trust toward node 𝑗 in trust property 𝑋 as
𝛼𝑚,𝑗𝑋 /(𝛼𝑚,𝑗𝑋 +𝛽𝑚,𝑗𝑋) where 𝛼𝑚,𝑗𝑋 is the number of positive and 𝛽𝑚,𝑗𝑋 is the
number of negative experiences in trust property 𝑋 , which are
accumulated upon trust update. To update (𝛼𝑚,𝑗𝐶 ,𝛽𝑚,𝑗𝐶) for
competence trust, node 𝑖 (acting as the SR) compares 𝑈𝑈𝑈𝑚 with
𝑈𝑈𝑚. To update (𝛼𝑚,𝑗𝐼 , 𝛽𝑚,𝑗𝐼) for integrity trust, node 𝑖 considers it
positive evidence if it sees node 𝑗’s observed Q, D and C scores
are close to node 𝑗’s advertised scaled Q, D, and C scores. Node 𝑖
(as the SR) assesses node 𝑗’s compliance degree (𝐶𝐷𝑚,𝑗) as:

𝐶𝐷𝑚,𝑗 = 𝑚𝑖𝑚 (
𝑄�𝑚,𝑗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑄�𝑚,𝑗
𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜 ,

𝐷�𝑚,𝑗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐷�𝑚,𝑗
𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜 ,

𝐶�̅�,𝑗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐶�̅�,𝑗
𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜) (5)

Here 𝑄�𝑚,𝑗
𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑎𝑎𝑎 ,𝐷�𝑚,𝑗

𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑎𝑎𝑎 and 𝐶�̅�,𝑗
𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑎𝑎𝑎 are node 𝑗′s

advertised “scaled” Q, D, and C scores, while
 𝑄�𝑚,𝑗

𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎 ,𝐷�𝑚,𝑗
𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐶�̅�,𝑗

𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎 are node 𝑗’s “scaled” Q, D
and C scores actually observed by node 𝑖. Each user defines its
minimum compliance degree threshold for service request 𝑚 ,
denoted by 𝐶𝐷𝑈𝑚. If 𝐶𝐷𝑚,𝑗 ≥ 𝐶𝐷𝑈𝑚 , then it is counted as a

positive experience for node j for integrity and 𝛼𝑚,𝑗𝐼 is incremented
by 1; otherwise, it is counted as a negative experience for node 𝑗
and 𝛽𝑚,𝑗𝐼 is incremented by 1. In the threshold-based relationship
model (TRM), if integrity trust falls below a threshold,
𝑈𝑚,𝑗
𝐼,𝑇𝑇𝑅𝑇𝑇, competence trust drops to zero. In the scaling

relationship model (SRM), competence trust scales up (to 1
maximum) or down (to 0 minimum), depending on whether
integrity trust is higher or lower than the threshold. More
specifically, TRM computes the overall trust as:

𝑈𝑚,𝑗 = 𝑈𝑚,𝑗𝐶 𝑖𝑖 𝑈𝑚,𝑗𝐼 ≥ 𝑈𝑚,𝑗
𝐼,𝑇𝑇𝑅𝑇𝑇; 0 𝑜𝑜ℎ𝑒𝑒𝑒𝑖𝑒𝑒 (6)

where 𝑈𝑚,𝑗
𝐼,𝑇𝑇𝑅𝑇𝑇 is the minimum integrity trust threshold.

SRM computes the overall trust as:

𝑈𝑚,𝑗 = 𝑚𝑖𝑚 �1,𝑈𝑚,𝑗𝐶 ×
𝑈𝑚,𝑗𝐼

𝑈𝑚,𝑗
𝐼,𝑇𝑇𝑅𝑇𝑇�

(7)

4.3 Context-Aware Trust Protocol Design
The basic idea of CATrust [11] is for SR 𝑖 to predict whether SP 𝑗
will perform satisfactorily or not for a requested abstract service
in a particular context environment, given a history of evidence.
SR 𝑖 ’s observation 𝑒𝑚𝑗𝑎 at time 𝑜 of the service quality received
from SP 𝑗 is either “satisfactory” or “unsatisfactory.” If the service
quality is satisfactory, then the service assessment 𝑒𝑚𝑗𝑎 =1 and SP 𝑗
is considered trustworthy in this context environment; otherwise,
𝑒𝑚𝑗𝑎 =0 and SP 𝑗 is considered untrustworthy. For the service
composition and binding application in hand, if 𝑈𝑈𝑚 ≥ 𝑈𝑈𝑈𝑚and
𝐶𝐷𝑚,𝑗 ≥ 𝐶𝐷𝑈𝑚, then 𝑒𝑚𝑗𝑎 =1; otherwise, 𝑒𝑚𝑗𝑎 =0. Let the operational
and environmental conditions at time 𝑜 be characterized by a set
of distinct context variables𝑥𝑎 = [𝑥0𝑎 , … , 𝑥𝑀𝑎]. Then, SP 𝑗′s service
trust is the probability that SP 𝑗 is capable of providing
satisfactory service given context variables 𝑥𝑎, i.e., 𝑈𝑗𝑎 ≜ Pr (𝑒𝑗𝑎 =
1). Let �̃�𝑚𝑗 = ��̃�𝑚𝑗

𝑎0 , … , �̃�𝑚𝑗
𝑎𝑛�, 𝑖 ≠ 𝑗, denote the cumulative evidence

gathered by SR 𝑖 over [𝑜0, … , 𝑜𝑚], including self-observations and
recommendations. Also let 𝑋 = �𝑥𝑎0 , … , 𝑥𝑎𝑛� denote the
corresponding context matrix. CATrust [11] learns the service
behavior pattern of SP 𝑗 based on �̃�𝑚𝑗 and 𝑋 , and predicts the
probability that SP j is trustworthy at time 𝑜𝑚+1, given 𝑥𝑎𝑛+1 as
input. Suppose that node j follows service behavior pattern 𝛽𝑗 .
Then, CATrust estimates 𝑈𝑚𝑗

𝑎𝑛+1 = Pr {�̂�𝑚𝑗
𝑎𝑛+1 = 1|𝑥𝑎𝑛+1 , �̂�𝑚𝑗}, where

�̂�𝑚𝑗 is node 𝑖’s estimate of 𝛽𝑗. Essentially, 𝑈𝑚𝑗
𝑎𝑛+1 obtained above is

the service trust of SP 𝑗 at time 𝑜𝑚+1 from SR 𝑖’s perspective.

To apply CATrust to solving the service composition and binding
application with MOO, SR 𝑖 would apply
𝑈𝑗𝑎 = Pr �𝑒𝑗𝑎 = 1�𝑥𝑎 ,𝛽𝑗� to predict SP 𝑗 ’s trust. Since service
quality is defined by Q, D, and C, local traffic (which influences
Q and D) and payoff (which influences C) are chosen as the
context variables. The payoff to SP 𝑗 is determined by SR 𝑖 itself
so it is easily measurable by SR 𝑖 . The local traffic can be
estimated by SR 𝑖 based on the location information which
determines collision probability or the packet retransmission
probability after transmitting a sequence of packets for initiating a
service request.

5. TRUST-BASED SERVICE
COMPOSITION ALGORITHMS
In this section, we describe four trust-based algorithms and a non-
trust-based algorithm for solving our service composition and
binding MOO problem as follows:

• Non-trust-based: While there is no trust in place, each SR
keeps a blacklist of SPs with which it has negative interaction
experience, i.e.,𝐶𝐷𝑚,𝑗 < 𝐶𝐷𝑈𝑚. When selecting the best node-
to-service assignment, it only considers SPs that are not
blacklisted.

• Trust-based (BRS, TRM, SRM, or CATrust): each SR selects
the best node-to-service assignment that maximizes 𝑀𝑂𝑂𝑚 in
Equation 2 with 𝑄�𝑚,𝑗 ,𝐷�𝑚,𝑗 and 𝐶�̅�,𝑗 (of node 𝑗 at the bottom
level of the SCS) multiplying by 𝑈𝑇𝑅,𝑗 which is the SR’s
overall trust toward node 𝑗 obtained from running a trust
protocol (BRS, TRM, SRM, or CATrust) as discussed in
Section 5. The basic idea of trust-based service composition
and binding is that an SP’s advertised Q, D and C scores are
discounted by the SR’s trust towards the SP. When the trust
estimate is accurate, it can effectively defend against
malicious nodes performing attacks discussed in Section 2.

To circumvent high runtime complexity which renders it
infeasible for runtime operations, a heuristic-based solution with
linear runtime complexity of O(|𝒩|) is used for solution
efficiency. For all algorithms, an SR simply ranks all eligible SPs
for executing an abstract service by 𝜔𝑄,𝑚𝑄�𝑚,𝑗𝑈𝑇𝑅,𝑗 +
𝜔𝐷,𝑚𝐷�𝑚,𝑗𝑈𝑇𝑅,𝑗 + 𝜔𝐶,𝑚𝐶�̅�,𝑗𝑈𝑇𝑅,𝑗 and selects the highest ranked
SP as the winner for executing that particular abstract service. It
examines all SPs which responded to its query in a single round
and performs ranking and service binding for all abstract services
needed in the service request. Then, the SR notifies SPs that are
selected without coordination with other concurrent SRs. In the
non-trust-based algorithm, an SP receiving multiple offers
randomly selects one SR among all to serve. In the trust-based
algorithm, an SP resolves the tie-breaker by selecting the SR for
which it has the highest trust to ensure the highest success
probability as it will increase its chance of gaining good
reputation. The other SRs not selected will be informed of the
decision by the SP and will then select other SPs that are still
available to provide the particular abstract service. The time to
complete the node-to-service selection thus is linear to the number
of eligible SPs multiplied by the number of concurrent service
requests because each SR will only examine and rank the
advertised service quality scores by all eligible SPs once to select
a subset of SPs that maximizes its own ranking.

TABLE 1: INPUT PARAMETERS VALUES/RANGES
Parameter Value Parameter Value

|𝒯| 80 |𝓝| 60
|𝓢| 9 𝑝𝑎 5%
𝑚𝑎𝑎𝑟 3 |𝒮𝑚| 4
𝑃𝑜𝑎𝑎 10-50% 𝑃𝑎𝑚𝑎𝑟 0-100%

𝑄𝑜𝑎𝑎 [1-3] 𝑄𝑔𝑜𝑜𝑎 [3-5]

𝐷𝑜𝑎𝑎 [3-5] 𝐷𝑔𝑜𝑜𝑎 [1-4]

𝐶𝑜𝑎𝑎 [2-5] 𝐶𝑔𝑜𝑜𝑎 [1-2]

�𝑄𝑟𝑚𝑚𝑚,𝐷𝑟𝑚𝑚𝑚,𝐶𝑟𝑚𝑚𝑚� (1,5,5) �𝑄𝑚𝑚𝑚𝑚,𝐷𝑚𝑚𝑚𝑚,𝐶𝑚𝑚𝑚𝑚 � (4,20,20)

𝑈𝑚,𝑗
𝐼,𝑇𝑇𝑅𝑇𝑇 0.5 𝐶𝐷𝑈𝑚 0.9

𝜔𝑄,𝑚: 𝜔𝐷,𝑚:𝜔𝐶,𝑚 1/3:1/3:1/3 𝑈𝑈𝑈𝑚 50-100%

(α, β) for BMA (1, 10) (α, β) for BSA (10, 1)

6. COMPARATIVE ANALYSIS
7.1 Experiment Setup
Table 1 lists input parameters and their default values for
performance analysis as in [10] for fair comparison. Below we
explain each parameter in the table. We consider |𝓝|=60 SPs in
the system. There are |𝓢|=9 abstract services, 𝑈0 to 𝑈8, provided by
these SPs. For simplicity, each SP is assumed to be specialized to
one abstract service 𝑈𝑟 which is randomly assigned initially. All
nodes follow the SWIM mobility model [6] with wireless
transmission error probability 𝑝𝑎 = 5%. We consider a scenario
with 80 service requests (|𝒯|=80) divided into 50 chunks, e.g., {1,
2}, {3}, {4, 5}, {6, 7, 8}, {9}, {10}, {11, 12}, {13}, {14, 15}, etc.
where a chunk is defined as a set of concurrent service requests
overlapping in execution time. For simplicity, each service request
has only one service composition specification consisting of
|𝒮𝑚| = 4 abstract services connected in a series structure. The
abstract services are randomly selected from 𝑈0 to 𝑈8 so that the
demand to each node is roughly equal in these different sized
problems. In case an SR cannot find enough SPs to satisfy the
requirement, the service request fails and 𝑈𝑈𝑚 = 0.

We model the hostility of the environment by the percentage of
malicious nodes (𝑃𝑜𝑎𝑎) in the range of [0-50%] with the default
value set at 30%. In a SOANET, malicious nodes do not intend to
break the system functionality via traditional packet dropping
attacks or impairment attacks [3], [7], [8] but aim to increase their
chance of being selected for personal gain. When a bad node is
chosen as a recommender, it can perform a bad-mouthing attack
(BMA) on a good trustee node to ruin the reputation of that good
node by providing bad recommendations so as to decrease the
chance of this good node being selected to provide services. This
is done by providing a very low α and a very high β, e.g., (α, β) =
(1, 10), with α representing the number of positive and β the
number of negative experiences, to ruin the reputation of that
good trustee node. A bad node serving as a recommender can also
perform a ballot-stuffing attack (BSA) to boost the reputation of
another bad trustee node by providing good recommendations for

that bad node, so as to increase the chance of that bad node being
selected to provide services. This is done by providing a very high
α, and a very low β, e.g., (α, β) = (10, 1), to boost the reputation of
that bad trustee node. A malicious node can also perform a self-
promotion attack. This self-promotion behavior is modeled by a
risk parameter 𝑃𝑎𝑚𝑎𝑟 in the range of [0-100%] with the default set
at 50%. A malicious node performs a self-promotion attack by
boosting its advertised Q, D and C scores obtained by the product
of its true Q, D and C scores and (1 + 𝑃𝑎𝑚𝑎𝑟), (1 − 𝑃𝑎𝑚𝑎𝑟), and
(1 − 𝑃𝑎𝑚𝑎𝑟), respectively. 𝑄𝑜𝑎𝑎, 𝐷𝑜𝑎𝑎 and 𝐶𝑜𝑎𝑎 give the true Q, D
and C scores for bad nodes, which can be boosted during service
advertisement. 𝑄𝑔𝑜𝑜𝑎, 𝐷𝑔𝑜𝑜𝑎 and 𝐶𝑔𝑜𝑜𝑎 give the true Q, D and C
scores for good nodes, which will be reported by good nodes
faithfully during service advertisement. The default values are set
for the case in which the service quality of bad nodes is inferior to
that of good nodes to reveal interesting design tradeoffs. These Q,
D, and C values are context dependent (location and payoff),
generated at the beginning, and are not changed during system
operation. We set �𝑄𝑟𝑚𝑚𝑚,𝐷𝑟𝑚𝑚𝑚,𝐶𝑟𝑚𝑚𝑚 � = (1, 5, 5) at the abstract
service level and �𝑄𝑚𝑚𝑚𝑚,𝐷𝑚𝑚𝑚𝑚,𝐶𝑚𝑚𝑚𝑚 �= (4, 20, 20) at the service
request level for the minimum service quality requirement.

The initial trust values (for integrity and competence in the case of
multi-trust) are set to 0.5 for all nodes meaning ignorance (no
knowledge). The integrity trust threshold 𝑈𝑚,𝑗

𝐼,𝑇𝑇𝑅𝑇𝑇 for TRM and
SRM is set to 0.5 to punish a node with integrity trust less than
ignorance trust as time progresses. The protocol compliance
degree threshold 𝐶𝐷𝑈𝑚 is set to 0.9 to accommodate a 10%
maximum detection error for assessing protocol compliance
behavior. For simplicity we set 𝜔𝑄,𝑚 = 𝜔𝐷,𝑚 = 𝜔𝐶,𝑚 = 1/3 in
Equation 2. The number of recommenders 𝑚𝑎𝑎𝑟 is set to 3 so node
i will only allow 3 nodes with the highest 𝑈𝑚,𝑗 values as the
recommenders during trust update.

7.2 Comparative Performance Analysis
In this section, we perform a comparative performance analysis of
CATrust vs. single-trust and multi-trust protocols as the

Figure 1: Performance Comparison of Trust-based vs. Non-trust-based Service Composition Algorithms.

underlying trust protocol for the trust-based algorithm for solving
the service composition and binding MOO problem via MATLAB
simulation. Specifically, we simulate non-trust-based and trust-
based algorithms under the same environment setting defined in
Table 1.

Figure 1 shows the results. Figures 1(a)-(d) compare the MOO
and user satisfaction performance. Figures 1(e)-(h) compare the
percentage of bad service selected for service execution in this
service composition application with MOO requirements.

Figures 1(a)-(b) examine the negative impact of increasing 𝑃𝑜𝑎𝑎
and 𝑃𝑎𝑚𝑎𝑟 on MOO performance in Equation 3. Compared with the
non-trust-based algorithm, trust-based algorithms show high
resilience against increased attack intensity with more malicious
entities (𝑃𝑜𝑎𝑎)or higher self-promotion attack behavior (𝑃𝑎𝑚𝑎𝑟).
Figure 1(c) examines the impact of 𝑈𝑈𝑈𝑚 on MOO performance.
Note that 𝑈𝑈𝑈𝑚 is the service quality threshold compared with
𝑈𝑈𝑚 to determine if a service experience is positive or negative.
We observe that as 𝑈𝑈𝑈𝑚 increases, MOO performance increases
(and levels off). The reason is that a high 𝑈𝑈𝑈𝑚 has the effect of
penalizing bad nodes with low trust and can effectively remove
bad nodes from participating in future service requests.

Figure 1(d) compares 𝑈𝑈𝑚 calculated from Equation 4 as more
service requests (labeled as “Operation #” on the x coordinate) are
executed over time for the three trust-based algorithms against the
non-trust-based algorithm. We consider a combination of
𝑃𝑎𝑚𝑎𝑟 = 70% and 𝑃𝑜𝑎𝑎 = 30% to reveal interesting trends.
Because of high 𝑃𝑎𝑚𝑎𝑟 , even trust-based algorithms are fooled into
selecting bad nodes in the first few service requests. So the first
few service requests do not pass 𝑈𝑈𝑈𝑚. As a result, bad nodes
selected to provide services in the first few service requests are
penalized with trust decrease and filtered out from later service
requests. This is evidenced by the fact that the later service
requests have high 𝑈𝑈𝑚values. In particular, for CATrust (pink
dots), 𝑈𝑈𝑚 is near 90% after 15 service requests. We observe that
𝑈𝑈𝑚 under CATrust is consistently higher than other trust-based
counterparts. On the contrary, the non-trust-based algorithm
(black dots) achieves a high 𝑈𝑈𝑚 only after 50 service requests
are processed because it has no effective way of filtering out bad
services until in the last few operations at which point it has
blacklisted sufficient nodes with bad services. This trend supports
our claim that trust-based algorithms can effectively achieve high
user satisfaction despite the presence of bad nodes performing
self-promotion attacks, especially after trust convergence occurs.

Figures 1(e)-(h) compare the percentage of bad service selected in
this service composition and binding application with MOO
requirements. One can clearly see that CATrust outperforms the
single-trust (BRS) and multi-trust (TRM, SRM) counterparts by a
wide margin. In particular, the % of bad service selected under
CATrust (pink dots) is significantly lower than that under BRS
(red dots), TRM (green dots), or SRM (blue dots). We attribute
the superiority of CATrust to its ability to associate context to
solution quality delivered by an SP. Because a service request
issued by an SR is context dependent (location and payoff),
CATrust is able to learn an SP’s context-dependent service
behavior and its delivered service quality, given location and
payoff as input. On the contrary, BRS, TRM, and SRM do not
take context into consideration and merely predict an SP’s
“average” delivered service quality across the location and payoff
context space.

7. CONCLUSION
Trust is known as an effective mechanism in services computing.
However how to use it most effectively is less known. In this
paper we conducted a comparative performance analysis of
single-trust-based (BRS), multi-trust-based (TRM, SRM), and
context-aware trust-based (CATrust) algorithms for a service
composition and binding SOANET application with the goal of
multi-objective optimization to answer this question. Our results
demonstrated that context-aware trust-based service composition
and binding is the winner for maximizing application
performance. We attribute CATrust’s superiority to its ability to
more accurately learn an SP’s context-dependent service behavior
and the delivered service quality during service binding, while
BRS, TRM, and SRM do not take context into consideration and
merely predict an SP’s average delivered service quality across
the context space. In the future, we plan to generalize the
performance comparison analysis to more SOANET applications
and validate the comparison results with service quality and
mobility traces [4], [12].

8. REFERENCES
[1] Chen, I.R., Guo, J., and Bao, F. 2016. Trust Management for SOA-

based IoT and Its Application to Service Composition. IEEE
Transactions on Services Computing. 9, 3 (2016), 482-495.

[2] Chen, I.R., Bao, F., and Guo, J. 2016. Trust-based Service
Management for Social Internet of Things Systems. IEEE
Transactions on Dependable and Secure Computing, 13, 6 (2016),
684-696.

[3] Chen, I. R. and Bastani, F.B. 1991. Effect of Artificial-Intelligence
Planning-Procedures on System Reliability. IEEE Transactions on
Reliability, 40, 3 (1991), 364-369.

[4] Chen, I.R. and Verma, N. 2003. Simulation study of a class of
autonomous host-centric mobility prediction algorithms for wireless
cellular and ad hoc networks. 36th Annual Symposium on Simulation
(2003), 65-72.

[5] Jøsang, A. and Ismail, R. 2002. The Beta Reputation System. 15th
Bled Electronic Commerce Conference (2002), 1-14.

[6] Kosta, S., Mei, A., and Stefa, J. 2014. Large-Scale Synthetic Social
Mobile Networks with SWIM. IEEE Transactions on Mobile
Computing, 13, 1 (2014), 116-129.

[7] Mitchell, R. and Chen, I.R. 2014. Adaptive Intrusion Detection of
Malicious Unmanned Air Vehicles using Behavior Rule
Specifications. IEEE Transactions on Systems, Man and
Cybernetics, 44, 5 (2014), 593-604.

[8] Mitchell, R. and Chen, I.R. 2015. Behavior Rule Specification-based
Intrusion Detection for Safety Critical Medical Cyber Physical
Systems. IEEE Transactions on Dependable and Secure Computing.
12, 1 (2015), 16-30.

[9] Wahab, O.A., Bentahar, J., Otrok, H., and Mourad, A. 2015. A
Survey on Trust and Reputation Models for Web Services: Single,
Composite, and Communities. Decision Support Systems. 74 (2015),
121-134.

[10] Wang, Y. et al. 2017. Trust-based Service Composition and Binding
with Multiple Objective Optimization in Service-Oriented Mobile
Ad Hoc Networks. IEEE Transactions on Services Computing.
(2017), in press.

[11] Wang, Y. et al. 2017. CATrust: Context-Aware Trust Management
for Service-Oriented Ad Hoc Networks. IEEE Transactions on
Services Computing. (2017), in press.

[12] Zheng, Z., Zhang, Y., and Lyu, M. R. 2014. Investigating QoS of
Real-World Web Services. IEEE Transactions on Services
Computing, 7, 1 (2014), 32-39.

	1. INTRODUCTION
	2. SYSTEM MODEL
	3. PROBLEM DEFINITION AND METRICS
	3.1 Problem Definition
	3.2 Performance Metrics

	4. TRUST MANAGEMENT PROTOCOLS
	4.1 Single-Trust Baseline Protocol Design
	4.2 Multi-Trust Protocol Design
	4.3 Context-Aware Trust Protocol Design

	5. TRUST-BASED SERVICE COMPOSITION ALGORITHMS
	6. COMPARATIVE ANALYSIS
	7. CONCLUSION
	8. REFERENCES

