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ABSTRACT 
In this paper we analyze performance characteristics of trust-
based service composition and binding algorithms for composing 
composite services in service-oriented ad hoc networks. We first 
show that trust is an effective mechanism to cope with malicious 
nodes acting for their own gain and colluding with each other to 
increase their chances of being selected for service execution. 
Then we perform a comparative performance analysis of single-
trust-based, multi-trust-based, and context-aware trust-based 
service composition and binding algorithms for composing 
composite services in service-oriented ad hoc networks. Using an 
encounter-based service composition application with multi-
objective optimization goals as a running example, we show that 
context-aware trust-based service composition and binding 
outperforms single-trust-based and multi-trust-based counterparts 
for achieving multi-objective optimization and user satisfaction. 
Physical interpretations of the results are provided.    
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Service-oriented ad hoc networks; service-oriented computing; 
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1. INTRODUCTION 
Service oriented architecture (SOA) based composite services 
have been widely employed in Internet-based web service 
systems. With the proliferation of smart devices carried by human 
operators, SOA-based composite services now are extended to 
service-oriented ad hoc networks (SOANETs). A SOANET is 
populated with service providers (SPs) and service requesters 
(SRs) all of which are mobile. An example SOANET is a 
vehicular ad hoc network or a mobile ad hoc network populated 
with smart objects. Unlike a traditional web service system in 
which nodes are connected to the Internet, nodes in SOANETs are 
mobile and an SR will need to request services from available SPs 
with which it encounters and interacts dynamically. With a service 
request in hand, an SR has to first formulate a service composition 
plan based on the available SPs, and then determine the best node-
to-service binding for executing the composite service.  

An effective way to deal with malicious behavior is to use trust 
for decision making [1], [2], [5]. The use of trust for service 
composition and binding is still in its infancy. Wahab et al. [9] 
provided a comprehensive survey on service composition and 
binding and discussed the associated challenges in web services. 
Very recently, Wang et al. [10] considered integrity as an 
additional trust metric to cope with malicious attacks in SOANET 
environments. That is, “integrity trust” is used as confidence to 
assess the validity of “competence trust” in that competence trust 
ultimately ensures service success. Wang et al. [11] associated 

context with service quality such that a SP’s service behaviors 
(affecting quality of information, service delay, and service cost) 
are inherently associated with rapid context environment changes 
in SOANETs. 

Relative to existing works cited above, our paper aims to provide 
a guidance of how and what trust protocol should be used to 
maximize service composition and binding application 
performance under a hostile environment. This paper has the 
following unique contributions: 

1. We demonstrate that trust can effectively prevent malicious 
nodes from disrupting composite services in SOANETs. We 
conduct a detailed performance analysis and demonstrate that 
trust-based service composition and binding outperforms the 
non-trust-based, blacklist-based counterpart, and can 
effectively filter out malicious nodes, which ultimately leads 
to high user satisfaction. 

2. We are the first to conduct a comparative performance 
analysis of non-trust vs. single-trust (BRS [5]) vs. multi-trust 
(TRM, SRM [10]) vs. context-aware trust (CATrust [11]) 
protocols for peer-to-peer trust evaluation in SOANETs. Our 
results demonstrate that context-aware trust-based service 
composition and binding (CATrust) can significantly 
outperform single-trust-based (BRS) and multi-trust-based 
(TRM/SRM) counterparts by leveraging the association 
between context and service quality when composing 
composite services in SOANETs. 

2. SYSTEM MODEL 
We consider three service quality criteria: QoI (quality of 
information), QoS (quality of service with service delay as the 
main attribute), and cost. We denote them by Q, D, and C which 
may be measured after service invocations are performed. While 
D and C are easily measureable physical quantities, Q is specific 
to the application domain. For example, in environment 
monitoring service, Q is measured by the extent to which the 
output contributes to the ground truth data. The objective is to 
maximize Q while minimizing D and C with multi-objective 
optimization (MOO) goals.  

We first scale our service quality metrics, Q, D and C, to the range 
[0, 1] so that the higher the value, the better the quality, as 
follows: 

               𝑄� =
𝑄 − 𝑄𝑚𝑚𝑚

𝑄𝑚𝑎𝑎 − 𝑄𝑚𝑚𝑚
; 

𝐷� =
𝐷𝑚𝑎𝑎 − 𝐷

𝐷𝑚𝑎𝑎 − 𝐷𝑚𝑚𝑚
;  𝐶̅ =

𝐶𝑚𝑎𝑎 − 𝐶
𝐶𝑚𝑎𝑎 − 𝐶𝑚𝑚𝑚

 . 

(1)  



Here 𝑄𝑚𝑎𝑎 and 𝑄𝑚𝑚𝑚, 𝐷𝑚𝑎𝑎 and 𝐷𝑚𝑚𝑚, and 𝐶𝑚𝑎𝑎 and 𝐶𝑚𝑚𝑚 are the 
maximum and minimum possible values of Q, D, and C, 
respectively. They are known a priori. With this normalization we 
transform MOO into multi-objective maximization, i.e., from 
maximizing Q and minimizing D and C, into maximizing 𝑄� , 
𝐷� and 𝐶̅. From a pragmatic perspective, scaling facilitates a fair 
quantitative comparison of different service quality criteria, as 
each service quality criterion is in the range of [0, 1] with a higher 
value representing a higher service quality. 

3. PROBLEM DEFINITION AND 
METRICS 
3.1 Problem Definition 
We use weighted sum [8] allowing a user to express its 
preferences regarding service quality criteria. Let 𝑄�𝑚, 𝐷�𝑚 and 𝐶�̅� 
be the scaled Q, D, and C scores for service request m (denoted 
by 𝑂𝑚 for short) obtainable after service binding. Let 
𝜔𝑄,𝑚,  𝜔𝐷,𝑚and 𝜔𝐶,𝑚 be the weights associated with 𝑄�𝑚, 𝐷�𝑚 and 
𝐶�̅� issued by the user, with 𝜔𝑄,𝑚 + 𝜔𝐷,𝑚 + 𝜔𝐶,𝑚 = 1. With this 
simple additive weighting technique, we formulate our MOO 
problem at the service-request level as: 

     Maximize  MOOm = 𝜔𝑄,𝑚𝑄�𝑚 + 𝜔𝐷,𝑚𝐷�𝑚 +𝜔𝐶,𝑚𝐶�̅� (2)  

As there may be multiple SRs issuing service requests and 
performing service composition and binding concurrently, we 
formulate our MOO problem at the system level as: 

Maximize  MOO = �(𝜔𝑄,𝑚𝑄�𝑚 + 𝜔𝐷,𝑚𝐷�𝑚 + 𝜔𝐶,𝑚𝐶�̅�)
m∈𝒯

 (3)  

where 𝒯  is the set of concurrent service requests issued by 
multiple SRs who are competing for the use of SPs available to 
them.  

3.2 Performance Metrics 
While the MOO value defined in Equation 3 above can be used to 
measure MOO performance, user satisfaction ultimately 
determines if a service request is a success or a failure. The user 
satisfaction level of the SR toward SPs selected for executing 
𝑂𝑚, denoted as 𝑈𝑈𝑚, can be measured by the ratio of the actual 
service quality received to the best service quality available 
among all SPs. We allow a user to specify a minimum user 
satisfaction threshold, denoted as 𝑈𝑈𝑈𝑚,  which specifies the 
minimum service quality the user can accept. This is to be 
compared against 𝑈𝑈𝑚 to decide if the service experience of the 
user toward SPs selected is positive or negative. If the service 
experience is negative, culprit SPs are identified and penalized 
with reputation loss. Conversely, if the service experience is 
positive, all constituent SPs are rewarded with reputation gain. 
For notational convenience, let 𝑈𝑄����𝑚𝑅 = 𝜔𝑄,𝑚𝑄�𝑚𝑅 + 𝜔𝐷,𝑚𝐷�𝑚𝑅 +
𝜔𝐶,𝑚𝐶�̅�𝑅  denoting the actual service quality received after service 
binding and execution of 𝑂𝑚,  𝑈𝑄����𝑚𝑚𝑎𝑎 = 𝜔𝑄,𝑚𝑄�𝑚𝑚𝑎𝑎 +
𝜔𝐷,𝑚𝐷�𝑚𝑚𝑎𝑎 + 𝜔𝐶,𝑚𝐶�̅�𝑚𝑎𝑎 denoting the best service quality that can 
ever be achieved, and 𝑈𝑄����𝑚𝑚𝑚𝑚 = 𝜔𝑄,𝑚𝑄�𝑚𝑚𝑚𝑚 + 𝜔𝐷,𝑚𝐷�𝑚𝑚𝑚𝑚 +
𝜔𝐶,𝑚𝐶�̅�𝑚𝑚𝑚  denoting the minimum service quality that must be 
obtained in order to satisfy the service request level constraint. 
Then, with score scaling, 𝑈𝑈𝑚 can be computed as: 

𝑈𝑈𝑚 = �
𝑈𝑄����𝑚𝑅 − 𝑈𝑄����𝑚𝑚𝑚𝑚

𝑈𝑄����𝑚𝑚𝑎𝑎 − 𝑈𝑄����𝑚𝑚𝑚𝑚            𝑖𝑖  𝑈𝑄����𝑚𝑅 ≥  𝑈𝑄����𝑚𝑚𝑚𝑚

   0                                   𝑜𝑜ℎ𝑒𝑒𝑒𝑖𝑒𝑒
 

(4)  

Here the second condition in Equation 4 is for the case in which 
the received service quality is less than the required minimum 
service quality. Again we note that because of scaling, the large 
the Q�, D� and C� values, the better the service quality. Also note that 
𝑈𝑄����𝑚𝑅 = 𝜔𝑄,𝑚𝑄�𝑚𝑅 + 𝜔𝐷,𝑚𝐷�𝑚𝑅 + 𝜔𝐶,𝑚𝐶�̅�𝑅 ,  so maximizing 𝑀𝑂𝑂𝑚 in 
Equation 2 is equivalent to maximizing 𝑈𝑈𝑚  in Equation 4. 
Therefore, the MOO problem to solve is in effect a user 
satisfaction maximization problem. 

4. TRUST MANAGEMENT PROTOCOLS 
In this section, we describe four trust protocols to apply to the 
service composition and binding application with MOO goals for 
performance comparison, namely, BRS [5], TRM, SRM [10], and 
CATrust [11].   

4.1 Single-Trust Baseline Protocol Design 
The baseline single-trust protocol (called BRS [5]) is based on 
Bayesian inference with the trust value modeled as a random 
variable in the range of [0, 1] following the Beta (α, β) 
distribution; the numbers of positive and negative service 
experiences are modeled as binomial random variables. Here 
𝛼/(𝛼 + 𝛽) is the estimated mean of “direct” trust evidence of an 
SP, where 𝛼 is the number of positive experiences and 𝛽 is the 
number of negative experiences. Positive evidence is observed 
when the service is satisfactory. More specifically, when 𝑈𝑈𝑚 
exceeds 𝑈𝑈𝑈𝑚,  a positive service experience is counted and 𝛼 is 
incremented by 1 for all SPs in 𝑂𝑚. On the other hand, when 𝑈𝑈𝑚 
is less than 𝑈𝑈𝑈𝑚, a negative service experience is counted against 
all culprits with low performance (i.e., the actual service quality is 
lower than the advertised service quality) and 𝛽 is increased by 1 
for all identified culprits. SPs with expected performance (i.e., the 
actual service quality is about the same as the advertised service 
quality) are identified as benign and will not be penalized. After a 
service request is completed, the SR can propagate its updated 
trust of the SPs involved in the service request to other nodes in 
the system as recommendations. 

4.2 Multi-Trust Protocol Design 
Multi-trust refers to the use of multiple dimensions of trust for 
more accurately describing multiple and often distinct factors 
contributing to successful service execution. TRM and SRM [10] 
are based on two trust properties: competence and integrity. 
Denote node 𝑖’s trust toward node 𝑗 in trust property 𝑋 (i.e., C for 
competence and I for integrity) as 𝑈𝑚,𝑗𝑋 . BRS is used to assess node 
𝑖′s mean direct trust toward node 𝑗  in trust property 𝑋  as 
𝛼𝑚,𝑗𝑋 /(𝛼𝑚,𝑗𝑋 +𝛽𝑚,𝑗𝑋 ) where 𝛼𝑚,𝑗𝑋  is the number of positive and 𝛽𝑚,𝑗𝑋  is the 
number of negative experiences in trust property 𝑋 , which are 
accumulated upon trust update. To update ( 𝛼𝑚,𝑗𝐶 ,𝛽𝑚,𝑗𝐶 ) for 
competence trust, node 𝑖 (acting as the SR) compares 𝑈𝑈𝑈𝑚 with 
𝑈𝑈𝑚. To update (𝛼𝑚,𝑗𝐼 , 𝛽𝑚,𝑗𝐼 ) for integrity trust, node 𝑖 considers it 
positive evidence if it sees node 𝑗’s observed Q, D and C scores 
are close to node 𝑗’s advertised scaled Q, D, and C scores. Node 𝑖 
(as the SR) assesses node 𝑗’s compliance degree (𝐶𝐷𝑚,𝑗) as: 

𝐶𝐷𝑚,𝑗 = 𝑚𝑖𝑚 (
𝑄�𝑚,𝑗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑄�𝑚,𝑗
𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜 ,

𝐷�𝑚,𝑗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐷�𝑚,𝑗
𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜 ,

𝐶�̅�,𝑗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐶�̅�,𝑗
𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜) (5) 

Here 𝑄�𝑚,𝑗
𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑎𝑎𝑎 ,𝐷�𝑚,𝑗

𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑎𝑎𝑎  and 𝐶�̅�,𝑗
𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑎𝑎𝑎  are node 𝑗′s 

advertised “scaled” Q, D, and C scores, while 
 𝑄�𝑚,𝑗

𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎 ,𝐷�𝑚,𝑗
𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎  and 𝐶�̅�,𝑗

𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎   are node 𝑗’s “scaled” Q, D 
and C  scores actually  observed  by node  𝑖. Each user defines its 
minimum compliance degree threshold for service request 𝑚 , 
denoted by  𝐶𝐷𝑈𝑚. If 𝐶𝐷𝑚,𝑗 ≥ 𝐶𝐷𝑈𝑚 , then it is counted as a 



positive experience for node j for integrity and 𝛼𝑚,𝑗𝐼  is incremented 
by 1; otherwise, it is counted as a negative experience for node 𝑗 
and 𝛽𝑚,𝑗𝐼  is incremented by 1. In the threshold-based relationship 
model (TRM), if integrity trust falls below a threshold, 
𝑈𝑚,𝑗
𝐼,𝑇𝑇𝑅𝑇𝑇, competence trust drops to zero. In the scaling 

relationship model (SRM), competence trust scales up (to 1 
maximum) or down (to 0 minimum), depending on whether 
integrity trust is higher or lower than the threshold. More 
specifically, TRM computes the overall trust as: 

𝑈𝑚,𝑗 =  𝑈𝑚,𝑗𝐶   𝑖𝑖     𝑈𝑚,𝑗𝐼 ≥  𝑈𝑚,𝑗
𝐼,𝑇𝑇𝑅𝑇𝑇;  0 𝑜𝑜ℎ𝑒𝑒𝑒𝑖𝑒𝑒   (6)  

where 𝑈𝑚,𝑗
𝐼,𝑇𝑇𝑅𝑇𝑇 is the minimum integrity trust threshold. 

SRM computes the overall trust as: 

𝑈𝑚,𝑗 = 𝑚𝑖𝑚 �1,𝑈𝑚,𝑗𝐶 ×
𝑈𝑚,𝑗𝐼

𝑈𝑚,𝑗
𝐼,𝑇𝑇𝑅𝑇𝑇� 

(7)  

4.3 Context-Aware Trust Protocol Design 
The basic idea of CATrust [11] is for SR 𝑖 to predict whether SP 𝑗 
will perform satisfactorily or not for a requested abstract service 
in a particular context environment, given a history of evidence. 
SR 𝑖 ’s observation 𝑒𝑚𝑗𝑎  at time 𝑜  of the service quality received 
from SP 𝑗 is either “satisfactory” or “unsatisfactory.” If the service 
quality is satisfactory, then the service assessment 𝑒𝑚𝑗𝑎 =1 and SP 𝑗 
is considered trustworthy in this context environment; otherwise, 
𝑒𝑚𝑗𝑎 =0 and SP 𝑗  is considered untrustworthy. For the service 
composition and binding application in hand, if 𝑈𝑈𝑚 ≥ 𝑈𝑈𝑈𝑚and 
𝐶𝐷𝑚,𝑗 ≥ 𝐶𝐷𝑈𝑚, then 𝑒𝑚𝑗𝑎 =1; otherwise, 𝑒𝑚𝑗𝑎 =0. Let the operational 
and environmental conditions at time 𝑜 be characterized by a set 
of distinct context variables𝑥𝑎 = [𝑥0𝑎 , … , 𝑥𝑀𝑎 ]. Then, SP 𝑗′s service 
trust is the probability that SP 𝑗  is capable of providing 
satisfactory service given context variables 𝑥𝑎, i.e., 𝑈𝑗𝑎 ≜ Pr (𝑒𝑗𝑎 =
1). Let �̃�𝑚𝑗 = ��̃�𝑚𝑗

𝑎0 , … , �̃�𝑚𝑗
𝑎𝑛�, 𝑖 ≠ 𝑗, denote the cumulative evidence 

gathered by SR 𝑖 over [𝑜0, … , 𝑜𝑚], including self-observations and 
recommendations. Also let 𝑋 = �𝑥𝑎0 , … , 𝑥𝑎𝑛�  denote the 
corresponding context matrix. CATrust [11] learns the service 
behavior pattern of SP 𝑗  based on �̃�𝑚𝑗  and 𝑋 , and predicts the 
probability that SP j is trustworthy at time 𝑜𝑚+1, given 𝑥𝑎𝑛+1  as 
input. Suppose that node j follows service behavior pattern 𝛽𝑗 . 
Then, CATrust estimates 𝑈𝑚𝑗

𝑎𝑛+1 = Pr {�̂�𝑚𝑗
𝑎𝑛+1 = 1|𝑥𝑎𝑛+1  , �̂�𝑚𝑗}, where 

�̂�𝑚𝑗 is node 𝑖’s estimate of 𝛽𝑗. Essentially, 𝑈𝑚𝑗
𝑎𝑛+1 obtained above is 

the service trust of SP 𝑗 at time 𝑜𝑚+1 from SR 𝑖’s perspective. 

To apply CATrust to solving the service composition and binding 
application with MOO, SR 𝑖  would apply 
𝑈𝑗𝑎 = Pr �𝑒𝑗𝑎 = 1�𝑥𝑎 ,𝛽𝑗�  to predict SP 𝑗 ’s trust. Since service 
quality is defined by Q, D, and C, local traffic (which influences 
Q and D) and payoff (which influences C) are chosen as the 
context variables. The payoff to SP 𝑗 is determined by SR 𝑖 itself 
so it is easily measurable by SR 𝑖 . The local traffic can be 
estimated by SR 𝑖  based on the location information which 
determines collision probability or the packet retransmission 
probability after transmitting a sequence of packets for initiating a 
service request. 

5. TRUST-BASED SERVICE 
COMPOSITION ALGORITHMS  
In this section, we describe four trust-based algorithms and a non-
trust-based algorithm for solving our service composition and 
binding MOO problem as follows: 

• Non-trust-based: While there is no trust in place, each SR 
keeps a blacklist of SPs with which it has negative interaction 
experience, i.e.,𝐶𝐷𝑚,𝑗 < 𝐶𝐷𝑈𝑚. When selecting the best node-
to-service assignment, it only considers SPs that are not 
blacklisted. 

• Trust-based (BRS, TRM, SRM, or CATrust): each SR selects 
the best node-to-service assignment that maximizes 𝑀𝑂𝑂𝑚 in 
Equation 2 with 𝑄�𝑚,𝑗 ,𝐷�𝑚,𝑗  and 𝐶�̅�,𝑗  (of node 𝑗 at the bottom 
level of the SCS) multiplying by 𝑈𝑇𝑅,𝑗  which is the SR’s 
overall trust toward node 𝑗  obtained from running a trust 
protocol (BRS, TRM, SRM, or CATrust) as discussed in 
Section 5. The basic idea of trust-based service composition 
and binding is that an SP’s advertised Q, D and C scores are 
discounted by the SR’s trust towards the SP. When the trust 
estimate is accurate, it can effectively defend against 
malicious nodes performing attacks discussed in Section 2. 

To circumvent high runtime complexity which renders it 
infeasible for runtime operations, a heuristic-based solution with 
linear runtime complexity of O(|𝒩|)  is used for solution 
efficiency. For all algorithms, an SR simply ranks all eligible SPs 
for executing an abstract service by  𝜔𝑄,𝑚𝑄�𝑚,𝑗𝑈𝑇𝑅,𝑗  +
𝜔𝐷,𝑚𝐷�𝑚,𝑗𝑈𝑇𝑅,𝑗  + 𝜔𝐶,𝑚𝐶�̅�,𝑗𝑈𝑇𝑅,𝑗   and selects the highest ranked 
SP as the winner for executing that particular abstract service. It 
examines all SPs which responded to its query in a single round 
and performs ranking and service binding for all abstract services 
needed in the service request. Then, the SR notifies SPs that are 
selected without coordination with other concurrent SRs. In the 
non-trust-based algorithm, an SP receiving multiple offers 
randomly selects one SR among all to serve. In the trust-based 
algorithm, an SP resolves the tie-breaker by selecting the SR for 
which it has the highest trust to ensure the highest success 
probability as it will increase its chance of gaining good 
reputation. The other SRs not selected will be informed of the 
decision by the SP and will then select other SPs that are still 
available to provide the particular abstract service. The time to 
complete the node-to-service selection thus is linear to the number 
of eligible SPs multiplied by the number of concurrent service 
requests because each SR will only examine and rank the 
advertised service quality scores by all eligible SPs once to select 
a subset of SPs that maximizes its own ranking.  

TABLE 1:  INPUT PARAMETERS VALUES/RANGES 
Parameter Value Parameter Value 

|𝒯| 80 |𝓝| 60 
|𝓢| 9 𝑝𝑎  5% 
𝑚𝑎𝑎𝑟 3 |𝒮𝑚| 4 
𝑃𝑜𝑎𝑎 10-50% 𝑃𝑎𝑚𝑎𝑟  0-100% 

𝑄𝑜𝑎𝑎  [1-3] 𝑄𝑔𝑜𝑜𝑎 [3-5] 

𝐷𝑜𝑎𝑎 [3-5] 𝐷𝑔𝑜𝑜𝑎 [1-4] 

𝐶𝑜𝑎𝑎 [2-5] 𝐶𝑔𝑜𝑜𝑎 [1-2] 

�𝑄𝑟𝑚𝑚𝑚,𝐷𝑟𝑚𝑚𝑚,𝐶𝑟𝑚𝑚𝑚� (1,5,5) �𝑄𝑚𝑚𝑚𝑚,𝐷𝑚𝑚𝑚𝑚,𝐶𝑚𝑚𝑚𝑚 �   (4,20,20) 

𝑈𝑚,𝑗
𝐼,𝑇𝑇𝑅𝑇𝑇 0.5 𝐶𝐷𝑈𝑚   0.9 

𝜔𝑄,𝑚: 𝜔𝐷,𝑚:𝜔𝐶,𝑚 1/3:1/3:1/3 𝑈𝑈𝑈𝑚   50-100% 

(α, β) for BMA (1, 10) (α, β) for BSA (10, 1) 



6.  COMPARATIVE ANALYSIS 
7.1 Experiment Setup 
Table 1 lists input parameters and their default values for 
performance analysis as in [10] for fair comparison. Below we 
explain each parameter in the table.  We consider |𝓝|=60 SPs in 
the system. There are |𝓢|=9 abstract services, 𝑈0 to 𝑈8, provided by 
these SPs. For simplicity, each SP is assumed to be specialized to 
one abstract service 𝑈𝑟 which is randomly assigned initially. All 
nodes follow the SWIM mobility model [6] with wireless 
transmission error probability 𝑝𝑎 = 5%. We consider a scenario 
with 80 service requests (|𝒯|=80) divided into 50 chunks, e.g., {1, 
2}, {3}, {4, 5}, {6, 7, 8}, {9}, {10}, {11, 12}, {13}, {14, 15}, etc. 
where a chunk is defined as a set of concurrent service requests 
overlapping in execution time. For simplicity, each service request 
has only one service composition specification consisting of 
|𝒮𝑚| = 4  abstract services connected in a series structure. The 
abstract services are randomly selected from 𝑈0 to 𝑈8 so that the 
demand to each node is roughly equal in these different sized 
problems. In case an SR cannot find enough SPs to satisfy the 
requirement, the service request fails and 𝑈𝑈𝑚 = 0. 

We model the hostility of the environment by the percentage of 
malicious nodes (𝑃𝑜𝑎𝑎) in the range of [0-50%] with the default 
value set at 30%. In a SOANET, malicious nodes do not intend to 
break the system functionality via traditional packet dropping 
attacks or impairment attacks [3], [7], [8] but aim to increase their 
chance of being selected for personal gain. When a bad node is 
chosen as a recommender, it can perform a bad-mouthing attack 
(BMA) on a good trustee node to ruin the reputation of that good 
node by providing bad recommendations so as to decrease the 
chance of this good node being selected to provide services. This 
is done by providing a very low α and a very high β, e.g., (α, β) = 
(1, 10), with α representing the number of positive and β the 
number of negative experiences, to ruin the reputation of that 
good trustee node. A bad node serving as a recommender can also 
perform a ballot-stuffing attack (BSA) to boost the reputation of 
another bad trustee node by providing good recommendations for 

that bad node, so as to increase the chance of that bad node being 
selected to provide services. This is done by providing a very high 
α, and a very low β, e.g., (α, β) = (10, 1), to boost the reputation of 
that bad trustee node. A malicious node can also perform a self-
promotion attack. This self-promotion behavior is modeled by a 
risk parameter 𝑃𝑎𝑚𝑎𝑟 in the range of [0-100%] with the default set 
at 50%. A malicious node performs a self-promotion attack by 
boosting its advertised Q, D and C scores obtained by the product 
of its true Q, D and C scores and (1 + 𝑃𝑎𝑚𝑎𝑟), (1 − 𝑃𝑎𝑚𝑎𝑟), and 
(1 − 𝑃𝑎𝑚𝑎𝑟), respectively. 𝑄𝑜𝑎𝑎, 𝐷𝑜𝑎𝑎 and 𝐶𝑜𝑎𝑎 give the true Q, D 
and C scores for bad nodes, which can be boosted during service 
advertisement. 𝑄𝑔𝑜𝑜𝑎, 𝐷𝑔𝑜𝑜𝑎 and 𝐶𝑔𝑜𝑜𝑎 give the true Q, D and C 
scores for good nodes, which will be reported by good nodes 
faithfully during service advertisement. The default values are set 
for the case in which the service quality of bad nodes is inferior to 
that of good nodes to reveal interesting design tradeoffs. These Q, 
D, and C values are context dependent (location and payoff), 
generated at the beginning, and are not changed during system 
operation. We set �𝑄𝑟𝑚𝑚𝑚,𝐷𝑟𝑚𝑚𝑚,𝐶𝑟𝑚𝑚𝑚 � = (1, 5, 5) at the abstract 
service level and �𝑄𝑚𝑚𝑚𝑚,𝐷𝑚𝑚𝑚𝑚,𝐶𝑚𝑚𝑚𝑚 �= (4, 20, 20) at the service 
request level for the minimum service quality requirement. 

The initial trust values (for integrity and competence in the case of 
multi-trust) are set to 0.5 for all nodes meaning ignorance (no 
knowledge). The integrity trust threshold 𝑈𝑚,𝑗

𝐼,𝑇𝑇𝑅𝑇𝑇  for TRM and 
SRM is set to 0.5 to punish a node with integrity trust less than 
ignorance trust as time progresses. The protocol compliance 
degree threshold 𝐶𝐷𝑈𝑚  is set to 0.9 to accommodate a 10% 
maximum detection error for assessing protocol compliance 
behavior. For simplicity we set 𝜔𝑄,𝑚 = 𝜔𝐷,𝑚 = 𝜔𝐶,𝑚 = 1/3  in 
Equation 2. The number of recommenders 𝑚𝑎𝑎𝑟 is set to 3 so node 
i will only allow 3 nodes with the highest 𝑈𝑚,𝑗 values as the 
recommenders during trust update.  

7.2 Comparative Performance Analysis 
In this section, we perform a comparative performance analysis of 
CATrust vs. single-trust and multi-trust protocols as the 

 

 
Figure 1: Performance Comparison of Trust-based vs. Non-trust-based Service Composition Algorithms. 



underlying trust protocol for the trust-based algorithm for solving 
the service composition and binding MOO problem via MATLAB 
simulation. Specifically, we simulate non-trust-based and trust-
based algorithms under the same environment setting defined in 
Table 1. 

Figure 1 shows the results. Figures 1(a)-(d) compare the MOO 
and user satisfaction performance. Figures 1(e)-(h) compare the 
percentage of bad service selected for service execution in this 
service composition application with MOO requirements. 

Figures 1(a)-(b) examine the negative impact of increasing 𝑃𝑜𝑎𝑎 
and 𝑃𝑎𝑚𝑎𝑟  on MOO performance in Equation 3. Compared with the 
non-trust-based algorithm, trust-based algorithms show high 
resilience against increased attack intensity with more malicious 
entities (𝑃𝑜𝑎𝑎)or higher self-promotion attack behavior (𝑃𝑎𝑚𝑎𝑟 ). 
Figure 1(c) examines the impact of 𝑈𝑈𝑈𝑚 on MOO performance. 
Note that 𝑈𝑈𝑈𝑚  is the service quality threshold compared with 
𝑈𝑈𝑚 to determine if a service experience is positive or negative. 
We observe that as 𝑈𝑈𝑈𝑚  increases, MOO performance increases 
(and levels off). The reason is that a high 𝑈𝑈𝑈𝑚 has the effect of 
penalizing bad nodes with low trust and can effectively remove 
bad nodes from participating in future service requests. 

Figure 1(d) compares 𝑈𝑈𝑚 calculated from Equation 4 as more 
service requests (labeled as “Operation #” on the x coordinate) are 
executed over time for the three trust-based algorithms against the 
non-trust-based algorithm. We consider a combination of 
𝑃𝑎𝑚𝑎𝑟 = 70%  and 𝑃𝑜𝑎𝑎 = 30%  to reveal interesting trends. 
Because of high 𝑃𝑎𝑚𝑎𝑟 , even trust-based algorithms are fooled into 
selecting bad nodes in the first few service requests. So the first 
few service requests do not pass 𝑈𝑈𝑈𝑚. As a result, bad nodes 
selected to provide services in the first few service requests are 
penalized with trust decrease and filtered out from later service 
requests. This is evidenced by the fact that the later service 
requests have high 𝑈𝑈𝑚values. In particular, for CATrust (pink 
dots), 𝑈𝑈𝑚 is near 90% after 15 service requests. We observe that 
𝑈𝑈𝑚 under CATrust is consistently higher than other trust-based 
counterparts. On the contrary, the non-trust-based algorithm 
(black dots) achieves a high 𝑈𝑈𝑚 only after 50 service requests 
are processed because it has no effective way of filtering out bad 
services until in the last few operations at which point it has 
blacklisted sufficient nodes with bad services. This trend supports 
our claim that trust-based algorithms can effectively achieve high 
user satisfaction despite the presence of bad nodes performing 
self-promotion attacks, especially after trust convergence occurs.  

Figures 1(e)-(h) compare the percentage of bad service selected in 
this service composition and binding application with MOO 
requirements. One can clearly see that CATrust outperforms the 
single-trust (BRS) and multi-trust (TRM, SRM) counterparts by a 
wide margin. In particular, the % of bad service selected under 
CATrust (pink dots) is significantly lower than that under BRS 
(red dots), TRM (green dots), or SRM (blue dots). We attribute 
the superiority of CATrust to its ability to associate context to 
solution quality delivered by an SP. Because a service request 
issued by an SR is context dependent (location and payoff), 
CATrust is able to learn an SP’s context-dependent service 
behavior and its delivered service quality, given location and 
payoff as input. On the contrary, BRS, TRM, and SRM do not 
take context into consideration and merely predict an SP’s 
“average” delivered service quality across the location and payoff 
context space. 

7. CONCLUSION 
Trust is known as an effective mechanism in services computing. 
However how to use it most effectively is less known. In this 
paper we conducted a comparative performance analysis of 
single-trust-based (BRS), multi-trust-based (TRM, SRM), and 
context-aware trust-based (CATrust) algorithms for a service 
composition and binding SOANET application with the goal of 
multi-objective optimization to answer this question. Our results 
demonstrated that context-aware trust-based service composition 
and binding is the winner for maximizing application 
performance. We attribute CATrust’s superiority to its ability to 
more accurately learn an SP’s context-dependent service behavior 
and the delivered service quality during service binding, while 
BRS, TRM, and SRM do not take context into consideration and 
merely predict an SP’s average delivered service quality across 
the context space. In the future, we plan to generalize the 
performance comparison analysis to more SOANET applications 
and validate the comparison results with service quality and 
mobility traces [4], [12]. 
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