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Abstract — We propose and analyze a trust management 

protocol for autonomous service-oriented mobile ad hoc 

networks (MANETs) populated with service providers 

(SPs) and service requesters (SRs). We demonstrate the 

resiliency and convergence properties of our trust 

protocol design for service-oriented MANETs in the 

presence of malicious nodes performing opportunistic 

service attacks and slandering attacks. Further, we 

consider a situation in which a mission comprising 

dynamically arriving tasks must achieve multiple 

conflicting objectives, including maximizing the mission 

reliability, minimizing the utilization variance, and 

minimizing the delay to task completion. We devise a 

trust-based heuristic algorithm to solve this multi-

objective optimization problem with a linear runtime 

complexity, thus allowing dynamic node-to-task 

assignment to be performed at runtime. Through 

extensive simulation, we demonstrate that our trust-

based node-to-task assignment algorithm outperforms a 

non-trust-based counterpart using blacklisting techniques 

while performing close to the ideal solution quality with 

perfect knowledge of node reliability over a wide range of 

environmental conditions. 

Keywords—service-oriented mobile ad hoc networks, multi-

objective optimization, task assignment, trust, performance 

analysis. 

I.  INTRODUCTION 

In this paper, we are concerned with autonomous service-

oriented mobile ad hoc networks (MANETs) populated with 

service providers (SPs) and service requesters (SRs). A 

realization of service-oriented MANETs is a web-based peer-

to-peer service system with mobile nodes providing web 

services and users (also mobile) invoking web services. 

Unlike a web service system in which nodes are connected to 

the Internet, nodes in service-oriented MANETs are mobile 

and the communication between peers not within radio range 

is multi-hop with nodes in the system serving as routers. 

Service-oriented MANET applications are often realized in a 

coalition formation setting where a task must be 

accomplished and the SR, taking a role of the task leader, 

must perform node-to-task assignment (NTA) to assemble a 

team among SPs to accomplish the task. 

We develop a trust management protocol specifically for 

autonomous service-oriented MANET applications. Previous 

work considered web service trust models [15, 16] and 

MANET trust models [5-8] separately without integrating 

unique MANET features with service-oriented applications. 

We demonstrate the resiliency and convergence properties of 

our trust protocol design for service-oriented MANETs in the 

presence of malicious nodes performing opportunistic 

service attacks and slandering attacks. 

To demonstrate the applicability, we consider a coalition 

formation setting in which a mission must handle 

dynamically arriving tasks to achieve multiple objectives. 

The motivation is that real world service-oriented 

applications often have multiple objective optimization 

(MOO) requirements, where they often have conflicting 

goals. In this work, we consider three system objectives: (1) 

maximizing mission reliability based on task completion 

ratio; (2) minimizing utilization variance, leading to high 

load balance among all nodes; and (3) minimizing the delay 

to complete time-sensitive tasks, thus maximizing QoS. We 

note that objective of load balancing is in conflict with others 

since maximizing load balance may sacrifice task completion 

ratio and QoS. 

The literature is rich in solution techniques and examples 

for solving a MOO problem, but is extremely unexplored in 

trust-based MOO solution techniques. Only [1-4] attempted 

using trust to solve MOO problems. Except [4], the 

environment is not MANETs.  

The contributions of this work are in the following. First, 

to the best of our knowledge, this work is the first to solve a 

multiple objective optimization (MOO) problem dealing with 



multiple, concurrent and dynamic task assignments with 

conflicting goals using trust in service-oriented MANETs. 

Our trust-based heuristic algorithm has a linear runtime 

complexity, thus allowing dynamic NTA to be performed at 

runtime. Second, this work proposes and analyzes a new 

design concept of trust-based MOO based on assessed trust 

levels to screen task team members for dynamic NTA. 

Lastly, we conduct a comparative analysis of our proposed 

trust-based heuristic member selection algorithm against the 

ideal solution with perfect knowledge of node status, 

demonstrating that our trust-based solution achieves solution 

efficiency without compromising solution optimality. 

The rest of this paper is organized as follows. Section II 

describes our system model including the network model, 

attack model, trust protocol design, task model, and our 

MOO problem definition. Section III proposes a linear 

runtime complexity trust-based heuristic algorithm to solve 

the MOO problem. Section IV performs a comparative 

analysis of our proposed scheme against the ideal solution 

with perfect knowledge over node reliability as well as a 

non-trust baseline scheme and demonstrates that our trust-

based scheme outperforms the non-trust-based counterpart 

using blacklisting techniques and performs close to the ideal 

solution quality. Section V concludes the paper and outlines 

some future research directions. 

II. SYSTEM MODEL 

A. Network  Model 

We consider a service-oriented MANET environment in 

which a node has two roles in executing operations: (1) as a 

service provider (SP) to support an operation; and (2) as a 

service requestor (SR) to request services in the process of 

initiating (and executing) a task. Nodes may be 

heterogeneous with vastly different functionalities and 

natures. For example, the entities may be sensors, robots, 

unmanned vehicles or other devices, dismounted soldiers or 

first response personnel carrying sensors or handheld 

devices, and manned vehicles with various types of 

equipment. We consider M ordered node types, NT1, …, NTM, 

such that a higher node type has a higher capability than a 

lower node type. A node with a high node type also may 

involve a human operator and thus has additional trust 

dimensions pertaining to social trust [5, 6]. When mobile 

nodes are not involved in a task, they follow their routine-

work mobility model. We use SWIM [10] in this paper.  

We adopt a hierarchical structure to execute a mission 

consisting of dynamically arriving tasks. A commander node 

(CN) governs the mission team. Under the CN, multiple task 

leaders (TLs) lead task teams. The CN selects TLs at the 

beginning of network deployment based on the 

trustworthiness of nodes known to CN a priori and the TLs 

each recruit trustworthy SPs dynamically for executing the 

tasks assigned to them. A group key is used for 

communications among members to prevent outside 

attackers.  

B. Attack Model 

A node in the service-oriented MANET may be 

compromised, and exhibit the following malicious behaviors: 

1. Opportunistic service attacks: a malicious node may 

collude with other malicious nodes to fail the task. It is 

opportunistic in the sense that a node would not perform 

attack when it does not see enough bad nodes around to 

perform a deadly attack at the expense of trust loss. 

Following the Byzantine Failure model [12], we assume 

that a task fails with at least 1/3 bad nodes executing the 

task. 

2. Bad-mouthing: a malicious node may collude with other 

malicious nodes to ruin the reputation of a good node by 

providing bad recommendations against the good node so 

as to decrease the chance of the good node being selected 

for task execution. 

3. Ballot stuffing: a malicious node may collude with other 

malicious nodes to boost the reputation of a bad node by 

providing good recommendations for the bad node so as 

to increase the chance of the bad node being selected for 

task execution. 

4. Packet dropping: a malicious node may arbitrarily drop 

packets passing through it during packet routing to 

disrupt normal operations. 

A malicious node could possibly perform self-promotional 

attack to boost its service quality information. However, we 

do not consider this attack because it can be easily detected, 

and accordingly a malicious node would expose itself as 

vulnerable, resulting in a low reputation. Also we do not 

consider malicious behaviors performing communication-

level attacks such as data modification, Denial-of-Service or 

Sybil attacks [11]. We assume such behaviors are detected by 

network intrusion detection mechanisms [11, 14].  

C. Trust Protocol 

Our baseline trust protocol uses Beta (α, β) distribution 

[13] modeling a trust value in the range of [0, 1] as a random 

variable where α and β represent the number of positive 

evidence and negative evidence respectively, such that the 

estimated mean trust value of a node is α/(α+β). When a task 

which a node participated in is executed successfully 

(unsuccessfully), this node’s α is incremented by ∆α  (β is 

incremented by ∆β  correspondingly). When we want to 

severely punish malicious behavior, we set ∆β >> ∆α. In this 

paper, we propose a “penalty severity” parameter denoted by 

∆β:∆α to analyze its effect of trust penalty severity on our 

trust protocol performance. For all nodes, the initial α and β 

values are 1, representing ignorance. 

Trust propagation and aggregation is performed 

periodically in every ∆t interval. Trust propagation is done 

via recommendations. A trustor node evaluating a trustee 

node will select nrec recommenders whom it trusts most to 

provide trust recommendations toward the trustee node. A 

recommender should only pass its direct interaction 

experience with the trustee node in terms of (α, β) as a 



recommendation to avoid dependence and looping. After a 

task is completed, the TL can serve as a recommender 

toward the members in its team because it had gathered 

interaction experiences. For trust aggregation, each trustor 

aggregates trust evidence of its own (α, β) with a 

recommender’s (α, β) toward the trustee node. Note that a 

recommender’s (α, β) trust evidence is discounted based on 

the concept of belief discounting [13], such that the lesser the 

trustor node trusts the recommender, the more the 

recommendation is discounted. Because a bad node can 

perform bad-mouthing and ballot stuffing attacks, it can 

provide a bad recommendation with β ˃˃ α toward a good 

node and a good recommendation with α ˃˃ β toward a bad 

node, respectively. It can be shown that the beta reputation 

system is resilient to such attacks if the trustor node has a 

low trust value toward the bad recommender [13]. In this 

paper, we do not use trust to catch and evict bad nodes.  

D. Task Model 

Tasks arrive asynchronously and may start and end at 

different times. We denote the start time, end time and 

duration of task m by Tm
start , Tm

end and DTm . Each task has 

unique properties:  

 Required node type NTm  indicates the required 

functionality of nodes for executing task m. A node with a 

higher node type has a higher capability and, because of 

human involvement, also has social trust dimensions.  

 Required number of nodes Nm refers to the number of 

nodes needed for execution of task m. 

 Importance (Im) refers to the impact of task failure on the 

mission with a higher value indicating higher importance. 

 Task execution Flow (Fm) indicates the task structure 

(sequential, parallel or both) by which nodes coordinate 

with each other. For simplicity, we assume Nm nodes 

execute the task sequentially. 

 Task execution deadline (Tm
end) specifies the deadline by 

which task m must complete, or it fails. 

A task fails when the task execution time exceeds the task 

execution deadline, or when it suffers from opportunistic 

service attacks described in Section II.B which can result 

from malicious nodes purposely delaying task execution time 

to cause task failure. When a task fails, we assume that the 

TL can differentiate the guilty parties from lawful members 

and will apply a penalty to guilty parties by either 

blacklisting the guilty parties for the non-trust-based scheme, 

or applying a trust loss to the guilty parties in terms of ∆β for 

the trust-based scheme as discussed in Section II.C. 

E. System Objectives 

A CN aims to achieve the system goal in terms of three 

objectives: mission reliability (R), utilization variance (U), 

and delay to task completion (D). One can view minimizing 

utilization variance as maximizing load balance, and 

minimizing delay to task completion as maximizing QoS. 

These three objectives are defined below. 

 Mission Reliability (R): This is the task reliability 

weighted by the task importance Im, computed by:  

R = ∑ Rm  
Im

∑ Imall
 m∈L        (1)  

L is the set of tasks in the mission. Rm, a binary number in 

{0, 1} , is the task reliability of task m. Following the 

Byzantine Failure model [12], we assume that a task fails 

when there are at least 1/3 bad nodes executing the task. 

Higher R is desirable. To achieve this objective, a TL 

should select highly trustworthy nodes. 

 Utilization Variance (U): This measures the utilization 

variance of nodes and is defined by: 

U =
∑ (|Ui−Ũ|)i∈N

|N|
  where Ui = ∑ Ui,mm∈L       (2)  

N is the set of legitimate member nodes. Ui,m is DTm/

DTmission if node i executes task m, and is zero otherwise, 

where DTm is the task duration and DTmissionis the mission 

duration. Ui is the overall utilization of node i. Ũ is the 

average utilization of all nodes. |Ui − Ũ| is the utilization 

variance of node i to the average. Lower U is desirable as 

it minimizes the utilization variance and achieves the load 

balance objective. To achieve this goal, a TL should select 

nodes with low utilization. 

 Delay to Task Completion (D): This is the average delay 

to task completion over all tasks, defined by:  

D =  
∑ Dmm∈L

|L|
   where Dm = Tm

complete
− Tm

start (3)  

Tm
complete

 is the actual completion time of task m. It is 

desirable to complete task m as early as possible with the 

drop-dead deadline of Tm
end. If task m is not completed by 

Tm
end, then task m fails and Dm is set to DTmission.  Lower D 

is desirable. To achieve this goal, a TL should select nodes 

with low execution time.  

To formulate the MOO problem as a maximization 

problem, we first scale R, U and D into R̅, U̅ and D̅ such that 

they each are in the range of [0, 1] and the higher the value to 

1, the better the objective is achieved. Specifically, we scale 

R, U and D by [9]: 

R̅ =
R − Rmin

Rmax − Rmin
; U̅ =

Umax − U

Umax − Umin
;  D̅ =

Dmax − D

Dmax − Dmin
  (4)  

Here Rmax and Rmin , Umax and Umin , and Dmax and Dmin 

are the maximum and minimum values of R, U, and D, 

respectively at the mission level. One can view U̅  after 

scaling as “load balance” in the range of [0, 1], and D̅ as 

“QoS” in the range of [0, 1]. Here we aim to solve the MOO 

problem by maximizing R̅ , U̅ and D̅,  given node and task 

characteristics as input. We adopt the weighted sum form 

converting the MOO problem to a single-objective 

optimization problem. Specifically, we formulate the MOO 

problem as: 



Maximize PMOO = ωRR̅ + ωUU̅ + ωDD̅ (5)  

Here ωR,  ωU and ωD are the weights associated with  R̅, 
U̅ and D̅ with ωR+ ωU+ωD = 1.  

III. TRUST-BASED DYNAMIC TASK ASSIGNMENT 

PROTOCOL 

We have two layers of task assignment: by a CN to TLs 

and by each TL to nodes. For ease of exposition and due to 

space limitation, we assume that the CN-to-TL assignment 

has already been done based on prior trust profiles of the 

nodes. A TL is assigned to execute one task at a time, and a 

node can participate in only one task at a time, although it 

may participate in multiple tasks during its lifetime. TLs 

advertise tasks and free nodes respond as described next. 

Below we describe our heuristic-based dynamic task 

assignment protocol design based on auctioning with the 

objective to achieve MOO with a linear runtime complexity. 

A. Advertisement of Task Specification  

The task specification disseminated during the auction 

process includes a set of requirements for task execution 

specified by: 

[IDm, Im, NTm, Fm, (Tm
start, Tm

end)] (6)  

IDm is the identifier of task m.  

B.  Bidding a Task 

When a node receives the task specification message by a 

TL, it makes a bidding decision on whether to bid the task or 

not. A node meeting the node type requirement NTm  is 

considered capable of handling the required work elements 

imposed by task m and will respond to the request with its 

node ID if it is free. To help the TL make an informed 

decision, node j sends its information to the TL as follows:  

[IDj, Uj, Dj, NTj] (7)  

IDj is the identifier of node j, Uj is the utilization of node j so 

far at the time of bidding, and Dj is the time required by node 

j to execute task m.  

C. Member Selection  

TLs implicitly seek to optimize the MOO function. 

However, to achieve run-time efficiency, they adopt 

heuristics to work independently of each other. The TL of 

task m ranks all bidding nodes (node j’s) based on 

ωRR j̅ + ωUUj̅ +  ωDDj̅ where R j̅, Uj̅ and Dj̅ are defined as: 

R j̅ = TTL,j; Uj̅ =
Umax − Uj

Umax − Umin
;  Dj̅ =

Dmax − Dj

Dmax − Dmin
  

(8)  

Here a TL considers Uj (utilization of node j) instead of U 

(utilization variance of all nodes who have participated in at 

least one task) because it does not have information about the 

latter and picking nodes to minimize utilization variance 

essentially can be achieved by picking nodes with low Uj  

(equivalently with high Uj̅  after scaling). Also a TL uses 

R̅j = TTL,j or its trust toward node j to predict task reliability 

if node j (a bidder) is selected for task execution. Top Nm 

nodes with the highest ranking scores are selected to execute 

task m. Here we note that the trust-based algorithm has a 

linear runtime complexity O(NB) where NB is the number of 

bidders because it only needs to examine all bidders once and 

selects the top ranked Nm bidders. 

D. Task Commitment by Nodes  

A node may receive more than one offer from multiple 

TLs where tasks arrive concurrently. A TL sends out a 

winner notification with the full list of winners where the 

winners are potential members for the task. A node 

determines which task to join based on the expected payoff. 

For a good node, it selects the task of the highest importance 

to join because of high trust gain. For a malicious node, it 

does the same for high trust gain except when the Byzantine 

Failure condition is satisfied, i.e., at least 1/3 of the task 

members are malicious nodes in which case it selects the 

highest important task that is bound to fail to join to cause 

the greatest damage to the mission at the expense of trust loss.  

TABLE I. KEY PARAMETERS AND DEFAULT VALUES 

Parameter Value Parameter Value 

(|N| , Nm) (20, 3), (60,9) |L|  180 tasks 

Im 1-5 𝜔 = (ωR, ωU,  ωD)  variable 

Dj U(1,5)  min Pb 10%-70% 

Tm
end − Tm

start U(Nm, 5Nm)min nrec 3 

∆α  Im ∆β: ∆α 0.1 −  10 

IV. NUMERICAL RESULTS AND ANALYSIS 

 In this section, we perform a comparative performance 

analysis of trust-based solutions against ideal solutions based 

on perfect knowledge, and non-trust-based solutions in terms 

of MOO performance with Matlab simulation.  

Table I summarizes key parameter values used for this 

case study. Our example system considers |N| =20, and 60 

nodes for small, and large-sized problems, respectively. For 

both types of problems, there are |L|=180 tasks arriving 

dynamically. For the small-sized problem, each task will 

need only Nm = 3 nodes, while for the large-sized problem, 

Nm = 9 nodes. A node’s capability is specified by its node 

type, ranging from NT1 to NT4 equally divided among 

|N| nodes. A node’s service quality in terms of service time 

required (regardless of whether it is malicious) is specified 

by Dj which follows uniform distribution U(1, 5) min. Tasks 

with overlapping start and end times are grouped into a 

concurrent “chunk.” Task importance is in the range from 1 

to 5. We simulate a task’s duration, that is, Tm
end − Tm

start by 

U(Nm, 5Nm)min. This defines the task deadline by which a 

task must be completed, or it will fail. An effect of this is that 

nodes with a long execution time  delay  will not  be selected  



for task execution by the TL of the task to prevent failure. A 

task’s execution time is the sum of those of individual nodes 

selected for task execution since we consider sequential 

execution in this paper. The percentage of malicious nodes Pb 

ranges from 10% to 70% whose effect will be analyzed in 

this section. The weights associated with multiple objectives, 

i.e., R,̅  U̅, and D̅  in the MOO problem are 𝜔 =
(ωR, ωU,  ωD) which we vary to analyze its sensitivity. 

A malicious node performs attacks as specified in the 

attack model in Section II. For the trust protocol, the number 

of recommenders nrec is set to 3. The increment to positive 

evidence  ∆α  is set to Im,  while the increment to negative 

evidence ∆β is set to Im  multiplied by the penalty severity 

parameter (i.e., ∆β:∆α) in the range of 0.1 to 10, with a larger 

number representing a more severe penalty to negative 

evidence. We will analyze the effect of severely punishing 

malicious behavior on MOO performance.  

WE consider two baseline algorithms against which our 

trust-based algorithm is compared in our performance 

analysis, ideal selection with perfect knowledge of node 

status vs. non-trust-based selection, as follows: 

1. Ideal selection: The TL of task m ranks all bidding 

nodes in the same way as the trust-based algorithm 

described earlier except that it has perfect knowledge of 

node status, i.e.,  R̅𝑗 = 1 if node j is a good node, and 

R̅𝑗 = 0  if node j is malicious. The ideal solution is 

impossible to achieve; it is just used to predict the 

performance upper bound to the trust-based solution. 

2. Non-trust-based selection: The TL of task m also ranks 

all bidding nodes in the same way as the trust-based 

algorithm except that R̅𝑗 =0 if the bidding node is 

blacklisted; R̅𝑗  =1 if the bidding node is not blacklisted 

and had participated in a successful task execution for 

which the TL was the task lead; and R̅𝑗 =0.5 (no 

knowledge) otherwise. We assume intelligent behavior 

so that each TL can learn from experiences. If a TL 

experiences a task failure, it blacklists nodes participated 

in the task execution and excludes them from future 

NTA for which it is the TL. Top Nm ranked nodes are 

selected for executing task m. 

 Fig. 1 presents the solution quality in terms of the scaled 

mission reliability (R̅), load balance (U̅), QoS (D̅), and PMOO 

obtained by the trust-based solution against the ideal solution 

and the non-trust-based solution in the small-sized problem 

(|N|=20,Nm = 3) as a function of the percentage of malicious 

nodes in the range of 10% to 70% with ∆β: ∆𝛼 = 1: 1 and 

𝜔 = (1/2: 1/6: 1/3) for a case in which reliability is more 

important than QoS and load balance. Note that R̅, U̅, D̅ and 

PMOO  are all scaled in the range of [0, 1] with a higher 

number indicating a higher performance. Each result point 

indicates the average value of the metric based on 100 

simulation runs, each of which has the same task arrival 

sequence with the Dj distribution randomized. Fig. 1 shows 

that the trust-based solution outperforms the non-trust-based 

solution and approaches the ideal solution, the effect of 

which is especially pronounced when Pb is high. There is an 

interesting tradeoff between the multiple objectives in terms 

 

 
Fig. 1:  Mission reliability (R̅), Load Balance (U̅), QoS (D̅), and PMOO vs. Bad Node Percentage Pb for a Small MOO 

Problem. 

 

 
Fig. 2: Trust Values of Good Nodes (Top) and Bad Nodes (Bottom) over time in Boxplot Format.  



of  R̅, U̅, and D̅.  The  ideal   solution   attempts  to  maximize 

PMOO in (5) by maximizing R̅  because of its perfect 

knowledge of node reliability at the expense of U̅ and D̅. On 

the other hand, without having sufficient evidence to 

establish trust (at least initially), the trust-based solution 

attempts to maximize D̅ without overly compromising R̅ and 

U̅. Finally, with only private blacklisting information kept by 

the TLs, the non-trust-based solution attempts to maximize U̅ 

at the expense of R̅  and D̅.  The ability for the TLs to 

differentiate good nodes from malicious nodes thus dictates 

how PMOOin (5) is maximized.  

Fig. 2 depicts the trust values of good nodes (top) and bad 

nodes (bottom) in boxplot format as a function of time 

(chunk #) in our trust protocol. A boxplot graphically depicts 

trust values through their quartiles without making any 

assumption about the distribution. In a boxplot, the bottom 

and top of a boxplot are the first and third quartiles, and the 

band inside the box is the second quartile (the median) with 

the ends of the whiskers showing the minimum and 

maximum of all of the trust values.  We can see that for Pb = 

10%, trust values are less dispersed, so the first and third 

quartiles are clustered into a thick dot. Further, the trust 

values of bad nodes are mostly above 0.5 because there are 

too few bad nodes in the system (2 out of 20) and the chance 

for them to be in the same task to perform opportunistic 

service attacks is low. In this case, bad nodes remain hidden 

and behave, with their trust values maintained above 0.5 to 

earn the trust reward. As Pb increases, the chance of 

performing opportunistic service attacks increases. As a 

result, the trust values of bad nodes are quickly updated to 

fall below 0.5 because of trust penalty. We also observe that 

trust convergence is achieved after 50 chunks (about 100 

tasks). This is particularly the case when Pb is sufficiently 

high at which the medium trust value of bad nodes is 

sufficiently low and the medium trust value of good nodes is 

sufficiently high, so the system is able to differentiate good 

nodes from bad nodes for task execution. For example, the 

medium good node trust value is 0.75 and the medium bad 

node trust value is 0.35 when Pb is 50%. This explains why 

when Pb is 50% in Fig. 1, the trust-based solution 

outperforms the non-trust-based solution and approaches the 

ideal solution. 

 Fig. 3 compares  R̅, U̅, D̅, and PMOO obtained by the trust-

based solution against the ideal solution and the non-trust-

based solution for the large-sized problem ((|N|=60, Nm = 9), 

again as a function of the percentage of malicious nodes in 

the range of 10% to 70%. Fig. 3 is similar in trend as Fig. 1 

with the trust-based scheme approaching the ideal scheme in 

the overall performance. Moreover the trust-based scheme 

significantly outperforms the non-trust-based scheme. We 

conclude that our heuristic trust-based solution with linear 

complexity O (|N|) indeed can achieve solution efficiency 

without compromising solution optimality. 

Fig. 4 tests the sensitivity of  R̅, U̅, D̅ and PMOO obtained 

from our trust-based solution with respect to the ratio of the 

positive increment to the negative increment ∆β: ∆𝛼, and the 

weights associated with multiple objectives  ω =
(ωR:  ωU:  ωD) for the case in which Pb = 70% (picked to 

show area of interest) for the small sized problem. We see 

that in general R̅ increases while U̅ and D̅ decrease as ∆β: ∆𝛼 

increases because a larger ratio severely punishes bad nodes 

for performing attacks, making the bad nodes more 

distinguishable from good nodes. Selecting mostly good 

nodes for task execution, however, increases R̅ but sacrifices 

 

 
Fig. 3: Performance Comparison for a Large-sized MOO Problem. 

 

 

 
Fig. 4: Sensitivity Analysis of MOO with respect to ∆β: ∆𝛼 and  ω = (ωR: ωU:  ωD). 

 



U̅ because node selection tends to select mostly good nodes, 

and also sacrifices D̅ because bad nodes with good service 

quality are not selected.  

A striking observation is that the best ∆β: ∆𝛼 to maximize 

PMOO  is affected by the weights associated with multiple 

objectives, i.e., R̅ , U̅ and D̅  in the MOO problem. This is 

evident in the rightmost graph of Fig. 4 where we observe 

that the best ∆β: ∆𝛼  ratios are 0.1, 1, and 2, for 𝜔 =

(
1

3
:

1

3
:

1

3
) , (

1

2
:

1

3
:

1

6
) and (

1

2
:

1

6
:

1

3
), respectively, for maximizing 

PMOOin (5). The reason is that a higher ∆β: ∆𝛼 increases R̅ 

but sacrifices U̅ and D̅ as they are conflicting goals. Hence, 

under the equal weight scenario (the red line) when all 

objectives contribute equally, the best ∆β: ∆𝛼 value is small 

as so to best balance the gain of R̅ vs. the loss of U̅ and D̅ for 

MOO. 

Here we note that although the sensitivity analysis is 

demonstrated for the case in which Pb = 70%, the general 

behavior observed is true across. The only difference is the 

degree of sensitivity. For applicability, one can do static 

analysis as performed in this paper, collect the best trust 

protocol settings in terms of the best ∆β: ∆𝛼  ratio as a 

function ω  and Pb, and then apply the best setting upon 

detection of dynamically changing environmental conditions 

at runtime to maximize protocol performance of the trust-

based solution. 

V. CONCLUSION 

In this paper, we proposed a trust-based dynamic task 

assignment protocol for autonomous service-oriented 

MANETs where we are concerned with multi-objective 

optimization (MOO) for multiple objectives with conflicting 

goals. The results demonstrated that our trust-based solution 

has low complexity and yet can achieve performance 

comparable to that of the ideal solution with perfect 

knowledge of node reliability, and can significantly 

outperform the non-trust-based solution. We also provided 

insight of how MOO is achieved by the ideal, trust-based and 

non-trust-based solutions, and identified parameter settings 

under which the trust protocol performance in terms of MOO 

is optimized for the trust-based solution which can best 

balance multiple objectives with conflicting goals. The 

results obtained are useful for dynamic trust management to 

maximize application performance in terms of MOO. 

In the future, we plan to refine our heuristic design for 

member bidding and selection strategies to further enhance 

MOO performance, possibly exploring game theory. We also 

plan to explore other forms of MOO formulation applicable 

to other autonomous service-oriented MANET scenarios.  
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