
Trust-Based Task Assignment in Autonomous

Service-Oriented Ad Hoc Networks

Yating Wang
†
, Ing-Ray Chen,† Jin-Hee Cho*

†
Virginia Tech

Department of Computer Science

{yatingw, irchen}@vt.edu

*U.S. Army Research Laboratory

Computational and Information Sciences Directorate

jinhee.cho@us.army.mil

Abstract — We propose and analyze a trust management

protocol for autonomous service-oriented mobile ad hoc

networks (MANETs) populated with service providers

(SPs) and service requesters (SRs). We demonstrate the

resiliency and convergence properties of our trust

protocol design for service-oriented MANETs in the

presence of malicious nodes performing opportunistic

service attacks and slandering attacks. Further, we

consider a situation in which a mission comprising

dynamically arriving tasks must achieve multiple

conflicting objectives, including maximizing the mission

reliability, minimizing the utilization variance, and

minimizing the delay to task completion. We devise a

trust-based heuristic algorithm to solve this multi-

objective optimization problem with a linear runtime

complexity, thus allowing dynamic node-to-task

assignment to be performed at runtime. Through

extensive simulation, we demonstrate that our trust-

based node-to-task assignment algorithm outperforms a

non-trust-based counterpart using blacklisting techniques

while performing close to the ideal solution quality with

perfect knowledge of node reliability over a wide range of

environmental conditions.

Keywords—service-oriented mobile ad hoc networks, multi-

objective optimization, task assignment, trust, performance

analysis.

I. INTRODUCTION

In this paper, we are concerned with autonomous service-

oriented mobile ad hoc networks (MANETs) populated with

service providers (SPs) and service requesters (SRs). A

realization of service-oriented MANETs is a web-based peer-

to-peer service system with mobile nodes providing web

services and users (also mobile) invoking web services.

Unlike a web service system in which nodes are connected to

the Internet, nodes in service-oriented MANETs are mobile

and the communication between peers not within radio range

is multi-hop with nodes in the system serving as routers.

Service-oriented MANET applications are often realized in a

coalition formation setting where a task must be

accomplished and the SR, taking a role of the task leader,

must perform node-to-task assignment (NTA) to assemble a

team among SPs to accomplish the task.

We develop a trust management protocol specifically for

autonomous service-oriented MANET applications. Previous

work considered web service trust models [15, 16] and

MANET trust models [5-8] separately without integrating

unique MANET features with service-oriented applications.

We demonstrate the resiliency and convergence properties of

our trust protocol design for service-oriented MANETs in the

presence of malicious nodes performing opportunistic

service attacks and slandering attacks.

To demonstrate the applicability, we consider a coalition

formation setting in which a mission must handle

dynamically arriving tasks to achieve multiple objectives.

The motivation is that real world service-oriented

applications often have multiple objective optimization

(MOO) requirements, where they often have conflicting

goals. In this work, we consider three system objectives: (1)

maximizing mission reliability based on task completion

ratio; (2) minimizing utilization variance, leading to high

load balance among all nodes; and (3) minimizing the delay

to complete time-sensitive tasks, thus maximizing QoS. We

note that objective of load balancing is in conflict with others

since maximizing load balance may sacrifice task completion

ratio and QoS.

The literature is rich in solution techniques and examples

for solving a MOO problem, but is extremely unexplored in

trust-based MOO solution techniques. Only [1-4] attempted

using trust to solve MOO problems. Except [4], the

environment is not MANETs.

The contributions of this work are in the following. First,

to the best of our knowledge, this work is the first to solve a

multiple objective optimization (MOO) problem dealing with

multiple, concurrent and dynamic task assignments with

conflicting goals using trust in service-oriented MANETs.

Our trust-based heuristic algorithm has a linear runtime

complexity, thus allowing dynamic NTA to be performed at

runtime. Second, this work proposes and analyzes a new

design concept of trust-based MOO based on assessed trust

levels to screen task team members for dynamic NTA.

Lastly, we conduct a comparative analysis of our proposed

trust-based heuristic member selection algorithm against the

ideal solution with perfect knowledge of node status,

demonstrating that our trust-based solution achieves solution

efficiency without compromising solution optimality.

The rest of this paper is organized as follows. Section II

describes our system model including the network model,

attack model, trust protocol design, task model, and our

MOO problem definition. Section III proposes a linear

runtime complexity trust-based heuristic algorithm to solve

the MOO problem. Section IV performs a comparative

analysis of our proposed scheme against the ideal solution

with perfect knowledge over node reliability as well as a

non-trust baseline scheme and demonstrates that our trust-

based scheme outperforms the non-trust-based counterpart

using blacklisting techniques and performs close to the ideal

solution quality. Section V concludes the paper and outlines

some future research directions.

II. SYSTEM MODEL

A. Network Model

We consider a service-oriented MANET environment in

which a node has two roles in executing operations: (1) as a

service provider (SP) to support an operation; and (2) as a

service requestor (SR) to request services in the process of

initiating (and executing) a task. Nodes may be

heterogeneous with vastly different functionalities and

natures. For example, the entities may be sensors, robots,

unmanned vehicles or other devices, dismounted soldiers or

first response personnel carrying sensors or handheld

devices, and manned vehicles with various types of

equipment. We consider M ordered node types, NT1, …, NTM,

such that a higher node type has a higher capability than a

lower node type. A node with a high node type also may

involve a human operator and thus has additional trust

dimensions pertaining to social trust [5, 6]. When mobile

nodes are not involved in a task, they follow their routine-

work mobility model. We use SWIM [10] in this paper.

We adopt a hierarchical structure to execute a mission

consisting of dynamically arriving tasks. A commander node

(CN) governs the mission team. Under the CN, multiple task

leaders (TLs) lead task teams. The CN selects TLs at the

beginning of network deployment based on the

trustworthiness of nodes known to CN a priori and the TLs

each recruit trustworthy SPs dynamically for executing the

tasks assigned to them. A group key is used for

communications among members to prevent outside

attackers.

B. Attack Model

A node in the service-oriented MANET may be

compromised, and exhibit the following malicious behaviors:

1. Opportunistic service attacks: a malicious node may

collude with other malicious nodes to fail the task. It is

opportunistic in the sense that a node would not perform

attack when it does not see enough bad nodes around to

perform a deadly attack at the expense of trust loss.

Following the Byzantine Failure model [12], we assume

that a task fails with at least 1/3 bad nodes executing the

task.

2. Bad-mouthing: a malicious node may collude with other

malicious nodes to ruin the reputation of a good node by

providing bad recommendations against the good node so

as to decrease the chance of the good node being selected

for task execution.

3. Ballot stuffing: a malicious node may collude with other

malicious nodes to boost the reputation of a bad node by

providing good recommendations for the bad node so as

to increase the chance of the bad node being selected for

task execution.

4. Packet dropping: a malicious node may arbitrarily drop

packets passing through it during packet routing to

disrupt normal operations.

A malicious node could possibly perform self-promotional

attack to boost its service quality information. However, we

do not consider this attack because it can be easily detected,

and accordingly a malicious node would expose itself as

vulnerable, resulting in a low reputation. Also we do not

consider malicious behaviors performing communication-

level attacks such as data modification, Denial-of-Service or

Sybil attacks [11]. We assume such behaviors are detected by

network intrusion detection mechanisms [11, 14].

C. Trust Protocol

Our baseline trust protocol uses Beta (α, β) distribution

[13] modeling a trust value in the range of [0, 1] as a random

variable where α and β represent the number of positive

evidence and negative evidence respectively, such that the

estimated mean trust value of a node is α/(α+β). When a task

which a node participated in is executed successfully

(unsuccessfully), this node’s α is incremented by ∆α (β is

incremented by ∆β correspondingly). When we want to

severely punish malicious behavior, we set ∆β >> ∆α. In this

paper, we propose a “penalty severity” parameter denoted by

∆β:∆α to analyze its effect of trust penalty severity on our

trust protocol performance. For all nodes, the initial α and β

values are 1, representing ignorance.

Trust propagation and aggregation is performed

periodically in every ∆t interval. Trust propagation is done

via recommendations. A trustor node evaluating a trustee

node will select nrec recommenders whom it trusts most to

provide trust recommendations toward the trustee node. A

recommender should only pass its direct interaction

experience with the trustee node in terms of (α, β) as a

recommendation to avoid dependence and looping. After a

task is completed, the TL can serve as a recommender

toward the members in its team because it had gathered

interaction experiences. For trust aggregation, each trustor

aggregates trust evidence of its own (α, β) with a

recommender’s (α, β) toward the trustee node. Note that a

recommender’s (α, β) trust evidence is discounted based on

the concept of belief discounting [13], such that the lesser the

trustor node trusts the recommender, the more the

recommendation is discounted. Because a bad node can

perform bad-mouthing and ballot stuffing attacks, it can

provide a bad recommendation with β ˃˃ α toward a good

node and a good recommendation with α ˃˃ β toward a bad

node, respectively. It can be shown that the beta reputation

system is resilient to such attacks if the trustor node has a

low trust value toward the bad recommender [13]. In this

paper, we do not use trust to catch and evict bad nodes.

D. Task Model

Tasks arrive asynchronously and may start and end at

different times. We denote the start time, end time and

duration of task m by Tm
start , Tm

end and DTm . Each task has

unique properties:

 Required node type NTm indicates the required

functionality of nodes for executing task m. A node with a

higher node type has a higher capability and, because of

human involvement, also has social trust dimensions.

 Required number of nodes Nm refers to the number of

nodes needed for execution of task m.

 Importance (Im) refers to the impact of task failure on the

mission with a higher value indicating higher importance.

 Task execution Flow (Fm) indicates the task structure

(sequential, parallel or both) by which nodes coordinate

with each other. For simplicity, we assume Nm nodes

execute the task sequentially.

 Task execution deadline (Tm
end) specifies the deadline by

which task m must complete, or it fails.

A task fails when the task execution time exceeds the task

execution deadline, or when it suffers from opportunistic

service attacks described in Section II.B which can result

from malicious nodes purposely delaying task execution time

to cause task failure. When a task fails, we assume that the

TL can differentiate the guilty parties from lawful members

and will apply a penalty to guilty parties by either

blacklisting the guilty parties for the non-trust-based scheme,

or applying a trust loss to the guilty parties in terms of ∆β for

the trust-based scheme as discussed in Section II.C.

E. System Objectives

A CN aims to achieve the system goal in terms of three

objectives: mission reliability (R), utilization variance (U),

and delay to task completion (D). One can view minimizing

utilization variance as maximizing load balance, and

minimizing delay to task completion as maximizing QoS.

These three objectives are defined below.

 Mission Reliability (R): This is the task reliability

weighted by the task importance Im, computed by:

R = ∑ Rm
Im

∑ Imall
 m∈L (1)

L is the set of tasks in the mission. Rm, a binary number in

{0, 1} , is the task reliability of task m. Following the

Byzantine Failure model [12], we assume that a task fails

when there are at least 1/3 bad nodes executing the task.

Higher R is desirable. To achieve this objective, a TL

should select highly trustworthy nodes.

 Utilization Variance (U): This measures the utilization

variance of nodes and is defined by:

U =
∑ (|Ui−Ũ|)i∈N

|N|
 where Ui = ∑ Ui,mm∈L (2)

N is the set of legitimate member nodes. Ui,m is DTm/

DTmission if node i executes task m, and is zero otherwise,

where DTm is the task duration and DTmissionis the mission

duration. Ui is the overall utilization of node i. Ũ is the

average utilization of all nodes. |Ui − Ũ| is the utilization

variance of node i to the average. Lower U is desirable as

it minimizes the utilization variance and achieves the load

balance objective. To achieve this goal, a TL should select

nodes with low utilization.

 Delay to Task Completion (D): This is the average delay

to task completion over all tasks, defined by:

D =
∑ Dmm∈L

|L|
 where Dm = Tm

complete
− Tm

start (3)

Tm
complete

 is the actual completion time of task m. It is

desirable to complete task m as early as possible with the

drop-dead deadline of Tm
end. If task m is not completed by

Tm
end, then task m fails and Dm is set to DTmission. Lower D

is desirable. To achieve this goal, a TL should select nodes

with low execution time.

To formulate the MOO problem as a maximization

problem, we first scale R, U and D into R̅, U̅ and D̅ such that

they each are in the range of [0, 1] and the higher the value to

1, the better the objective is achieved. Specifically, we scale

R, U and D by [9]:

R̅ =
R − Rmin

Rmax − Rmin
; U̅ =

Umax − U

Umax − Umin
; D̅ =

Dmax − D

Dmax − Dmin
 (4)

Here Rmax and Rmin , Umax and Umin , and Dmax and Dmin

are the maximum and minimum values of R, U, and D,

respectively at the mission level. One can view U̅ after

scaling as “load balance” in the range of [0, 1], and D̅ as

“QoS” in the range of [0, 1]. Here we aim to solve the MOO

problem by maximizing R̅ , U̅ and D̅, given node and task

characteristics as input. We adopt the weighted sum form

converting the MOO problem to a single-objective

optimization problem. Specifically, we formulate the MOO

problem as:

Maximize PMOO = ωRR̅ + ωUU̅ + ωDD̅ (5)

Here ωR, ωU and ωD are the weights associated with R̅,
U̅ and D̅ with ωR+ ωU+ωD = 1.

III. TRUST-BASED DYNAMIC TASK ASSIGNMENT

PROTOCOL

We have two layers of task assignment: by a CN to TLs

and by each TL to nodes. For ease of exposition and due to

space limitation, we assume that the CN-to-TL assignment

has already been done based on prior trust profiles of the

nodes. A TL is assigned to execute one task at a time, and a

node can participate in only one task at a time, although it

may participate in multiple tasks during its lifetime. TLs

advertise tasks and free nodes respond as described next.

Below we describe our heuristic-based dynamic task

assignment protocol design based on auctioning with the

objective to achieve MOO with a linear runtime complexity.

A. Advertisement of Task Specification

The task specification disseminated during the auction

process includes a set of requirements for task execution

specified by:

[IDm, Im, NTm, Fm, (Tm
start, Tm

end)] (6)

IDm is the identifier of task m.

B. Bidding a Task

When a node receives the task specification message by a

TL, it makes a bidding decision on whether to bid the task or

not. A node meeting the node type requirement NTm is

considered capable of handling the required work elements

imposed by task m and will respond to the request with its

node ID if it is free. To help the TL make an informed

decision, node j sends its information to the TL as follows:

[IDj, Uj, Dj, NTj] (7)

IDj is the identifier of node j, Uj is the utilization of node j so

far at the time of bidding, and Dj is the time required by node

j to execute task m.

C. Member Selection

TLs implicitly seek to optimize the MOO function.

However, to achieve run-time efficiency, they adopt

heuristics to work independently of each other. The TL of

task m ranks all bidding nodes (node j’s) based on

ωRR j̅ + ωUUj̅ + ωDDj̅ where R j̅, Uj̅ and Dj̅ are defined as:

R j̅ = TTL,j; Uj̅ =
Umax − Uj

Umax − Umin
; Dj̅ =

Dmax − Dj

Dmax − Dmin

(8)

Here a TL considers Uj (utilization of node j) instead of U

(utilization variance of all nodes who have participated in at

least one task) because it does not have information about the

latter and picking nodes to minimize utilization variance

essentially can be achieved by picking nodes with low Uj

(equivalently with high Uj̅ after scaling). Also a TL uses

R̅j = TTL,j or its trust toward node j to predict task reliability

if node j (a bidder) is selected for task execution. Top Nm

nodes with the highest ranking scores are selected to execute

task m. Here we note that the trust-based algorithm has a

linear runtime complexity O(NB) where NB is the number of

bidders because it only needs to examine all bidders once and

selects the top ranked Nm bidders.

D. Task Commitment by Nodes

A node may receive more than one offer from multiple

TLs where tasks arrive concurrently. A TL sends out a

winner notification with the full list of winners where the

winners are potential members for the task. A node

determines which task to join based on the expected payoff.

For a good node, it selects the task of the highest importance

to join because of high trust gain. For a malicious node, it

does the same for high trust gain except when the Byzantine

Failure condition is satisfied, i.e., at least 1/3 of the task

members are malicious nodes in which case it selects the

highest important task that is bound to fail to join to cause

the greatest damage to the mission at the expense of trust loss.

TABLE I. KEY PARAMETERS AND DEFAULT VALUES

Parameter Value Parameter Value

(|N| , Nm) (20, 3), (60,9) |L| 180 tasks

Im 1-5 𝜔 = (ωR, ωU, ωD) variable

Dj U(1,5) min Pb 10%-70%

Tm
end − Tm

start U(Nm, 5Nm)min nrec 3

∆α Im ∆β: ∆α 0.1 − 10

IV. NUMERICAL RESULTS AND ANALYSIS

 In this section, we perform a comparative performance

analysis of trust-based solutions against ideal solutions based

on perfect knowledge, and non-trust-based solutions in terms

of MOO performance with Matlab simulation.

Table I summarizes key parameter values used for this

case study. Our example system considers |N| =20, and 60

nodes for small, and large-sized problems, respectively. For

both types of problems, there are |L|=180 tasks arriving

dynamically. For the small-sized problem, each task will

need only Nm = 3 nodes, while for the large-sized problem,

Nm = 9 nodes. A node’s capability is specified by its node

type, ranging from NT1 to NT4 equally divided among

|N| nodes. A node’s service quality in terms of service time

required (regardless of whether it is malicious) is specified

by Dj which follows uniform distribution U(1, 5) min. Tasks

with overlapping start and end times are grouped into a

concurrent “chunk.” Task importance is in the range from 1

to 5. We simulate a task’s duration, that is, Tm
end − Tm

start by

U(Nm, 5Nm)min. This defines the task deadline by which a

task must be completed, or it will fail. An effect of this is that

nodes with a long execution time delay will not be selected

for task execution by the TL of the task to prevent failure. A

task’s execution time is the sum of those of individual nodes

selected for task execution since we consider sequential

execution in this paper. The percentage of malicious nodes Pb

ranges from 10% to 70% whose effect will be analyzed in

this section. The weights associated with multiple objectives,

i.e., R,̅ U̅, and D̅ in the MOO problem are 𝜔 =
(ωR, ωU, ωD) which we vary to analyze its sensitivity.

A malicious node performs attacks as specified in the

attack model in Section II. For the trust protocol, the number

of recommenders nrec is set to 3. The increment to positive

evidence ∆α is set to Im, while the increment to negative

evidence ∆β is set to Im multiplied by the penalty severity

parameter (i.e., ∆β:∆α) in the range of 0.1 to 10, with a larger

number representing a more severe penalty to negative

evidence. We will analyze the effect of severely punishing

malicious behavior on MOO performance.

WE consider two baseline algorithms against which our

trust-based algorithm is compared in our performance

analysis, ideal selection with perfect knowledge of node

status vs. non-trust-based selection, as follows:

1. Ideal selection: The TL of task m ranks all bidding

nodes in the same way as the trust-based algorithm

described earlier except that it has perfect knowledge of

node status, i.e., R̅𝑗 = 1 if node j is a good node, and

R̅𝑗 = 0 if node j is malicious. The ideal solution is

impossible to achieve; it is just used to predict the

performance upper bound to the trust-based solution.

2. Non-trust-based selection: The TL of task m also ranks

all bidding nodes in the same way as the trust-based

algorithm except that R̅𝑗 =0 if the bidding node is

blacklisted; R̅𝑗 =1 if the bidding node is not blacklisted

and had participated in a successful task execution for

which the TL was the task lead; and R̅𝑗 =0.5 (no

knowledge) otherwise. We assume intelligent behavior

so that each TL can learn from experiences. If a TL

experiences a task failure, it blacklists nodes participated

in the task execution and excludes them from future

NTA for which it is the TL. Top Nm ranked nodes are

selected for executing task m.

 Fig. 1 presents the solution quality in terms of the scaled

mission reliability (R̅), load balance (U̅), QoS (D̅), and PMOO

obtained by the trust-based solution against the ideal solution

and the non-trust-based solution in the small-sized problem

(|N|=20,Nm = 3) as a function of the percentage of malicious

nodes in the range of 10% to 70% with ∆β: ∆𝛼 = 1: 1 and

𝜔 = (1/2: 1/6: 1/3) for a case in which reliability is more

important than QoS and load balance. Note that R̅, U̅, D̅ and

PMOO are all scaled in the range of [0, 1] with a higher

number indicating a higher performance. Each result point

indicates the average value of the metric based on 100

simulation runs, each of which has the same task arrival

sequence with the Dj distribution randomized. Fig. 1 shows

that the trust-based solution outperforms the non-trust-based

solution and approaches the ideal solution, the effect of

which is especially pronounced when Pb is high. There is an

interesting tradeoff between the multiple objectives in terms

Fig. 1: Mission reliability (R̅), Load Balance (U̅), QoS (D̅), and PMOO vs. Bad Node Percentage Pb for a Small MOO

Problem.

Fig. 2: Trust Values of Good Nodes (Top) and Bad Nodes (Bottom) over time in Boxplot Format.

of R̅, U̅, and D̅. The ideal solution attempts to maximize

PMOO in (5) by maximizing R̅ because of its perfect

knowledge of node reliability at the expense of U̅ and D̅. On

the other hand, without having sufficient evidence to

establish trust (at least initially), the trust-based solution

attempts to maximize D̅ without overly compromising R̅ and

U̅. Finally, with only private blacklisting information kept by

the TLs, the non-trust-based solution attempts to maximize U̅

at the expense of R̅ and D̅. The ability for the TLs to

differentiate good nodes from malicious nodes thus dictates

how PMOOin (5) is maximized.

Fig. 2 depicts the trust values of good nodes (top) and bad

nodes (bottom) in boxplot format as a function of time

(chunk #) in our trust protocol. A boxplot graphically depicts

trust values through their quartiles without making any

assumption about the distribution. In a boxplot, the bottom

and top of a boxplot are the first and third quartiles, and the

band inside the box is the second quartile (the median) with

the ends of the whiskers showing the minimum and

maximum of all of the trust values. We can see that for Pb =

10%, trust values are less dispersed, so the first and third

quartiles are clustered into a thick dot. Further, the trust

values of bad nodes are mostly above 0.5 because there are

too few bad nodes in the system (2 out of 20) and the chance

for them to be in the same task to perform opportunistic

service attacks is low. In this case, bad nodes remain hidden

and behave, with their trust values maintained above 0.5 to

earn the trust reward. As Pb increases, the chance of

performing opportunistic service attacks increases. As a

result, the trust values of bad nodes are quickly updated to

fall below 0.5 because of trust penalty. We also observe that

trust convergence is achieved after 50 chunks (about 100

tasks). This is particularly the case when Pb is sufficiently

high at which the medium trust value of bad nodes is

sufficiently low and the medium trust value of good nodes is

sufficiently high, so the system is able to differentiate good

nodes from bad nodes for task execution. For example, the

medium good node trust value is 0.75 and the medium bad

node trust value is 0.35 when Pb is 50%. This explains why

when Pb is 50% in Fig. 1, the trust-based solution

outperforms the non-trust-based solution and approaches the

ideal solution.

 Fig. 3 compares R̅, U̅, D̅, and PMOO obtained by the trust-

based solution against the ideal solution and the non-trust-

based solution for the large-sized problem ((|N|=60, Nm = 9),

again as a function of the percentage of malicious nodes in

the range of 10% to 70%. Fig. 3 is similar in trend as Fig. 1

with the trust-based scheme approaching the ideal scheme in

the overall performance. Moreover the trust-based scheme

significantly outperforms the non-trust-based scheme. We

conclude that our heuristic trust-based solution with linear

complexity O (|N|) indeed can achieve solution efficiency

without compromising solution optimality.

Fig. 4 tests the sensitivity of R̅, U̅, D̅ and PMOO obtained

from our trust-based solution with respect to the ratio of the

positive increment to the negative increment ∆β: ∆𝛼, and the

weights associated with multiple objectives ω =
(ωR: ωU: ωD) for the case in which Pb = 70% (picked to

show area of interest) for the small sized problem. We see

that in general R̅ increases while U̅ and D̅ decrease as ∆β: ∆𝛼

increases because a larger ratio severely punishes bad nodes

for performing attacks, making the bad nodes more

distinguishable from good nodes. Selecting mostly good

nodes for task execution, however, increases R̅ but sacrifices

Fig. 3: Performance Comparison for a Large-sized MOO Problem.

Fig. 4: Sensitivity Analysis of MOO with respect to ∆β: ∆𝛼 and ω = (ωR: ωU: ωD).

U̅ because node selection tends to select mostly good nodes,

and also sacrifices D̅ because bad nodes with good service

quality are not selected.

A striking observation is that the best ∆β: ∆𝛼 to maximize

PMOO is affected by the weights associated with multiple

objectives, i.e., R̅ , U̅ and D̅ in the MOO problem. This is

evident in the rightmost graph of Fig. 4 where we observe

that the best ∆β: ∆𝛼 ratios are 0.1, 1, and 2, for 𝜔 =

(
1

3
:

1

3
:

1

3
) , (

1

2
:

1

3
:

1

6
) and (

1

2
:

1

6
:

1

3
), respectively, for maximizing

PMOOin (5). The reason is that a higher ∆β: ∆𝛼 increases R̅

but sacrifices U̅ and D̅ as they are conflicting goals. Hence,

under the equal weight scenario (the red line) when all

objectives contribute equally, the best ∆β: ∆𝛼 value is small

as so to best balance the gain of R̅ vs. the loss of U̅ and D̅ for

MOO.

Here we note that although the sensitivity analysis is

demonstrated for the case in which Pb = 70%, the general

behavior observed is true across. The only difference is the

degree of sensitivity. For applicability, one can do static

analysis as performed in this paper, collect the best trust

protocol settings in terms of the best ∆β: ∆𝛼 ratio as a

function ω and Pb, and then apply the best setting upon

detection of dynamically changing environmental conditions

at runtime to maximize protocol performance of the trust-

based solution.

V. CONCLUSION

In this paper, we proposed a trust-based dynamic task

assignment protocol for autonomous service-oriented

MANETs where we are concerned with multi-objective

optimization (MOO) for multiple objectives with conflicting

goals. The results demonstrated that our trust-based solution

has low complexity and yet can achieve performance

comparable to that of the ideal solution with perfect

knowledge of node reliability, and can significantly

outperform the non-trust-based solution. We also provided

insight of how MOO is achieved by the ideal, trust-based and

non-trust-based solutions, and identified parameter settings

under which the trust protocol performance in terms of MOO

is optimized for the trust-based solution which can best

balance multiple objectives with conflicting goals. The

results obtained are useful for dynamic trust management to

maximize application performance in terms of MOO.

In the future, we plan to refine our heuristic design for

member bidding and selection strategies to further enhance

MOO performance, possibly exploring game theory. We also

plan to explore other forms of MOO formulation applicable

to other autonomous service-oriented MANET scenarios.

ACKNOWLEDGMENTS

This work is supported in part by the U. S. Army Research

Laboratory and the U. S. Army Research Office under

contract number W911NF-12-1-0445. This research was also

partially supported by the Department of Defense (DoD)

through the office of the Assistant Secretary of Defense for

Research and Engineering (ASD (R&E)). The views and

opinions of the author(s) do not reflect those of the DoD or

ASD (R&E).

REFERENCES

[1] A. Das, and M. M. Islam, “SecuredTrust: A dynamic trust

computation model for secured communication in multiagent

systems,” IEEE Trans. Dependable and Secure Computing,

vol. 9, no. 2, 2012, pp. 261-274.

[2] C. Dorn, et al., “Interaction mining and skill-dependent

recommendations for multi-objective team composition,” Data

Knowledge Engineering, vol. 70, no. 10, 2011, pp. 866–891.

[3] L. Shen, L. Zhang, and D. Huang, “Trust-driven both-matched

algorithm for grid task multi-objective scheduling,” 2nd Conf.

Information Science and Engineering, 2010, pp. 1661-1664.

[4] M. Chang, J.H. Cho, I.R. Chen, K. Chan, and A. Swami,

“Trust-based task assignment in military ad hoc networks,”

17th Int’l Command and Control Research and Technology

Symposium, Fairfax, VA, June 2012.

[5] F. Bao, I.R. Chen, M. Chang, and J.H. Cho, “Trust-based
intrusion detection in wireless sensor networks,” IEEE
International Conference on Communications, 2011, pp. 1-6.

[6] I.R. Chen, F. Bao, M. Chang, and J.H. Cho, “Dynamic Trust

Management for Delay Tolerant Networks and Its Application

to Secure Routing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 5, 2014, pp. 1200-1210.

[7] J.H. Cho, A. Swami, and I.R. Chen, “Modeling and analysis of

trust management with trust chain optimization in mobile ad

hoc networks,” Journal of Network and Computer Applications,

vol. 35, no. 3, pp. 1001-1012, May 2012.

[8] J.H. Cho, A. Swami, and I.R. Chen,, “Modeling and analysis

of trust management for cognitive mission-driven group

communication systems in mobile ad hoc networks,” IEEE

International Conf. on Computational Science and

Engineering, pp. 641-650, 2009.

[9] L. Zeng, et al., “QoS-aware middleware for web services

composition,” IEEE Transactions on Software Engineering,

vol. 30, no. 5, 2004, pp. 311-327.

[10] S. Kosta, A. Mei, and J. Stefa, “Small world in motion

(SWIM): modeling communities in ad-hoc mobile

networking,” 7th IEEE Communications Society Conf. on

Sensor, Mesh and Ad Hoc Communications and Networks,

Boston, MA, USA, June 2010.

[11] R. Mitchell and I. R. Chen, "Effect of intrusion detection and

response on reliability of cyber physical systems," IEEE

Transactions on Reliability, vol. 62, no. 1, 2013, pp. 199-210.

[12] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
generals problem,” ACM Trans. Program. Lang. Syst., vol. 4,
no. 3, pp. 382–401, 1982.

[13] A. Jøsang and R. Ismail, “The Beta reputation system,” Proc.
15th Bled Electronic Commerce Conf., 2002, pp. 1-14

[14] J.H. Cho, I.R. Chen, and P.G. Feng, “Effect of intrusion
detection on reliability of mission-oriented mobile group
systems in mobile ad hoc networks,” IEEE Transactions on
Reliability, vol. 59, no. 1, 2010, pp. 231-241.

[15] C.W. Hang and M.P. Singh, “Trustworthy service selection

and composition,” ACM Transactions on Autonomous and

Adaptive Systems, vol. 6, no. 1, 2011.

[16] Z. Malik and A. Bouguettaya, “RATEWeb: Reputation

assessment for trust establishment among Web services,” The

VLDB Journal., vol. 18, 2009, pp. 885-911.

