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Abstract

Mobile ad hoc networks (MANETs) have been utilized to
execute many applications in diverse environments. Trust
is an effective mechanism to cope with misbehaving nodes.
However, implementing trust in MANETs is confronted by
several obstacles, i.e., no centralized authority, dynamic en-
vironments, and limited observations which hinder trust ac-
curacy. In this work, we propose a novel logit regression-
based trust model called LogitTrust to model dynamic trust
for service-oriented MANETs wherein a node can be a ser-
vice requester (SR) or a service provider (SP). The novelty
of our design lies in the use of logit regression to dynami-
cally estimate trust of SPs based on their distinct behavior
patterns in response to environment changes. We demon-
strate that LogitTrust outperforms traditional approaches
based on Bayesian Inference with belief discounting in terms
of trust accuracy and resiliency against attacks, when given
the same amount of limited observations, while maintaining
a low false positive rate.

1 Introduction

With the proliferation of fairly powerful mobile devices and
ubiquitous wireless technology, traditional mobile ad hoc
networks (MANETs) now migrate into a new era wherein
a node can provide and receive service from other nodes
it encounters and interacts with. This paper studies trust
model for MANETs consisting of service providers (SPs)
that provide services, and service requesters (SRs) that re-
quest services.
Trust is an effective mechanism to cope with misbehaving

SPs. A node can assess the trust levels of the SPs it inter-
acts with, and propagate its observations of service perfor-
mance as recommendations to other nodes, so that a well-
behaving SP is more likely to be selected to provide services.
Govindan and Mohapatra [9] summarized trust in MANET
scenarios as a subjective assessment towards another node
with respect to its reliability and accuracy of information
under specific context. Consequently, trust indicates a SR’s
(or a trustor’s) belief/confidence/expectations on a SP’s (or
a trustee’s) future endeavor in terms of honesty, integrity,
ability, availability and quality of service (QoS) representing
a trustee’s trustworthiness.
One challenge for implementing trust management in

MANETs is to reliably estimate the trust levels of partic-

ipants in a fully distributed manner, in contrast with an
e-commerce system with a centralized authority for trust
management. In most existing works, e.g., [4,25], each node
observes direct evidence for direct trust assessment and
propagates its observations to other nodes as recommen-
dations for indirect trust assessment. However, a malicious
node may violate this protocol. Sun et al. [21] described sev-
eral attacks to trust management in distributed networks,
including bad-mouthing, on-off, conflicting behavior, Sybil
and newcomer attacks. Among these, Sybil and newcomer
attacks rely on intrusion detection mechanisms (running in
parallel with trust mechanisms) for detecting identity at-
tacks. The trust system itself, however, must be resilient
against bad-mouthing, on-off, and conflicting behavior at-
tacks. The conflicting behavior attack in particular is a dy-
namic attack since whether a node behaves reliably or not
depends on its social relationship with the node it interacts
with. This paper considers a trust protocol design based
on logit regression analysis which we demonstrate is highly
resilient to bad-mouthing, on-off, and conflicting behavior
attacks.

Another major challenge is that the QoS received by a
SR from a SP may significantly deviate from the actual ser-
vice provided by the SP due to node mobility and resource
constraints (e.g., bandwidth, processing power, battery) in
MANET environments. This blurs the SR’s view on the
ground truth of the SP. For supporting QoS, MANETs may
adopt IEEE 802.11 [10] in distributed coordination func-
tion (DCF) mode, so it is likely that the waiting time to
access channel may cause a significant delay. In the liter-
ature [1, 3, 13], this issue is tackled by breaking QoS into
multiple trust components, each being assessed separately,
and then these trust components are integrated together
via trust formation into an overall trust value. However,
the way to select and form multiple trust components into
a single trust value is often devised in an ad hoc manner
and remains an open issue.

In this work, we take a different approach. We define
trust as the probability that a SP will provide a satisfac-
tory service as expected by a SR. Unlike prior work, we
consider a probabilistic statistical classification trust model.
The novelty lies in the use of logit regression to accurately
predict how a SP will behave in response to operational and
environmental changes. This allows us to reason a node’s
behavior pattern, given the operational and environmen-
tal conditions as input. We name our proposed scheme as



LogitTrust. To be specific, this work has the following con-
tributions:

• To the best of our knowledge, we are the first to pro-
pose a logit regression-based trust model to estimate
dynamic trust. Our model has its root in regression
analysis. Thus, it provides a sound theoretical basis to
predict the behavior of a SP in response to operational
and environmental changes.

• We demonstrate the solution accuracy of our compu-
tational trust model over traditional trust models, es-
pecially in highly dynamic MANET environments. We
also demonstrate the computational feasibility of run-
ning LogitTrust on MANET nodes without sacrificing
solution accuracy.

• LogitTrust is highly resilient toward recommendation
attacks including ballot-stuffing and bad-mouthing at-
tacks. We demonstrate that LogitTrust significantly
outperforms Bayesian inference with belief discount-
ing [11, 20] in terms of prediction accuracy rate and
false positive rate.

This paper is organized as follows: In Section 2, we survey
trust models in MANETs and trust-based defenses against
attacks. We contrast and compare existing approaches with
our approach. In Section 3, we discuss the system model
including dynamic trust and behavior pattern factors, at-
tacker behaviors, and the problem definition. In Section 4,
we give an overview of LogitTrust. In Section 5, we illus-
trate the utility of LogitTrust by a trust-based SP selection
case study. In Section 6, we conduct an extensive simula-
tion experimentation to validate the accuracy and robust-
ness of our model. We discuss the computational feasibility
in Section 7. Lastly in Section 8 we conclude the paper and
outline future research directions.

2 State of the Art

Two widespread trust models for inferring trust in
MANETs are Bayesian inference and fuzzy logic.
Bayesian inference applies Bayes theorem and treats trust

as a random variable following a probability distribution
(e.g., Beta distribution) with its value being updated upon
new observations. Yu et al. [28] applied Bayesian inference
to measure the reputation of a MANET node assuming that
a node’s behavior in each observation period is identically
and independently distributed and follows the binomial dis-
tribution. Therefore, a node’s reputation is determined by
the numbers of positive and negative samples observed. Sun
et al. [22] utilized Bayesian inference for trust bootstrap-
ping, where a node’s performance evidence in each service
trial is accumulated. However it is ineffective to capture dy-
namic trust. Buchegger and Le Boudec [5] adopted a mod-
ified version of the Bayesian approach by assigning more
weights to current evidence and reducing weights on past
evidence, using the mean of posterior distribution to com-
pute trust. Similar approaches were made in several works
for modeling dynamic trust in MANETs [6–8] by consider-
ing trust decay over time. However, there is no theoretical
basis for this approximation.

Fuzzy logic-based approaches have been implemented in
reactive secure routing [24,27] for MANETs. Xia et al. [27]
computed trust by fuzzy logic rules, utilizing a directed
graph for a trustee node with a set of vertices (nodes) and
trust-weighted edges (direct trust links) where the input is
the historical trust values toward the trustee node. Wang
and Huang [24] applied fuzzy logic to compute a fuzzy value
for each candidate path for making a routing decision. The
fuzzy value is determined by node reputation, bandwidth,
and hop count. One drawback of fuzzy logic-based trust in-
ference is that it requires domain experts to do parameter
tuning and set the fuzzy rules incorporating the knowledge
of the causal relationship between the input and output pa-
rameters.
Relative to the works cited above based on Bayesian in-

ference and fuzzy logic, we take an entirely different ap-
proach. We develop a regression-based trust model uti-
lizing logit regression to estimate dynamic trust. To the
best of our knowledge, only [14, 23] leveraged regression
for trust computation in MANETs. Li et al. [14] pro-
posed an autoregression-based trust management technique
to learn the weights for history observations so as to pre-
dict the future outcome. Venkataraman et al. [23] devel-
oped a regression-based trust model for MANETs with the
objective to learn the weights optimally combining several
trust metrics, where each trust metric is assessed separately
using Bayesian inference. Unlike [14, 23], we do not use re-
gression to learn weights to observations or trust properties.
Instead, we apply logit regression analysis to learn the be-
havior patterns of a node in response to operational and
environmental changes. We aim to provide a generic trust
model to predict a node’s dynamic behavior patterns and
accordingly a node’s dynamic trust.
A significant amount of work has been done in the area of

trust-based defenses against attacks in MANETs [6–8, 26].
In particular, Chen et al. [6] proposed the concept of trust
bias minimization by dynamically adjusting the weights as-
sociated with direct trust (derived from direct evidence such
as local observations) and indirect trust (derived from indi-
rect evidence such as recommendations) so as to minimize
trust bias. However, these methods involve tuning trust
parameters and may perform poorly when a node does not
have enough experiences with the recommenders. Different
from the work above [6–8, 26], LogitTrust does not apply
trust thresholds to filter trust recommendations. Instead,
it leverages a robust statistical kernel to tolerate outlier rec-
ommendations to effectively achieve resiliency against rec-
ommendation attacks. We demonstrate that our regression-
based trust model significantly outperforms Bayesian infer-
ence with belief discounting especially when the direct ob-
servation towards the recommenders is limited.

3 System Model

3.1 Dynamic Trust and Behavior Pattern

Factors

We consider the notion of dynamic trust, i.e., a SP’s trust
level changes dynamically as the MANET operational and
environmental conditions change dynamically due to node



mobility, changes in traffic patterns, and limited resources.
Trust is dynamic because SPs are heterogeneous in terms of
attitude and adaptability to operational and environmental
changes. A SP may be profit-seeking, so when a SR pays
a higher than basic price for the service, it may be more
willing to apply available resources to execute the task. A
SP may be limited in resources and task execution capabil-
ity such that its service waiting list may be relatively long
and its service delivery speed is largely deterred. Also a
SP may be sensitive to the number of neighbors because
more neighbors might increase the probability of wireless
channel contention and signal interference, so it needs to
consume more energy in listening to the channel and re-
peating packet transmission. Without loss of generality, we
consider energy-sensitivity, capability-limitation, and profit-
awareness as three distinct “behavior pattern factors” re-
flecting the extent to which a SP would behave in response
to changes in MANET operational and environmental con-
ditions.

3.2 Attacker Model

As every node in a MANET can be a SP or a SR itself, it
wants to be selected to provide service for profit when it is a
SP and wants to find the best SPs for best service available
when it is a SR. We consider social selfishness to model ma-
licious behavior in this work. Every node may exhibit social
selfishness based on the social relationship with other nodes
it interacts with. Consequently, every node may exhibit the
following recommendation attack behaviors:

1. Trustor-based recommendation attacks (TORA): A
node serving as a recommender provides false recom-
mendations about a trustee. The objective is to pre-
vent the trustor from learning the right behavior pat-
tern and hence decrease the trustor’s decision quality.
Based on the notion of social selfishness, if the trustor
is a friend, then it tends to speak the truth about a
trustee. On the other hand, if the trustor is not a
friend, then it tends to lie. A node may treat another
node as a friend, acquaintance or stranger. We model a
recommender’s TORA behavior by a probability func-
tion pTORA(F ) where F specifies the friendship relation
between the recommender and the trustor.

2. Trustee-based recommendation attacks (TERA): A
node serving as a recommender may perform reputa-
tion attacks on the trustee. Based on the notion of
social selfishness, if the trustee node is not a friend, it
tends to perform bad-mouthing attack to diminish the
trustee node’s reputation. On the other hand, if the
trustee node is a friend then it tends to promote the
trustee node by performing ballot-stuffing attacks. We
model a recommender’s bad-mouthing attack behavior
by a probability function pTERA

bma (F ) where F specifies
the friendship relation between the recommender and
the trustee. On the other hand, We model a recom-
mender’s ballot-stuffing attack behavior by a probabil-
ity function pTERA

bsa (F ) where F specifies the friendship
relation between the recommender and the trustee.

3. TERA-if-TORA: A node serving as a recommender
first decides whether to perform false recommendation
attack based on its relationship with the trustor node.
If yes, it performs bad-mouthing or ballot-stuffing at-
tack based on its relationship with the trustee node.

3.3 Problem Definition

The problem at hand is for SR i to predict whether SP j will
perform satisfactorily or not for a specific requested service,
given a history of evidence. The objective is to achieve
prediction accuracy and resiliency against recommendation
attacks described in Section 3.2.

Within a specific type of service, assuming SR i’s ob-
servation stij at time t of the service quality received from
SP j is either “satisfactory” or “unsatisfactory”, we de-
fine that if the QoS is satisfactory, then SP j is consid-
ered trustworthy denoted as “1”; otherwise, it is untrust-
worthy denoted as “0”. In other words, a SP is considered
trustworthy at time t if it can be observed that the ser-
vice provided at time t is satisfactory. Let the operational
and environmental conditions at time t be characterized by
three distinct “behavior pattern factors” (energy-sensitivity,
capability-limitation, and profit-awareness as discussed in
Section 3.1) denoted by a column vector xt = [xt

e, x
t
c, x

t
p]

⊤.
Then, trust is the probability θtj that SP j is capable of
providing satisfactory service to SR i under the operational
and environmental conditions at time t described by xt.

Let stj = stij ∪{s
t
kj , k 6= i} where k is a recommender who

had a prior service experience with SP j and is asked by
SR i to provide its feedback regarding SP j. The recom-
mendation from node k is in the form of {xt, stkj} specify-
ing the operational and environmental conditions at time
t (xt) under which the observation (stkj) is made. Fur-

ther, let sj = {stj, t = 1, . . . , T } denote the set of evidence
gathered by SR i, including self observations and recom-
mendations over [0, T ]. Also let x = {xt, t = 1, . . . , T },
denoting the corresponding operational and environmental
conditions over [0, T ]. LogitTrust solves this problem by
learning the behavior pattern of SP j represented by a la-
tent variable βj between sj and x, and predicting sT+1

j

given xT+1, i.e., E[sT+1
j |xt+1]. This conditional expecta-

tion will be real-valued, between 0 and 1, representing the
trust level of SP j at time T + 1 from SR i’s perspective.

4 LogitTrust

4.1 Design Principle

The idea behind LogitTrust is to utilize logistic regres-
sion [15] to analyze the relation between regressor variables
x and binary response observations sj described earlier in
Section 3.3. LogitTrust is flexible in accommodating any
environment-specific behavior pattern factor (xi) deemed
appropriate for an application. LogitTrust uses a linear
predictor as in [17], namely,

E[stj |x
t,βj ] = θtj =

1

1 + e−(xt)⊤βj

(1)



where βj = [βej , βcj, βpj ]
⊤ is a column vector of coefficients

and θtj is in the range of [0, 1]. If (xt)⊤βj ≪ 0, θtj is less
than 0.5. Therefore the delivered QoS is more likely to be
unsatisfactory; otherwise, if (xt)⊤βj ≫ 0, the QoS is more
likely to be satisfactory. Following Eq. 1, we have

ln

(

θtj
1− θtj

)

= (xt)⊤βj , or logit(θ
t
j) = (xt)⊤βj (2)

Proposition 1 The probability that the service provided by
SP j to SR i is satisfactory is equivalent to the probability
that st∗j is larger than zero, where

st∗j = logit(θtj) + εj , (3)

and εj ∼ logistic(0, 1) with cumulative density function
1

1+e−x , x ∈ (−∞,∞).

Proof.

Pr(st∗j > 0|xt,βj)

= Pr(logit(θtj) + εj > 0|xt,βj)

= Pr(εj > −logit(θ
t
j)|x

t,βj)

= Pr(εj > −(x
t)⊤βj)

= Pr(εj < (xt)⊤βj)

=
1

1 + e−(xt)⊤βj

= θtj

Thus, based on Proposition 1, the relation between stj
and s∗j is:

stj =

{

1 if st∗j > 0
0 otherwise

(4)

Here we note that the observation history {x, sj} is a col-
lection of self observations of SR i and recommendations
provided by recommenders k 6= i upon encountering in
MANET environments.

4.2 Dealing with Recommendation At-

tacks as Outliers

LogitTrust can subsume malicious recommenders who in-
tentionally flip the actual observations. That is, a malicious
recommender k will flip its recommendation in the form of
{xt, 1 − stkj} when it performs a recommendation attack.
We call such modified recommendations as outliers which
can mislead the inferred βj to deviate from the true behav-
ior. If we follow the logistic distribution with thin tails for
the error term, the solution accuracy is likely to be sensitive
to outliers, so recommender attacks can impact the predic-
tion accuracy. To tolerate outliers without overly sacrificing
solution accuracy, we replace the latent error in logistic dis-
tribution in Eq. 3 with a white noise in t-distribution [15]
whose mean is zero and degree of freedom is ν with a scale
parameter σ. The t-distribution has heavier tails when ν is
finite and it is more robust to outliers, since its heavy-tail
characteristic increases the probability of samples occurring
at a point far away from the mean, and, subsequently, in-
creases the ability to absorb errors and protect the estima-
tion process for βj .

Replacing εj by a standard t-distribution random vari-
able and denoting (xt)⊤βj as ut

j, given the optimal de-
gree of freedom (ν0) for tolerating outliers, we have st∗j ∼
t(ut

j, 1, ν0). We then apply the Expectation Maximization
(EM) algorithm combined with iterative re-weighted least-
squares to estimate βj as in [15]. In the inference phase, we
adopt the relation between the t-distribution and the nor-
mal distribution, i.e., a t-distribution can be approximated
by an infinite sum of normal distributions each having a
different variance [2]. Thus, we have the following priors in
terms of the weight wt for each st∗j , i = 1, . . . , I:

st∗j |(w
t, βj) ∼ N (ut

j ,
1

wt
)

wt|βj ∼ Γ(ν0/2, ν0/2)

In the E-step of EM, we compute the expectation of wt, t =
1, . . . , T with current βj . In the M-step of EM, we compute
a new βj that achieves the maximum likelihood. Finally,

we compute E[sT+1
j |xT+1,βj ].

Algorithm 1 LogitTrust

Input: x, sj , ν0, x
T+1

Output: E[sT+1
j |xT+1,βj ]

1: k ← 0

2: β̂
(k)

j ← 1

3: while not converged do

4: for t← 1 to T do

5: ut ← (xt)⊤β̂
(k)

j

6: ŵt ←
stj−(2stj−1)Fν0+2(−(1+2/ν0)

1/2ut)

stj−(2stj−1)Fν0(−ut)

7: ŝt∗j ← ut +
(2stj−1)fν0(u

t)

stj−(2stj−1)Fν0+2(−(1+2/ν0)1/2ut)

8: end for

9: S0 ←
∑T

t=1 ŵ
txt(xt)⊤

10: S1 ←
∑T

t=1 ŵ
txtŝt∗j

11: k ← k + 1

12: β̂
(k)

j ← S−1
0 S1

13: end while

14: return E(sT+1
j |xT+1, β̂j)←

1

1+exp(−(xT+1)⊤β̂
(k)

j )

4.3 Computational Procedure

Algorithm 1 LogitTrust above specifies the input require-
ment, including x, sj (explained above), ν0 (the degree of
freedom) and xT+1 (the behavior pattern factors exhibited

by SP j at time T + 1). The output is E(sT+1
j |xT+1, β̂j),

i.e., the trust level of SP j at time T +1. Lines (1-2) specify
the initialization step where k is the iteration index and 1

means an all-one column vector. Lines (3-13) execute the

EM algorithm to infer β̂j . Lines (4-10) are for the E-step
and lines (11-12) are for the M-step. In the E-step, given

the current β̂j , we compute the conditional expectation of
each record’s weight (line 6) and infer the latent variable st∗j
that determines the observed value (line 7), where Fν(x) is
the cumulative density of a standard t-distributed random
variable x given the number of degrees of freedom ν and
fν(x) is its probability density. Parameter wt scales down



the impact of those records with a high variance in the es-
timation process. This is particularly useful in scenarios in
which we have no evidence on the reliability of the recom-
mender who might perform recommendation attacks, or we
have an outlier due to unobserved effect. S0 and S1 are
two terms for partial log-likelihood, i.e., l(βj |x, s

∗

j , w, ν0).
In the E-step, the log-likelihood function is updated and
consequently the estimate of β̂j is renewed by maximum
likelihood estimation (line 12). Finally line 14 is the trust
prediction step that applies Eq. 1 to compute the trust level
of SP j at time T + 1.

4.4 Service History

In LogitTrust the service history toward SP j provided
by a recommender k is in the form of {xt, stkj} =

{[xt
e, x

t
c, x

t
p]

⊤, stkj}. This is obtained when node k itself
serves as a SR and observes the service quality of SP j as
the self observation part of the service history maintained
by node k. If SR k is satisfied with the service quality pro-
vided by SP j, stkj = 1; otherwise, stkj = 0. In addition, SR

k also records down the values of xt
e, x

t
c and xt

p as follows:
xt
e is estimated by the the number of neighbors sharing the

channel as more energy is consumed for channel contention
and packet retransmission when there are more nodes shar-
ing the channel; xt

c is estimated by the packet traffic to SP
j as more traffic to SP j hinders its processing capability;
xt
p is simply the negotiated price for the service provided by

SP j. SR k then records {[xt
e, x

t
c, x

t
p]

⊤, stkj} as part of its
service history toward SP j. Upon request from SR i, node
k will provide it to SR i as a recommendation for SP j.

5 Case Study

In this section we illustrate the applicability of LogitTrust
with a trust-based SP selection case study. SR i with a
service request in hand encounters SP j who claims it can
provide service, so SR i wants to know whether it should
select SP j for service. SR i uses the predicted trust level
of SP j obtained from executing LogitTrust based on the
service history of SP j collected prior to the encounter time,
as well as the operational and environmental conditions at
the encounter time to make its decision as follows: if the
trust level of SP j is less than 0.5, SR i rejects SP j. Other-
wise, SR i selects SP j for service following a Bernoulli trial
with the trust level as the probability of success. For ease
of comparison, below we first discuss the solution based on
Beta reputation with belief discounting [11, 20]. Then we
discuss the solution based on LogitTrust.

5.1 Solution based on Beta Reputation

with Belief Discounting

Let S+
ij = {stij = 1, t = 1, . . . T } and S−

ij = {stij =
0, t = 1, . . . T } be the sets of satisfactory and unsatisfac-
tory services, respectively, received from SP j by SR i (self-
experiences) over [0,T ]. The service history of SP j pro-
vided by a recommender k to SR i upon request is in the

form of (|S+
kj |, |S

−

kj |). When SR i receives a recommen-
dation toward SP j from recommender k, it applies be-
lief discounting to merge the recommendation (|S+

kj |, |S
−

kj |)

with its own evaluation (|S+
ij |, |S

−

ij |) such that the less SR
i trusts the recommender, the more the recommendation
is discounted. For more details on belief discounting, we
refer the readers to [11, 20]. After merging self observa-
tions with recommendations, let S+

j = {stj = 1, t = 1, . . . T }

and S−

j = {stj = 0, t = 1, . . . T } be the sets of satisfactory
and unsatisfactory services, respectively, by SP j over [0,T ],
covering both self-experiences and recommendations. Then,
the average success rate of SP j can be calculated as:

rsucc =
|S+

j |

|S+
j |+ |S

−

j |
(5)

which is the mean of a beta distribution with parameters
|S+

j | and |S
−

j |, representing the trust level of SP j.

5.2 Solution based on LogitTrust

SR i utilizes the service history of SP j in the form of {x, sj}
consisting of SR i’s own observations and recommendations
received prior to the current time T +1, and the current op-
erational and environmental conditions in the form of xT+1.
It executes LogitTrust (“Algorithm 1: LogitTrust”) to infer
βj and predict the trust level of SP j at time T + 1.

6 Performance Evaluation

In this section we conduct a performance evaluation of
LogitTrust in trust accuracy and resilience against attacks.
In Section 6.1 we discuss experimental settings, including
the environment setup, synthetic data preparation, attack
implementation, and performance metrics. Then in Sec-
tion 6.2 we do a comparative analysis of LogitTrust against
Bayesian inference using Jøsang’s Beta reputation system
[11] as a baseline system for the case in which there is
no malicious attack. Finally in Section 6.3 we conduct a
comparative analysis of LogitTrust against Beta reputation
incorporating belief discounting [20] for the case in which
there are malicious attacks. Our comparative performance
analysis is fair. All schemes are given the same amount
of observations and recommendations toward a trustee via
service history information sharing as input.

6.1 Experimental Settings

6.1.1 Environment Setup

To model social selfishness behavior, we use human-activity
data based on tracing 76 users in 5 days from a MANET ap-
plication calledMobiClique [18], where each mobile user car-
ries a Bluetooth device with 200MHz T1 processor, 65MB
RAM and 128MB ROM MicroSD, and the radio range is
between 10 and 20 meters. A user chooses a SP for ser-
vice from among its one-hop neighbors. Upon encounter-
ing, the service history sharing is performed as described
in Section 4.4. We retrieve three data sets: Transmis-
sionDB (originally called transmission in [18]), Facebook-
FriendDB (friend1 ), and MobiCliqueFriendDB (friend2 ).



Table 1: Parameters for Attack Implementation

Low Hostility Medium Hostility High Hostility

(pTORA(f), pTORA(a), pTORA(s)) (0, 0.1, 0.2) (0.1, 0.3, 0.5) (0.2, 0.6, 1.0)

(pTERA
bma (f), pTERA

bma (a), pTERA
bma (s)) (0, 0.1, 0.2) (0.1, 0.3, 0.5) (0.2, 0.6, 1.0)

(pTERA
bsa (f), pTERA

bsa (a), pTERA
bsa (s)) (0.2, 0.1, 0) (0.5, 0.3, 0.1) (1.0, 0.6, 0.2)

The first data set contains data transmission logs of pair-
wise communications among the 76 users upon encounter-
ing in the MANET environment. The last two data sets
record the pair-wise friendship relationships among the 76
users in Facebook before the application is played (repre-
senting friends), and in MobiClique after the application is
played(representing acquaintances). On average, each user
has 7 friends nearly evenly distributed in friends and ac-
quaintances.

6.1.2 Synthetic Data Preparation

Our subject node is a SP (called SP j) that has nhist=204
interactions with 24 distinct SRs asking for its service
upon encountering based on transmissionDB inMobiClique.
We first generate j’s three behavior pattern factor values
[xt

e, x
t
c, x

t
p] at time t for each of the nhist=204 interactions.

The “energy sensitivity” behavior pattern factor, xe, is
modeled by considering the channel access delay. We as-
sume that the channel access delay follows a Gaussian dis-
tribution with mean µe = 100ms and variance σe = 50ms,
depending on the SP’s attempt probability whose magni-
tude is determined by the number of neighbors according
to the simulation result from IEEE 802.11 DCF in [19]. The
“capability limitation” behavior pattern factor, xc, is mod-
eled by the queueing delay. We assume that service tasks
are to be processed FIFO, follow a Poisson process with rate
λarr = 5 tasks/sec, and each consumes the same amount of
time. The “profit-awareness” behavior pattern factor, xp,
is modeled by SP j’s potential gain upon a satisfactory ser-
vice completion. SP j’s potential gain consists of two parts:
the asked price Pstd from SP j computed by a linear func-
tion associated with the length of its processing queue, and
the overpaid price by the SR with a probability of pop that
represents the overpaying incentive. We model the overpaid
amount by a normal distribution with the mean and vari-
ance being a percentage of Pstd provided by the SP. The
three behavior pattern factor values [xt

e, x
t
c, x

t
p] reflect the

environmental and operational state SP j is in while it re-
sponds to SR i’s request at time t. The ground truth or
actual behavior pattern βj of SP j is generated based on
the success rate rsucc of SP j as defined by Eq. 5, which
controls the service quality of SP j, i.e., s+j services are

satisfactory and s−j services are unsatisfactory. After we

generate [xt
e, x

t
c, x

t
p] and βj , we generate the ground truth

stij at time t by applying Bernoulli trials with a success
probability computed by Eq. 1.

SR i ranks the service history records of SP j collected
in the order of self, friend, acquaintance and stranger so it
places more confidence on self experiences over recommen-
dations from friends, acquaintances, and strangers (in this

order). In the experiment, we perform a sensitivity analy-
sis of LogitTrust performance with respect to the amount
of recommendations received from friends, acquaintances,
and strangers. We set the degree of freedom ν0=4 for the
t-distribution error as in [12].

In the testing phase, a randomly generated [xt
e, x

t
c, x

t
p] is

fed to each SR as input, and the SR predicts the trust level
of SP j by the inferred β̂j . The prediction result from each
SR is compared with ground truth to evaluate the predic-
tion accuracy of the SR. The results reported are based on
the averages of all SRs over 100 [xt

e, x
t
c, x

t
p] sets randomly

generated.

6.1.3 Attack Implementation

We consider three hostility situations: low, medium, and
high, modeled by attack probabilities under the correspond-
ing attack behaviors in Table 1, where bma and bsa repre-
sent bad-mouthing attacks and ballot-stuffing attacks, and
f , a, and s are shorthand notations for friend, acquaintance,
and stranger, respectively. Here we note that for TERA, the
probability of bad-mouthing attacks is lower for a friend
(the trustee) because a socially selfish node normally would
not want to ruin the reputation of a friend. On the other
hand, the probability of ballot-stuffing attacks is higher for
a friend because a socially selfish node normally would want
to boost the reputation of a friend.

6.1.4 Performance Metrics

1. Similarity is estimated based on the distance between
the inferred behavior pattern β̂j and the actual behav-
ior pattern βj . It represents the accuracy of behavior
learning. We measure similarity by (a) cosine similar-
ity and (b) root mean square error (RMSE). The cosine
similarity is defined as:

cos(βj , β̂j) =
βj · β̂j

‖βj‖‖β̂j‖
(6)

The more similar the two behavior pattern vectors are,
the closer the cosine similarity value is to 1. On the
other hand, when the two behavior pattern vectors are
more orthogonal, the cosine similarity is closer to -1.
The RMSE is defined as:

RMSE(βj , β̂j) =

√

(βj − β̂j)
⊤(βj − β̂j)

dim(βj)
(7)

The more similar the two behavior pattern vectors are,
the closer the RMSE is to 0.



0 5 10 15 20 25
0.1

0.4

0.7

1

number of recommenders

co
s(
β̂
,
β
)

 

 

0

2

4

6

8

10

R
M
S
E
(β̂
,
β
)

Cosine
RMSE

(a) Similarity (rsucc=30%)

0 5 10 15 20 25
0.1

0.4

0.7

1

number of recommenders

co
s(
β̂
,
β
)

 

 

0

2

4

6

8

10

R
M
S
E
(β̂
,
β
)

Cosine
RMSE

(b) Similarity (rsucc=60%)

Figure 1: Similarity between Inferred Behavior Pattern and
Ground Truth.

2. Success rate (Si,j) of service received is defined as the
ratio of the number of satisfactory services received
from SP j (i.e., |S+

ij |) over the total number of ser-

vice purchases by SR i (i.e., |S+
ij | + |S

−

ij |). It provides
the decision accuracy. Therefore, the success rate Si,j
is calculated as:

Si,j =
|S+

ij |

|S+
ij |+ |S

−

ij |
(8)

Here we note that a service request at time t is asso-
ciated with [xt

e, x
t
c, x

t
p] as input and SR i predicts SP

j’s trust level as E[stj |x
t,βj ], i.e., the probability that

SP j can deliver a satisfactory service quality at time
t. Thus, the prediction success rate of SR i may be
higher than rsucc if SR i can predict SP j’s behavior
accurately given [xt

e, x
t
c, x

t
p] as input specifying the op-

erational and environmental conditions at time t.

Alternatively, we consider the rate of unsatisfactory
service received (or the failure rate Fi,j) which is just
the complement of the success rate. That is, the fail-
ure rate Fi,j for selecting SP j to provide |S−

ij | + |S
−

ij |
services is calculated as:

Fi,j =
|S−

ij |

|S+
ij |+ |S

−

ij |
(9)

The failure rate can be considered as the false negative
rate because a bad SP is mistrusted as a good SP.

3. Bypassing rate (Bi,j) indicates the rate of missing a
satisfactory service. Let m∗

i,j be the number of services
for which SP j is not selected by SR i for service. Let
m+

i,j be the number of services among m∗

i,j which SP
j would have satisfactorily provided if selected. Then
the bypassing rate Bi,j for SR i to miss out SP j is
calculated as:

Bi,j =
m+

i,j

m∗

i,j

(10)

The bypassing rate can be considered as the false pos-
itive rate because a good SP is missed as a bad SP.

6.2 Comparative Analysis on Trust Accu-

racy

Fig. 1 shows the trust convergence of the inferred behavior
vector by LogitTrust to the actual behavior vector. Figs.

1(a) and 1(b) display both cosine similarity (indicating in
the left Y-axis) and RMSE(in the right Y-axis) as a function
of the number of recommenders (no attack behavior) for
the two cases of rsucc=30% and 60%, respectively, with the
mean and error bar marked from all SR’s learning results
towards SP j’s behavior pattern. Both figures display a
similar trend that when there are more recommenders (with
no attack behavior), the behavior learning result is closer
to the ground truth, i.e., cosine similarity approaches 1 and
RMSE approaches 0. When the number of recommenders
is small, the learning process has larger variances due to the
sample space.

Fig. 2 compares the service prediction accuracy between
LogitTrust and Beta reputation under the no attack case
where the first row is for rsucc = 30% and the second row
is for rsucc = 60%. Overall, LogitTrust produces a higher
and more consistent service prediction accuracy than Beta
reputation. LogitTrust consistently predicts a high service
success rate over and above rsucc, while Beta reputation
produces a success rate that stays around rsucc. This is be-
cause Beta reputation assumes a static hidden mean trust
value considering only the numbers of positive and negative
observations. Therefore, when a trust instance deviates sig-
nificantly from the mean, it performs poorly due to overesti-
mating/underestimating the trust by using the mean value.
As a result, its success rate just reaches the average service
success rate (rsucc). We also note that for Beta reputation,
the values for the success rate and failure rate are not avail-
able when rsucc = 30%. This is because when rsucc = 30%,
the trust value of SP j predicted by Beta reputation is also
around 0.3. Since it is less than 0.5, a SR following the SP
selection rule will never select SP j for service. While this
avoids failed service from SP j, it also misses the chances
to obtain good service. This trend is shown in Figs. 2(c)
and 2(f) where LogitTrust shows a much lower bypassing
rate (i.e., a lower false positive rate) than Beta reputation.
When rsucc = 30% the bypassing rate under Beta reputa-
tion (in Fig. 2(c)) is insensitive to the number of recom-
menders. This is because the trust value obtained by Beta
reputation is close to the SP’s average success rate (30%)
and is always below 0.5 regardless of the number of recom-
menders, so the SP is not selected for service every time. As
a result, the bypassing rate is the same as the percentage
of the time the SP can actually provide satisfactory service,
i.e., it is equal to the SP’s average success rate.

Discussion: LogitTrust uses regression to learn a SP’s
behavior pattern and to predict its dynamic trust, and thus
it provides a more accurate trust evaluation than Beta repu-
tation with the same amount of observations. Consequently,
LogitTrust improves the decision performance even in a
MANET environment in which the average service success
rate is low.

6.3 Comparative Analysis on Resilience

against Attacks

The second set of experiment focuses on the resilience
against malicious recommendation attacks. Every node in
the system is socially selfish and can perform TORA, TERA
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Figure 2: Comparing LogitTrust against Beta Reputation in Service Success Rate, Failure Rate and Bypassing Rate.
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Figure 3: Comparing LogitTrust against Beta Reputation with Belief Discounting in the presence of TORA, TERA, and
TERA-if-TORA in Service Success Rate, Failure Rate and Bypassing Rate.



or TERA-if-TORA. The baseline scheme for performance
comparison is Beta reputation incorporating belief discount-
ing [20] to cope with attacks, given the same amount of ob-
servations and recommendations toward a trustee node as
input.

Fig. 3 compares LogitTrust against Beta reputation with
belief discounting (BD) in terms of the three performance
metrics under TORA only (straight lines), TERA only (∗
lines) and TERA-if-TORA (+ lines) for the case in which
the average service success rate rsucc is 30%. The first,
second and third rows of graphs are for low, medium and
high hostility environments, respectively. The performance
is measured as a function of the number of received rec-
ommendations ranked in the order of friend, acquaintance
and stranger, i.e., the first few recommendations are from
friends, followed by recommendations from acquaintances,
and lastly from strangers.

We first observe that under low to medium hostility situa-
tions, LogitTrust significantly outperforms Beta reputation
in all three performance metrics. In particular, we observe
that the protocol performance for both LogitTrust and Beta
reputation under the low hostility environment (Figs. 3(a)-
3(c)) is close to that under the no attack environment (Figs.
2(a)-2(c)) as expected for sanity check. In general Logit-
Trust can cope with TERA-if-TORA compared to TERA
and TORA. This is because for TERA-if-TORA the overall
attack probability is determined by the attack probability
from the recommender to the SR and the attack probability
from the recommender to the SP, so the actual probability
is significantly discounted.

Under the high hostility environment, however, Logit-
Trust performs better than Beta reputation only if it filters
out recommendations from acquaintances and strangers,
since in high hostility situations, they will perform attacks
with probability larger than 0.5. As we can see from Figs.
3(g)-3(i) when LogitTrust takes in too many false recom-
mendations past honest recommendations provided from
friends such that the majority of observations in the ser-
vice history of SP j comprises outliers, LogitTrust starts to
perform worse since the inferred behavior pattern learned
by LogitTrust deviates more and more from the actual be-
havior. Nevertheless, with the social relationship filter-
ing mechanism in place such that only recommendations
from close friends, i.e., the first few recommendations in
Figs. 3(g)-3(i), are taken, LogitTrust can still perform bet-
ter than Beta reputation.

Discussion: The common aspect of LogitTrust and
Beta reputation with belief discounting is that both can
mitigate malicious attacks. Beta reputation with belief dis-
counting achieves resiliency by putting more weights on
those recommendations from recommenders whom it trusts
more. The effectiveness is sacrificed because it relies on the
SR’s accurate trust estimates toward the recommenders via
direct observations, which is difficult to achieve by Beta
reputation in MANET environments wherein node-to-node
interaction experiences or observations are limited. Logit-
Trust achieves resiliency by leveraging its robust statistical
kernel to tolerate outlier recommendations and thus effec-
tively achieve resiliency against recommendation attacks.
LogitTrust can significantly perform better than Beta rep-

utation in low to medium hostility environments, and can
effectively perform better than Beta reputation in high hos-
tility environments when it takes in recommendations only
from close friends. In this paper we only use social relation-
ships as the basic mechanism to filter out potential false
recommendations. The performance of LogitTrust may be
further enhanced if we put in another mechanism such as
thresholding (in addition to social relationships) to further
filter out false reports.

7 Computational Feasibility

In this section, we discuss the computational feasibility for
a MANET node to execute LogitTrust to learn the behavior
pattern of SP j, that is, βj at runtime. In our case for pro-
cessing n = 204 records, it takes 2.63s realtime in a 2.4 GHz
i7 CPU with 8GB RAM. For a less powerful MANET node,
it may take minutes rather than seconds to compute the
result. Fortunately, the computational procedure involving
the iterative execution of the EM algorithm (see Algorithm
1: LogitTrust) needs to be executed only periodically in the
background by a SR after new observations are collected.
Before the next trust update time arrives, a SR can simply
use learned behavior patterns (βj ’s for individual SPs) in
the system for decision making. To save storage space, a SR
can keep only “useful” data leading to the learned behavior
pattern toward a SP. Lastly we note that with the advent
of mobile cloud computing, true runtime decision making
may soon become a reality. This remains to be investigated
in future research.

8 Conclusion

In this paper, we proposed a novel regression-based trust
model, LogitTrust, for evaluating SP trustworthiness for ex-
ecuting and delivering a service in service-oriented MANET
environments. LogitTrust assesses each SP in terms of its
service behavior patterns in response to operational and en-
vironmental changes. The net effect is that we are able to
learn and then predict its behavior, instead of judging its
trustworthiness just from local observations or recommen-
dations received by a SR. Our simulation results demon-
strated that LogitTrust outperforms traditional approaches
based on Bayesian Inference with belief discounting in terms
of the rate of receiving a satisfactory service, the rate of
unsatisfactory service received and the rate of satisfactory
service missed in the presence of socially selfish nodes per-
forming false recommendation attacks, when given the same
amount of observations and recommendations as input.
For future work, we plan to extend the paper to address

the issue of runtime learning and decision making, possi-
bly leveraging cloud computing. In particular, we plan to
develop a mechanism to learn and understand the hidden
incentives behind a node’s behavior patterns in response to
dynamically changing environmental conditions. We also
plan to further test the resiliency of LogitTrust against more
complicated environmental and operational scenarios such
as noisy MANET environments and application-specific be-
havior pattern factors as well as more sophisticated attack



behaviors such as opportunistic, collusion and insidious at-
tacks [16].
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