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Abstract—We propose a lightweight specification-based 

misbehavior detection management technique to efficiently and 

effectively detect misbehavior of an IoT device embedded in a 

medical cyber physical system through automatic model checking 

and formal verification. We verify our specification-based 

misbehavior detection technique with a patient-controlled 

analgesia (PCA) device embedded in a medical health monitoring 

system. Through extensive ns3 simulation, we verify its superior 

performance over popular machine learning anomaly detection 

methods based on support vector machine (SVM) and k-nearest 

neighbors (KNN) techniques in both effectiveness and efficiency 

performance metrics.   

 

Index Terms—Medical cyber physical systems, IoT, 

misbehavior detection, behavior rules, zero-day attacks, false 

positives, false negatives.  

I. INTRODUCTION 

N a large-scale cyber physical system (CPS), there will be a 

huge number of embedded Internet of Things (IoT) devices 

and it is neither scalable nor practical to rely on a central entity 

such as a cloud to perform misbehavior detection. Since the 

central entity cannot physically perform misbehavior detection 

itself, it needs to collect misbehavior reports/logs from IoT 

devices. The amount of traffic generated will not only consume 

IoT energy but also cripple the CPS communication network. 

Hence, distributed misbehavior detection emerges as a feasible 

way for a large-scale CPS. 

To-date, there are three types of misbehavior detection 

techniques for IoT devices embedded in a medical CPS: 

signature-based, anomaly-based, and specification-based 

techniques [12]. We dispose signature-based detection as it 

cannot deal with zero-day attacks. Our method is based on 

specification-based detection by specifying the intended 

behaviors of a medical device. Thus, it can deal with zero-day 

attacks by detecting device misbehaviors manifested due to the 

IoT device experiencing attacks, rather than detecting attacker 

patterns/tactics (which would not be known for zero-day 
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attacks). Detecting misbehaviors rather than attack patterns can 

also be done by anomaly-based detection methods [2, 6-7, 10-

11, 14-15, 24, 25] based on profiling and machine learning 

through correlation and statistical analysis of a large amount of 

data or logs for classifying misbehavior. While both 

specification-based and anomaly-based detection methods can 

cope with zero-day attacks by detecting misbehavior, our 

proposed specification-based misbehavior detection method is 

lightweight because it uses less code space and does not have 

to first learn misbehavior patterns in the training phase and then 

detect misbehavior in the operational phase. Consequently, we 

also dispose anomaly-based detection for distributed 

misbehavior detection because many embedded IoT devices are 

severely resource-constrained and do not have enough 

computational or storage power to store classification patterns 

or execute computationally expensive classification algorithms. 

The only viable method to perform distributed misbehavior 

detection for resource-constrained IoT devices is specification-

based detection.   

The novelty of our work is that we pioneer the use of 

lightweight behavior rule specification-based misbehavior 

detection for lightweight IoT devices embedded in a medical 

CPS (we call our misbehavior detection technique MedIoT for 

short) with memory, run time, communication, and 

computational overhead considerations. Our work is novel 

relative to existing specification-based intrusion detection 

techniques (see Section 2 Related Work for details) as follows: 

• We propose a methodology for deriving the behavior rules 

of an IoT device embedded in a medical CPS, when given 

the embedded IoT device’s operational profile [16] as input 

for specifying the IoT device’s security requirements. 

• We conduct model checking and formal verification of the 

correctness and completeness of the generated behavior rules 

such that the embedded IoT device in a medical CPS will not 

violate the security requirements if it does not violate the 

behavior rules. 

• We develop a methodology of transforming the derived 
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behavior rules into a state machine for lightweight 

misbehavior detection at runtime. 

• We develop a lightweight data collection module for 

collecting compliance degree data from runtime monitoring 

of an IoT device based on its derived state machine. 

• We develop a lightweight statistical analysis module for 

misbehavior detection based on experimentally collected 

misbehavior data at runtime. 

• We verify the validity of our approach with a patient-

controlled analgesia (PCA) device embedded in a medical 

health monitoring system with a comparative performance 

analysis against popular machine learning anomaly detection 

methods based on support vector machine (SVM) [28] and 

k-nearest neighbors (KNN) [34] techniques in both 

effectiveness and efficiency performance metrics. 

The rest of the paper is organized as follows. In Section II, 

we survey existing work on misbehavior detection of IoT 

devices and compare as well as contrast our work with existing 

work. In Section III, we discuss the system model. In Section 

IV, we describe our MedIoT design in detail and apply MedIoT 

to a patient-controlled analgesia (PCA) device embedded in a 

medical health monitoring system. In Section V, we evaluate 

the performance of MedIoT and conduct a comparative 

performance analysis with contemporary machine learning 

misbehavior detection techniques in both effectiveness and 

efficiency metrics. In Section 6, we conclude the paper and 

outline future research areas.  

II. RELATED WORK 

Specification-based misbehavior detection has been mostly 

applied to communication networks [4, 8, 21] and CPS security 

[1, 9, 17, 18, 26]. To the best of our knowledge, we are the first 

to consider specification-based detection for distributed 

misbehavior detection specifically for resource-constrained IoT 

devices embedded in a medical CPS.  

An important aspect of specification-based detection is to 

verify if the specifications cover all the threats and satisfy the 

security requirements. Existing work [1, 21] focused on the 

construction of a formal framework utilizing ACL [27], a 

theorem prover, to first define security requirements and 

behavior specifications as ACL function, and then complete 

formal verification by defining a theorem (also an ACL 

function) that is evaluated to be true, proving that the behavior 

specification will not violate the security requirements.  

However, one risk is that the behavior specifications may be 

incomplete or even incorrect, leading to missing cases and high 

false positives. Relative to [1, 21], our contribution is to 

formally verify the completeness and correctness of behavior 

rule specifications following the design concept of Software 

Engineering research, i.e., proving that a piece of software is 

correct and complete with respect to the field expert 

specifications. We start with the “operational profile” [16] of an 

embedded IoT that defines the operational specification of an 

embedded IoT device to derive the security requirements of the 

embedded and hence the threats of the embedded IoT device. 

Then from the threats identified, behavior rules are generated to 

fully specify the intended behavior. Utilizing Hierarchical 

Context-Aware Aspect-Oriented Petri Net (HCAPN) [32, 33], 

a model checking tool, we formally verify that the generated 

behavior rules are complete and correct and cover all the threats 

and thus satisfy the security requirements derived from the 

operational profile. 

Anomaly-based detection methods have been studied 

extensively for misbehavior classification for IoT-embedded 

CPSs [2, 6-7, 10-11, 14-15, 24, 25]. The bulk of research lies in 

applying profiling and machine learning through correlation 

and statistical analysis of a large amount of data or logs for 

classifying misbehavior.  Recently, Artificial Neural Network 

(ANN) [10], Support Vector Machine (SVM) [28], and K-

Nearest Neighbors (KNN) [34] have emerged as the leading 

machine learning techniques for misbehavior classification. We 

dispose ANN because of its huge memory and computational 

requirement which hinders its application to distributed IoT 

device misbehavior classification. We adopt SVM and KNN as 

baseline schemes against which our proposed specification-

based detection method (MedIoT) is compared due to their 

relatively smaller memory and computation requirements, with 

the intent to demonstrate the efficiency and effectiveness of our 

proposed detection method against contemporary anomaly-

based detection methods. 

III. SYSTEM MODEL 

We refer the readers to [12, 13, 24, 25] for attacker behaviors 

and intrusion detection mechanisms available for IoT-

embedded CPSs. Medical IoT devices in the IoT operational 

environment communicate with each other based on IoT 

machine-to-machine (M2M) wireless communication protocols 

such as MQTT [40] and LWM2M [41] without the need to 

connect to the broader Internet. Our behavior-rule based 

intrusion detection system (IDS) approach relies on the concept 

of monitoring. A monitor PCA is assigned to monitor a target 

PCA and the monitor code, i.e., the misbehavior detection 

algorithm (MedIoT, SVM or KNN), runs on the monitor PCA. 

To address the issue of the monitor node itself already 

compromised, the monitor code can be put in a secure 

computational space (e.g., [5, 37, 38]) such that each monitor 

node can execute misbehavior detection code in its secure 

computation space, even if the operating kernel has been 

compromised. For CPSs that do not have many redundant 

nodes, we advocate the concept of self-monitoring, i.e., each 

IoT device can execute misbehavior detection code in its own 

secure computation space and self-monitors itself. The 

monitoring process is lightweight and will not interfere with the 

normal operations of the monitor IoT device or the target IoT 

device (see Section IV-D for detail).   

Note that our design can be extended into a fault tolerant 

structure based on the concept of recovery block [39]. Using a 

patient-controlled analgesia (PCA) device as an example, we 

can set up a recovery block structure consisting of two 

“functional” modules, e.g., a target PCA and a monitor PCA, 

along with an “acceptance” module corresponding to the 

monitor code preloaded into the monitor PCA’s secure 
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computation space such that the acceptance module can 

securely execute misbehavior detection code, even if its 

operating kernel has been compromised. When the target PCA 

is deemed misbehaved by the acceptance module, the target 

PCA is taken offline and replaced by the monitor PCA for 

continued operations. The above design can also be applied to 

the case of self-monitoring, i.e., every PCA executes 

misbehavior detection code preloaded into its own secure 

computation space [5, 37, 38] upon bootstrapping and self-

monitors itself. In this case, the two functional modules can 

adopt two distinct software implementations to reduce 

correlated software faults with module 1 as the main module 

and module 2 as the recovery module that will switch in to take 

over the PCA function once the acceptance module (i.e., the 

monitor code executed in the secure computational space) 

decides that module 1 is misbehaved or faulty.  

IV. MEDIOT DESIGN FOR MISBEHAVIOR DETECTION OF PCA 

IN A MEDICAL CPS 

In this section, we provide the detail of our MedIoT design 

and exemplify MedIoT with patient-controlled analgesia (PCA) 

devices embedded in a health monitoring medical CPS [17]. We 

choose PCA as our example medical IoT device because it is 

one of the most referenced medical IoT devices in the literature. 

We consider a PCA device as illustrated in Figure 1 that is 

programmed to perform analgesic injection in response to the 

injection button being pressed by a patient, with the injection 

period and dosage controlled by authority. Figure 1 shows that 

the monitor code in the monitor PCA executes in secure 

computational space, detects misbehavior of the target PCA 

based on behavior rules, and performs control strategies. When 

the target PCA does not conform to behavior specifications as 

defined by behavior rules in Table 3 (discussed later) derived 

from the PCA’s operational profile, the monitor code will detect 

such misbehaviors regardless whether it is caused by malicious 

attacks or environment uncertainties/disturbances. For 

example, it may be the button that the patient must press to 

release drug is jammed, so no drug dosage is injected.  Although 

it is not caused by an attack (rather, it is caused by a hardware 

fault of the button device), this misbehavior would be detected 

by ABI 9 in Table 4 (discussed later) which says “(Dosage ≠ 

Specified Dosage) ˄ (Action = Inject)” because upon the 

patient’s pressing the button, no dosage is injected. As another 

example, it may be the life vital sign measurement device that 

measures the patient respiration rate is malfunctioning, so the 

patient respiration rate is uncertain. Although it is not caused by 

an attack (rather, it is caused by a hardware fault of the life vital 

sign measurement device), this misbehavior would nevertheless 

be detected by ABI 2 in Table 4 (discussed later) which says 

(Patient Respiration Rate ≠  Normal) and (Action ≠ Alert-and-

Hold) because the patient respiration rate is uncertain and thus 

is not normal and the action is to alert the hospital personnel 

and hold drug injection. Since the behavior rules completely 

TABLE 1 

PCA SECURITY REQUIREMENTS. 

ID Security Requirement  

SR 1 The PCA must raise alert to designated personnel and hold 

analgesic injection if the patient’s condition is unfit for analgesic 

injection 

SR2 The PCA must raise alert to designated personnel and hold 

analgesic injection if the PCA is not ready for analgesic injection 

SR 3 The PCA must change its injection rate and medicine dosage upon 

authorized commands only 

SR 4 The PCA must perform correct IDS functions when serving as a 

monitor node, i.e., providing true recommendations 

SR 5 The PCA must perform analgesic injection at the specified dosage 

without exceeding the allowable injection rate 

 

 TABLE 2 

PCA THREATS. 

ID Threat 

THREAT 1 The PCA is not able to raise alert and hold analgesic injection 

when patient is unfit 

THREAT 2 The PCA is not able to raise alert and hold analgesic injection 

when PCA is not ready 

THREAT 3 The PCA is not able to follow authorized commands 

THREAT 4 The PCA is not able to perform correct IDS functions, i.e., 

not able to provide true IDS recommendations 

THREAT 5 The PCA’s analgesic injection rate is above the specified 

injection rate 

THREAT 6 The PCA is not injecting the specified dosage 

 

TABLE 3 

PCA BEHAVIOR RULES. 

ID Behavior Rule Security Aspect 

BR 1 Raise alert to designated personnel and 

hold analgesic injection if patient pulse 

rate is not normal 

Integrity, confidentiality, 

availability 

BR 2 Raise alert to designated personnel and 

hold analgesic injection if patient 

respiration rate is not normal 

Integrity, confidentiality, 

availability 

BR 3 Raise alert to designated personnel and 

hold analgesic injection if patient status 

is defibrillation 

Integrity, confidentiality, 

availability 

BR 4 Raise alert to designated personnel and 

hold analgesic injection if drug 

reservoir is empty 

Integrity, confidentiality, 

availability 

BR 5 Raise alert to designated personnel and 

hold analgesic injection if infusion 

pressure is not normal 

Integrity, confidentiality, 

availability 

BR 6 Accept authorized commands Integrity, confidentiality, 

availability 

BR 7 Provide true recommendations Integrity  

BR 8 Perform analgesic injection without 

exceeding the specified rate 

Integrity  

BR 9 Perform analgesic injection at the 

specified dosage 

Integrity 

 

Monitor PCA Target PCA 

 
Fig. 1.  A patient-controlled analgesia (PCA) device embedded in a 

health monitoring medical CPS [31]. The “monitor code” module in 

the monitor PCA is executed in secure computational space; it 

detects misbehavior of the target PCA based on behavior rules and 

performs control strategies. 
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and correctly cover all misbehaviors that will violate the 

security requirements of the PCA device regardless of the 

source of failure (by attacks or just environment 

uncertainties/disturbances), it ensures stability of the closed 

loop system of drug injection in presence of uncertainties and 

disturbances. 

Here we note that if we enumerate all possible threats to a 

PCA, then very likely there will be missing threats and the PCA 

will not be considered safe. To address this missing-threat 

problem, we follow the design concept of Software Engineering 

research, i.e., proving that a piece of software is correct and 

complete with respect to the user specifications in the form of 

“operational profile” [16] that defines the operational 

specification and security requirements of a PCA. Since the 

security requirements are fully defined by the operational 

profile, we can mechanically derive a full set of threats that 

could violate the security requirements. This process is 

illustrated below as we convert the security requirement table 

(Table 1 PCA Security Requirements) to the threat table (Table 

2 PCA Threats). Hence, there is no missing threat with respect 

to the security requirements defined in the operational profile. 

A similar idea is applied as we convert the threat table (Table 

2) to the behavior rule table (Table 3) and subsequently to the 

attack indicator table (Table 4). As a result, the conversion is 

correct and complete with respect to the user specifications in 

terms of the full set of Boolean conditions as well as the full set 

of physical variables whose runtime values determine the truth 

or false of a Boolean condition.  

A. Behavior Rule Specification of a PCA 

We use the design concept of “operational profile” [16] 

during the testing and debugging phase of an embedded IoT 

device when the IoT software is built to identify the complete 

set of behavior rules. An IoT device’s operational profile 

essentially is a mission assignment during the operational phase 

of the IoT device. A mission assignment in an embedded IoT 

device’s operational profile explicitly defines a set of security 

requirements for the mission to be successful, from which a set 

of threats as well as a set of behavior rules to cope with the 

threats may be automatically derived. 

We consider a PCA in a medical CPS with the following 

operational profile: 

Raise an alert to designated personnel and halt analgesic injection 

if the patient’s medical condition is unfit for analgesic injection; 

raise an alert to designated personnel and halt analgesic injection 

if the PCA is not ready for analgesic injection; communicate with 

authorized personnel only regarding the injection rate and dosage 

of medicine; perform correct IDS functions; when the injection 

button is pressed, if the patient controlled injection rate is less than 

or equal to the specified injection rate then inject a specified dose 

of medicine. 

Given this operational profile as input, the security 

requirements of this PCA may be derived as listed in Table 1. 

With the system requirements defined, it is relatively 

straightforward to identify the threats that will keep this PCA 

from accomplishing its mission, as listed in Table 2.  

Next, we derive the behavior rule set for this PCA. Deriving 

behavior rules from a threat will require field expert knowledge 

because only a field expert can properly identify the physical 

cause or source of a threat. Table 3 lists the behavior set without 

priority order for simplicity. It also lists the security aspect 

(integrity, confidentiality, or availability) associated with each 

behavior rule. A threat that has more than one cause or source 

for the negative event can require multiple behavior rules. For 

example, in THREAT 1 there are 3 causes for defining “patient 

is unfit,” thus requiring three behavior rules (BR 1, BR 2, and 

BR 3) for handling THREAT 1. Similarly in THREAT 2 there 

are 2 causes for defining “PCA is not ready.”  Thus, two 

behavior rules (BR 4 and BR 5) are created for handling 

THREAT 2. The remaining threats each have a single cause and 

therefore they each map to a single behavior rule, i.e., THREAT 

3 maps to BR 6, THREAT 4 maps to BR 7, THREAT 5 maps 

to BR 8, and THREAT 6 maps to BR 9. Note that as illustrated 

in Figure 1, a PCA can obtain a patient’s vital sign and status 

measurements (such as pause rate, respiratory rate, 

defibrillation status, etc.) via communicating with various 

sensing and measuring devices mounted on the patient’s body 

for collecting the patient’s vital sign and status measurements. 

B. Transforming the Behavior Rules to a State Machine for 

Misbehavior Detection 

After the behavior rule set is identified, we transform it to a 

state machine for lightweight misbehavior detection. The 

behavior-rule-to-state-machine transformation process is 

automatic. First, one “attack behavior indicator” (ABI) for each 

behavior rule is derived. Then, each ABI is expressed as a 

conjunctive normal form (CNF) predicate to be evaluated to 

true or false indicating whether the corresponding behavior rule 

is violated or not. Then, all ABIs are combined altogether into 

a disjunctive normal form (DNF) predicate. Lastly the state 

machine is formed with all ABIs being the state components, 

each taking the value of 1 (true) or 0 (false). When all ABIs take 

the value of 0, it means that none of the behavior rules is 

violated and hence the system is in a safe state. Conversely, 

when an ABI takes the value of 1, it means that the 

corresponding behavior rule is violated. We describe the 

behavior rules to the state machine transformation process in 

the following subsections. 

 

1) Attack Behavior Indicators Expressed as CNF Predicates 

 

Table 4 lists 9 ABIs, each to be evaluated to 1 (true) or 0 

(false) at runtime through monitoring, indicating whether the 

TABLE 4  

PCA ATTACK BEHAVIOR INDICATORS IN CNF. 

ID Attack Behavior Indicator 

ABI 1 (Patient Pulse Rate  Normal)  (Action  Alert-and-Hold)  

ABI 2 (Patient Respiration Rate  Normal)  (Action  Alert-and-

Hold)  

ABI 3 (Patient Status = Defibrillation)  (Action  Alert-and-Hold)  

ABI 4 (Drug Reservoir = Empty)  (Action  Alert-and-Hold)  

ABI 5 (Infusion Pressure  Normal)  (Action  Alert-and-Hold)  

ABI 6  (Command = AUTHORIZED)  (Action  Accept)  

ABI 7 (Audit = ON)  (Action = Report False Audit)  

ABI 8  (Injection Rate  Specified Injection Rate)  (Action = Inject)  

ABI 9  (Dosage  Specified Dosage)  (Action = Inject) 
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corresponding behavior rule is violated or not. When an ABI is 

evaluated to true, the PCA is detected as misbehaving against 

the corresponding behavior rule.  

The transformation of each behavior rule to an ABI involves 

the following two steps: 

a) For each behavior rule, identify a set of Boolean conditions 

connected in CNF, such that if all Boolean conditions are 

evaluated true, then the ABI is evaluated true and the 

corresponding behavior rule is violated. 

b) For each Boolean condition, identify a set of physical 

variables whose runtime values determine the truth or false 

of the Boolean condition. 

The completeness and correctness of steps (a) and (b) will 

be discussed further in Section IV-C below. As an example, BR 

1 in Table 3 has two Boolean conditions: “Is patient pulse rate 

not normal?” and “Is the action not alerting and holding?” For 

the first Boolean condition, the physical variable is Patient 

Pulse Rate and for the second Boolean condition the physical 

variable is Action. When the patient’s pulse rate is not normal 

and the action is not alert-and-hold, it is a violation of BR 1. 

The first part of ABI 1 (the event part) specifies the event 

condition under which the 2nd part (the action part) is to be 

evaluated true or false.  

Below we explain in detail how BR i in Table 3 (i from 1 to 

9) is transformed into ABI i in Table 4 for the PCA device. 

The 1st ABI (ABI 1 in Table 4) is that this PCA does not alert 

personnel and hold analgesic injection when the patient’s pulse 

rate is not normal. A normal pulse rate for adults is 60-100 beats 

per minute. The CNF of the Boolean expression is (Patient 

Pulse Rate  Normal)  (Action  Alert-and-Hold).  

The 2nd ABI (ABI 2 in Table 4) is that this PCA still injects 

analgesic when the patient’s respiration rate is not normal. The 

normal respiratory rate for adults is 12–20 breaths per minute. 

The CNF of the Boolean expression is (Patient Respiration Rate 

 Normal)  (Action  Alert-and-Hold).  

The 3rd ABI (ABI 3 in Table 4) is that this PCA still injects 

analgesic when the patient is being treated with defibrillation. 

The CNF of the Boolean expression is (Patient Status = 

Defibrillation)  (Action  Alert-and-Hold).  

The 4th ABI (ABI 4 in Table 4) is that this PCA does not alert 

personnel and hold analgesic injection when the drug reservoir 

is empty. The CNF of the Boolean expression is (Drug 

Reservoir = Empty)  (Action  Alert-and-Hold).  

The 5th ABI (ABI 5 in Table 4) is that this PCA does not alert 

personnel and hold analgesic injection when the infusion site is 

incorrect, e.g., the injection is pulled of the patient’s body or the 

injection is not at the patient’s correct infusion point. This is 

indicated by measuring the infusion pressure being normal or 

not. The CNF of the Boolean expression is (Infusion Pressure  

Normal)  (Action  Alert-and-Hold). This ABI has a local 

variable called Infusion Pressure for measuring the infusion 

pressure to detect if the infusion site is correct. If image sensors 

are built inside the PCA, image-sensing the infusion site may 

directly detect if the infusion site is at the right place.  

The 6th ABI (ABI 6 in Table 4) is that a PCA does not accept 

authorized commands to update its injection rate and medicine 

dosage. The CNF is (Command = AUTHORIZED)  (Action 

 Accept).  

The 7th ABI (ABI 7 in Table 4) is that a PCA acting as a 

monitor PCA provides false recommendations toward a 

behaving target PCA (called bad-mouthing attacks), and good 

recommendations toward a misbehaving target PCA (called 

ballot-stuffing attacks). This may be detected by detecting 

recommendation discrepancies among multiple monitor PCAs. 

The CNF is (Audit = ON)  (Action = Report False Audit).  

The 8th ABI (ABI 8 in Table 4) is that this PCA injects 

analgesic at a rate exceeding the specified injection rate. The 

CNF is (Injection Rate  Specified Injection Rate)  (Action = 

Inject). Finally, the 9th ABI (ABI 9 in Table 4) is that this PCA 

does not inject analgesic at the right dosage. The CNF is 

(Dosage  Specified Dosage)  (Action = Inject). 

Here we note that in Table 4 under ABI 1 - ABI 5, “Alert-

and-Hold” refers to two separate actions because alerting the 

personnel of the misbehavior of the PCA device and holding the 

PCA injection would trigger different parts of the system. 

Hence the Boolean expression “Action ≠ Alert-and-Hold” is 

false when both alert personnel and hold dosage are done. We 

also note that an attacker can possibly block alert and infect a 

PCA to hold dosage. However this misbehavior would be 

detected by ABI 9 in Table 4 which says “(Dosage ≠ Specified 

Dosage) ˄ (Action = Inject)” because upon the patient’s 

pressing the button, no dosage is injected. 

2) All ABIs are combined into a DNF Predicate 

All 9 ABIs in Table 4 are combined into a DNF predicate 

(ABI 1  ABI 2  ABI 3  ABI 4  ABI 5  ABI 6  ABI 7 

 ABI 8  ABI 9) because every ABI if evaluated to true is an 

indication of misbehavior.  

3) Generated State Machine for Misbehavior Detection 

For the PCA state machine, there are 9 Boolean variables 

(each taking the value of either 1 or 0) in the state 

representation, resulting in the total number of states being 29= 

512, out of which only one is a safe state (when all 9 Boolean 

variables are false or take the value of 0) and all other 511 states 

are unsafe states. For a target PCA, we label its 512 states in 
the state machine as states 0, 1, 2, …, 511 with state 0 
represented by (0, 0, 0, 0, 0, 0, 0, 0, 0) as the only safe state 
in which all 9 Boolean variables (ABI 1 – ABI 9) take the 
value of 0 or false. Note that there are many variables in these 

9 ABIs. However, these variables are internal variables 

maintained by a monitor PCA who updates these internal 

variable values at monitoring intervals to determine the 

true/false (or 1/0) of the 9 Boolean variables for a target PCA 

that is being monitored on. We note that it is possible all event 

conditions can occur simultaneously. Therefore it is possible for 

the target PCA to go from state (0, 0, 0, 0, 0, 0, 0, 0, 0) to state 
(1, 1, 1, 1, 1, 1, 1, 1, 1) when all 9 event conditions are true 
and the target PCA is a reckless attacker that attacks all the 
time whenever it has a chance.  

C. Model Checking and Formal Verification 

While generating an ABI (in Table 4) from the 

corresponding behavior rule (in Table 3), it requires that (a) a 

complete set of Boolean conditions be specified for each 

behavior rule; and (b) a complete set of physical variables be 

specified for each Boolean condition. If step (a) or (b) is 

incorrect or incomplete, it could lead to high false positives. 
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Our method to deal with the above problem resorts to what 

Software Engineering research does, i.e., proving that a piece 

of software is correct and complete with respect to the user 

specifications. In our design, we prove that both steps (a) and 

(b) are correct and complete with respect to user-specified 

security requirements (in Table 1 as derived from the device’s 

operational profile) and user-defined Boolean conditions. 

Specifically, for step (a) it would require the field expert to 

specify or define a set of Boolean conditions for each behavior 

rule. For example, for BR 1 “Raise alert to designated personnel 

and hold analgesic injection if patient pulse rate is not normal,” 

a field expert would specify if (Patient Pulse Rate  Normal) 

and (Action  Alert-and-Hold) would be the correct and 

complete Boolean conditions for BR 1. For step (b), it would 

require the field expert to specify or define the set of physical 

variables for each Boolean condition based on the field expert’s 

knowledge about the domain. For example, the field expert 

would identify that “Patient Pulse Rate” and “Action” are two 

physical variables for BR 1. To prove that the transformation 

from a behavior rule to an ABI is complete and correct, we 

would encode the field expert knowledge as "auxiliary" rules 

with which we formally prove the each ABI is derived correctly 

such that it can correctly and completely cover the 

corresponding threat and thus satisfy the corresponding security 

requirement based on the user-specified Boolean conditions for 

each ABI.  

 
Fig. 2: A 2-layer HCAPN model for formal verification of correctness and 

completeness. For illustration, the upper layer contains only places and 

transitions related to ABI 1. 

We conduct automatic model verification of the behavior 

rules and the corresponding ABIs expressed in XML format by 

verifying if the behavior rules generated are correct and 

complete with respect to user specifications and cover all the 

threats and thus satisfy the security requirements. We formulate 

a Hierarchical Context-Aware Aspect-Oriented Petri Net 

(HCAPN) [32, 33] model implemented through a Petri Net 

simulator [36] for model checking and formal verification. In 

the HCAPN model, we define security requirements (in Table 

1) and ABIs (in Table 4) by (1) places each holding an ABI, a 

physical variable, or a security requirement; (2) transitions each 

with a set of Boolean conditions specifying the firing 

conditions; and (3) arcs connecting places with transitions. We 

complete formal verification by defining a HCAPN model that 

is evaluated to be true, proving that this PCA device will not 

violate the security requirements if it does not violate the 

behavior rules. 

Figure 2 illustrates the resulting HCAPN model with places 

modeling the physical variables in the upper layer and ABIs in 

the lower layer. For illustration purposes, we only show two 

places “Patient Pulse Rate (PPR)” and “Action” (physical 

variables of ABI 1) and the associated transitions in the upper 

layer for formal verification of behavior rule 1. The lower layer 

consists of behavior rules (in the form of ABIs) each connecting 

to their physical variables by arcs. A transition is fired if and 

only if each of the input places contains a token and the Boolean 

condition associated with the transition is evaluated true. The 

“Initiator” place has a role of initiating token firing for model 

checking. This is done by generating tokens representing 

physical variables to flow through the HCAPN and verifying if 

a transition firing condition is true causing a transition to be 

fired. The “Decision” place holds the security requirements for 

decision making of correctness verification. The verification of 

ABI 1, for example, starts with the “Initiator” place generating 

a token to put in place “PPR.” Transition “T3” checks if the first 

Boolean condition of ABI 1, i.e., (Patient Pulse Rate  Normal), 

is true and if yes will fire and propagate the token to place 

“Action.” Transition “T4” will check if the second Boolean 

condition of ABI 1, i.e., (Action  Alert-and-Hold), is true and 

if yes will fire the transition and generate a token to flow to 

place “Decision” for decision making, as well as a token to flow 

to place “ABI 1” for Boolean condition verification of behavior 

rule 1 (in the form of ABI 1). Finally transition “T6” checks the 

Boolean verification of behavior rule 1 and if true will fire the 

transition and generate a token to place “Decision” to complete 

the correctness verification. In summary, we verify the 

completeness and correctness properties as follows: 

• Completeness: The HCAPN model built is complete only if 

all physical variables, Boolean conditions, and ABIs are fully 

defined in the HCAPN model. All entities are fully 

connected by arcs in one HCAPN model and no isolated 

subnet exists in the HCAPN model. This is verified by 

conducting a token governance analysis such that all places 

and transitions defined are utilized at least once during 

HCAPN model execution. This verifies that the behavior 

rules specified are complete with respect to the field expert’s 

specifications of Boolean conditions (in each behavior rule) 

and physical variables (in each Boolean condition). 

• Correctness: The HCAPN model built is correct only if the 

reachability graph is correct, i.e., the tokens are flowing 

properly through the model and collected at place “Decision” 

(holding the security requirements) and the property of 

boundness is fully observed. We conduct a token reachability 

and boundness analysis by checking if tokens can reach all 

places and are bounded in all places. The token reachability 

defines the completeness and correctness of behavior rules 

and verifies that the behavior rules specified are correct with 

respect to the field expert’s specifications of Boolean 

conditions (in each behavior rule) and physical variables (in 

each Boolean conditions). Also as tokens always flow to 

place “Decision” holding the security requirements, it 

verifies that the behavior rules satisfy the security 

requirements.
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D. Runtime Collection of Compliance Degree Data 

Unlike anomaly detection which frequently requires heavy 

resources to profile/learn anomaly patterns, our behavior rule 

specification-based data collection process is lightweight. By 

using the transformed state machine, a monitor device only 

needs to periodically monitor if a target IoT device is in safe or 

unsafe states without interfering with the normal operation of 

either the monitor device or the target device. Hence the 

monitor node can simply collect an instance of the compliance 

degree of the target node (to be monitored on) by measuring the 

proportion of time the target PCA node is in state 0. This 

collection process is repeated periodically. By the end of the nth 

monitoring periods, the monitor node would collect the 

compliance degree history 𝑐1, 𝑐2, … , 𝑐𝑛 of the target PCA. As 

the state machine has incorporated the knowledge of safe vs. 
unsafe states, this data collection process is extremely 

lightweight. The monitor node just needs to check which states 

the target node is in during the ith monitoring interval and 

measures 𝑐𝑖 as the proportional of time the target node is in safe 

states in the ith monitoring interval. To save energy, this 

monitoring process can be done in discrete time space involving 

probing the states of the target node at discrete time points. 

Then an instance of the compliance degree can be measured as 

the ratio of the number of times in which the target node is 

found to be in safe states over the total number of times the 

monitor node probes the status of the target node. 

E. Statistical Analysis for Misbehavior Detection 

Our lightweight statistical analysis does not involve training, 

that is, we do not partition the “compliance degree” history 

𝑐1, 𝑐2, … , 𝑐𝑛 collected (see Section IV-C) into the training set 

and the data set for testing because such heavy profiling and 

learning at run time is impractical for resource-constrained IoT 

devices. Rather, we simply model an IoT device’s “compliance 

degree” by a random variable 𝐶 following a probability 

distribution function G(.) with the value of 0 indicating zero 

compliance and 1 indicating perfect compliance. Once we know 

the target node’s compliance degree distribution function, we 

can compute the expected value of C to know the average 

compliance degree of the target node over a time period. This 

information will allow us to decide if the target node is 

considered “malicious” based on a binary grading criterion, i.e., 

if the target node’s average compliance degree is less than or 

just equal to a minimum threshold 𝐶𝑇, we consider the target 

node as malicious.  

In this work we consider 𝐺(. ) = 𝐵𝑒𝑡𝑎(𝛼, 𝛽) as the 

probability distribution function. The 𝛼 and 𝛽 parameters can 

be parameterized using the target node’s compliance degree 

history 𝑐1, 𝑐2, … , 𝑐𝑛 collected during runtime. The computation 

overhead would be manageable because the monitor node just 

needs to solve the maximum likelihood equations to 

parameterize the 𝛼 and 𝛽 parameters. In this case, the run time 

complexity is 𝑂(𝑛𝑙𝑜𝑔𝑛). If we use a one-parameter 𝐵𝑒𝑡𝑎(𝛽) 

distribution with 𝛼 fixed at the value of 1 as the probability 

distribution function, the maximum likelihood estimate of 𝛽 is 

given by a simple analytical expression: 𝛽 = 𝑛/ ∑ log (1/𝑛
𝑖=1

1 − 𝑐𝑖)  and the run time complexity to parameterize 𝛽 using 

the target node’s compliance degree history is only 𝑂(𝑛) which 

is extremely lightweight compared with contemporary anomaly 

based detection methods that would incur the run time 

complexity of O(𝑛𝑝) to O(𝑝𝑛), p > 1, where n is the number of 

data samples because of the need to profile or learn anomaly 

patterns. 

The effectiveness of our lightweight statistical analysis 

method described above can be measured by the false negative 

probability 𝑃𝑓𝑛 and false positive probability 𝑃𝑓𝑝. During an 

experimental run if a seeded “good” node’s compliance degree 

is lower than or just equal to the minimum threshold 𝐶𝑇, we 

incur a false positive, i.e., treating a good node as a bad node. 

On the other hand, if during an experimental run a seeded “bad” 

node’s compliance degree is higher than the minimum 

threshold 𝐶𝑇, we incur a false negative, i.e., treating a bad node 

as a good node. For the target PCA, since we know the target 

PCA’s compliance degree distribution function G(.) after 

applying our lightweight statistical analysis method, we can 

easily compute 𝑃𝑓𝑛 = Pr(𝐶 > 𝐶𝑇) = 1 − 𝐺(𝐶𝑇) given that the 

PCA device is “bad” and 𝑃𝑓𝑝 = Pr(𝐶 ≤ 𝐶𝑇) = 𝐺(𝐶𝑇) given 

that the PCA device is “good” during experimental runs. 

V. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of MedIoT in 

terms of “effectiveness” measured by detection rate, false 

positive probability, false negative probability, and area under 

the receiver operating characteristic (AUROC) curve, as well as 

in terms of “efficiency” measured by memory utilization, 

communication overhead, and computation overhead. We 

analyze the tradeoff between effectiveness and efficiency by 

performing a sensitivity analysis of effectiveness/efficiency 

performance results with respect to the monitoring rate with 

which compliance data are collected for misbehavior detection. 

We also conduct a comparative analysis with contemporary 

anomaly-based misbehavior detection techniques including 

SVM [28] and KNN [34] in both “effectiveness” and 

“efficiency” metrics. 

A. Experiment Setup 

We setup separate ns3 processes to simulate various entities 

as illustrated in Figure 1 to reflect reality. These ns3 processes 

model (1) a monitor PCA, (2) a target PCA, (3) a patient 

pressing/releasing a button on the target PCA for drug injection, 

(4) hospital personnel for defining dosage/injection rate and 

receiving alerts, (5) an event condition generator checking if an 

event condition (e.g., PCA button hold/release, Patient Pulse 

Rate, Patient Respiration Rate, Patient Status, Drug Reservoir, 

Infusion Pressure, Injection Rate, or Dosage) is triggered or not, 

(6) an action condition verifier checking if the target PCA is 

well behaved or misbehaved, and (7) a M2M communication 

system. Our ns3 simulation is verified to reflect reality since it 

covers all event conditions defined in the ABI Table (Table 4) 

and covers all security threats (Table 2) derived from the target 

PCA’s operational profile. 
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We consider a noisy environment resulting in imperfect 

monitoring. That is, the monitor PCA may mis-detect the state 

a target PCA is in with a mis-monitoring probability due to 

environment noises. We model the mis-monitoring probability 

𝑃𝑒 as a random variable of a continuous uniform distribution in 

the interval [a, b] where a and b are both real numbers in the 

range of [0, 1] with a ≤ b. Typically, we test three cases: [a, b] 

= [0, 10%] (i.e., low noises), [a, b] = [0, 30%] (i.e., medium 

noises), and [a, b] = [0, 50%] (i.e., high noises). Furthermore, 

we consider the following attacker types for a malicious target 

PCA: 

1. Reckless: the malicious PCA attacks all the time 

whenever it has a chance, i.e., when any of the 9 ABI 

event conditions listed in Table 4 is true. 

2. Random: the malicious PCA attacks randomly or on-and-

off to avoid detection with an attack probability of 𝑃𝑎. 
That is, when an ABI event condition (as listed in Table 

4) is true, it decides to attack with probability 𝑃𝑎. In the 

simulation, we randomly generate a number in [0, 1] and 

if this number is less than 𝑃𝑎, then the malicious PCA 

attacks. 

3. Opportunistic: the malicious PCA attacks only when the 

mis-monitoring probability is high. That is, when an ABI 

event condition (as listed in Table 4) is true, it decides to 

attack only if the current mis-monitoring probability is 

high. In the simulation, we randomly generate a number 

in [a, b] (which is the range of mis-monitoring 

probability) and if this number is equal to or greater than 

(a+b)/2 then the malicious PCA attacks. 

4. Insidious: the malicious PCA is hidden and attacks only 

under certain ABI event conditions in which the gain 

(causing damage) outweighs the loss (being detected). 

Out of the 9 ABIs listed in Table 4, ABI 8 (analgesic 

injection rate is above the specified injection rate) and 

ABI 9 (not injecting the specified dosage) will cause the 

most damage among all. In the simulation, the malicious 

PCA in insidious mode will attack only when the event 

conditions of ABI 8 or ABI 9 are true. 

We conduct a discrete event simulation. There are 9 events as 

listed in Table 4, i.e., (Patient Pulse Rate  Normal), (Patient 

Respiration Rate  Normal) (Patient Status = Defibrillation), 

(Drug Reservoir = Empty), (Infusion Pressure  Normal), 

(Command = AUTHORIZED), (Audit = ON), (Injection Rate 

 Specified Injection Rate), and (Dosage  Specified Dosage). 

In the simulation, we simulate the arrivals of these 9 events by 

Poisson arrival processes with rates 𝜆𝐴𝐵𝐼1- 𝜆𝐴𝐵𝐼9, respectively. 

For example, to simulate the next ABI 1 event occurrence time, 

we randomly generate a number following exponential 

distribution with parameter 𝜆𝐴𝐵𝐼1 and the next ABI 1 event 

would occur at now plus this number. Initially, we generate the 

event occurrence times of the 9 ABI events each and put them 

in the event queue sorted by event occurrence time. These 

events are processed one at a time based on their event 

occurrence times. After an event is processed, the simulation 

clock is advanced to the event occurrence time in the discrete 

time space. If multiple ABI events occur at the same time, they 

are also being processed one at a time, but the simulation clock 

will advance only after all are processed. After an ABI event is 

processed, the next event occurrence time for the same ABI 

event is generated again and placed in the event queue, so the 

event-driven simulation continues running until a stopping 

criterion is met (discussed below). 

The monitor PCA monitors (what it perceives) the state 

machine status of a target PCA for the purpose of misbehavior 

detection. It applies the same mechanical way of updating the 

state machine of the target PCA regardless of whether the target 

PCA is malicious or not (which it does not know). The start 

state at t=0 initially is (0, 0, 0, 0, 0, 0, 0, 0, 0). When an event 
occurs, the monitor PCA updates a target PCA’s state 
machine. Below we separate the discussion for the 
malicious target PCA and the good target PCA because the 
resulting state machine as perceived by the monitor PCA 
will be different. 

The good target PCA would not attack when an ABI event 

occurs. Therefore, the good target PCA would stay in state (0, 

0, 0, 0, 0, 0, 0, 0, 0) forever. However, the monitor PCA can 

mis-detect because of the mis-monitoring probability 𝑃𝑒 .  In the 
simulation we first randomly generate a number in [a, b] for 

the current mis-monitoring probability. Then we randomly 

generate another number in [0, 1]. If this number is larger than 

the current mis-monitoring probability, then it means that there 

is no mis-monitoring and the monitor PCA will put a “0” in the 

state component position corresponding to the ABI event. 

Otherwise, the monitor PCA puts a “1” in the state component 

position corresponding to the ABI event as the good target PCA 

is mis-identified as performing attack by the monitor PCA. 

The malicious target PCA may or may not attack when an 

ABI event occurs, depending on its attacker type. For example, 

a reckless attacker always attacks whenever an event occurs. 

However, an opportunistic attacker attacks only when the 

environment noise is high. There are two cases: 

• If the malicious target PCA does not attack, then the 

monitor PCA will update the state machine of the 

malicious target PCA in the same way it updates the state 

machine of a good target PCA (who does not attack) as 

described earlier. 

• If the malicious target PCA does attack, the monitor PCA 

can detect the attack subject to mis-monitoring probability 

𝑃𝑒 under which the malicious target PCA’s attack is not 

detected. In the simulation we again first randomly 

generate a number in [a, b] for generating the current mis-

monitoring probability 𝑃𝑒. Then we randomly generate 

another number in [0, 1]. If this number is larger than the 

current mis-monitoring probability, then it means that there 

is no mis-monitoring and the attack is detected by the 

monitor PCA which will update the state machine of the 

malicious target PCA by putting a “1” in the state 

component position corresponding to the ABI event. For 

example if ABI 1 event occurs and the malicious target 

PCA decides to attack and the attack is detected, then the 

malicious target PCA’s state machine is updated from (0, 

0, 0, 0, 0, 0, 0, 0, 0) to (1, 0, 0, 0, 0, 0, 0, 0, 0). Otherwise, 

the monitor PCA puts a “0” in the state component position 

corresponding to the ABI event since the attack is mis-

detected by the monitor PCA.  

The monitor PCA updates the state machine of a target PCA 

it is assigned to monitor at every ABI event occurrence time in 

the event-driven simulation. While updating the state machine, 
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the monitor PCA keeps track of the state transitions that have 

occurred and collects the target PCA’s compliance degree 

history 𝑐1, 𝑐2, … , 𝑐𝑛 as discussed in Section IV-D. The target 

PCA’s compliance degree history 𝑐1, 𝑐2, … , 𝑐𝑛 is then used to 

parameterize the 𝛽 parameter from the one-parameter 𝐵𝑒𝑡𝑎(𝛽) 

distribution with 𝛼 being fixed at the value of 1. We stop the 

simulation when the following stopping criterion is met: when 

the 𝛽 parameter value converges based on 95% confidence 

level and 10% confidence accuracy. That is, with 95% 

confidence, the mean 𝛽 value obtained is within the true mean 

by 10%. Once the 𝛽 value is obtained, we obtain the target 

PCA’s compliance degree distribution function, based on which 

the monitor PCA computes the false negative probability (𝑃𝑓𝑛) 

and false positive probability(𝑃𝑓𝑝) by adjusting the minimum 

compliance threshold 𝐶𝑇 as described in Section IV-E.  

We verify that MedIoT performs better than or comparably 

against contemporary anomaly-based misbehavior detection 

techniques including Support Vector Machine (SVM) [28] and 

k-nearest neighbors (KNN) [34] in “effectiveness” metrics. 

Moreover, we verify that MedIoT can dominantly outperform 

SVM and KNN in “efficiency” metrics, thus supporting our 

claim that MedIoT is the only feasible misbehavior detection 

scheme applicable to resource-constrained IoT devices.  

SVM [28] is a popular data classification technique for 

classifying data into groups and has been well adopted for 

misbehavior detection for CPSs [29, 30]. We use it to classify a 

target IoT device into “well-behaved” or “misbehaved” groups 

based on the data collected by the monitor device on the target 

device. Applying SVM is a two-stage process: in the “training” 

stage, we train a SVM classifier with examples of “well-

behaved” or “misbehaved” data collected from good and bad 

target IoT devices, respectively, so the SVM classifier can learn 

their data patterns and classify the target IoT device into the 

right group. In the “application” stage, the trained SVM 

classifier takes new data collected at run time and classifies the 

responsible target device into the “well-behaved” or 

“misbehaved” group. Typically, when new data arrives, the 

SVM classifier should be retrained so it can learn from 

experiences dynamically. SVM involves identifying the main 

features of a device so that it can effectively differentiate “well-

behaved” from “misbehaved” data patterns. These key features 

are variables whose values are collected at runtime and are put 

into a p-dimensional support vector in the form of  (𝑋1, 𝑋2, …, 

𝑋𝑝) where 𝑋𝑖 is the ith variable. For fair comparison, we use the 

same physical variables identified in our ABI table (Table 4) as 

SVM variables. That is, (𝑋1, 𝑋2, …, 𝑋𝑝) = (Patient Pulse Rate , 

Patient Respiration Rate, Patient Status, Drug Reservoir, 

Infusion Pressure, Command, Audit, Injection Rate − Specified 

Injection Rate, Dosage − Specified Dosage) with p=9. Note that 

the last two variables are represented as the differences between 

the current measured quantity and the specified quantity to 

allow effective data pattern learning. During the training stage, 

a data sample (containing p support vector variable values 

measured when an ABI event occurs) is in the form of (𝑋1, 𝑋2, 
…, 𝑋𝑝, 𝑦) where y is 1 for “well-behaved” and −1 for 

“misbehaved.” During the application stage, y is the output of 

SVM based on which the target node is classified into “well-

behaved” or “misbehaved.” The output produced by SVM is 

collected as an instance of the target device’s compliance 

degree 𝑐𝑖. 

K-nearest neighbors (KNN) [34] is also a popular 

classification scheme which we take as a 2nd baseline machine 

learning algorithm for performance comparison. For fair 

comparison, we also use the same feature vector as in SVM. 

That is, the feature vector is (𝑋1, 𝑋2, …, 𝑋𝑝) = (Patient Pulse 

Rate , Patient Respiration Rate, Patient Status, Drug Reservoir, 

Infusion Pressure, Command, Audit, Injection Rate − Specified 

Injection Rate, Dosage − Specified Dosage) with p=9. Different 

from SVM, KNN simply stores the feature vectors and the 

corresponding class labels of training samples in the form of 

(𝑋1, 𝑋2, …, 𝑋𝑝, 𝑦) where y is 1 for the “well-behaved” class 

and −1 for the “misbehaved” class. An automatic 

hyperparameter optimization method [35] is used to generate an 

optimized model which suggests the best k neighbors and 

distance algorithm for classification. During the application 

stage when being presented with a feature vector of a target 

node, KNN assigns a label to the target node which is the most 

frequent among the k training samples nearest to the feature 

vector of the target node to classify the target node as “well-

behaved” or “misbehaved.” The output produced by KNN is 

then collected as an instance of the target device’s compliance 

degree 𝑐𝑖.  

 In our experiment, MedIoT, SVM and KNN are tested 

under the same operational and environment settings as 

described above, including the mis-monitoring probability 𝑃𝑒. 

SVM and KNN are trained with 6000 training events (or cases) 

including both well-behaved and misbehaved events. Then all 

schemes are tested with 3000 events in a simulation run, using 

the same data input for analysis when an event occurs. When an 

event occurs, all schemes acquire the event input data in the 

form of (Patient Pulse Rate, Patient Respiration Rate, Patient 

Status, Drug Reservoir, Infusion Pressure, Command, Audit, 

Injection Rate - Specified Injection Rate, Dosage - Specified 

Dosage) via data communication from various sensing or 

measuring devices in exactly the same way. When the ith event 

occurs, the target device’s compliance degree 𝑐𝑖 is collected as 

follows: MedIoT checks if the end state is a safe or unsafe state 

by checking against its state machine, while SVM and KNN 

classify if the target device is well-behaved or misbehaved by 

searching through the misbehavior space learned during the 

training phase. After the target PCA’s compliance degree 

history 𝑐1, 𝑐2, … , 𝑐𝑛 is collected, we apply the lightweight 

statistical analysis method as described in Section IV-E for 

computing the false negative rate (𝑃𝑓𝑛) and false positive rate 

(𝑃𝑓𝑝) for all schemes.  

B. Effectiveness Performance Evaluation 

We measure effectiveness by the following performance 

metrics: (a) detection rate: probability of correctly identifying a 

malicious node (goal: above 99% for reckless attackers); (b) 

false negative probability (𝑃𝑓𝑛): it is equal to 1 – detection rate 

(goal:  below 1% for reckless attackers); (c) false positive 

probability (𝑃𝑓𝑝): probability of misidentifying a good node as 

a malicious node (goal: below 3%); (d) AUROC: area under a 

receiver operating characteristic (ROC) curve with detection 

rate vs. false positive probability (goal: above 97% for reckless 

attackers). In particular, the AUROC curve with the detection 
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rate (1 − 𝑃𝑓𝑛) on the Y coordinate and the false positive rate 

(𝑃𝑓𝑝) on the X coordinate is especially a well-adopted metric 

for performance comparison of misbehavior detection methods 

because it can properly reflect the tradeoff between false 

negative rate (𝑃𝑓𝑛) and false positive rate (𝑃𝑓𝑝).  

Figure 3 displays the ROC curves for the case in which the 

malicious PCA is a reckless attacker. Each ROC curve has the 

mis-monitoring probability 𝑃𝑒 in a different [a, b] range. The 

top curve is for [a, b] = [0, 10%] (i.e., low noises). The middle 

curve is for [a, b] = [0, 30%] (i.e., medium noises). The bottom 

curve is for [a, b] = [0, 50%] (i.e., high noises). We see that 

under low noises, the AUROC is close to 1 because both the 

false negative rate (𝑃𝑓𝑛) and false positive rate (𝑃𝑓𝑝) are very 

close to zero and therefore AUROC is close to 100% This 

means that MedIoT can achieve almost perfect detection under 

low noises. As the environment noise degree increases, the 

AUROC is not 1 anymore and there is a tradeoff between 𝑃𝑓𝑛 

and 𝑃𝑓𝑝. That is, if we increase the minimum compliance 

threshold 𝐶𝑇, we can reduce 𝑃𝑓𝑛 but increase 𝑃𝑓𝑝. Conversely, 

if we decrease the minimum compliance threshold 𝐶𝑇, we can 

reduce 𝑃𝑓𝑝 but increase 𝑃𝑓𝑛. We see that under medium noises, 

MedIoT can achieve 𝑃𝑓𝑛 < 1%, 𝑃𝑓𝑝 < 0.5%, and AUROC > 

99%.  Even under high noises MedIoT can still achieve the 

goal of 𝑃𝑓𝑛 < 1%, 𝑃𝑓𝑝 < 3%, and AUROC > 97% until it 

breaks when 𝑃𝑒 is above [0, 45%] because of the very high 

level of noise causing it not able to perform accurate 

misbehavior detection. Overall we see that MedIoT can 
achieve the goal of 𝑃𝑓𝑛 < 1%, 𝑃𝑓𝑝 < 3%, and AUROC > 97% 

over a wide range of noise levels (up to [0, 45%] as 
observed from our experiment) by adjusting the value of the 

minimum compliance threshold 𝐶𝑇  in response to the 
environment noise level sensed at runtime. When the noise 
level is high, MedIoT sets the minimum compliance threshold 

𝐶𝑇 to a high bar, so that it can achieve above 99% of detection 

rate for detecting the malicious target PCA, while limiting the 

false positive probability 𝑃𝑓𝑝 to under 3% for misjudging the 

good target PCA. To preserve memory space, we use a very 

simple table look-up method to match the noise level detected 

at runtime to the best 𝐶𝑇 level at which the goal of 𝑃𝑓𝑛 < 1%, 

𝑃𝑓𝑝 < 3%, and AUROC > 97% can be optimized in the 

priority order of 𝑃𝑓𝑛, 𝑃𝑓𝑝, and AUROC.  

Figure 4 analyzes the effect of attacker type on detection 

accuracy of MedIoT. Figure 4 displays 4 ROC curves, each for 

a distinct attacker type (reckless, random with 𝑃𝑎 =
0.5, opportunistic, or insidious) for the case in which [a, b] = 

[0, 10%] (i.e., low noises) to reveal interesting performance 

characteristics. The top curve is when the malicious target PCA 

is a reckless attacker for which the AUROC is nearly 1 because 

the attacker exposes itself by reckless attack behavior and can 

be easily detected by MedIoT. The 2nd highest curve is when 

the malicious target PCA is a 50% random attacker for which 

the AUROC is not as close to 1 because the attacker is hidden 

50% of the time. The third curve from the top is when the 

malicious target PCA is an opportunistic attacker who will 

attack when it detects the current mis-monitoring probability is 

above the average. The bottom curve is when the malicious 

target PCA is an insidious attacker for which the AUROC is the 

lowest because an insidious attacker attacks only when ABI 8 

or ABI 9 event conditions are true while it behaves under all 

other ABI event conditions. The malicious PCA in this case is 

mostly hidden and does not attack to avoid detection unless it 

sees ABI 8 or ABI 9 conditions are true. As a result, it limits its 

chance of exposure and thus decreases the detection accuracy 

of MedIoT.  

Figure 4 indicates that MedIoT can easily satisfy the security 

goals when the attacker type is reckless, random (with 𝑃𝑎 =
0.5) or opportunistic but MedIoT can fail miserably when the 

attacker type is insidious even under low noises. As we claim 

MedIoT performs better than contemporary anomaly detection 

methods such as SVM (to be shown later) in AUROC, we 

believe that to-date there is no single misbehavior detection 

method that can effectively counter insidious attackers. One 

 
Fig. 3. ROC Curve for MedIoT under various noisy environments. The 
Y coordinate is the detection rate (1 − 𝑃𝑓𝑛) and the X coordinate is the 

false positive rate(𝑃𝑓𝑝). 
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Fig. 4. Effect of attacker type on ROC of MedIoT. 
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Fig. 5. Comparing AUROC of MedIoT against SVM and KNN for the case 

in which the attacker type is reckless under various noisy environments. 
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way to counteract insidious attack behavior is to severely 

penalize a target PCA that violates critical ABIs (that will cause 

severe damage to the system) such as ABI 8 and ABI 9.  

Specifically, instead of assigning equal weights to all ABIs and 

consequently measuring 𝑐𝑖 as the proportion of time the target 

PCA is in safe states in the ith monitoring interval, we assign 

heavier weights to critical ABIs and consequently measuring 

1 − 𝑐𝑖 (i.e., non-compliance) as the proportion of weighted-

time the target PCA is in unsafe states in the ith monitoring 

interval. Since we put higher weights to critical unsafe states, 

this in effect penalizes a target PCA that violates critical ABIs 

by assigning it with a high non-compliance degree (or a low 

compliance degree). This is to be investigated in future work. 

Figure 5 compares the ROC curves for MedIoT (blue lines) 

against SVM (red lines) and KNN (green lines) for the case in 

which the malicious PCA is a reckless attacker. We can see 

clearly that the AUROC of MedIoT dominates that of SVM and 

KNN as MedIoT always has a better detection rate given the 

same 𝑃𝑓𝑝 and always has a better 𝑃𝑓𝑝 given the same detection 

rate, given the same operational and environmental 

characteristics as input. While MedIoT breaks when the mis-

monitoring probability 𝑃𝑒 is above the range of [0, 45%], SVM 

breaks (i.e., not able to satisfy the goal of 𝑃𝑓𝑛 < 1%, 𝑃𝑓𝑝 < 3%, 

and AUROC > 97%) when 𝑃𝑒 is above the range of [0, 33%] 

and KNN breaks when 𝑃𝑒 is above the range of [0, 31%]. We 

attribute the superior performance of MedIoT by the unique 

design that safe and unsafe-state information is already 

summarized in the transformed state machine, based on which 

a monitor node just needs to measure the proportion of time a 

target node (being monitored on) is in safe states for effective 

misbehavior detection regardless of the attacker type of the 

malicious PCA (reckless, random, opportunistic, or insidious). 

In contrast, SVM must be trained with well-

behavior/misbehavior examples in the training phase to learn a 

hyperplane that can include well-behavior data and exclude 

misbehavior data and then in the application phase use the 

hyperplane to classify misbehavior data. There is inherently 

some imprecision in learning and profiling the “ideal” 

hyperplane especially when the environment noises are high. 

Consequently, SVM performs worse than MedIoT. Similarly 

there is some imprecision for KNN to find k training samples 

nearest to the feature vector of the target node to classify the 

target node as “well-behaved” or “misbehaved.” 

Figures 6, 7, and 8 compare the ROC curves for MedIoT 

(blue lines) against SVM (red lines) and KNN (green lines) for 

the cases in which the malicious PCA’s attacker types are 

random (with 𝑃𝑎 = 0.5), opportunistic, and insidious, 

respectively. A similar trend is observed compared with the 

reckless attacker type case (as shown in Figure 5). That is, the 

AUROC of MedIoT dominates that of SVM and KNN. Here we 

note that despite the attacker is more hidden, especially in the 

case of insidious attackers, MedIoT is still more effective than 

SVM and KNN because of the use of state-machine-based 

monitoring which greatly improves runtime detection accuracy. 

C. Efficiency Performance Evaluation 

We evaluate the efficiency aspect of MedIoT by the 

following metrics: (a) the memory utilization: the amount of 

memory utilized (goal: less than 100MB); (b) the computation 

overhead: the amount of computation time needed for 

misbehavior detection (goal: below 5 milliseconds or 0.005 

seconds); and (c) the time delay for reaching a decision about 

whether the target PCA is well-behaved or misbehaved when 

an event occurs (goal: below 10 milliseconds or 0.01 seconds). 

The time delay for reaching a decision when an event occurs is 

the sum of the time taken for the monitor PCA to obtain event 

input data in the form of (Patient Pulse Rate, Patient Respiration 

Rate, Patient Status, Drug Reservoir, Infusion Pressure, 

Command, Audit, Injection Rate - Specified Injection Rate, 

Dosage - Specified Dosage) from various sensing or measuring 

devices via data communication plus the time for each scheme 

(MedIoT, SVM, or KNN)  to analyze event input data to reach 

a decision. The first part of the delay is the same for all schemes 

because all schemes use the same event input when an event 

occurs. The second part of the delay is the computation time for 

reaching a decision, given that the event data is in hand. For 

MedIoT, it is the computation time to decide if the target PCA 

is in an unsafe state in the state machine which it updates on an 

 
Fig. 6. Comparing AUROC of MedIoT against SVM and KNN for the case in 

which the attacker type is random. 
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Fig. 7. Comparing AUROC of MedIoT against SVM and KNN for the case 

in which the attacker type is opportunistic. 
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Fig. 8. Comparing AUROC of MedIoT against SVM and KNN for the case 

in which the attacker type is insidious. 
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event by event basis, and for SVM or KNN it is the learning 

algorithm computation time to classify if the target PCA is in 

the “misbehaved” class.  

Figures 9a, 9b, and 9c compare the memory size, 

computation time, and time delay for reaching a decision, 

respectively, of MedIoT against SVM and KNN for the case in 

which the malicious PCA is reckless and [a, b] = [0, 10%] (i.e., 

low noises). Figure 9a shows that the memory usage of MedIoT 

(80 MB) is substantially smaller than that of SVM (190MB) and 

KNN (142MB). This means that for a resource constrained 

PCA device with a memory size as small as 100MB [31], only 

MedIoT (our proposed scheme) can satisfy this memory usage 

goal. This is mainly because MedIoT only needs to store a 

relatively small state machine generated at static time for 

identifying safe/unsafe states while SVM/KNN need to store a 

large amount of trained patterns for classifying misbehavior. 

Figure 9b compares MedIoT against SVM and KNN in terms 

of the computation time (excluding the learning time) needed 

to reach a decision after data are in place for all methods. Figure 

9b shows that MedIoT has substantially lower computational 

time to perform misbehavior detection compared with SVM 

and KNN. The reason is that MedIoT already preloads the state 

machine into memory for runtime misbehavior detection. On 

the contrary, SVM needs to search through the misbehavior 

space represented by its stored hyperplanes at runtime for 

misbehavior classification, and KNN needs to search through 

its stored training samples to find k training samples nearest to 

the feature vector of the target node for group classification. 

Figure 9c compares MedIoT against SVM and KNN in terms 

of the time delay in acquiring and analyzing data to reach a 

decision computed by the sum of the data communication time 

and the computation time for all three methods. Figure 9c shows 

that MedIoT incurs a substantially smaller time delay in 

acquiring and analyzing data to reach a decision whether the 

target PCA is well-behaved or misbehaved when an event 

occurs compared with SVM and KNN. We again attribute 

MedIoT’s superior performance to its fast safe/unsafe state 

look-up operation merely by inspecting the target PCA’s state 

machine as opposed to the relatively slow machine learning 

operation performed by SVM or KNN to classify the target 

PCA into the “well-behaved” or “misbehaved” class. 

D. Tradeoff Analysis of Effectiveness vs. Efficiency 

In this section we analyze the tradeoff between effectiveness 

vs. efficiency. Specifically, we analyze the effect of the 

monitoring rate (the frequency at which compliance data are 

collected) on effectiveness/efficiency performance results. The 

tradeoff exists because a finer data granularity due to more 

frequent monitoring will lead to less missing cases and improve 

the detection rate, but it can exhaust energy of a resource-

constrained IoT device due to excessive monitoring. We aim to 

identify the best monitoring rate that can best balance efficiency 

and effectiveness. 

In the simulation, instead of having the monitor PCA check 

the state machine of a target PCA at event occurrence times, we 

create a timer event with 𝑇𝐼𝐷𝑆 as the monitoring interval so that 

a data compliance degree sample is collected in each 

𝑇𝐼𝐷𝑆 period after which the monitor PCA updates the target 

PCA’s state machine. In effect, the monitor PCA collects the 

target PCA’s compliance samples periodically with rate 1/𝑇𝐼𝐷𝑆. 

Obviously the smaller the 𝑇𝐼𝐷𝑆 value, the finer the data 

granularity and hence the better the effectiveness performance 

because of a higher chance of not missing any misbehavior of 

the target PCA device. However, a smaller 𝑇𝐼𝐷𝑆 value increases 

the computation time needed for data collection and statistical 

analysis because a higher number of samples (n) would need to 

be collected and analyzed. This degrades efficiency 

performance. Thus, we analyze the tradeoff between 

effectiveness and efficiency by controlling the magnitude of 

𝑇𝐼𝐷𝑆 which essentially translates into the total number of 

samples (n) to be collected for decision making, which is 

directly related to the computation overhead (for compliance 

data collection and statistical analysis) since the runtime 

complexity of MedIoT is O(n) as discussed earlier in Section 

IV-E. 

Figure 10 shows AUROC (the most important effectiveness 

metric) under various 𝑇𝐼𝐷𝑆 values (each resulting a different n 

value) representing the computation overhead (the most 

 

    Fig. 9a. Memory Utilization of MedIoT against SVM and KNN. 
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    Fig. 9b. Computation Time of MedIoT against SVM and KNN. 
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Fig. 9c. Time delay in acquiring and analyzing data to reach a 

decision of MedIoT against SVM and KNN when an event occurs. 
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important efficiency metric) for the case in which the malicious 

PCA is a reckless attacker and [a, b] = [0, 10%] (i.e., low 

noises). We observe that there indeed exists a tradeoff between 

effectiveness measured by AUROC and efficiency measured by 

the detection interval and consequently the number of 

compliance samples (n) collected during the simulation run. 

Specifically, as the detection interval 𝑇𝐼𝐷𝑆 decreases, the 

efficiency performance decreases since the computation time 

increases (due to more data samples being collected during data 

collection and being analyzed during statistical analysis), while 

the effectiveness performance increases as AUROC becomes 

more and more approaching 1 due to more sample data being 

analyzed. Depending on the effectiveness and efficiency 

performance requirements of the system, the tradeoff analysis 

as shown in Figure 10 can help the system designer identify the 

best monitoring rate to be applied to satisfy both requirements. 

VI. CONCLUSION 

The proposed behavior rule specification-based misbehavior 

detection technique is generic and can be applied to practical 

IoT-embedded cyber physical systems for which very 

lightweight embedded IoT devices (e.g., sensors, actuators, or 

a combination of both) are an integral part of the overall system 

design. We illustrated the feasibility of our proposed method 

with a PCA device embedded in a medical CPS where a peer 

PCA serves the role of a monitor node. We position our 

behavior rule specification-based misbehavior detection 

technique as the only feasible solution in terms of low memory, 

run time, communication, and computation overhead, and high 

misbehavior detection prediction accuracy to ensure protection 

of resource-constrained embedded IoT devices against zero-day 

attacks. In this paper we conducted extensive simulation to 

verify that MedIoT can outperform SVM-based or KNN-based 

machine learning methods for misbehavior detection of a PCA 

device embedded in a medical CPS in both the effectiveness 

and efficiency performance metrics. In the future, we plan to 

port the data collection and statistical analysis code to a real 

PCA device for experimental validation. 
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