
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Abstract—We propose a lightweight specification-based

misbehavior detection management technique to efficiently and

effectively detect misbehavior of an IoT device embedded in a

medical cyber physical system through automatic model checking

and formal verification. We verify our specification-based

misbehavior detection technique with a patient-controlled

analgesia (PCA) device embedded in a medical health monitoring

system. Through extensive ns3 simulation, we verify its superior

performance over popular machine learning anomaly detection

methods based on support vector machine (SVM) and k-nearest

neighbors (KNN) techniques in both effectiveness and efficiency

performance metrics.

Index Terms—Medical cyber physical systems, IoT,

misbehavior detection, behavior rules, zero-day attacks, false

positives, false negatives.

I. INTRODUCTION

N a large-scale cyber physical system (CPS), there will be a

huge number of embedded Internet of Things (IoT) devices

and it is neither scalable nor practical to rely on a central entity

such as a cloud to perform misbehavior detection. Since the

central entity cannot physically perform misbehavior detection

itself, it needs to collect misbehavior reports/logs from IoT

devices. The amount of traffic generated will not only consume

IoT energy but also cripple the CPS communication network.

Hence, distributed misbehavior detection emerges as a feasible

way for a large-scale CPS.

To-date, there are three types of misbehavior detection

techniques for IoT devices embedded in a medical CPS:

signature-based, anomaly-based, and specification-based

techniques [12]. We dispose signature-based detection as it

cannot deal with zero-day attacks. Our method is based on

specification-based detection by specifying the intended

behaviors of a medical device. Thus, it can deal with zero-day

attacks by detecting device misbehaviors manifested due to the

IoT device experiencing attacks, rather than detecting attacker

patterns/tactics (which would not be known for zero-day

This work is partially supported by Institute for Information &

communications Technology Promotion (IITP) grant funded by the Korea

government (MSIT) (No. 2017-0-00664, Rule Specification-based

Misbehavior Detection for IoT-Embedded Cyber Physical Systems). This work

is also supported in part by the U.S. AFOSR under grant number FA2386-17-

1-4076. (*Corresponding author: Ilsun You)

attacks). Detecting misbehaviors rather than attack patterns can

also be done by anomaly-based detection methods [2, 6-7, 10-

11, 14-15, 24, 25] based on profiling and machine learning

through correlation and statistical analysis of a large amount of

data or logs for classifying misbehavior. While both

specification-based and anomaly-based detection methods can

cope with zero-day attacks by detecting misbehavior, our

proposed specification-based misbehavior detection method is

lightweight because it uses less code space and does not have

to first learn misbehavior patterns in the training phase and then

detect misbehavior in the operational phase. Consequently, we

also dispose anomaly-based detection for distributed

misbehavior detection because many embedded IoT devices are

severely resource-constrained and do not have enough

computational or storage power to store classification patterns

or execute computationally expensive classification algorithms.

The only viable method to perform distributed misbehavior

detection for resource-constrained IoT devices is specification-

based detection.

The novelty of our work is that we pioneer the use of

lightweight behavior rule specification-based misbehavior

detection for lightweight IoT devices embedded in a medical

CPS (we call our misbehavior detection technique MedIoT for

short) with memory, run time, communication, and

computational overhead considerations. Our work is novel

relative to existing specification-based intrusion detection

techniques (see Section 2 Related Work for details) as follows:

• We propose a methodology for deriving the behavior rules

of an IoT device embedded in a medical CPS, when given

the embedded IoT device’s operational profile [16] as input

for specifying the IoT device’s security requirements.

• We conduct model checking and formal verification of the

correctness and completeness of the generated behavior rules

such that the embedded IoT device in a medical CPS will not

violate the security requirements if it does not violate the

behavior rules.

• We develop a methodology of transforming the derived

G. Choudhary, P.V. Astillo, I. You, and K. Yim are with the Department of

Information Security Engineering, Soonchunhyang University, South Korea (e-

mail:gauravchoudhary7777@gmail.com;pvbastillo@gmail.com;ilsunu@gmail

.com; yim@sch.ac.kr).

I.R. Chen, and J.H. Cho are with the Department of Computer Science,

Virginia Tech USA (e-mail: irchen@vt.edu; jicho@vt.edu).

Lightweight Misbehavior Detection

Management of Embedded IoT Devices in

Medical Cyber Physical Systems

Gaurav Choudhary, Philip Virgil Astillo, Ilsun You*, Senior Member, IEEE, Kangbin Yim, Ing-Ray

Chen, Member, IEEE, and Jin-Hee Cho, Senior Member, IEEE

I

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

behavior rules into a state machine for lightweight

misbehavior detection at runtime.

• We develop a lightweight data collection module for

collecting compliance degree data from runtime monitoring

of an IoT device based on its derived state machine.

• We develop a lightweight statistical analysis module for

misbehavior detection based on experimentally collected

misbehavior data at runtime.

• We verify the validity of our approach with a patient-

controlled analgesia (PCA) device embedded in a medical

health monitoring system with a comparative performance

analysis against popular machine learning anomaly detection

methods based on support vector machine (SVM) [28] and

k-nearest neighbors (KNN) [34] techniques in both

effectiveness and efficiency performance metrics.

The rest of the paper is organized as follows. In Section II,

we survey existing work on misbehavior detection of IoT

devices and compare as well as contrast our work with existing

work. In Section III, we discuss the system model. In Section

IV, we describe our MedIoT design in detail and apply MedIoT

to a patient-controlled analgesia (PCA) device embedded in a

medical health monitoring system. In Section V, we evaluate

the performance of MedIoT and conduct a comparative

performance analysis with contemporary machine learning

misbehavior detection techniques in both effectiveness and

efficiency metrics. In Section 6, we conclude the paper and

outline future research areas.

II. RELATED WORK

Specification-based misbehavior detection has been mostly

applied to communication networks [4, 8, 21] and CPS security

[1, 9, 17, 18, 26]. To the best of our knowledge, we are the first

to consider specification-based detection for distributed

misbehavior detection specifically for resource-constrained IoT

devices embedded in a medical CPS.

An important aspect of specification-based detection is to

verify if the specifications cover all the threats and satisfy the

security requirements. Existing work [1, 21] focused on the

construction of a formal framework utilizing ACL [27], a

theorem prover, to first define security requirements and

behavior specifications as ACL function, and then complete

formal verification by defining a theorem (also an ACL

function) that is evaluated to be true, proving that the behavior

specification will not violate the security requirements.

However, one risk is that the behavior specifications may be

incomplete or even incorrect, leading to missing cases and high

false positives. Relative to [1, 21], our contribution is to

formally verify the completeness and correctness of behavior

rule specifications following the design concept of Software

Engineering research, i.e., proving that a piece of software is

correct and complete with respect to the field expert

specifications. We start with the “operational profile” [16] of an

embedded IoT that defines the operational specification of an

embedded IoT device to derive the security requirements of the

embedded and hence the threats of the embedded IoT device.

Then from the threats identified, behavior rules are generated to

fully specify the intended behavior. Utilizing Hierarchical

Context-Aware Aspect-Oriented Petri Net (HCAPN) [32, 33],

a model checking tool, we formally verify that the generated

behavior rules are complete and correct and cover all the threats

and thus satisfy the security requirements derived from the

operational profile.

Anomaly-based detection methods have been studied

extensively for misbehavior classification for IoT-embedded

CPSs [2, 6-7, 10-11, 14-15, 24, 25]. The bulk of research lies in

applying profiling and machine learning through correlation

and statistical analysis of a large amount of data or logs for

classifying misbehavior. Recently, Artificial Neural Network

(ANN) [10], Support Vector Machine (SVM) [28], and K-

Nearest Neighbors (KNN) [34] have emerged as the leading

machine learning techniques for misbehavior classification. We

dispose ANN because of its huge memory and computational

requirement which hinders its application to distributed IoT

device misbehavior classification. We adopt SVM and KNN as

baseline schemes against which our proposed specification-

based detection method (MedIoT) is compared due to their

relatively smaller memory and computation requirements, with

the intent to demonstrate the efficiency and effectiveness of our

proposed detection method against contemporary anomaly-

based detection methods.

III. SYSTEM MODEL

We refer the readers to [12, 13, 24, 25] for attacker behaviors

and intrusion detection mechanisms available for IoT-

embedded CPSs. Medical IoT devices in the IoT operational

environment communicate with each other based on IoT

machine-to-machine (M2M) wireless communication protocols

such as MQTT [40] and LWM2M [41] without the need to

connect to the broader Internet. Our behavior-rule based

intrusion detection system (IDS) approach relies on the concept

of monitoring. A monitor PCA is assigned to monitor a target

PCA and the monitor code, i.e., the misbehavior detection

algorithm (MedIoT, SVM or KNN), runs on the monitor PCA.

To address the issue of the monitor node itself already

compromised, the monitor code can be put in a secure

computational space (e.g., [5, 37, 38]) such that each monitor

node can execute misbehavior detection code in its secure

computation space, even if the operating kernel has been

compromised. For CPSs that do not have many redundant

nodes, we advocate the concept of self-monitoring, i.e., each

IoT device can execute misbehavior detection code in its own

secure computation space and self-monitors itself. The

monitoring process is lightweight and will not interfere with the

normal operations of the monitor IoT device or the target IoT

device (see Section IV-D for detail).

Note that our design can be extended into a fault tolerant

structure based on the concept of recovery block [39]. Using a

patient-controlled analgesia (PCA) device as an example, we

can set up a recovery block structure consisting of two

“functional” modules, e.g., a target PCA and a monitor PCA,

along with an “acceptance” module corresponding to the

monitor code preloaded into the monitor PCA’s secure

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

computation space such that the acceptance module can

securely execute misbehavior detection code, even if its

operating kernel has been compromised. When the target PCA

is deemed misbehaved by the acceptance module, the target

PCA is taken offline and replaced by the monitor PCA for

continued operations. The above design can also be applied to

the case of self-monitoring, i.e., every PCA executes

misbehavior detection code preloaded into its own secure

computation space [5, 37, 38] upon bootstrapping and self-

monitors itself. In this case, the two functional modules can

adopt two distinct software implementations to reduce

correlated software faults with module 1 as the main module

and module 2 as the recovery module that will switch in to take

over the PCA function once the acceptance module (i.e., the

monitor code executed in the secure computational space)

decides that module 1 is misbehaved or faulty.

IV. MEDIOT DESIGN FOR MISBEHAVIOR DETECTION OF PCA

IN A MEDICAL CPS

In this section, we provide the detail of our MedIoT design

and exemplify MedIoT with patient-controlled analgesia (PCA)

devices embedded in a health monitoring medical CPS [17]. We

choose PCA as our example medical IoT device because it is

one of the most referenced medical IoT devices in the literature.

We consider a PCA device as illustrated in Figure 1 that is

programmed to perform analgesic injection in response to the

injection button being pressed by a patient, with the injection

period and dosage controlled by authority. Figure 1 shows that

the monitor code in the monitor PCA executes in secure

computational space, detects misbehavior of the target PCA

based on behavior rules, and performs control strategies. When

the target PCA does not conform to behavior specifications as

defined by behavior rules in Table 3 (discussed later) derived

from the PCA’s operational profile, the monitor code will detect

such misbehaviors regardless whether it is caused by malicious

attacks or environment uncertainties/disturbances. For

example, it may be the button that the patient must press to

release drug is jammed, so no drug dosage is injected. Although

it is not caused by an attack (rather, it is caused by a hardware

fault of the button device), this misbehavior would be detected

by ABI 9 in Table 4 (discussed later) which says “(Dosage ≠

Specified Dosage) ˄ (Action = Inject)” because upon the

patient’s pressing the button, no dosage is injected. As another

example, it may be the life vital sign measurement device that

measures the patient respiration rate is malfunctioning, so the

patient respiration rate is uncertain. Although it is not caused by

an attack (rather, it is caused by a hardware fault of the life vital

sign measurement device), this misbehavior would nevertheless

be detected by ABI 2 in Table 4 (discussed later) which says

(Patient Respiration Rate ≠ Normal) and (Action ≠ Alert-and-

Hold) because the patient respiration rate is uncertain and thus

is not normal and the action is to alert the hospital personnel

and hold drug injection. Since the behavior rules completely

TABLE 1

PCA SECURITY REQUIREMENTS.

ID Security Requirement

SR 1 The PCA must raise alert to designated personnel and hold

analgesic injection if the patient’s condition is unfit for analgesic

injection

SR2 The PCA must raise alert to designated personnel and hold

analgesic injection if the PCA is not ready for analgesic injection

SR 3 The PCA must change its injection rate and medicine dosage upon

authorized commands only

SR 4 The PCA must perform correct IDS functions when serving as a

monitor node, i.e., providing true recommendations

SR 5 The PCA must perform analgesic injection at the specified dosage

without exceeding the allowable injection rate

 TABLE 2

PCA THREATS.

ID Threat

THREAT 1 The PCA is not able to raise alert and hold analgesic injection

when patient is unfit

THREAT 2 The PCA is not able to raise alert and hold analgesic injection

when PCA is not ready

THREAT 3 The PCA is not able to follow authorized commands

THREAT 4 The PCA is not able to perform correct IDS functions, i.e.,

not able to provide true IDS recommendations

THREAT 5 The PCA’s analgesic injection rate is above the specified

injection rate

THREAT 6 The PCA is not injecting the specified dosage

TABLE 3

PCA BEHAVIOR RULES.

ID Behavior Rule Security Aspect

BR 1 Raise alert to designated personnel and

hold analgesic injection if patient pulse

rate is not normal

Integrity, confidentiality,

availability

BR 2 Raise alert to designated personnel and

hold analgesic injection if patient

respiration rate is not normal

Integrity, confidentiality,

availability

BR 3 Raise alert to designated personnel and

hold analgesic injection if patient status

is defibrillation

Integrity, confidentiality,

availability

BR 4 Raise alert to designated personnel and

hold analgesic injection if drug

reservoir is empty

Integrity, confidentiality,

availability

BR 5 Raise alert to designated personnel and

hold analgesic injection if infusion

pressure is not normal

Integrity, confidentiality,

availability

BR 6 Accept authorized commands Integrity, confidentiality,

availability

BR 7 Provide true recommendations Integrity

BR 8 Perform analgesic injection without

exceeding the specified rate

Integrity

BR 9 Perform analgesic injection at the

specified dosage

Integrity

Monitor PCA Target PCA

Fig. 1. A patient-controlled analgesia (PCA) device embedded in a

health monitoring medical CPS [31]. The “monitor code” module in

the monitor PCA is executed in secure computational space; it

detects misbehavior of the target PCA based on behavior rules and

performs control strategies.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

and correctly cover all misbehaviors that will violate the

security requirements of the PCA device regardless of the

source of failure (by attacks or just environment

uncertainties/disturbances), it ensures stability of the closed

loop system of drug injection in presence of uncertainties and

disturbances.

Here we note that if we enumerate all possible threats to a

PCA, then very likely there will be missing threats and the PCA

will not be considered safe. To address this missing-threat

problem, we follow the design concept of Software Engineering

research, i.e., proving that a piece of software is correct and

complete with respect to the user specifications in the form of

“operational profile” [16] that defines the operational

specification and security requirements of a PCA. Since the

security requirements are fully defined by the operational

profile, we can mechanically derive a full set of threats that

could violate the security requirements. This process is

illustrated below as we convert the security requirement table

(Table 1 PCA Security Requirements) to the threat table (Table

2 PCA Threats). Hence, there is no missing threat with respect

to the security requirements defined in the operational profile.

A similar idea is applied as we convert the threat table (Table

2) to the behavior rule table (Table 3) and subsequently to the

attack indicator table (Table 4). As a result, the conversion is

correct and complete with respect to the user specifications in

terms of the full set of Boolean conditions as well as the full set

of physical variables whose runtime values determine the truth

or false of a Boolean condition.

A. Behavior Rule Specification of a PCA

We use the design concept of “operational profile” [16]

during the testing and debugging phase of an embedded IoT

device when the IoT software is built to identify the complete

set of behavior rules. An IoT device’s operational profile

essentially is a mission assignment during the operational phase

of the IoT device. A mission assignment in an embedded IoT

device’s operational profile explicitly defines a set of security

requirements for the mission to be successful, from which a set

of threats as well as a set of behavior rules to cope with the

threats may be automatically derived.

We consider a PCA in a medical CPS with the following

operational profile:

Raise an alert to designated personnel and halt analgesic injection

if the patient’s medical condition is unfit for analgesic injection;

raise an alert to designated personnel and halt analgesic injection

if the PCA is not ready for analgesic injection; communicate with

authorized personnel only regarding the injection rate and dosage

of medicine; perform correct IDS functions; when the injection

button is pressed, if the patient controlled injection rate is less than

or equal to the specified injection rate then inject a specified dose

of medicine.

Given this operational profile as input, the security

requirements of this PCA may be derived as listed in Table 1.

With the system requirements defined, it is relatively

straightforward to identify the threats that will keep this PCA

from accomplishing its mission, as listed in Table 2.

Next, we derive the behavior rule set for this PCA. Deriving

behavior rules from a threat will require field expert knowledge

because only a field expert can properly identify the physical

cause or source of a threat. Table 3 lists the behavior set without

priority order for simplicity. It also lists the security aspect

(integrity, confidentiality, or availability) associated with each

behavior rule. A threat that has more than one cause or source

for the negative event can require multiple behavior rules. For

example, in THREAT 1 there are 3 causes for defining “patient

is unfit,” thus requiring three behavior rules (BR 1, BR 2, and

BR 3) for handling THREAT 1. Similarly in THREAT 2 there

are 2 causes for defining “PCA is not ready.” Thus, two

behavior rules (BR 4 and BR 5) are created for handling

THREAT 2. The remaining threats each have a single cause and

therefore they each map to a single behavior rule, i.e., THREAT

3 maps to BR 6, THREAT 4 maps to BR 7, THREAT 5 maps

to BR 8, and THREAT 6 maps to BR 9. Note that as illustrated

in Figure 1, a PCA can obtain a patient’s vital sign and status

measurements (such as pause rate, respiratory rate,

defibrillation status, etc.) via communicating with various

sensing and measuring devices mounted on the patient’s body

for collecting the patient’s vital sign and status measurements.

B. Transforming the Behavior Rules to a State Machine for

Misbehavior Detection

After the behavior rule set is identified, we transform it to a

state machine for lightweight misbehavior detection. The

behavior-rule-to-state-machine transformation process is

automatic. First, one “attack behavior indicator” (ABI) for each

behavior rule is derived. Then, each ABI is expressed as a

conjunctive normal form (CNF) predicate to be evaluated to

true or false indicating whether the corresponding behavior rule

is violated or not. Then, all ABIs are combined altogether into

a disjunctive normal form (DNF) predicate. Lastly the state

machine is formed with all ABIs being the state components,

each taking the value of 1 (true) or 0 (false). When all ABIs take

the value of 0, it means that none of the behavior rules is

violated and hence the system is in a safe state. Conversely,

when an ABI takes the value of 1, it means that the

corresponding behavior rule is violated. We describe the

behavior rules to the state machine transformation process in

the following subsections.

1) Attack Behavior Indicators Expressed as CNF Predicates

Table 4 lists 9 ABIs, each to be evaluated to 1 (true) or 0

(false) at runtime through monitoring, indicating whether the

TABLE 4

PCA ATTACK BEHAVIOR INDICATORS IN CNF.

ID Attack Behavior Indicator

ABI 1 (Patient Pulse Rate Normal) (Action Alert-and-Hold)

ABI 2 (Patient Respiration Rate Normal) (Action Alert-and-

Hold)

ABI 3 (Patient Status = Defibrillation) (Action Alert-and-Hold)

ABI 4 (Drug Reservoir = Empty) (Action Alert-and-Hold)

ABI 5 (Infusion Pressure Normal) (Action Alert-and-Hold)

ABI 6 (Command = AUTHORIZED) (Action Accept)

ABI 7 (Audit = ON) (Action = Report False Audit)

ABI 8 (Injection Rate Specified Injection Rate) (Action = Inject)

ABI 9 (Dosage Specified Dosage) (Action = Inject)

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

corresponding behavior rule is violated or not. When an ABI is

evaluated to true, the PCA is detected as misbehaving against

the corresponding behavior rule.

The transformation of each behavior rule to an ABI involves

the following two steps:

a) For each behavior rule, identify a set of Boolean conditions

connected in CNF, such that if all Boolean conditions are

evaluated true, then the ABI is evaluated true and the

corresponding behavior rule is violated.

b) For each Boolean condition, identify a set of physical

variables whose runtime values determine the truth or false

of the Boolean condition.

The completeness and correctness of steps (a) and (b) will

be discussed further in Section IV-C below. As an example, BR

1 in Table 3 has two Boolean conditions: “Is patient pulse rate

not normal?” and “Is the action not alerting and holding?” For

the first Boolean condition, the physical variable is Patient

Pulse Rate and for the second Boolean condition the physical

variable is Action. When the patient’s pulse rate is not normal

and the action is not alert-and-hold, it is a violation of BR 1.

The first part of ABI 1 (the event part) specifies the event

condition under which the 2nd part (the action part) is to be

evaluated true or false.

Below we explain in detail how BR i in Table 3 (i from 1 to

9) is transformed into ABI i in Table 4 for the PCA device.

The 1st ABI (ABI 1 in Table 4) is that this PCA does not alert

personnel and hold analgesic injection when the patient’s pulse

rate is not normal. A normal pulse rate for adults is 60-100 beats

per minute. The CNF of the Boolean expression is (Patient

Pulse Rate Normal) (Action Alert-and-Hold).

The 2nd ABI (ABI 2 in Table 4) is that this PCA still injects

analgesic when the patient’s respiration rate is not normal. The

normal respiratory rate for adults is 12–20 breaths per minute.

The CNF of the Boolean expression is (Patient Respiration Rate

 Normal) (Action Alert-and-Hold).

The 3rd ABI (ABI 3 in Table 4) is that this PCA still injects

analgesic when the patient is being treated with defibrillation.

The CNF of the Boolean expression is (Patient Status =

Defibrillation) (Action Alert-and-Hold).

The 4th ABI (ABI 4 in Table 4) is that this PCA does not alert

personnel and hold analgesic injection when the drug reservoir

is empty. The CNF of the Boolean expression is (Drug

Reservoir = Empty) (Action Alert-and-Hold).

The 5th ABI (ABI 5 in Table 4) is that this PCA does not alert

personnel and hold analgesic injection when the infusion site is

incorrect, e.g., the injection is pulled of the patient’s body or the

injection is not at the patient’s correct infusion point. This is

indicated by measuring the infusion pressure being normal or

not. The CNF of the Boolean expression is (Infusion Pressure

Normal) (Action Alert-and-Hold). This ABI has a local

variable called Infusion Pressure for measuring the infusion

pressure to detect if the infusion site is correct. If image sensors

are built inside the PCA, image-sensing the infusion site may

directly detect if the infusion site is at the right place.

The 6th ABI (ABI 6 in Table 4) is that a PCA does not accept

authorized commands to update its injection rate and medicine

dosage. The CNF is (Command = AUTHORIZED) (Action

 Accept).

The 7th ABI (ABI 7 in Table 4) is that a PCA acting as a

monitor PCA provides false recommendations toward a

behaving target PCA (called bad-mouthing attacks), and good

recommendations toward a misbehaving target PCA (called

ballot-stuffing attacks). This may be detected by detecting

recommendation discrepancies among multiple monitor PCAs.

The CNF is (Audit = ON) (Action = Report False Audit).

The 8th ABI (ABI 8 in Table 4) is that this PCA injects

analgesic at a rate exceeding the specified injection rate. The

CNF is (Injection Rate Specified Injection Rate) (Action =

Inject). Finally, the 9th ABI (ABI 9 in Table 4) is that this PCA

does not inject analgesic at the right dosage. The CNF is

(Dosage Specified Dosage) (Action = Inject).

Here we note that in Table 4 under ABI 1 - ABI 5, “Alert-

and-Hold” refers to two separate actions because alerting the

personnel of the misbehavior of the PCA device and holding the

PCA injection would trigger different parts of the system.

Hence the Boolean expression “Action ≠ Alert-and-Hold” is

false when both alert personnel and hold dosage are done. We

also note that an attacker can possibly block alert and infect a

PCA to hold dosage. However this misbehavior would be

detected by ABI 9 in Table 4 which says “(Dosage ≠ Specified

Dosage) ˄ (Action = Inject)” because upon the patient’s

pressing the button, no dosage is injected.

2) All ABIs are combined into a DNF Predicate

All 9 ABIs in Table 4 are combined into a DNF predicate

(ABI 1 ABI 2 ABI 3 ABI 4 ABI 5 ABI 6 ABI 7

 ABI 8 ABI 9) because every ABI if evaluated to true is an

indication of misbehavior.

3) Generated State Machine for Misbehavior Detection

For the PCA state machine, there are 9 Boolean variables

(each taking the value of either 1 or 0) in the state

representation, resulting in the total number of states being 29=

512, out of which only one is a safe state (when all 9 Boolean

variables are false or take the value of 0) and all other 511 states

are unsafe states. For a target PCA, we label its 512 states in
the state machine as states 0, 1, 2, …, 511 with state 0
represented by (0, 0, 0, 0, 0, 0, 0, 0, 0) as the only safe state
in which all 9 Boolean variables (ABI 1 – ABI 9) take the
value of 0 or false. Note that there are many variables in these

9 ABIs. However, these variables are internal variables

maintained by a monitor PCA who updates these internal

variable values at monitoring intervals to determine the

true/false (or 1/0) of the 9 Boolean variables for a target PCA

that is being monitored on. We note that it is possible all event

conditions can occur simultaneously. Therefore it is possible for

the target PCA to go from state (0, 0, 0, 0, 0, 0, 0, 0, 0) to state
(1, 1, 1, 1, 1, 1, 1, 1, 1) when all 9 event conditions are true
and the target PCA is a reckless attacker that attacks all the
time whenever it has a chance.

C. Model Checking and Formal Verification

While generating an ABI (in Table 4) from the

corresponding behavior rule (in Table 3), it requires that (a) a

complete set of Boolean conditions be specified for each

behavior rule; and (b) a complete set of physical variables be

specified for each Boolean condition. If step (a) or (b) is

incorrect or incomplete, it could lead to high false positives.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Our method to deal with the above problem resorts to what

Software Engineering research does, i.e., proving that a piece

of software is correct and complete with respect to the user

specifications. In our design, we prove that both steps (a) and

(b) are correct and complete with respect to user-specified

security requirements (in Table 1 as derived from the device’s

operational profile) and user-defined Boolean conditions.

Specifically, for step (a) it would require the field expert to

specify or define a set of Boolean conditions for each behavior

rule. For example, for BR 1 “Raise alert to designated personnel

and hold analgesic injection if patient pulse rate is not normal,”

a field expert would specify if (Patient Pulse Rate Normal)

and (Action Alert-and-Hold) would be the correct and

complete Boolean conditions for BR 1. For step (b), it would

require the field expert to specify or define the set of physical

variables for each Boolean condition based on the field expert’s

knowledge about the domain. For example, the field expert

would identify that “Patient Pulse Rate” and “Action” are two

physical variables for BR 1. To prove that the transformation

from a behavior rule to an ABI is complete and correct, we

would encode the field expert knowledge as "auxiliary" rules

with which we formally prove the each ABI is derived correctly

such that it can correctly and completely cover the

corresponding threat and thus satisfy the corresponding security

requirement based on the user-specified Boolean conditions for

each ABI.

Fig. 2: A 2-layer HCAPN model for formal verification of correctness and

completeness. For illustration, the upper layer contains only places and

transitions related to ABI 1.

We conduct automatic model verification of the behavior

rules and the corresponding ABIs expressed in XML format by

verifying if the behavior rules generated are correct and

complete with respect to user specifications and cover all the

threats and thus satisfy the security requirements. We formulate

a Hierarchical Context-Aware Aspect-Oriented Petri Net

(HCAPN) [32, 33] model implemented through a Petri Net

simulator [36] for model checking and formal verification. In

the HCAPN model, we define security requirements (in Table

1) and ABIs (in Table 4) by (1) places each holding an ABI, a

physical variable, or a security requirement; (2) transitions each

with a set of Boolean conditions specifying the firing

conditions; and (3) arcs connecting places with transitions. We

complete formal verification by defining a HCAPN model that

is evaluated to be true, proving that this PCA device will not

violate the security requirements if it does not violate the

behavior rules.

Figure 2 illustrates the resulting HCAPN model with places

modeling the physical variables in the upper layer and ABIs in

the lower layer. For illustration purposes, we only show two

places “Patient Pulse Rate (PPR)” and “Action” (physical

variables of ABI 1) and the associated transitions in the upper

layer for formal verification of behavior rule 1. The lower layer

consists of behavior rules (in the form of ABIs) each connecting

to their physical variables by arcs. A transition is fired if and

only if each of the input places contains a token and the Boolean

condition associated with the transition is evaluated true. The

“Initiator” place has a role of initiating token firing for model

checking. This is done by generating tokens representing

physical variables to flow through the HCAPN and verifying if

a transition firing condition is true causing a transition to be

fired. The “Decision” place holds the security requirements for

decision making of correctness verification. The verification of

ABI 1, for example, starts with the “Initiator” place generating

a token to put in place “PPR.” Transition “T3” checks if the first

Boolean condition of ABI 1, i.e., (Patient Pulse Rate Normal),

is true and if yes will fire and propagate the token to place

“Action.” Transition “T4” will check if the second Boolean

condition of ABI 1, i.e., (Action Alert-and-Hold), is true and

if yes will fire the transition and generate a token to flow to

place “Decision” for decision making, as well as a token to flow

to place “ABI 1” for Boolean condition verification of behavior

rule 1 (in the form of ABI 1). Finally transition “T6” checks the

Boolean verification of behavior rule 1 and if true will fire the

transition and generate a token to place “Decision” to complete

the correctness verification. In summary, we verify the

completeness and correctness properties as follows:

• Completeness: The HCAPN model built is complete only if

all physical variables, Boolean conditions, and ABIs are fully

defined in the HCAPN model. All entities are fully

connected by arcs in one HCAPN model and no isolated

subnet exists in the HCAPN model. This is verified by

conducting a token governance analysis such that all places

and transitions defined are utilized at least once during

HCAPN model execution. This verifies that the behavior

rules specified are complete with respect to the field expert’s

specifications of Boolean conditions (in each behavior rule)

and physical variables (in each Boolean condition).

• Correctness: The HCAPN model built is correct only if the

reachability graph is correct, i.e., the tokens are flowing

properly through the model and collected at place “Decision”

(holding the security requirements) and the property of

boundness is fully observed. We conduct a token reachability

and boundness analysis by checking if tokens can reach all

places and are bounded in all places. The token reachability

defines the completeness and correctness of behavior rules

and verifies that the behavior rules specified are correct with

respect to the field expert’s specifications of Boolean

conditions (in each behavior rule) and physical variables (in

each Boolean conditions). Also as tokens always flow to

place “Decision” holding the security requirements, it

verifies that the behavior rules satisfy the security

requirements.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

D. Runtime Collection of Compliance Degree Data

Unlike anomaly detection which frequently requires heavy

resources to profile/learn anomaly patterns, our behavior rule

specification-based data collection process is lightweight. By

using the transformed state machine, a monitor device only

needs to periodically monitor if a target IoT device is in safe or

unsafe states without interfering with the normal operation of

either the monitor device or the target device. Hence the

monitor node can simply collect an instance of the compliance

degree of the target node (to be monitored on) by measuring the

proportion of time the target PCA node is in state 0. This

collection process is repeated periodically. By the end of the nth

monitoring periods, the monitor node would collect the

compliance degree history 𝑐1, 𝑐2, … , 𝑐𝑛 of the target PCA. As

the state machine has incorporated the knowledge of safe vs.
unsafe states, this data collection process is extremely

lightweight. The monitor node just needs to check which states

the target node is in during the ith monitoring interval and

measures 𝑐𝑖 as the proportional of time the target node is in safe

states in the ith monitoring interval. To save energy, this

monitoring process can be done in discrete time space involving

probing the states of the target node at discrete time points.

Then an instance of the compliance degree can be measured as

the ratio of the number of times in which the target node is

found to be in safe states over the total number of times the

monitor node probes the status of the target node.

E. Statistical Analysis for Misbehavior Detection

Our lightweight statistical analysis does not involve training,

that is, we do not partition the “compliance degree” history

𝑐1, 𝑐2, … , 𝑐𝑛 collected (see Section IV-C) into the training set

and the data set for testing because such heavy profiling and

learning at run time is impractical for resource-constrained IoT

devices. Rather, we simply model an IoT device’s “compliance

degree” by a random variable 𝐶 following a probability

distribution function G(.) with the value of 0 indicating zero

compliance and 1 indicating perfect compliance. Once we know

the target node’s compliance degree distribution function, we

can compute the expected value of C to know the average

compliance degree of the target node over a time period. This

information will allow us to decide if the target node is

considered “malicious” based on a binary grading criterion, i.e.,

if the target node’s average compliance degree is less than or

just equal to a minimum threshold 𝐶𝑇, we consider the target

node as malicious.

In this work we consider 𝐺(.) = 𝐵𝑒𝑡𝑎(𝛼, 𝛽) as the

probability distribution function. The 𝛼 and 𝛽 parameters can

be parameterized using the target node’s compliance degree

history 𝑐1, 𝑐2, … , 𝑐𝑛 collected during runtime. The computation

overhead would be manageable because the monitor node just

needs to solve the maximum likelihood equations to

parameterize the 𝛼 and 𝛽 parameters. In this case, the run time

complexity is 𝑂(𝑛𝑙𝑜𝑔𝑛). If we use a one-parameter 𝐵𝑒𝑡𝑎(𝛽)

distribution with 𝛼 fixed at the value of 1 as the probability

distribution function, the maximum likelihood estimate of 𝛽 is

given by a simple analytical expression: 𝛽 = 𝑛/ ∑ log (1/𝑛
𝑖=1

1 − 𝑐𝑖) and the run time complexity to parameterize 𝛽 using

the target node’s compliance degree history is only 𝑂(𝑛) which

is extremely lightweight compared with contemporary anomaly

based detection methods that would incur the run time

complexity of O(𝑛𝑝) to O(𝑝𝑛), p > 1, where n is the number of

data samples because of the need to profile or learn anomaly

patterns.

The effectiveness of our lightweight statistical analysis

method described above can be measured by the false negative

probability 𝑃𝑓𝑛 and false positive probability 𝑃𝑓𝑝. During an

experimental run if a seeded “good” node’s compliance degree

is lower than or just equal to the minimum threshold 𝐶𝑇, we

incur a false positive, i.e., treating a good node as a bad node.

On the other hand, if during an experimental run a seeded “bad”

node’s compliance degree is higher than the minimum

threshold 𝐶𝑇, we incur a false negative, i.e., treating a bad node

as a good node. For the target PCA, since we know the target

PCA’s compliance degree distribution function G(.) after

applying our lightweight statistical analysis method, we can

easily compute 𝑃𝑓𝑛 = Pr(𝐶 > 𝐶𝑇) = 1 − 𝐺(𝐶𝑇) given that the

PCA device is “bad” and 𝑃𝑓𝑝 = Pr(𝐶 ≤ 𝐶𝑇) = 𝐺(𝐶𝑇) given

that the PCA device is “good” during experimental runs.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of MedIoT in

terms of “effectiveness” measured by detection rate, false

positive probability, false negative probability, and area under

the receiver operating characteristic (AUROC) curve, as well as

in terms of “efficiency” measured by memory utilization,

communication overhead, and computation overhead. We

analyze the tradeoff between effectiveness and efficiency by

performing a sensitivity analysis of effectiveness/efficiency

performance results with respect to the monitoring rate with

which compliance data are collected for misbehavior detection.

We also conduct a comparative analysis with contemporary

anomaly-based misbehavior detection techniques including

SVM [28] and KNN [34] in both “effectiveness” and

“efficiency” metrics.

A. Experiment Setup

We setup separate ns3 processes to simulate various entities

as illustrated in Figure 1 to reflect reality. These ns3 processes

model (1) a monitor PCA, (2) a target PCA, (3) a patient

pressing/releasing a button on the target PCA for drug injection,

(4) hospital personnel for defining dosage/injection rate and

receiving alerts, (5) an event condition generator checking if an

event condition (e.g., PCA button hold/release, Patient Pulse

Rate, Patient Respiration Rate, Patient Status, Drug Reservoir,

Infusion Pressure, Injection Rate, or Dosage) is triggered or not,

(6) an action condition verifier checking if the target PCA is

well behaved or misbehaved, and (7) a M2M communication

system. Our ns3 simulation is verified to reflect reality since it

covers all event conditions defined in the ABI Table (Table 4)

and covers all security threats (Table 2) derived from the target

PCA’s operational profile.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

We consider a noisy environment resulting in imperfect

monitoring. That is, the monitor PCA may mis-detect the state

a target PCA is in with a mis-monitoring probability due to

environment noises. We model the mis-monitoring probability

𝑃𝑒 as a random variable of a continuous uniform distribution in

the interval [a, b] where a and b are both real numbers in the

range of [0, 1] with a ≤ b. Typically, we test three cases: [a, b]

= [0, 10%] (i.e., low noises), [a, b] = [0, 30%] (i.e., medium

noises), and [a, b] = [0, 50%] (i.e., high noises). Furthermore,

we consider the following attacker types for a malicious target

PCA:

1. Reckless: the malicious PCA attacks all the time

whenever it has a chance, i.e., when any of the 9 ABI

event conditions listed in Table 4 is true.

2. Random: the malicious PCA attacks randomly or on-and-

off to avoid detection with an attack probability of 𝑃𝑎.
That is, when an ABI event condition (as listed in Table

4) is true, it decides to attack with probability 𝑃𝑎. In the

simulation, we randomly generate a number in [0, 1] and

if this number is less than 𝑃𝑎, then the malicious PCA

attacks.

3. Opportunistic: the malicious PCA attacks only when the

mis-monitoring probability is high. That is, when an ABI

event condition (as listed in Table 4) is true, it decides to

attack only if the current mis-monitoring probability is

high. In the simulation, we randomly generate a number

in [a, b] (which is the range of mis-monitoring

probability) and if this number is equal to or greater than

(a+b)/2 then the malicious PCA attacks.

4. Insidious: the malicious PCA is hidden and attacks only

under certain ABI event conditions in which the gain

(causing damage) outweighs the loss (being detected).

Out of the 9 ABIs listed in Table 4, ABI 8 (analgesic

injection rate is above the specified injection rate) and

ABI 9 (not injecting the specified dosage) will cause the

most damage among all. In the simulation, the malicious

PCA in insidious mode will attack only when the event

conditions of ABI 8 or ABI 9 are true.

We conduct a discrete event simulation. There are 9 events as

listed in Table 4, i.e., (Patient Pulse Rate Normal), (Patient

Respiration Rate Normal) (Patient Status = Defibrillation),

(Drug Reservoir = Empty), (Infusion Pressure Normal),

(Command = AUTHORIZED), (Audit = ON), (Injection Rate

 Specified Injection Rate), and (Dosage Specified Dosage).

In the simulation, we simulate the arrivals of these 9 events by

Poisson arrival processes with rates 𝜆𝐴𝐵𝐼1- 𝜆𝐴𝐵𝐼9, respectively.

For example, to simulate the next ABI 1 event occurrence time,

we randomly generate a number following exponential

distribution with parameter 𝜆𝐴𝐵𝐼1 and the next ABI 1 event

would occur at now plus this number. Initially, we generate the

event occurrence times of the 9 ABI events each and put them

in the event queue sorted by event occurrence time. These

events are processed one at a time based on their event

occurrence times. After an event is processed, the simulation

clock is advanced to the event occurrence time in the discrete

time space. If multiple ABI events occur at the same time, they

are also being processed one at a time, but the simulation clock

will advance only after all are processed. After an ABI event is

processed, the next event occurrence time for the same ABI

event is generated again and placed in the event queue, so the

event-driven simulation continues running until a stopping

criterion is met (discussed below).

The monitor PCA monitors (what it perceives) the state

machine status of a target PCA for the purpose of misbehavior

detection. It applies the same mechanical way of updating the

state machine of the target PCA regardless of whether the target

PCA is malicious or not (which it does not know). The start

state at t=0 initially is (0, 0, 0, 0, 0, 0, 0, 0, 0). When an event
occurs, the monitor PCA updates a target PCA’s state
machine. Below we separate the discussion for the
malicious target PCA and the good target PCA because the
resulting state machine as perceived by the monitor PCA
will be different.

The good target PCA would not attack when an ABI event

occurs. Therefore, the good target PCA would stay in state (0,

0, 0, 0, 0, 0, 0, 0, 0) forever. However, the monitor PCA can

mis-detect because of the mis-monitoring probability 𝑃𝑒 . In the
simulation we first randomly generate a number in [a, b] for

the current mis-monitoring probability. Then we randomly

generate another number in [0, 1]. If this number is larger than

the current mis-monitoring probability, then it means that there

is no mis-monitoring and the monitor PCA will put a “0” in the

state component position corresponding to the ABI event.

Otherwise, the monitor PCA puts a “1” in the state component

position corresponding to the ABI event as the good target PCA

is mis-identified as performing attack by the monitor PCA.

The malicious target PCA may or may not attack when an

ABI event occurs, depending on its attacker type. For example,

a reckless attacker always attacks whenever an event occurs.

However, an opportunistic attacker attacks only when the

environment noise is high. There are two cases:

• If the malicious target PCA does not attack, then the

monitor PCA will update the state machine of the

malicious target PCA in the same way it updates the state

machine of a good target PCA (who does not attack) as

described earlier.

• If the malicious target PCA does attack, the monitor PCA

can detect the attack subject to mis-monitoring probability

𝑃𝑒 under which the malicious target PCA’s attack is not

detected. In the simulation we again first randomly

generate a number in [a, b] for generating the current mis-

monitoring probability 𝑃𝑒. Then we randomly generate

another number in [0, 1]. If this number is larger than the

current mis-monitoring probability, then it means that there

is no mis-monitoring and the attack is detected by the

monitor PCA which will update the state machine of the

malicious target PCA by putting a “1” in the state

component position corresponding to the ABI event. For

example if ABI 1 event occurs and the malicious target

PCA decides to attack and the attack is detected, then the

malicious target PCA’s state machine is updated from (0,

0, 0, 0, 0, 0, 0, 0, 0) to (1, 0, 0, 0, 0, 0, 0, 0, 0). Otherwise,

the monitor PCA puts a “0” in the state component position

corresponding to the ABI event since the attack is mis-

detected by the monitor PCA.

The monitor PCA updates the state machine of a target PCA

it is assigned to monitor at every ABI event occurrence time in

the event-driven simulation. While updating the state machine,

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

the monitor PCA keeps track of the state transitions that have

occurred and collects the target PCA’s compliance degree

history 𝑐1, 𝑐2, … , 𝑐𝑛 as discussed in Section IV-D. The target

PCA’s compliance degree history 𝑐1, 𝑐2, … , 𝑐𝑛 is then used to

parameterize the 𝛽 parameter from the one-parameter 𝐵𝑒𝑡𝑎(𝛽)

distribution with 𝛼 being fixed at the value of 1. We stop the

simulation when the following stopping criterion is met: when

the 𝛽 parameter value converges based on 95% confidence

level and 10% confidence accuracy. That is, with 95%

confidence, the mean 𝛽 value obtained is within the true mean

by 10%. Once the 𝛽 value is obtained, we obtain the target

PCA’s compliance degree distribution function, based on which

the monitor PCA computes the false negative probability (𝑃𝑓𝑛)

and false positive probability(𝑃𝑓𝑝) by adjusting the minimum

compliance threshold 𝐶𝑇 as described in Section IV-E.

We verify that MedIoT performs better than or comparably

against contemporary anomaly-based misbehavior detection

techniques including Support Vector Machine (SVM) [28] and

k-nearest neighbors (KNN) [34] in “effectiveness” metrics.

Moreover, we verify that MedIoT can dominantly outperform

SVM and KNN in “efficiency” metrics, thus supporting our

claim that MedIoT is the only feasible misbehavior detection

scheme applicable to resource-constrained IoT devices.

SVM [28] is a popular data classification technique for

classifying data into groups and has been well adopted for

misbehavior detection for CPSs [29, 30]. We use it to classify a

target IoT device into “well-behaved” or “misbehaved” groups

based on the data collected by the monitor device on the target

device. Applying SVM is a two-stage process: in the “training”

stage, we train a SVM classifier with examples of “well-

behaved” or “misbehaved” data collected from good and bad

target IoT devices, respectively, so the SVM classifier can learn

their data patterns and classify the target IoT device into the

right group. In the “application” stage, the trained SVM

classifier takes new data collected at run time and classifies the

responsible target device into the “well-behaved” or

“misbehaved” group. Typically, when new data arrives, the

SVM classifier should be retrained so it can learn from

experiences dynamically. SVM involves identifying the main

features of a device so that it can effectively differentiate “well-

behaved” from “misbehaved” data patterns. These key features

are variables whose values are collected at runtime and are put

into a p-dimensional support vector in the form of (𝑋1, 𝑋2, …,

𝑋𝑝) where 𝑋𝑖 is the ith variable. For fair comparison, we use the

same physical variables identified in our ABI table (Table 4) as

SVM variables. That is, (𝑋1, 𝑋2, …, 𝑋𝑝) = (Patient Pulse Rate ,

Patient Respiration Rate, Patient Status, Drug Reservoir,

Infusion Pressure, Command, Audit, Injection Rate − Specified

Injection Rate, Dosage − Specified Dosage) with p=9. Note that

the last two variables are represented as the differences between

the current measured quantity and the specified quantity to

allow effective data pattern learning. During the training stage,

a data sample (containing p support vector variable values

measured when an ABI event occurs) is in the form of (𝑋1, 𝑋2,
…, 𝑋𝑝, 𝑦) where y is 1 for “well-behaved” and −1 for

“misbehaved.” During the application stage, y is the output of

SVM based on which the target node is classified into “well-

behaved” or “misbehaved.” The output produced by SVM is

collected as an instance of the target device’s compliance

degree 𝑐𝑖.

K-nearest neighbors (KNN) [34] is also a popular

classification scheme which we take as a 2nd baseline machine

learning algorithm for performance comparison. For fair

comparison, we also use the same feature vector as in SVM.

That is, the feature vector is (𝑋1, 𝑋2, …, 𝑋𝑝) = (Patient Pulse

Rate , Patient Respiration Rate, Patient Status, Drug Reservoir,

Infusion Pressure, Command, Audit, Injection Rate − Specified

Injection Rate, Dosage − Specified Dosage) with p=9. Different

from SVM, KNN simply stores the feature vectors and the

corresponding class labels of training samples in the form of

(𝑋1, 𝑋2, …, 𝑋𝑝, 𝑦) where y is 1 for the “well-behaved” class

and −1 for the “misbehaved” class. An automatic

hyperparameter optimization method [35] is used to generate an

optimized model which suggests the best k neighbors and

distance algorithm for classification. During the application

stage when being presented with a feature vector of a target

node, KNN assigns a label to the target node which is the most

frequent among the k training samples nearest to the feature

vector of the target node to classify the target node as “well-

behaved” or “misbehaved.” The output produced by KNN is

then collected as an instance of the target device’s compliance

degree 𝑐𝑖.

 In our experiment, MedIoT, SVM and KNN are tested

under the same operational and environment settings as

described above, including the mis-monitoring probability 𝑃𝑒.

SVM and KNN are trained with 6000 training events (or cases)

including both well-behaved and misbehaved events. Then all

schemes are tested with 3000 events in a simulation run, using

the same data input for analysis when an event occurs. When an

event occurs, all schemes acquire the event input data in the

form of (Patient Pulse Rate, Patient Respiration Rate, Patient

Status, Drug Reservoir, Infusion Pressure, Command, Audit,

Injection Rate - Specified Injection Rate, Dosage - Specified

Dosage) via data communication from various sensing or

measuring devices in exactly the same way. When the ith event

occurs, the target device’s compliance degree 𝑐𝑖 is collected as

follows: MedIoT checks if the end state is a safe or unsafe state

by checking against its state machine, while SVM and KNN

classify if the target device is well-behaved or misbehaved by

searching through the misbehavior space learned during the

training phase. After the target PCA’s compliance degree

history 𝑐1, 𝑐2, … , 𝑐𝑛 is collected, we apply the lightweight

statistical analysis method as described in Section IV-E for

computing the false negative rate (𝑃𝑓𝑛) and false positive rate

(𝑃𝑓𝑝) for all schemes.

B. Effectiveness Performance Evaluation

We measure effectiveness by the following performance

metrics: (a) detection rate: probability of correctly identifying a

malicious node (goal: above 99% for reckless attackers); (b)

false negative probability (𝑃𝑓𝑛): it is equal to 1 – detection rate

(goal: below 1% for reckless attackers); (c) false positive

probability (𝑃𝑓𝑝): probability of misidentifying a good node as

a malicious node (goal: below 3%); (d) AUROC: area under a

receiver operating characteristic (ROC) curve with detection

rate vs. false positive probability (goal: above 97% for reckless

attackers). In particular, the AUROC curve with the detection

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

rate (1 − 𝑃𝑓𝑛) on the Y coordinate and the false positive rate

(𝑃𝑓𝑝) on the X coordinate is especially a well-adopted metric

for performance comparison of misbehavior detection methods

because it can properly reflect the tradeoff between false

negative rate (𝑃𝑓𝑛) and false positive rate (𝑃𝑓𝑝).

Figure 3 displays the ROC curves for the case in which the

malicious PCA is a reckless attacker. Each ROC curve has the

mis-monitoring probability 𝑃𝑒 in a different [a, b] range. The

top curve is for [a, b] = [0, 10%] (i.e., low noises). The middle

curve is for [a, b] = [0, 30%] (i.e., medium noises). The bottom

curve is for [a, b] = [0, 50%] (i.e., high noises). We see that

under low noises, the AUROC is close to 1 because both the

false negative rate (𝑃𝑓𝑛) and false positive rate (𝑃𝑓𝑝) are very

close to zero and therefore AUROC is close to 100% This

means that MedIoT can achieve almost perfect detection under

low noises. As the environment noise degree increases, the

AUROC is not 1 anymore and there is a tradeoff between 𝑃𝑓𝑛

and 𝑃𝑓𝑝. That is, if we increase the minimum compliance

threshold 𝐶𝑇, we can reduce 𝑃𝑓𝑛 but increase 𝑃𝑓𝑝. Conversely,

if we decrease the minimum compliance threshold 𝐶𝑇, we can

reduce 𝑃𝑓𝑝 but increase 𝑃𝑓𝑛. We see that under medium noises,

MedIoT can achieve 𝑃𝑓𝑛 < 1%, 𝑃𝑓𝑝 < 0.5%, and AUROC >

99%. Even under high noises MedIoT can still achieve the

goal of 𝑃𝑓𝑛 < 1%, 𝑃𝑓𝑝 < 3%, and AUROC > 97% until it

breaks when 𝑃𝑒 is above [0, 45%] because of the very high

level of noise causing it not able to perform accurate

misbehavior detection. Overall we see that MedIoT can
achieve the goal of 𝑃𝑓𝑛 < 1%, 𝑃𝑓𝑝 < 3%, and AUROC > 97%

over a wide range of noise levels (up to [0, 45%] as
observed from our experiment) by adjusting the value of the

minimum compliance threshold 𝐶𝑇 in response to the
environment noise level sensed at runtime. When the noise
level is high, MedIoT sets the minimum compliance threshold

𝐶𝑇 to a high bar, so that it can achieve above 99% of detection

rate for detecting the malicious target PCA, while limiting the

false positive probability 𝑃𝑓𝑝 to under 3% for misjudging the

good target PCA. To preserve memory space, we use a very

simple table look-up method to match the noise level detected

at runtime to the best 𝐶𝑇 level at which the goal of 𝑃𝑓𝑛 < 1%,

𝑃𝑓𝑝 < 3%, and AUROC > 97% can be optimized in the

priority order of 𝑃𝑓𝑛, 𝑃𝑓𝑝, and AUROC.

Figure 4 analyzes the effect of attacker type on detection

accuracy of MedIoT. Figure 4 displays 4 ROC curves, each for

a distinct attacker type (reckless, random with 𝑃𝑎 =
0.5, opportunistic, or insidious) for the case in which [a, b] =

[0, 10%] (i.e., low noises) to reveal interesting performance

characteristics. The top curve is when the malicious target PCA

is a reckless attacker for which the AUROC is nearly 1 because

the attacker exposes itself by reckless attack behavior and can

be easily detected by MedIoT. The 2nd highest curve is when

the malicious target PCA is a 50% random attacker for which

the AUROC is not as close to 1 because the attacker is hidden

50% of the time. The third curve from the top is when the

malicious target PCA is an opportunistic attacker who will

attack when it detects the current mis-monitoring probability is

above the average. The bottom curve is when the malicious

target PCA is an insidious attacker for which the AUROC is the

lowest because an insidious attacker attacks only when ABI 8

or ABI 9 event conditions are true while it behaves under all

other ABI event conditions. The malicious PCA in this case is

mostly hidden and does not attack to avoid detection unless it

sees ABI 8 or ABI 9 conditions are true. As a result, it limits its

chance of exposure and thus decreases the detection accuracy

of MedIoT.

Figure 4 indicates that MedIoT can easily satisfy the security

goals when the attacker type is reckless, random (with 𝑃𝑎 =
0.5) or opportunistic but MedIoT can fail miserably when the

attacker type is insidious even under low noises. As we claim

MedIoT performs better than contemporary anomaly detection

methods such as SVM (to be shown later) in AUROC, we

believe that to-date there is no single misbehavior detection

method that can effectively counter insidious attackers. One

Fig. 3. ROC Curve for MedIoT under various noisy environments. The
Y coordinate is the detection rate (1 − 𝑃𝑓𝑛) and the X coordinate is the

false positive rate(𝑃𝑓𝑝).

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

0
.0

%

1
.0

%

2
.0

%

3
.0

%

4
.0

%

5
.0

%

6
.0

%

7
.0

%

8
.0

%

9
.0

%

1
0

.0
%

1
 -

P
fn

Pfp

Pe = [0, 10%] - MedIoT

Pe = [0, 30%] - MedIoT

Pe = [0, 50%] - MedIoT

Fig. 4. Effect of attacker type on ROC of MedIoT.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0.0% 0.5% 1.0%

1
 -

P
fn

Pfp

Pe = [0, 10%]

Reckless - MedIoT

Random - MedIoT

Opportunistic - MedIoT

Insidious - MedIoT

Fig. 5. Comparing AUROC of MedIoT against SVM and KNN for the case

in which the attacker type is reckless under various noisy environments.

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0%

1
 -

P
fn

Pfp
Pe = [0, 10%] - MedIoT Pe = [0, 30%] - MedIoT
Pe = [0, 50%] - MedIoT Pe = [0, 10%] - SVM
Pe = [0, 30%] - SVM Pe = [0, 50%] - SVM
Pe = [0, 10%] - KNN Pe = [0, 30%] - KNN

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

way to counteract insidious attack behavior is to severely

penalize a target PCA that violates critical ABIs (that will cause

severe damage to the system) such as ABI 8 and ABI 9.

Specifically, instead of assigning equal weights to all ABIs and

consequently measuring 𝑐𝑖 as the proportion of time the target

PCA is in safe states in the ith monitoring interval, we assign

heavier weights to critical ABIs and consequently measuring

1 − 𝑐𝑖 (i.e., non-compliance) as the proportion of weighted-

time the target PCA is in unsafe states in the ith monitoring

interval. Since we put higher weights to critical unsafe states,

this in effect penalizes a target PCA that violates critical ABIs

by assigning it with a high non-compliance degree (or a low

compliance degree). This is to be investigated in future work.

Figure 5 compares the ROC curves for MedIoT (blue lines)

against SVM (red lines) and KNN (green lines) for the case in

which the malicious PCA is a reckless attacker. We can see

clearly that the AUROC of MedIoT dominates that of SVM and

KNN as MedIoT always has a better detection rate given the

same 𝑃𝑓𝑝 and always has a better 𝑃𝑓𝑝 given the same detection

rate, given the same operational and environmental

characteristics as input. While MedIoT breaks when the mis-

monitoring probability 𝑃𝑒 is above the range of [0, 45%], SVM

breaks (i.e., not able to satisfy the goal of 𝑃𝑓𝑛 < 1%, 𝑃𝑓𝑝 < 3%,

and AUROC > 97%) when 𝑃𝑒 is above the range of [0, 33%]

and KNN breaks when 𝑃𝑒 is above the range of [0, 31%]. We

attribute the superior performance of MedIoT by the unique

design that safe and unsafe-state information is already

summarized in the transformed state machine, based on which

a monitor node just needs to measure the proportion of time a

target node (being monitored on) is in safe states for effective

misbehavior detection regardless of the attacker type of the

malicious PCA (reckless, random, opportunistic, or insidious).

In contrast, SVM must be trained with well-

behavior/misbehavior examples in the training phase to learn a

hyperplane that can include well-behavior data and exclude

misbehavior data and then in the application phase use the

hyperplane to classify misbehavior data. There is inherently

some imprecision in learning and profiling the “ideal”

hyperplane especially when the environment noises are high.

Consequently, SVM performs worse than MedIoT. Similarly

there is some imprecision for KNN to find k training samples

nearest to the feature vector of the target node to classify the

target node as “well-behaved” or “misbehaved.”

Figures 6, 7, and 8 compare the ROC curves for MedIoT

(blue lines) against SVM (red lines) and KNN (green lines) for

the cases in which the malicious PCA’s attacker types are

random (with 𝑃𝑎 = 0.5), opportunistic, and insidious,

respectively. A similar trend is observed compared with the

reckless attacker type case (as shown in Figure 5). That is, the

AUROC of MedIoT dominates that of SVM and KNN. Here we

note that despite the attacker is more hidden, especially in the

case of insidious attackers, MedIoT is still more effective than

SVM and KNN because of the use of state-machine-based

monitoring which greatly improves runtime detection accuracy.

C. Efficiency Performance Evaluation

We evaluate the efficiency aspect of MedIoT by the

following metrics: (a) the memory utilization: the amount of

memory utilized (goal: less than 100MB); (b) the computation

overhead: the amount of computation time needed for

misbehavior detection (goal: below 5 milliseconds or 0.005

seconds); and (c) the time delay for reaching a decision about

whether the target PCA is well-behaved or misbehaved when

an event occurs (goal: below 10 milliseconds or 0.01 seconds).

The time delay for reaching a decision when an event occurs is

the sum of the time taken for the monitor PCA to obtain event

input data in the form of (Patient Pulse Rate, Patient Respiration

Rate, Patient Status, Drug Reservoir, Infusion Pressure,

Command, Audit, Injection Rate - Specified Injection Rate,

Dosage - Specified Dosage) from various sensing or measuring

devices via data communication plus the time for each scheme

(MedIoT, SVM, or KNN) to analyze event input data to reach

a decision. The first part of the delay is the same for all schemes

because all schemes use the same event input when an event

occurs. The second part of the delay is the computation time for

reaching a decision, given that the event data is in hand. For

MedIoT, it is the computation time to decide if the target PCA

is in an unsafe state in the state machine which it updates on an

Fig. 6. Comparing AUROC of MedIoT against SVM and KNN for the case in

which the attacker type is random.

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

0.0% 0.5% 1.0% 1.5% 2.0%

1
 -

P
fn

Pfp

Pe = [0, 10%]

Random - MedIoT

Random - SVM

Random - KNN

Fig. 7. Comparing AUROC of MedIoT against SVM and KNN for the case

in which the attacker type is opportunistic.

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

0.0% 0.5% 1.0% 1.5% 2.0%

1
 -

P
fn

Pfp

Pe = [0, 10%]

Opportunistic - MedIoT

Opportunistic - SVM

Opportunistic - KNN

Fig. 8. Comparing AUROC of MedIoT against SVM and KNN for the case

in which the attacker type is insidious.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0.00% 1.00% 2.00% 3.00% 4.00%

1
 -

P
fn

Pfp

Pe = [0, 10%]

Insidious - MedIoT

Insidious - SVM

Insidious - KNN

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

event by event basis, and for SVM or KNN it is the learning

algorithm computation time to classify if the target PCA is in

the “misbehaved” class.

Figures 9a, 9b, and 9c compare the memory size,

computation time, and time delay for reaching a decision,

respectively, of MedIoT against SVM and KNN for the case in

which the malicious PCA is reckless and [a, b] = [0, 10%] (i.e.,

low noises). Figure 9a shows that the memory usage of MedIoT

(80 MB) is substantially smaller than that of SVM (190MB) and

KNN (142MB). This means that for a resource constrained

PCA device with a memory size as small as 100MB [31], only

MedIoT (our proposed scheme) can satisfy this memory usage

goal. This is mainly because MedIoT only needs to store a

relatively small state machine generated at static time for

identifying safe/unsafe states while SVM/KNN need to store a

large amount of trained patterns for classifying misbehavior.

Figure 9b compares MedIoT against SVM and KNN in terms

of the computation time (excluding the learning time) needed

to reach a decision after data are in place for all methods. Figure

9b shows that MedIoT has substantially lower computational

time to perform misbehavior detection compared with SVM

and KNN. The reason is that MedIoT already preloads the state

machine into memory for runtime misbehavior detection. On

the contrary, SVM needs to search through the misbehavior

space represented by its stored hyperplanes at runtime for

misbehavior classification, and KNN needs to search through

its stored training samples to find k training samples nearest to

the feature vector of the target node for group classification.

Figure 9c compares MedIoT against SVM and KNN in terms

of the time delay in acquiring and analyzing data to reach a

decision computed by the sum of the data communication time

and the computation time for all three methods. Figure 9c shows

that MedIoT incurs a substantially smaller time delay in

acquiring and analyzing data to reach a decision whether the

target PCA is well-behaved or misbehaved when an event

occurs compared with SVM and KNN. We again attribute

MedIoT’s superior performance to its fast safe/unsafe state

look-up operation merely by inspecting the target PCA’s state

machine as opposed to the relatively slow machine learning

operation performed by SVM or KNN to classify the target

PCA into the “well-behaved” or “misbehaved” class.

D. Tradeoff Analysis of Effectiveness vs. Efficiency

In this section we analyze the tradeoff between effectiveness

vs. efficiency. Specifically, we analyze the effect of the

monitoring rate (the frequency at which compliance data are

collected) on effectiveness/efficiency performance results. The

tradeoff exists because a finer data granularity due to more

frequent monitoring will lead to less missing cases and improve

the detection rate, but it can exhaust energy of a resource-

constrained IoT device due to excessive monitoring. We aim to

identify the best monitoring rate that can best balance efficiency

and effectiveness.

In the simulation, instead of having the monitor PCA check

the state machine of a target PCA at event occurrence times, we

create a timer event with 𝑇𝐼𝐷𝑆 as the monitoring interval so that

a data compliance degree sample is collected in each

𝑇𝐼𝐷𝑆 period after which the monitor PCA updates the target

PCA’s state machine. In effect, the monitor PCA collects the

target PCA’s compliance samples periodically with rate 1/𝑇𝐼𝐷𝑆.

Obviously the smaller the 𝑇𝐼𝐷𝑆 value, the finer the data

granularity and hence the better the effectiveness performance

because of a higher chance of not missing any misbehavior of

the target PCA device. However, a smaller 𝑇𝐼𝐷𝑆 value increases

the computation time needed for data collection and statistical

analysis because a higher number of samples (n) would need to

be collected and analyzed. This degrades efficiency

performance. Thus, we analyze the tradeoff between

effectiveness and efficiency by controlling the magnitude of

𝑇𝐼𝐷𝑆 which essentially translates into the total number of

samples (n) to be collected for decision making, which is

directly related to the computation overhead (for compliance

data collection and statistical analysis) since the runtime

complexity of MedIoT is O(n) as discussed earlier in Section

IV-E.

Figure 10 shows AUROC (the most important effectiveness

metric) under various 𝑇𝐼𝐷𝑆 values (each resulting a different n

value) representing the computation overhead (the most

 Fig. 9a. Memory Utilization of MedIoT against SVM and KNN.

190.47352

142.10806

80.985

0

50

100

150

200

SVM KNN MedIoT

M
e

ga
b

yt
e

s

Scheme

 Fig. 9b. Computation Time of MedIoT against SVM and KNN.

1.32409

1.63391

0.15949

0.00

0.40

0.80

1.20

1.60

2.00

SVM KNN MedIoT

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s)

Scheme

Fig. 9c. Time delay in acquiring and analyzing data to reach a

decision of MedIoT against SVM and KNN when an event occurs.

2.03852

2.34834

0.87392

0

0.4

0.8

1.2

1.6

2

2.4

2.8

SVM KNN MedIoT

D
e

la
y

(m
s)

Scheme

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

important efficiency metric) for the case in which the malicious

PCA is a reckless attacker and [a, b] = [0, 10%] (i.e., low

noises). We observe that there indeed exists a tradeoff between

effectiveness measured by AUROC and efficiency measured by

the detection interval and consequently the number of

compliance samples (n) collected during the simulation run.

Specifically, as the detection interval 𝑇𝐼𝐷𝑆 decreases, the

efficiency performance decreases since the computation time

increases (due to more data samples being collected during data

collection and being analyzed during statistical analysis), while

the effectiveness performance increases as AUROC becomes

more and more approaching 1 due to more sample data being

analyzed. Depending on the effectiveness and efficiency

performance requirements of the system, the tradeoff analysis

as shown in Figure 10 can help the system designer identify the

best monitoring rate to be applied to satisfy both requirements.

VI. CONCLUSION

The proposed behavior rule specification-based misbehavior

detection technique is generic and can be applied to practical

IoT-embedded cyber physical systems for which very

lightweight embedded IoT devices (e.g., sensors, actuators, or

a combination of both) are an integral part of the overall system

design. We illustrated the feasibility of our proposed method

with a PCA device embedded in a medical CPS where a peer

PCA serves the role of a monitor node. We position our

behavior rule specification-based misbehavior detection

technique as the only feasible solution in terms of low memory,

run time, communication, and computation overhead, and high

misbehavior detection prediction accuracy to ensure protection

of resource-constrained embedded IoT devices against zero-day

attacks. In this paper we conducted extensive simulation to

verify that MedIoT can outperform SVM-based or KNN-based

machine learning methods for misbehavior detection of a PCA

device embedded in a medical CPS in both the effectiveness

and efficiency performance metrics. In the future, we plan to

port the data collection and statistical analysis code to a real

PCA device for experimental validation.

REFERENCES

[1] R. Berthier and W.H. Sanders. 2011. Specification-based Intrusion

Detection for Advanced Metering Infrastructures. 17th IEEE Pacific Rim

Int. Symp. Dependable Computing, 184-193.

[2] A. Bezemskij, G. Loukas, R.J. Anthony, and D. Gan. 2016. Behaviour-

based anomaly detection of cyber-physical attacks on a robotic vehicle.

IEEE Symposium on Cyberspace and Security, 1-8.

[3] M. Aldebert, M. Ivaldi and C. Roucolle, "Telecommunications Demand and

Pricing Structure: An Econometric Analysis," Telecommunication

Systems, 25:89–115, 2004.

[4] A. DaSilva et al. 2005. Decentralized intrusion detection in wireless sensor

networks. 1st ACM inter. workshop on quality of service & security in

wireless and mobile networks., 16–23.

[5] N. Zhang, K. Sun, W. Lou, and Y.T. Hou. 2016. CaSE: Cache-Assisted

Secure Execution on ARM Processors. IEEE Symposium on Security and

Privacy.

[6] J. Hong, C.C. Liu, and M. Govindarasu. 2014. Integrated Anomaly

Detection for Cyber Security of the Substations. IEEE Trans. Smart Grid,

5 (4), 1643-1653.

[7] S. Huda, et al. 2017. Defending unknown attacks on cyber-physical systems

by semi-supervised approach and available unlabeled data. Information

Sciences, 379, 211-228.

[8] K. Ioannis, T. Dimitriou, and F. Freiling. 2007. Towards intrusion detection

in wireless sensor networks. 13th European Wireless Conference.

[9] P. Jokar, H. Nicanfar, and V.C.M. Leung. 2011. Specification-based

Intrusion Detection for Home Area Networks in Smart Grids. IEEE Int.

Conf. on Smart Grid Communications.

[10] A.M. Kosek. 2016. Contextual anomaly detection for cyber-physical

security in smart grids based on an artificial neural network model. IEEE

Workshop on Cyber-Physical Security and Resilience in Smart Grids.

[11] C. Kwon, S. Yantek, and I. Hwang. 2016. Real-Time Safety Assessment

of Unmanned Aircraft Systems Against Stealthy Cyber Attacks. Journal

of Aerospace Information Systems, 13 (1), 27-46.

[12] R. Mitchell, and I.R. Chen. 2014. A Survey of Intrusion Detection

Techniques in Cyber Physical Systems. ACM Computing Survey, 46 (4),

article 55.

[13] R. Mitchell and I.R. Chen. 2016. Modeling and Analysis of Attacks and

Counter Defense Mechanisms for Cyber Physical Systems. IEEE

Transactions on Reliability, 65 (1), 350-358.

[14] S. Ntalampiras. 2016. Automatic identification of integrity attacks in

cyber-physical systems. Expert Systems with Applications, 58, 164-173.

[15] Y. Zhang, L. Wang, W. Sun, R. Green, and M. Alam. 2011. Distributed

intrusion detection system in a multi-layer network architecture of smart

grids. IEEE Trans. Smart Grid, 2 (4), 796–808.

[16] J. Musa. 1993. Operational profiles in software reliability engineering.

IEEE Software, 14–32.

[17] R. Mitchell and I.R. Chen. 2015. Behavior Rule Specification-based

Intrusion Detection for Safety Critical Medical Cyber Physical Systems.

IEEE Transactions on Dependable and Secure Computing, 12 (1), 16-30.

[18] R. Mitchell and I.R. Chen. 2014. Adaptive Intrusion Detection of

Malicious Unmanned Air Vehicles Using Behavior Rule Specifications.

IEEE Transactions on Systems, Man and Cybernetics, 44 (5), 593-604.

[19] V. Sharma, I. You, R. Kumar, “Energy Efficient Data Dissemination in

Multi-UAV Coordinated Wireless Sensor Networks,” Mobile Information

Systems, Volume 2016, Article ID 8475820, June 2016

[20] V. Sharma, I. You, R. Kumar, P. Kim "Computational offloading for

efficient trust management in pervasive online social networks using

osmotic computing" IEEE Access, March 2017.

[21] T. Song, et al. 2006. Formal Reasoning about a Specification-based

Intrusion Detection for Dynamic Auto-configuration Protocols in Ad Hoc

Networks. Formal Aspects in Security and Trust, 16-33.

[22] K. Park, Y. Lin, V. Metsis, Z. Le, and F. Makedon. 2010. Abnormal human

behavioral pattern detection in assisted living environments. 3rd ACM Int.

Conf. Pervasive Technol. Related Assist. Environments, 9:1–9:8.

[23] V. Sharma, I. You, R. Kumar, "ISMA: Intelligent sensing model for

anomalies detection in cross platform OSNs with a case study on IoT"

IEEE Access, January 2017.

[24] B.B. Zarpelao, R.S. Miani, C.T. Kawakani, and S.C. de Alvarenga. 2017.

A Survey of Intrusion Detection in Internet of Things. Journal of Network

and Computer Architecture, 84, 25-37.

[25] A. Saeed, A. Ahmadinia, A. Javed, and H. Larikani. 2016. Intelligent

Intrusion Detection in Low-Power IoTs. ACM Trans. Internet Technology,

16 (4), article 27.

[26] M.T. Khan, D. Serpanos, and H. Shrobe. 2017. ARMET: Behavior-based

Secure and Resilient Industrial Control Systems. Proceedings of The IEEE.

[27] M. Kaufmann and J.S. Moore. 2017. A Computational Logic for

Applicative Common Lisp. http://www.cs.utexas.edu/users/moore/acl2/.

[28] Support Vector Machine. https://en.wikipedia.org/wiki/Support-

vector_machine.

Fig. 10. MedIoT design tradeoff between effectiveness (measured by AUROC)

vs. efficiency (measured by monitoring interval during data collection and run

time complexity during statistical analysis for misbehavior detection).

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0.0% 0.5% 1.0%

1
 -

P
fn

Pfp

Pe = [0, 10%]

TIDS = 50 sec (n = 1000)

TIDS = 100 sec (n = 500)

TIDS = 200 sec (n = 250)

TIDS = 250 sec (n = 200)

TIDS = 400 sec (n = 125)

http://www.cs.utexas.edu/users/moore/acl2/
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

[29] H. Sedjelmaci, S.M. Senouci, and N. Ansari. 2018. A Hierarchical

Detection and Response System to Enhance Security Against Lethal

Cyber-Attacks in UAV Networks. IEEE Trans. Systems, Man, and

Cybernetics: Systems, 48 (9), 1594-1606.

[30] M. Attia, S.M. Senouci, H. Sedjelmaci, E. Aglzima, and D. Chrenko. 2018.

An efficient Intrusion Detection System against cyber-physical attacks in

the smart grid. Computers and Electrical Engineering, 68, 499-512.

[31] B. Sherman, I. Enu, and R. Sinatra. 2009. Patient-Controlled Analgesia

Devices and Analgesic Infusion Pumps. In H. McQuay (Author) & R.

Sinatra, O. De Leon-Cassasola, E. Viscusi, & B. Ginsberg (Eds.), Acute

Pain Management (pp. 302-322). Cambridge: Cambridge University

Press. doi:10.1017/CBO9780511576706.021

[32] V. Sharma, I. You, K. Yim, I.R. Chen, and J.H. Cho. BRIoT: Behavior

Rule Specification-based Misbehavior Detection for IoT-Embedded

Cyber-Physical Systems. IEEE Access, vol. 7, no. 1, 2019, pp. 118556-

118580.

[33] V. Sharma, G. Choudhary, Y. Ko, and I. You. Behavior and vulnerability

assessment of drones-enabled industrial internet of things (iiot). IEEE

Access, vol. 6, 2018, pp. 43368-43383.

[34] K-nearest Neighbors Algorithms. https://en.wikipedia.org/wiki/K-

nearest_neighbors_algorithm.

[35] MathWorks “fitcknn”.

https://www.mathworks.com/help/stats/fitcknn.html

[36] Petri.Net Simulator. https://github.com/larics/Petri.Net.

[37] W. Sun, R. Zhang, W. Lou, and Y. T. Hou, “Rearguard: Secure keyword

search using trusted hardware,” IEEE Conference on Computer

Communications, 2018.

[38] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptology

ePrint Archive, pp. 1-86, 2016.

[39] T. Anderson and R. Kerr “Recovery Blocks in Action: A System

Supporting High Reliability,” Reliable Computer Systems, Springer,

Berlin, Heidelberg, 1985.

[40] MQTT 3.1.1 specification. OASIS. December 10, 2015. Retrieved April

25, 2017.

[41] Lightweight Machine to Machine Requirements: Version 1.1 – 10 Jul 2018

Open Mobile Alliance (OMA-RD-LightweightM2M-V1_1-20180710-A).

Gaurav Choudhary received the B.Tech. degree

in Computer Science and Engineering from

Rajasthan Technical University in 2014 and the

Master Degree in Cyber Security from Sardar

Patel University of Police in 2017. He is currently

pursuing Ph.D. degree in the Department of

Information Security Engineering,

Soonchunhyang University, Asan, South Korea.

His areas of research and interests are UAVs, IoT

security, Network security, and Vulnerability Assessment.

Philip Virgil Astillo received the B.S. degree in

computer engineering from University of San

Carlos, Cebu, Philippines in 2009 and the M.Eng.

Degree in computer engineering from the same

university in 2011. He is currently pursuing the

Ph.D. degree in Information Security Engineering

at Soochunhyang University, South Korea. His

research interests include sensor development,

embedded system design and development, mobile Internet security,

and IoT security.

Ilsun You (M'12-SM'13) received the M.S. and

Ph.D. degrees in computer science from Dankook

University, Seoul, South Korea, in 1997 and

2002, respectively, and the Ph.D. degree from

Kyushu University, Japan, in 2012. He is

currently an Associate Professor with the

Department of Information Security

Engineering, Soonchunhyang University, South

Korea. His main research interests include the Internet security,

authentication, access control, and formal security analysis. He is a

Fellow of the IET. He is the EiC of the Journal of Wireless Mobile

Networks, Ubiquitous Computing, and the Dependable Applications

(JoWUA), and the Journal of Internet Services and Information

Security (JISIS). He is on the Editorial Board of the Information

Sciences the Journal of Network and Computer Applications, the

International Journal of Ad Hoc and Ubiquitous Computing,

Computing and Informatics, the Intelligent Automation and Soft

Computing, and so on.

Kangbin Yim received the B.S., M.S., and Ph.D.

degrees from the Department of Electronics

Engineering, Ajou University, Suwon, South Korea,

in 1992, 1994, and 2001, respectively. He is

currently a Professor with the Department of

Information Security Engineering, Soonchunhyang

University. His research interests include

vulnerability assessment, code obfuscation, malware

analysis, leakage prevention, secure platform

architecture, and mobile security. Related to these topics, he has

involved in more than 60 research projects and published more than

100 research papers. He has served as an Executive Board Member of

the Korea Institute of Information Security and Cryptology, the Korean

Society for Internet Information, and The Institute of Electronics

Engineers of Korea. He also has served as a Committee Chair of the

international conferences and workshops and the Guest Editor of the

journals, such as JIT, MIS, JCPS, JISIS, and JoWUA.

Ing-Ray Chen (M’90) received the B.S. degree

from National Taiwan University, and the M.S.

and Ph.D. degrees in computer science from the

University of Houston. He is currently a Professor

with the Department of Computer Science,

Virginia Tech. His research interests include trust

and security, network and service management,

and reliability and performance analysis of mobile

wireless networks and cyber physical systems. He was a recipient of

the IEEE Communications Society William R. Bennett Prize in

Communications Networking and of the U.S. Army Research

Laboratory (ARL) Publication Award. Dr. Chen currently serves as an

associate editor for the IEEE TRANSACTIONS ON SERVICES

COMPUTING, the IEEE TRANSACTIONS ON NETWORK AND

SERVICE MANAGEMENT, and The Computer Journal.

Jin-Hee Cho (SM’14) received the M.S. and Ph.D.

degrees in computer science from Virginia Tech, in

2004 and 2008, respectively, where she has been an

Associate Professor with the Department of

Computer Science, since 2018. She has been a

Computer Scientist with the U.S. Army Research

Laboratory (USARL), Adelphi, MD, USA, since

2009. She has published more than 100 peer-

reviewed technical papers in leading journals and conferences in the

areas of trust management, cyber security, metrics and measurements,

network performance analysis, resource allocation, agent-based

modeling, uncertainty reasoning and analysis, information

fusion/credibility, and social network analysis. She is a member of the

ACM. She received the Best Paper Awards in the IEEE

TrustCom’2009, BRIMS’2013, IEEE GLOBECOM’2017, 2017

ARL’s Publication Award, and IEEE CogSima 2018. She was a

recipient of the 2015 IEEE Communications Society William R.

Bennett Prize in communications networking. In 2016, she was

selected for the 2013 Presidential Early Career Award for Scientists

and Engineers (PECASE), which is the highest honor bestowed by the

U.S. government on outstanding scientists and engineers in the early

stages of their independent research careers. Dr Cho id an associate

editor for IEEE TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT and The Computer Journal.

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://www.mathworks.com/help/stats/fitcknn.html
https://github.com/larics/Petri.Net

