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Abstract—This work proposes an energy-adaptive monitoring
system for a smart farm using solar sensors attached to cows.
The proposed system aims to achieve a high monitoring quality
in the smart farm under fluctuating energy and cyberattacks
disrupting the operations of collecting sensed data from solar
sensors, such as protocol non-compliance, false data injection,
denial-of-service, and state manipulation. We adopt Subjective
Logic, a belief model, to consider multidimensional uncertainty in
sensed data. We employ Deep Reinforcement Learning (DRL) for
agents on gateways to collect high-quality sensed data from the
solar sensors. The DRL agents aim to collect high-quality sensed
data with low uncertainty and high freshness under fluctuating
energy levels in solar sensors. We analyze the performance of
the proposed energy-adaptive smart farm system in accumulated
reward, monitoring error rate, and system overload. We conduct
a comparative performance analysis of the uncertainty-aware
DRL algorithms against their counterparts in choosing the
number of sensed data to be updated to collect high-quality
sensed data to achieve high resilience against attacks. Our results
prove that MAPPO, with the uncertainty maximization technique
incorporated, performs the best, ensuring a high monitoring
quality and a low system overload.

Index Terms—Smart farm, energy-adaptive, deep reinforce-
ment learning, solar sensors, uncertainty, cyberattacks.

I. INTRODUCTION

ACCORDING to the Food and Agriculture Organization
(FAO) of the United Nations [12], the food production

rate must increase by a factor of up to 70 percent to absorb
the increase in population, estimated as more than 9 billion
people by 2050 [33]. To support farms’ productivity, flexibility,
or availability, smart farm technologies have developed by
leveraging sensors, Internet-of-Things (IoT), edge and cloud
computing technologies. Smart farm research is applied to
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develop agricultural business practices [7], improve moni-
toring of animal welfare [36], and provide data sensing and
environmental controls [36]. Smart farm research also inves-
tigated efficient data transmission considering CPU usage,
signal strength, and battery operation time [18] for wireless
sensor networks [28].

However, existing research lacks efforts to develop secure
solutions for wireless sensor networks (WSNs) with energy
constraints such as ones powered by solar energy harvesting.
According to the World Health Organization (WHO), over half
a million people died due to food contamination caused by
bacteria, viruses, toxins, or chemicals [ref]. Cyber attacks on
farms, transportation systems, and food processing industrial
control systems to distort and disrupt the handling of correct
data can worsen the problem. Any distortion in the data
received from the livestock monitoring systems can lead to
serious situations such as the spread of disease, possible
pandemics, and the provision of wrong information to potential
customers of the livestock [14].

In this work, we are interested in improving the accuracy of
the livestock monitoring system in farms under the presence of
cyber attacks that can forge, modify, or drop sensed data from
sensors to gateways or edge devices, or inject false data. Most
WSNs are unable to accurately record biometrics for cattle
because battery-powered sensors attached to the collar of the
cattle can last only a few days or weeks. Frequent replacing or
recharging of batteries for sensor nodes is laborious for a farm
with a large number of animals. To address this problem, we
consider wireless solar sensor nodes attached to the livestock’s
ears, which are powered by solar energy harvesting. Due to
the small size of the solar panel attached to a sensor node,
the amount of solar energy harvested is low. Moreover, the
harvested energy level fluctuates as the livestock and/or its
ear moves, which can make sensing and transmission of the
data unstable.

To address the problem, we consider sensor nodes adopting
two communication protocols, LoRa (Long Range) [? ] and
BLE (Bluetooth Low Energy) [? ]. The LoRa protocol aims
for long-distance communication with a range of several km,
but the data rate is only 27 kbps. Contrarily, the BLE protocol
aims for a short distance with a line-of-sight distance of 100 m
and a higher data rate of 2 Mbps. Furthermore, the BLE
protocol drains considerably less power than the LoRa one.
Fig. 1 shows the WSN system considered in this paper. A
sensor node monitors the energy level of the associated battery.



A sensor node with a high energy level transmits the sensed
data with LoRa to LoRa gateways, and the gateways upload
the data to the cloud server accessible to the user. A sensor
node with a low energy level may not be able to send the
data directly to a LoRa gateway due to insufficient energy.
Instead, the sensor node seeks a nearby sensor node with a
high energy level. If it finds one, the sensor node sends the
data by BLE to the nearby sensor node with a high energy
level, and the nearby sensor node transmits the received data
to LoRa gateways.

Under this scenario, since there may be multiple sensor
nodes with low energy requesting to transmit their sensed
data to the sensor node with high energy, a decision on which
sensed data to transmit to the gateways can significantly impact
the accuracy of monitored data. Instead of continuously trans-
mitting sensed data that are already received sufficiently and
hence high quality (i.e., low uncertainty), a sensor node with
high energy can select a sensor node with low energy whose
data have high uncertainty, and transmit the data, resulting in
increase of the data certainty. The process will significantly
increase the certainty of the overall data monitored from all
animals on the farm. To this end, we introduce an uncertainty-
aware transmission policy based on the assessment by LoRa
gateways. Specifically, a LoRa gateway can request sensor
nodes to send sensed data of particular animals whose moni-
tored data have trended high uncertainty (i.e., low certainty).
In this work, we leverage deep reinforcement learning (DRL)
to identify sensor nodes whose data need to be transmitted to
improve the overall monitoring accuracy.

This work makes the following key contributions:
• We propose an energy-adaptive monitoring system for

WSN-based smart farms with solar-powered sensor nodes
attached to cattle. This is the first work that considers
how WSN-based smart farms can maintain high monitoring
quality under limited and fluctuating energy availability due
to solar energy harvesting in the smart farm.

• We develop two algorithms based on Deep Reinforcement
Learning (DRL) [11] and Subjective Logic [19] (SL) to
identify an optimal set of sensed data of animals in a farm
to maximize the overall monitoring quality of the cattle,
while maintaining an acceptable energy level for the sensor
nodes (i.e., not overcharging or energy depletion). More
specifically, we develop uncertainty-aware DRL algorithms
to minimize uncertainty in aggregated sensed data at the
gateways, with the uncertainty being measured in two di-
mensions based on SL, i.e., vacuity due to a lack of evidence
and dissonance due to conflicting evidence.

• We consider various types of cyberattack behaviors (i.e.,
non-compliance to the data request by a gateway, false data
injection, and denial-of-service) to evaluate the robustness
of the proposed uncertainty-aware DRL-based monitoring
system for the smart farm.

• We validate the performance of the proposed uncertainty-
aware DRL-based monitoring system using real datasets
obtained from Virginia Tech’s Smart Farm Innovation Net-
work. Furthermore, we design a framework where healthy
sensor nodes generate synthetic datasets similar to real
datasets, and compromised sensor nodes are modeled as

attackers following the attack model for testing the robust-
ness of our uncertainty-aware DRL-based algorithms against
adversarial attacks. We conduct a comparative performance
analysis of two proposed uncertainty-aware DRL-based al-
gorithms (deep Q-learning, DQN, and multi-agent proximal
policy optimization, MAPPO) against two baseline models
(greedy and random) in choosing the number of sensed data
to be updated to collect high-quality sensed data to achieve
high resilience against attacks.
A preliminary version of the paper is published in [42]. This

paper substantially extends [42] with the following additional
contributions:
• We devise a novel monitoring error rate metric that can

evaluate the monitoring quality independent of monitoring
data distributions. The developed monitoring error rate met-
ric enables our proposed monitoring system to handle multi-
dimensional heterogeneous data simultaneously.

• We provide mathematical proof that can justify how SL’s
uncertainty maximization technique contributes to reducing
monitoring errors. From the theoretical analysis, we found
that using the uncertainty maximization technique can lead
to using more recent evidence, reflecting recent network
dynamics more appropriately.

• We enhance our attack model by considering the fast gradi-
ent sign method (FGSM) [13] as a state manipulation attack.
No prior work in the literature has considered FGSM in
monitoring animals on a smart farm.

• We identify an optimal deployment setting of LoRa gate-
ways on which DRL agents run to maximize the chances for
solar sensors to deliver their sensed data within the gateway
wireless radio range.

• We provide the asymptotic complexity analysis of our
proposed uncertainty-aware DRL-based algorithms. This
analysis reveals a critical tradeoff between robust-
ness/effectiveness vs. efficiency.

• We add extensive sensitivity analyses to investigate the
effect of key designs and environmental factors on perfor-
mance, including the attack severity, the initial sensor node
energy level, the number of solar sensors, and the chance
for sensor nodes to be exposed to the sun.
The rest of this paper is structured as follows. Section II

provides a brief overview of the related work. Section IV
describes the network model, node model, and attack model
considered in this work. Section V provides a detailed de-
scription of our proposed uncertainty-aware DRL-based al-
gorithms for animal monitoring. Section VI explains an ex-
periment setup including datasets, parameterization of key
design parameters, performance metrics, and baseline schemes
considered for comparative performance analysis. Section VII
demonstrates the key experimental results and their overall
trends along with the physical interpretations of the observed
results. Section VIII concludes the paper and suggests future
work directions.

II. RELATED WORK

In this section, we provide a brief overview of related work
in DRL-based optimization of WSNs, energy-adaptive smart
environments, and uncertainty-aware smart environments.
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A. DRL-based Optimization of WSNs

Algorithms to achieve energy-aware WSNs have been pro-
posed in various WSN applications, including routing [21, 22],
resource management [31], power control [3, 4, 27], and
system/hybrid design [44, 41, 37]. A cluster-based routing
protocol was proposed based on a Q-learning approach called
QL-Cluster [21]. The QL-Cluster was designed to identify the
best routes between individual nodes and remote healthcare
stations to efficiently monitor a patient’s health. Qi et al.
[31] proposed an adaptive energy management strategy for
a solar-powered WSN with hybrid storage, consisting of both
supercapacitors and batteries, based on avoiding high current
charging/discharging of the batteries and making full use of
the supercapacitors.

Chen et al. [5] proposed a sleep scheduling algorithm for
rechargeable sensors based on a DRL algorithm. The authors
developed a precedence operator-based group formation al-
gorithm to ensure the desired area coverage and a Q-leaning-
based active node selection algorithm to maximize the network
lifetime while achieving an acceptable coverage. Chen et al.
[3, 4] leveraged DRL with Q-learning to control power for
communications between an in-body sensor and the Wireless
Body Area Network (WBAN) coordinator to build jamming
attack-resistant what (???) for healthcare applications. Their
research aimed to develop a WBAN coordinator that chooses
the sensor to transmit the data in the next time slot and decides
the transmitting power of these sensors, which is then sent to
the sensor. The WBAN coordinator uses Q-learning to achieve
an optimal power control strategy.

Based on Q-learning and the application of transfer learning
for learning the Q-learning parameters (to avoid random
exploration at the start of the learning process), Chen et al.
[3] achieved an optimal power control strategy that can help
the WBAN coordinator to choose the sensor for transmitting
the data along with the transmitting power for these sensors.
Similarly, to address the issues of transmission reliability,
energy efficiency, and Quality of Service (QoS) in WBANs,
Chen et al. [4] proposed a sensor access control scheme
based on DRL for the WBAN coordinator to choose the
access time and transmit power of the sensor based on the
sensor’s state, including signal-to-interference plus noise ratio,
transmission priority, battery level, and transmission delay
(or signal latency). Furthermore, to accelerate the learning
process and address the high dimensionality problem due
to the increasing number of sensors, a convolutional neural
network (CNN) is used to estimate the Q-values according to
an approximate Q-function.

Since transfer learning often raises privacy concerns in a
small feature space application, Zhuo et al. [44] proposed
a novel federated DRL framework, called FedRL, to build
models of high quality for agents while also preserving their
privacy. The FedRL framework aims to learn a private Q-
network policy for each agent by sharing limited information,
which is the output of the Q-network, amongst the agents.
Similarly, distributed DRL approaches of wireless distributed
systems take much more time to converge than centralized
DRL counterparts. Tehrani et al. [37] proposed a Federated

Fig. 1: Wireless Solar Sensor Node-based Smart Farm
Network.

Learning (FL) approach to DRL, referred to as Federated DRL
(F-DRL). In the F-DRL, the centralized DRL model is trained
by sharing the model weights of the DRL agents at the base
station in an FL fashion.

Yang et al. [41] conducted a comparative performance
analysis for common DRL algorithms, including Deep De-
terministic Policy Gradient (DDPG), Neural Episodic Control
(NEC), and Variance Based Control (VBC), for the application
of wireless network optimization. Through experiments on
data gathered from a large cellular network, the authors
showed the potential of DDPG and VBC. However, they
found the limited action space of NEC because of the large
Q-value table for this particular application. Naderializadeh
et al. [27] used a multi-agent deep RL approach to tackle the
problem of distributed user scheduling and downlink power
control in multi-cell wireless networks. Compared against
several decentralized and centralized baseline counterparts, the
authors showed that the proposed algorithm outperforms two
decentralized approaches, while performing comparably to the
centralized scheduling algorithms. Moreover, the agents are
trained for a specific environment. However, the approach is
scalable only to different network configurations.

As discussed above, DRL has been applied to develop
energy-efficient WSNs where privacy concerns are considered
in applying deep neural networks (DNNs). However, no prior
work has been done for energy-adaptive smart farms with solar
sensors, which is tackled in this work. Specifically, we develop
uncertainty-aware DRL algorithms to maximize uncertainty-
aware monitoring quality with sensors having limited and
fluctuating energy harvesting.

B. Energy-Adaptive Smart Environments

Igder et al. [17] introduced an energy-adaptive Fog Server
that can handle all requests at the same time under low-energy
conditions with a limited number of requests. Popa et al.
[29] proposed an intelligent platform and DNN-based models
to achieve energy-efficient smart environments. The authors
applied two techniques, namely, energy load forecasting and
non-intrusive load monitoring, for learning while reducing
energy consumption. The former technique is used to predict
patterns of energy consumption in a smart home environment
and identify unusual energy usage, while the latter one to
identify the appliance causing the anomaly to provide energy-
saving tips.
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Modarresi and Symons [26] proposed a multidimensional
framework with an instance of a high-level smart home net-
work. They argued that the diversity of services affects routing
levels while providing routing services for both high and low
energy consumption. Venkatesh et al. [40] proposed a system
using ultrasonic sensors with Naı̈ve Bayes model for resilient
activity tracking in a smart home. This approach enables the
system to accurately identify the activities of residents, who
were not observed in the training stage, without retraining
the model. However, their evaluation does not include the
evaluation of resilience under various cyberattacks.

The works above focused on learning and predicting energy
usage to minimize energy consumption. On the other hand,
our work focuses on learning and deriving energy adaption
strategies for LoRa gateways to obtain sensed data from
solar sensors with limited and fluctuating energy, to maximize
uncertainty-aware monitoring quality.

C. Uncertainty-Aware Smart Environments

Due to the dynamic nature of the multi-sensor smart en-
vironments, uncertainty and ambiguity can introduce signif-
icant impact on the data prediction and monitoring of these
smart environments. Zhang et al. [43] proposed learning the
inhabitant’s activity patterns in a smart home environment
to learn under uncertainty caused by sensor malfunctions.
Alemdar et al. [1] proposed an uncertainty sampling-based
active learning method that considers three different measures
of uncertainty to select the most informative data points for
activity recognition in smart homes. Several research works [2,
8, 9, 10, 15, 23] have been conducted on uncertainty in
context-aware systems where the environment is well-defined.
Various approaches have been proposed to model uncertainty,
including semantic web [23], game theory [8], vector space
model [30], asymptotic equipartition property (AEP) [34],
signal processing and information-theoretic techniques [39],
and Moore finite state machine (FSM) [32]. Machado et al.
[23] proposed a contextual reference model based on the
semantic web to deal with uncertainty in a smart environment.
Almeida and de Ipiña [2] developed an ontology for context-
aware systems in smart environments to consider both ambi-
guity and uncertainty. To improve the accuracy of probabilistic
inference systems for multi-sensor data-fusion, De Paola et al.
[9] suggested the context information be included to prevent
the increase of uncertainty and pointed out that the right mix of
context information is fundamentally important. Rocher et al.
[32] proposed a framework for estimating behavior drift in
smart-X systems at runtime. They leveraged Moore finite state
machine (FSM) model combined with the control theory and
validated their approach based on a real dataset to ensure
effectiveness and efficiency.

Unlike the above cited works, we consider multiple types
of uncertainty and the uncertainty maximization technique in
Subjective Logic (SL) [20] for monitoring data updates based
on new evidence, thus maximizing monitoring quality while
minimizing energy consumption.

III. PROBLEM STATEMENT

In this work, we aim to minimize the monitoring error
rate (i.e., a gap between the sensed data aggregated from
sensors and the ground truth; see Eq. (14)) and system
overload (i.e., a mean fraction of the failed requests of all
requests sent from low-energy sensors; see Eq. (15)) in a
sensor network by identifying an optimal policy. An updated
policy PT = {p1, p2, . . . , pT } contains monitoring actions pi,
where i ∈ [1, T ], pi ∈ PT and PT is a set of monitoring
actions available to the sensor in every monitoring step. Given
a dynamic sensor network GT = {g1, . . . , gi, . . . , gT }, the
objective function is defined by:

arg max
PT

T∑
i=1

f(gi(p1, p2, . . . , pi)), (1)

s.t. ∀i ∈ [1, T ], pi ∈ PT ,

where f(g) is based on the evaluation function f : g 7→
−ME(g) − OL(g), aiming to minimize the monitoring er-
ror rate ME and system overload OL, that is detailed in
Section VI. Determining an optimal update policy to achieve
multiple objectives is non-trivial given the complexity involved
in solving a multi-objective optimization problem [6]. This is
discussed in detail based on the experimental results discussed
in Section VII.

IV. SYSTEM MODEL

This section discusses the network, node, and attack models.

A. Network Model

Our target WSN consists of solar sensors attached to the
cattle and continuously measure the bio-metric information
and transmit the sensed data to the LoRa gateway, which then
aggregates and transmits the clustered data to the cloud. Given
the relatively low cost of transmitting data over long ranges
(LoRa) via the standard IP protocol for IoT devices, the LoRa
gateways act as the optimal intermediary between the sensor
nodes and the cloud server. In the given smart farm network
(see Fig. 1), using BLE (Bluetooth Low Energy) each low-
battery sensors (LBS) can relay the sensed data to one of high-
battery sensors (HBS). The high-battery sensor can then send
the received data along with its own data to the LoRa gateway
via LoRa. We assume that each sensor has a Microchip SAM
R34/35 micro-controller with an embedded LoRa radio which
dissipates 170 mW during transmission, while the micro-
controller itself dissipates only 8 mW in active mode. For
example, a Texas Instruments CC2640R2F micro-controller
with an embedded BLE radio [38] dissipates only 11 mW
during transmission. Therefore, sending a single bit of data
dissipates about 1,100 times lesser energy for the Texas Instru-
ments CC2640R2F micro-controller when compared with the
LoRa radio of the SAM R34/35 micro-controller. We assume
that the initial battery level of each deployed sensor is 5 kWs
which is equivalent to a full charge. Outdoor solar has a power
density of about 10 mW/cm2 whereas indoor light has a
power density of 0.1 mW/cm2 [24]. For a solar panel of 5
cm, the maximum harvestable power for indoor light is about
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2 mW and outdoor light is about 200 mW . Fig. 1 describes
the considered network model in this work, describing a smart
farm environment with solar sensors attached to the cattle.

With the main objective of minimizing the monitoring error
rate and the system overload, a DRL agent is deployed at every
LoRa gateway to shortlist, select and prioritize which animal’s
sensed data is required, at regular intervals. The process of
identifying the important data, by the DRL agent is described
in Section V. To energy saving energy, we assume that there
is no encryption when the sensors communicate with each
other via BLE and hence, malicious entities can intercept
the data in transmission and modify/forge data. Additionally,
an attacker can imitate a sensor by using its authentication
key with the gateway and sending false data for the sensor
itself as well as for other low-battery sensors. We assume
that the communication between the LoRa gateway and the
cloud server is secure and encrypted based on traditional secret
cryptography. As shown in Fig. 1, multiple LoRa gateways,
while each running a DRL agent, can collaborate with each
other in sharing collected sensed data received from sensors.

B. Node Model
Sensor nodes in a given smart environment are assumed

solar-powered and deployed as implants and can transmit data
on request. Depending upon the animal’s movement and the
varying weather condition from day to day, the battery levels
of the sensor may fluctuate throughout the day. Therefore, it is
essential to utilize the energy wisely for high availability, con-
sistency, and sustenance. Each sensor node i is characterized
by snit = [tempit,hbit,mait,blit], where tempit refers to sensor
node i’s temperature at time t in Celsius, hbit is the number
of i’s heartbeat at time t, mait is i’s speed at time t and blit is
i’s battery life at time t scaled in [0, 100] in percent. Most of
the sensor’s energy will be used to transmit the sensed data to
the LoRa gateway. In contrast, considerably less battery power
will be used for communication between the sensor and other
nearby sensors via BLE as it consumes roughly 1,100 times
less (see Section IV-A).

Utilizing the data reported by the sensors to the LoRa
gateway, each DRL agent will try to maximize the monitoring
quality by selecting what data is needed with priority to
accurately estimate the well-being of all the animals on the
farm. To this end, the sensor nodes in the WSN is categorized
into high battery-level sensors (HBS) and low battery-level
sensors (LBS) based on the recommended battery level TM .
Since we are only interested in transmissions from LBS to
HBS, we model the sensor network as a directed bipartite
graph. Section V describes the actions performed by the DRL
agent running on every LoRa gateway. The end-user will get
the efficient monitoring results of the smart farm from the
cloud server, which aggregates data on individual animals
from various LoRa gateways. This work aims to evaluate how
the DRL agent on LoRa gateways can enhance the quality
of animal monitoring in the presence of cyberattacks and
fluctuating sensor energy levels.

C. Attack Model
This work considers the following attack behaviors:

• Non-compliance to the protocol: A sensor node can be
compromised and exhibit non-compliant behavior to the
request by the DRL agents on LoRa gateways. For example,
when an animal A’s sensed data is requested by a DRL
agent, the attacker can either not send A’s data or send
another sensor’s data to the LoRa gateway. We model this
with the attacker’s non-compliance probability, PNCA.

• False data injection: An attacker (e.g., a compromised
sensor) can transmit forged/modified data or inject false
data to gateways. In addition, man-in-the-middle attackers
(MIMAs) can intercept data being transmitted in the middle
and replace it with forged/modified data. The attackers
can inject false data during the training phase (i.e., poi-
sonous attacks) or the testing phase (i.e., evasion attacks).
We call the compromised sensors internal attackers while
calling the external attackers intercepting sensed data for
forgery/modification or injecting false data external attack-
ers. These attacks are modeled by the forging/modifying
data attacks an internal or external attacker can launch,
PIDA and PEDA, respectively.

• Denial-of-Service (DoS): A compromised high-battery sen-
sor can send a request to nearby sensors requesting them to
send its fake sensed data. As it is a type of internal attacks,
we also model this DoS attack probability by PIDA. This
can make other sensors’ energy levels drained quickly but
wasted in sending false data. To avoid an infinite loop, we
assume the attacker will request sending its fake sensed data
to legitimate sensors.

• Fast Gradient Sign Method (FGSM): This state manipulation
attack model is firstly proposed in [13] to generate adversar-
ial examples in image classification tasks. To apply it in the
context of DRL-based algorithm execution, we generalize
DRL settings by considering actions as class labels. To make
a fair comparison, we use the original loss function of each
DRL algorithm to compute the gradients. Since we have
multiple DRL agents in our smart farm system, we assume
the attack will happen in both local agent states and global
agent observations. We define the perturbation strength as
PFGS .
We summarize the above four types of attacks in Fig. 2.

V. DRL-BASED, UNCERTAINTY-AWARE ANIMAL
MONITORING

In this section, we provide a detailed description of our
proposed uncertainty-aware DRL-based algorithms for smart
farm animal monitoring

A. Uncertainty-Aware Animal Monitoring

First, based on received data from sensors in the past, a
gateway can estimate uncertainty in each animal’s condition,
such as heart rate, average temperature, minimum/maximum
temperature, average activity, battery level of a sensor worn
by the animal, and timestamp. Recall that each LBS will
send its sensed data to a HBS within 100 meters. Hence,
we distinguish direct sensed data from indirect sensed data
in terms of whether a sensor sent its own sensed data or
another sensor’s sensed data. If the sensor with high energy
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(a) Outsider attacks by false data injection (b) Insider attacks by false data injection, DoS, or non-compliance

Fig. 2: Attack scenarios by both outsider and insider attackers. Recall that PEDA is the probability of an external attacker
performing false data injection attacks, PNCA is the probability of an internal attacker performing non-compliance attacks,
and PIDA is the probability of an inside attacker performing false data injection attacks or DoS attacks.

transmitted other sensor’s sensed data, it is treated as indirect
sensed data. Otherwise, it is direct sensed data. The gateway
periodically reports its collected data from sensors to the cloud
server. Since the given network has multiple gateways, the
corresponding multiple DRL agents will share information
about sensed data and estimate each animal’s conditions (see
Table I) and associated confidence level on each observation
item. A database on the gateway keeps recording all animals’
condition data where sensed data by sensor i (i.e., ID) for an
animal are stored.

Each observation item’s condition (e.g., average tempera-
ture) will be reported as one of the K classes of the range,
e.g., for the temperature reading, K = 5 meaning that there
are 5 classes of ranges: 35 or below, 36-37, 38-39, 40-41, 42
or above. The end user can then easily determine if the tem-
perature is normal based on the cloud server’s received data.
Since the gateway will periodically report average conditions
for all animals to the cloud, it will aggregate sensed data from
sensor nodes and measure their average with the probability
of a condition being with K classes and multiple types of
uncertainty values. To utilize the concept of uncertainty, we
will apply SL [20] to compute an opinion on each animal’s
condition in a given attribute (e.g., temperature, heartbeats,
activity, or battery level).

1) SL-based Formulation of a Multinomial Opinion: SL can
explicitly express uncertainty caused by a lack of evidence,
called vacuity in its opinion representation. In addition, SL
can consider base rates as prior probabilities in a Bayesian
way to formulate a second-order opinion and corresponding
uncertainty estimates, where a second-order opinion is rep-
resented by Dirichlet distribution. We will use a Dirichlet
probability density function (PDF) to model the distribution
of class probabilities and corresponding uncertainty masses.
In SL, a multinomial opinion in a given proposition x (e.g.,
an animal condition in our smart farm context, such as a tem-
perature or heartbeats) is represented by ωX = (bX , uX ,aX)
where a random variable X ∈ X (a subject domain) and
K = |X| > 2 and the additivity requirement of ωX is given
as
∑
x∈X bX(x) + uX = 1. To be specific, each parameter

indicates,
• bX : belief mass distribution over X;

• uX : uncertainty mass representing vacuity of evidence;
• aX : base rate distribution over X.
The projected probability distribution of multinomial opinions
is given by:

PX(x) = bX(x) + aX(x) · uX , ∀x ∈ X (2)

The base rate for belief bX(xi), which is aX(xi), means
the prior preference over the xi belief (e.g., a class). If no
preference is given, we consider the base rate equally for each
belief mass, i.e., aX(xi) = 1/K for any xi.

Given the amount of evidence supporting belief xi is r(xi),
the observed evidence in the Dirichlet PDF can be mapped to
the multinomial opinions as:

bX(x) =
r(x)

W +
∑
xi∈X r(xi)

, uX =
W

W +
∑
xi∈X r(xi)

,

(3)
where W refers to the amount of uncertain evidence. Com-
monly, W is set to the number of belief masses (i.e., W = K).

2) Estimation of Multiple Types of Uncertainty: SL catego-
rizes uncertainty into two primary sources [20]: (1) basic belief
uncertainty derived from single belief masses, and (2) intra-
belief uncertainty based on the relationships between different
belief masses. These two sources of uncertainty can categorize
the two uncertainty types, vacuity and dissonance, respectively,
that correspond to vacuous beliefs and contradicting beliefs.
In particular, the vacuity of an opinion ωX is captured by
uncertainty mass uX while dissonance of an opinion, bDiss

X , is
formulated by [19]:

bDiss
X =

∑
xi∈X

(bX(xi)
∑

xj∈X\xi

bX(xj)Bal(xj , xi)∑
xj∈X\xi

bX(xj)

)
, (4)

where the relative mass balance between a pair of belief
masses bX(xj) and bX(xi) is expressed by:

Bal(xj , xi) = 1− |bX(xj)− bX(xi)|
bX(xj) + bX(xi)

. (5)

The dissonance estimation is useful to measure the inconclu-
siveness of an opinion even under a large amount of evidence
that almost equally supports each singleton belief.
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Fig. 3: The proposed Multi-Agent Deep Reinforcement Learn-
ing (MADRL) framework.

In this work, we regard each reported data from sensor
nodes to a gateway as evidence. For instance, in a temperature
report, if 38 C is reported, b2 (i.e., b1 = lower than normal,
b2 = normal, b3 = higher than normal) should be updated
based on Eq. (3). When the uncertainty mass becomes zero,
an opinion will not be updated anymore, which makes new
evidence cannot be properly utilized in the latest opinion.
To avoid this, we will deploy the uncertainty maximization
technique [20] to reduce the impact of conflicting evidence
while transforming the amount of conflicting evidence into
the vacuity of an opinion.

Given opinion ωX = (bX , uX ,aX) where PX = bX +
aX ·uX for a domain X, the corresponding vacuity-maximized
opinion is denoted by ω̈X = (b̈X , üX ,aX) where üX and b̈X
are computed by:

üX = min
i

[PX(xi)

aX(xi)

]
, (6)

b̈X(xi) = PX(xi)− aX(xi) · ü, for xi ∈ X.

We use a threshold ρ to trigger the vacuity maximization. That
is, Eq. (6) above can be triggered only when uX < ρ where ρ
is sufficiently low (e.g., 0.05). The purpose of updating ωX to
ω̈X is to allow the opinion to be further updated by receiving
new evidence or being combined with other opinions which
is possible only when uX > 0.

In a given category X , the animal condition is estimated as
an opinion, ωX , where the corresponding uncertainty types,
vacuity and dissonance are estimated, respectively, at the
gateways that aggregate sensed data and transmit the average
condition value in a given category along with the belief
masses and uncertainty masses associated with ωX .

B. DRL-based Monitoring Update

This section describes how DRL agent’s states, actions, and
immediate reward are formulated in this work.

1) State Space (St): We assume a partially observable
environment where each DRL agent can only access infor-
mation in the dataset of the local gateway it is running
on. We formulate the state space of each agent i at time t
indicating the total number of local reports for the duration
of t, {`i1, `i2, . . . , `it−1, `it}, where `it∗ refers to the number of
local reports in [t∗ − 1, t∗]. To be specific, assume t ∈ [0, T ],

the overall state space is given by St = {s1t , . . . , sit, . . . , smt },
where m is the number of DRL agents (i.e., LoRa gateways)
and sit is the state space for agent i at time t, which is given
by sit = {`i1, `i2, . . . , `it, 0, . . . , 0}.

2) Action Space (At): For each DRL agent, it will choose
k animals whose data is more helpful in improving monitoring
quality and reducing system overload. Note that a certain
amount of redundant information is desired since there is a
possible situation that sensors fail to transmit data due to
limitations of their energy level or topology. Based on the
agent i’s local gateway dataset, the utility of animal j is given
by:

utilityij = (1− vacijt ) + (1− dissijt ) + frijt + f(blijt ), (7)

where vacijt , dissijt , and frijt are vacuity, dissonance, and
degree of freshness of animal j’s sensed data at time t by
DRL agent i. To calculate vacuity and dissonance, we use each
evidence (i.e., a report of animal conditions from the sensor
node) to hold a categorical class (i.e., below normal range,
normal range, above normal range). We initialize the opinion
for a given animal with one evidence (i.e., r(xl) = 1) for
each class l and K = 3. frijt is formulated by frijt = e−φT(t),
where T(t) is the time elapsed from the last update and φ
is a constant to normalize the freshness. f(x) is defined by
f(x) = −(x − TM )2 where x is set to blijt , the battery
life of sensor j at time t by DRL agent i. By scaling
vacijt ,dissijt ,blijt , and frijt in [0, 1], we set each component
of utilityij to [0, 1] as a real number. Here TM denotes the
recommended level that the battery of a sensor node should be
maintained. A list of animal IDs will be calculated based on
Eq. (7) in ascending order, so each agent will request data for
the top k animals. The action space has three actions selecting
the first k animal IDs such that k ∈ {0, bnl2 c, nl}, where nl
is how many LBS nodes are in the current environment. In
this way, the size of action space is not dependent on nl
(i.e., 3), which is able to reduce the computation load raised
by infinite action spaces and make this monitoring system
possible for applying to larger-scale sensor networks as a
generalization. For a lower k, it may impact the monitoring
quality. At the same time, a higher k will obtain a larger
amount of unnecessary data transmission and result in a system
overload. Therefore, the DRL agent aims to identify the best
action, which is the optimal k for this setting.

3) Immediate Reward (rt): This is formulated by rit =
f(git(k

i
1, k

i
2, . . . , k

i
t), gt) based on f(git, gt) = −ME(git) −

OL(gt) given in Eq. (1), where git and kit are the local sensor
network and action with respect to gateway i at time step t.

In this work, we consider a cooperative framework where
multiple DRL agents share their states and actions to obtain
the global observation of the whole farm area, i.e. the system
overload. Fig. 3 provides an overview of the proposed Multi-
Agent Deep Reinforcement Learning (MADRL) framework.

C. Data Aggregation at LoRa Gateways

For each sensor node, it will send its sensed data to LoRa
gateways or a high-energy sensor close to it, as the information
shown in Table I. After receiving the reports from all sensor
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nodes capable of transmitting their data, a LoRa gateway will
compute an opinion based on the received data. The opinion
is composed of belief and uncertainty in terms of vacuity and
dissonance masses. We define the opinion as a monitoring
opinion (MO) below, of the measured temperature, heartbeats,
and activity in the period of monitoring time ∆. ∆ is computed
based on the time interval of the current time and the last
reported time. When the amount of sensed data becomes
large enough, the MO may not be updated further because
vacuity approaches closely to zero, which an opinion cannot be
updated from new sensed data based on Eq. (3). To update the
MO properly from received new evidence, we will deploy the
vacuity (uncertainty) maximization technique in Eq. (6). We
use a threshold ρ (i.e., 0 < ρ < 1) to determine when to update
the MO based on Eq. (6). That is, if uX < ρ, this evidence will
update an opinion based on Eq. (6). To evaluate the system
monitoring error based on Eq. (14), we also introduce a system
database to collect the latest monitoring opinions for each
animal among all gateways.

D. Mathematical Proof of Effectiveness Using Uncertainty
Maximization

In this section, we formally prove the effectiveness of
the uncertainty maximization technique [20] by mathematical
proof. We observe that uncertainty mass and the monitoring
error rate can be viewed as functions of evidence. Based
on Eq. (3), the uncertainty (vacuity) drops when the amount
of received evidence increases. Furthermore, given Eq. (4),
dissonance solely depends on the distribution of belief masses
without vacuity being involved. Thus, the dissonance can be
viewed as a constant when there is enough evidence from the
same distribution.

The uncertainty (vacuity) maximization in Eq. (6) reini-
tializes the vacuity by transforming previous evidence from
the belief masses to the uncertainty mass. Given the follow-
ing [20],

j = arg min
i

[PX(xi)

aX(xi)

]
, (8)

where PX(xi) is the projected probability of having xi and
aX(xi) is the base rate (i.e., prior belief) that supports a belief
mass xi. Then, we have the updated belief masses and the
uncertainty (vacuity) mass given by:

b̈X(xk) =
r(xk)− r(xj)

W +
∑
xi∈X r(xi)

, üX =
W +Kr(xj)

W +
∑
xi∈X r(xi)

,

(9)
where W is the amount of non-informed evidence (i.e., uncer-
tain evidence), K is the number of belief masses (e.g., classes),
and r(x) is the amount of evidence supporting belief mass
x. Since the amount of non-informed evidence, W , increases
to W + Kr(xj), we replace W with W + Kr(xj) in the
denominators of both b̈X(xk) and üX as

b̈X(xk) =
r(xk)− r(xj)

(W +Kr(xj)) +
∑
xi∈X(r(xi)− r(xj))

, (10)

üX =
W +Kr(xj)

(W +Kr(xj)) +
∑
xi∈X(r(xi)− r(xj))

. (11)

TABLE I: EVD DATASET DESCRIPTION

Metric Description
serial A unique animal identifier
HR Heart Rate of the animal

average-temperature Average body temperature in Celsius
min-temperature Minimum temperature in Celsius
max-temperature Maximum temperature in Celsius
average-activity Average activity recorded by the number

of steps taken
battery-level Residual battery life
timestamp Date and time of transmission

The above implies that the updated vacuity only considers
partial history evidence, indicating more recent evidence than
past evidence.

As shown in Eq. (14), the monitoring error rate is closely
related to the amount of evidence. Assume that at each time
step t ∈ [0, T ], the information of nt animal is being updated
and each animal j’s information is updated mj times in total.
Hence, we have the expected monitoring error rate given by,

E(ME) =
E(
∑
t∈T

∑
x∈X mext )

NT |X|
(12)

=

∑
t∈T

∑
x∈X E(

∑n
j=1D(eoxt (j), gtxt (j)))

NT |X|

=

∑
x∈X,t∈T E(

∑nt

j=1 0 +
∑n
j=nt+1 1)

NT |X|

=

∑
x∈X

∑
t∈T (N − nt)

NT |X|

= 1−
∑
x∈X

∑n
j=1mj

NT |X|
.

Here T is the total monitoring time, N is the number of solar
sensors attached to cows, mext is the overall monitoring error
rate of all N cows’ conditions of attribute x at time t, eoxt (j)
and gtxt (j) is the estimated and ground truth observation of
cow j’s condition in x attribute at time t, respectively. The
above derivation proves that E(ME) is only dependent upon
nt and it increases when nt decreases. In addition, each animal
j’s monitoring error rate is only related to the amount of
corresponding evidence, mj . Therefore, we prove that the
order of any pair of sensors remains invariant under the partial
order relations of vacuity and monitoring error rate.

VI. EXPERIMENTAL SETUP

This section describes the datasets, parameterization, DRL
schemes, and performance metrics used for the experiments
conducted in this work.

A. Datasets

At Virginia Tech, we have a collection of interconnected
data collection and analysis hubs called the SmartFarm Inno-
vation Network (TM), which is designed to facilitate the testing
and demonstration of emerging technologies throughout the
state. From the smart farm, we obtained sample datasets
collected from four different sensors, namely, EmbediVet
Implantable Temperature Device (EVD), Halter Sensor, Heart
Rate Sensor, and Implantable Temperature Sensor. The dataset
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from the EVD consists of 8 components as described in
Table I. We consider 6 components out of them, except a
serial number and timestamp, as the sensed data to represent
the physical conditions of animals. The temperature and the
heart rate sensor provide us with temperature in Celsius and
heart rate in beats per minute (bpm), respectively. The Halter
sensor could identify each animal’s geolocation and assess
its motion and posture to report its activity level. Since the
existing dataset obtained from Virginia Tech’s smart farm does
not include any data compromised by attackers, we designed a
framework where each sensor could generate synthetic datasets
similar to real datasets and some compromised sensors are
modeled as attackers following the attack model described in
Section IV-C.

B. Parameterization

We consider 20 cows within a 40 acres (∼ 160K square
meters) square farm area (A) with 402 meters in length (a).
We consider two gateways with the same circular coverage.
We further assume that these gateways could cover the farm
area and each of them is covered by the other. In general, for a
given number of m gateways with the same radius r, we aim to
find the minimum radius rm such that the farm area is fully
covered by the total gateway coverage and each gateway is
covered by other gateways to enable mutual communications.
To this end, we solve the following optimization problem to
identify the minimum radius rm:

rm = min
r
{r : ∃Pi = (xi, yi) ∈ R2}, (13)

where 1 ≤ i ≤ m, s.t. ∀P = (x, y) ∈ [−a/2, a/2]2,

(min
i
d(P, Pi) ≤ r) ∧ ∀(i, j) ∈ [1,m]2, d(Pi, Pj) ≤ r,

where a is the length of farm side, Pi is the center of gateway,
and d(·, ·) is the Euclidean distance function. We only consider
the case when m = 2, where gateways locate in (−a4 , 0)

and (a4 , 0) respectively with the same radius
√
5a
4 . Fig. 1

shows how two gateways are optimally deployed with the
corresponding wireless radio ranges used in our smart farm
network environment.

To model the availability of solar energy based on the sun’s
movement in a day, we define a charging probability distribu-
tion P (x, y, t) over the farm area as the probability of being
charged if a sensor is located at (x, y) at time t. For simplicity,
we assume that P (x, y, t) has a quadratic form at time t and
is represented by P (x, y, t) = max{0,− 1

6 (t − txy)2 + 1},
where txy is a function of location (x, y) based on the farm’s
direction. We consider a square farm with its center at the
origin and x axis towards the west. Thus, txy is formulated as
txy = t0

a × (x − a
2 ) + 12, where t0 is a hyper-parameter. In

general, to model different weather conditions, we can use a
weight α to discount the charging probability as αP (x, y, t)
with 0 ≤ α ≤ 1.

Each cow’s attributes are collected by an attached solar-
powered sensor. We adopt normal distributions N (38, 12) and
N (1.5, 0.12) to describe a cow’s temperature and velocity
respectively. The cow’s heartbeat is modeled as two uniform

distributions: U(60, 84) when it moves or U(48, 60) when it
does not move. We use Pmvi for cow i’s moving probability.

For an opinion about a cow’s attributes, we will simply
categorize based on three beliefs, i.e., lower than normal,
normal, and higher than normal. The normal ranges of a
cow’s temperature, heart rate, and moving activity are given
[37.8, 39.2] Celsius, [48, 84] number of beats per min., and
[1, 2] meters per sec., respectively. We consider the number of
uncertain evidence to be three where each belief mass has the
same base rate (i.e., 1/3) [20].

We consider 24 consecutive hours as the total monitoring
session. For every Ta = 60 sec, each gateway would take an
action to identify an optimal monitoring strategy. We assume 5
HBS with a full initial battery level and 15 LBS with random
initial battery levels below TM . All LBS could only broadcast
their own data to HBS via BLE. Each sensor can broadcast
at most two sets of sensed data to each LoRa gateway within
the wireless range per Tu = 30 sec. In this way, each HBS
can send its own data and another set of data requested by the
LBS. The monitoring system would derive the consolidated
priority list of update lists from gateways. Then the system
would leverage the Hopcroft–Karp algorithm [16] to solve the
maximum matching problem in bipartite sensor networks. In
this way, the system could ensure the maximum number of
transmissions being executed.

As for energy consumption, message transmissions need
170 mW per sec and the sleep mode costs 2 mW per sec. We
assume a sensor is only activated for message transmissions.
A sensor can be charged by the outdoor solar with 200 mW
per sec. In this way, a sensor can be charged 200 mW × 6 h
= 4.32 kWs under 6 hours of the sun.

We set all attack probabilities to PA. For inside attackers,
we initially pick them among the total number of sensors at
random. For outside attackers (i.e., MIMAs), we pick a set of
nodes at random transmitting messages intercepted by MIMAs
with PEDA(PA). The attackers launch attacks based on Fig.
2. Finally, we consider FGSM as a state manipulation attack
to disturb the DRL training phase. Table II summarizes the
key design parameters, their meanings, and default values.

C. DRL Algorithms
We develop two uncertainty-aware DRL algorithms (MAQN

and MAPPO) whose performance is compared against two
baseline schemes (Greedy and Random), described as follows:
• Multi-Agent Deep Q-Learning (MADQN) [25]: DRL

agents learn a state-value Q function to select the optimal
actions. In a multi-agent scenario, we extend DQN to
MADQN, where each DRL agent learns an independent lo-
cal Q function. We consider two variants of MADQN using
UM or not and name them MADQN-UM and MADQN-
NUM, respectively.

• Multi-Agent Proximal Policy Optimization (MAPPO):
MAPPO extends the PPO [35] to a multi-agent environment
to mitigate non-stationarity by adopting a global critic
value function to guide each local actor value function. We
consider two variants of MAPPO with and without using
uncertainty maximization. We name them MAPPO-UM and
MAPPO-NUM, respectively.
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TABLE II: KEY DESIGN PARAMETERS, THEIR MEANINGS
AND DEFAULT VALUES

Param. Meaning Value
m The number of gateways 2
N The number of sensors(cows) 20
TM A minimum battery level to transmit sensed

data by a sensor
30%

LBS/HBS Low/High battery level sensors /
Pmv
i Cow i’s probability to move [0.3, 0.7]
PA Probability for an attacker or a compromised

node to perform a certain attack (e.g.,
PNCA, PIDA, PEDA, PFGS )

0.1

A Area of a given smart farm 40
acres

a length of a given smart farm 402 m
ρ Uncertainty maximization threshold 0.05
t0 Hyper-parameter used in sun model 0.2
Tu Time interval for a sensor to send sensed data 30 s
Ta Time interval for a gateway to take an action

to adjust k
60 s

TL Initial battery level for low battery level
sensors

30%

α The probability for a cow to be exposed to
the sun depending on its position when the

sun is available

1

• Greedy Algorithm: DRL agents make heuristic choices by
enumerating all actions at each step and choosing the one
with the optimal reward.

• Random: DRL agents randomly select an action, e.g., k
animal IDs to receive their sensed data.

D. Metrics

We consider the following metrics to evaluate the perfor-
mance of the four DRL schemes described in Section VI-C:
• Accumulated reward (R): This metric represents the sum

of the mean accumulated reward for all DRL agents through
all simulation runs.

• Monitoring error rate (ME): This metric is measured
based on the mean difference between the latest data of each
animal’s condition from all gateways and the ground truth
data of the corresponding animal’s condition. We measure
ME by:

ME =

∑
t∈T

∑
x∈X mext

NT |X|
, mext =

n∑
j=1

D(eoxt (j), gtxt (j)),

(14)

s.t. D(a, b) =

{
1 if a 6= b;
0 if a = b.

Here T is the total monitoring time, N is the number of
animals, mext is the overall monitoring error rate of all N
animals’ conditions of attribute x at time t, eoxt (j) and
gtxt (j) are the estimated and ground truth observation of
animal j’s condition in x attribute at time t, respectively.

• Overload (OL): This metric evaluates the system overload
by the mean fraction of the failed requests over all sent
requests from LBS. In specific, we have

OL =
1

T

∑
t∈T

rqft
rqt

, (15)

TABLE III: Asymptotic Complexity Analysis of the
Considered Schemes

Scheme Complexity
MADQN/MAPPO O(ne × ttrain)

Greedy O(naction)
Random O(1)

where T is the total monitoring time, rqft and rqt are the
numbers of failed requests and total requests at time t,
respectively.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

A. Algorithmic Complexity Analysis

We first analyze the algorithmic complexity of the four
DRL schemes described in Section VI-C. Table III shows
the asymptotic complexities in Big-O notation for the four
schemes discussed in Section VI-C. We notice that cost
of MADQN/MAPPO only depends on the training episode
ne and training time per episode ttrain. Greedy needs to
enumerate the total action space and thus its complexity
depends on the action space size naction. When the action
space is large enough, greedy can incur more cost than
MADQN/MAPPO. Table III shows that the Random is the
most efficient algorithm among all while showing the worst
performance (to be discussed further in the next section).

B. Sensitivity Analyses

Below we conduct in-depth sensitivity analyses of the
two baseline schemes (Greedy and Random) and the two
uncertainty-aware DRL schemes (i.e., MADQN, MAPPO)
with uncertainty maximization (i.e., MADQN-UM, MAPPO-
UM) vs. without uncertainty maximization (i.e., MADQN-
NUM, MAPPO-NUM) over a wide range of the attack proba-
bility, PA, the initial low battery level TL, the number of cows
(sensors) N , and the chance for a cow to be exposed to the
sun, α.

1) Effect of Varying the Attack Severity: Fig. 4 shows the
effect of varying the attack probability, PA, on the performance
of the six schemes in terms of the three metrics in the network.
We observe that increasing PA decreases R while increasing
ME and OL. When PA increases, the monitoring system gets
severely compromised, thus the payoff per monitoring update
would drop. MAPPO and Greedy can successfully identify
this change in the payoff and achieve better performances than
other schemes. The overall performance order with respect to
the three metrics is: MAPPO-UM ≥ Greedy ≥MAPPO-NUM
≥ MADQN-UM ≥ MADQN-NUM ≥ Random.

2) Effect of Varying the Initial Battery Levels (TL): Fig. 5
shows the effect of varying the initial battery level assigned
to low-battery level sensors (LBS), TL, on the performance of
the six schemes in terms of the three metrics in the network.
We observe that increasing attack probability (TL) increases
the accumulated reward (R) while decreasing the monitoring
error rate (ME) and the degree of overload (OL). We also
observe that when TL increases, all three metrics converge to
one point due to the decreased number of LBS. Monitoring
policies only apply to LBS and thus negligible differences
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(a) Accumulated reward (R) (b) Monitoring error rate (ME) (c) Overload (OL)

Fig. 4: Comparative performance with respect to varying attack probability (PA).

(a) Accumulated reward (R) (b) Monitoring error rate (ME) (c) Overload (OL)

Fig. 5: Comparative performance with respect to varying the initial low battery level (TL).

(a) Accumulated reward (R) (b) Monitoring error rate (ME) (c) Overload (OL)

Fig. 6: Comparative performance with respect to varying the number of solar sensors (N ) attached to cows.

(a) Accumulated reward (R) (b) Monitoring error rate (ME) (c) Overload (OL)

Fig. 7: Comparative performance with respect to the different levels of sun exposure (α).

are observed under high TL. Overall, our proposed MAPPO-
based schemes can achieve a low monitoring error rate with
the lowest overload.

3) Effect of Varying the Node Density (N ): Fig. 6 shows
the effect of varying the number of solar sensors, N , on the
performance of the six schemes in terms of the three metrics
in the network. We observe that increasing the number of
sensor nodes (N ) decreases the accumulated reward (R) while
introducing higherME and OL. When N increases, there are
not enough HBS (high battery level sensors) to transmit data
for LBS. Consequently, the update requests from LBS may
mostly fail. Our proposed MAPPO-UM scheme achieves the

lowest monitoring error rate when N is low and the lowest
overload when N is high, revealing the tradeoff that a lower
monitoring error rate can incur a higher system overload.

4) Effect of Varying the Degree of Sun Exposure (α):
Fig. 7 shows the effect of α (the probability for a cow to be
exposed to the sun for energy harvesting) on the performance
of the six schemes. We observe that a higher α contributes
to boosting R while reducing ME . Moreover, OL is not
sensitive to varying α because the energy harvesting speed
exceeds the battery consumption speed. We also observe that
ME is equally reduced for every monitoring policy. Thus,
when α is high, small changes in monitoring policies lead to
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insensitive OL while decreasing ME .
Summarizing above, MAPPO-UM performs the best among

all schemes, the effect of which is especially pronounced when
the system is under high-stress situations, such as high attack
severity, low initial battery energy, low node density, and low
sun exposure. The reason is that MAPPO-UM applies not only
an actor-critic framework (from Deep Reinforcement Learn-
ing [11]) but also uncertainty maximization (from Subjective
Logic [19]) to derive stable monitoring policy updates based
on new evidence, thus maximizing monitoring quality in terms
of R and ME while reducing energy consumption in terms
of OL. This allows LoRa gateways to obtain more accurate
sensed data from solar sensors having limited and fluctuating
energy and to maximize uncertainty-aware monitoring quality.

VIII. CONCLUSIONS & FUTURE RESEARCH

Our work achieved the following. The proposed monitoring
system for smart farms is the first that proposed technologies
to support an energy-adaptive monitoring system properly
operating even in the presence of various adversarial attacks,
including false data injection, DoS, and state manipulation
(i.e., poisoning datasets in deep learning models) attacks.
Unlike existing works that mainly focused on energy-aware
approaches, our work achieved energy-adaptiveness and data
security under energy-fluctuating, adversarial, and dynamic
IoT environments. In addition, we introduced uncertainty-
aware data aggregation and update approaches to enhance the
monitoring quality of the proposed smart farm system without
the system being overloaded. We validated this approach
via mathematical proof and extensive experiments using real
datasets. We also considered multiple deep reinforcement
learning agents to identify optimal settings to maximize the
monitoring quality of smart farms with solar-powered sen-
sors. This design allowed high sustainability and scalability.
Moreover, collaborative learning results in high performance
in monitoring quality and system overload.

From this study, we found the following key findings:
• The system overload does not always increase the monitor-

ing error rate. Our proposed MAPPO-UM scheme can find
monitoring policies that can minimize both the monitoring
error rate and the system overload.

• The payoffs to monitoring updates are vastly different under
different scenarios. This discrepancy can result in different
optimal monitoring policies being identified and applied in
different scenarios.

• Our proposed MAPPO-UM scheme is shown to have an
acceptable time complexity for which the major complexity
comes from the training time and the size of the action
space. MAPPO-UM outperformed other counterparts with
an 8% reduction in both the monitoring error rate and the
system overload.

• Among all schemes considered, MAPPO-UM can best adapt
to different scenarios and identify the best monitoring poli-
cies for minimizing the monitoring error rate and the system
overload.

• Our proposed MAPPO-UM scheme also showed strong
robustness, particularly under harsh environments as demon-
strated via extensive sensitivity analyses.

We also plan to conduct the following future research:
• We will use more than two gateways to introduce more DRL

agents for the proposed smart farm system to be applicable
to larger-scale networks.

• We will leverage transfer learning algorithms to further
improve the speed of learning convergence.

• We will identify an optimal energy level that can be used
for low-energy solar sensors to request data transmission to
nearby high-energy sensors.
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