
Information Processing Letters 83 (2002) 337–344

www.elsevier.com/locate/ipl

A self-adjusting quality of service control scheme

Sheng-Tzong Chenga, Ing-Ray Chenb,∗

a Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
b Department of Computer Science, Virginia Tech., Northern Virginia Graduate Center, Falls Church, VA 22043, USA

Received 8 August 2000; received in revised form 21 September 2001

Communicated by F.B. Schneider

Abstract

We propose and analyze a self-adjusting Quality of Service (QoS) control scheme with the goal of optimizing the system
reward as a result of servicing different priority clients with varying workload, QoS and reward/penalty requirements. Our
scheme is based on resource partitioning and designated “degrade QoS areas” such that system resources are partitioned into
priority areas each of which is reserved specifically to serve only clients in a corresponding class with no QoS degradation, plus
one “degraded QoS area” into which all clients can be admitted with QoS adjustment being applied only to the lowest priority
clients. We show that the best partition is dictated by the workload and the reward/penalty characteristics of clients in difference
priority classes. The analysis results can be used by a QoS manager to optimize the system total reward dynamically in response
to changing workloads at run time. We demonstrate the validity of our scheme by means of simulation and comparing the
proposed QoS self-adjusting scheme with those that do not use resource partitioning or designated degraded QoS areas. 2002
Elsevier Science B.V. All rights reserved.

Keywords:Quality of service (QoS); QoS negotiation; Multimedia systems; Telecommunication systems; Admission control; Resource
reservation; Reward optimization; Simulation; Performance analysis; Scheduling; Performance evaluation

1. Introduction

Quality of Service (QoS) control is an important
issue in multimedia/telecommunication systems de-
signed to provide continuous services to clients based
on their QoS demands. To date, there are two ap-
proaches by which QoS control can be implemented.
One approach is based on adaptive, distributed control
wherein each client monitors the QoS received and au-
tomatically increases or decreases its resource require-

* Corresponding author.
E-mail addresses:stcheng@csie.ncku.edu.tw (S.-T. Cheng),

irchen@cs.vt.edu (I.-R. Chen).

ment according to actual QoS level delivered to it and
also by the amount of resources sensed available in
the system. Another approach is based on a priorire-
source reservationwherein a centralized QoS control
manager is used to interact with clients. Whenever a
client requests a service of the system, it negotiates its
QoS requirement with the QoS manager which checks
its resources to make sure the client’s QoS requirement
can be satisfied before admitting the client into the sys-
tem. This paper concerns the second approach.

Over the past few years, there has been substan-
tial research effort in the area of QoS control [1,6,7].
A general approach is to reserve a portion of sys-
tem resources to serve requests with degraded QoS

0020-0190/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(02)00212-0



338 S.-T. Cheng, I.-R. Chen / Information Processing Letters 83 (2002) 337–344

so as to tradeoff service quality for improved rejec-
tion rate. For example, Marsan et al. [7] demonstrate
that reserving free channels to serve handovers and de-
graded multimedia calls can significantly reduce the
handover failure probability in cellular networks at the
expense of a higher new call rejection rate. Although
these studies reveal useful tradeoffs, the issue ofhow
much resources should be reserved for QoS control
remains unsolved since optimizing one performance
metric (e.g., low handover probability) may compro-
mise another (e.g., new call rejection rate). Lee and
Sabata [5] propose the concept ofbenefit functionsand
resource demand functionsassociated with application
requests, characterizing each application with a range
of QoS requirements and its corresponding “benefit”
values with which the application brings to the system.
They use the concept ofbenefit optimizationto design
QoS control algorithms. A key design of their work
is that a portion of the resources is reserved specifi-
cally to serve requests with degraded QoS. Thus, the
system performs QoS negotiation and adjustment only
to requests admitted into the “degraded QoS area”.
When a request departs, their algorithm adjusts the
QoS levels of requests admitted into the degraded QoS
area with the goal of maximizing the benefit. A short-
coming of their work is that it does not discusshow
muchresources should be reserved dynamically in re-
sponse to changing workloads so that the system ben-
efit is maximized at run time. Chen et al. [4] propose
a utility model also with the goal of benefit maximiza-
tion by managing system resources through admission
control and dynamic QoS adaptation of concurrent re-
quests. Their approach does not use the concept of des-
ignated “degraded QoS areas”, so QoS adaptation can
be performed on all admitted requests as long as the
QoS profiles of admitted requests permit. Since sys-
tem resources are not partitioned to specifically serve
requests of different priority classes, low-priority re-
quests can possibly use up all system resources, when
the arrival rate of low-priority requests is much higher
than that of high-priority requests. This may result in
high-priority clients being rejected and consequently a
lower overall benefit obtained by the system if high-
priority requests carry a much higher benefit value.
In this latter case, reserving resources designated to
serve only high-priority clients will be more benefi-
cial.

In this paper, we present a self-adjusting QoS con-
trol scheme also with the goal of benefit optimization.
We first consider the case in which the system contains
a high-priority class and a low-priority class with two
service levelsQmax andQmin. Then we discuss how
the scheme can be generalized to a more complex set-
ting with higher number of service classes and larger
number of service levels. We adopt the concept of a
designated QoS degraded area such that QoS adapta-
tion only applies to low-priority requests admitted into
the QoS degraded area. This design is considered less
intrusive and makes business sense, that is, users who
pay more expect to receive a certain QoS guarantee
throughout the service lifetime. A typical example is
to classify clients into three groups:

(1) high-priority clients who receive a constant QoS
throughout and pay more;

(2) low-priority clients who also receive a constant
QoS throughout and pay less;

(3) low-priority clients who may receive varying QoS
levels in the range of[Qmax,Qmin] during the
service lifetime and pay the least.

Thus, low-priority requests admitted into a QoS de-
graded area are the designated clients vulnerable to
QoS adjustment and are fully aware that their QoS
may be adjusted after being admitted; however, as a
compensation they will pay the lowest fare among all
service classes. Our scheme explicitly partitions sys-
tem resources to serve requests in these three groups.
The best partitioning is dictated by the workload and
benefit/penalty characteristics of requests in difference
priority classes. It can be that the best partition when
given a particular workload condition is that no re-
served partition exists for only serving high-priority
or low-priority only requests, i.e., the “QoS degraded
area” is the sole area open to all clients in which
the QoS adaptation is applied to low-priority requests.
Thus, our self-adjusting QoS control scheme encom-
passes special cases considered in the literature, in-
cluding the case of no reserved, partitioned areas for
different priority requests as in [4], and the case of no
designated “degraded QoS area” as in [3]. The results
obtained from our scheme can be used to dynamically
partition system resources for admission control in re-
sponse to changing client workloads so as to optimize
the system performance.



S.-T. Cheng, I.-R. Chen / Information Processing Letters 83 (2002) 337–344 339

2. System model

We assume that the system consists of a number of
QoS slots, each of which corresponds to the minimum
amount of resource reservation required to service a
client with the lowest QoS requirement. For a video
server, for example, the QoS requirement in a slot
corresponds to the smallest frame size with black
and white display. Naturally, there exists a maximum
number of such QoS slots under which the system can
service without overloading, as having been addressed
in previous work in admission control [2,3]. Clients
with higher QoS requirements must each occupy two
or more such slots, e.g., for a video server, this may
correspond to a bigger frame size with color video
display.

We first consider a special case in which there ex-
ist two priority classes of clients, with each class being
characterized by its own arrival/departure rates and re-
ward/penalty values. The arrival rates of high-priority
and low-priority clients areλh and λl , respectively,
while the departure rates areµh andµl , respectively.
The system ensures that customers’ minimum QoS re-
quirements are satisfied by performing admission con-
trol. We assume that a high priority client specifies a
QoS requirement and once the QoS requirement is ac-
cepted by the server, it is not to be changed or rene-
gotiated. On the other hand, a low-priority client will
specify a range of QoS requirements, thus giving the
system some leverage to renegotiate its QoS when nec-
essary. The renegotiation can be done in two ways:

(1) the system can lower the QoS of low-priority
clients in order to accommodate more clients into
the system when the resource becomes scarce;

(2) the system can raise the QoS of low-priority
clients when the resource becomes rich again.

Thus, the system can adjust the QoS level of low-
priority clients based on the workload to the system,
although it must maintain the same QoS level for high-
priority clients. That is, the absolute QoS guarantee
applies to high-priority clients while the best-effort
QoS applies to low-priority clients. For ease of exposi-
tion, we again first consider a special case in which the
minimum QoS requirement(Qmin) of a low-priority
client is exactly one half of its maximum QoS require-
ment (Qmax) with Qmax being the same as that re-

quired for a high-priority client. A low-priority client
thus has two QoS levels that would allow the system
to do QoS control. The general assumptions of multi-
ple priority classes and QoS levels will be treated later
in Section 3.

From the perspective of the server system, the
system behaves as if it containsN capacity slots.
When all slots are used up, the server can lower the
QoS level of low-priority clients, if any is found, to
accommodate newly arriving clients, provided that
doing so can improve the “pay-off” of the system.
The pay-off to the server when a client completes
its service is characterized by each client’s reward
and penalty parameters. We assume that the reward
which a high-priority client brings to the system is
vh if it is served successfully; on the other hand, the
reward which a low-priority client brings to the system
depends on the QoS level received: it isvl during the
proportion of the time in which it is being served at
the Qmax level andvll during the proportion of the
time in which it is being served at theQmin level,
with vl � vll . On the flip side, we assume that the
penalties to the system when high-priority and low-
priority clients are rejected areqh andql , respectively,
with qh � ql .

The performance metric being considered in the
paper takes both rewards and penalties of clients into
consideration. It is called the system’s reward rate
defined as the average amount of value received by the
server per time unit. In other words, under a particular
admission policy if the system on average services
Nh high-priority clients,Nl low-priority clients at the
maximum QoS level andNll low-priority clients with
the minimum QoS level per unit time while it rejects
Mh high-priority clients andMl low-priority clients
per unit time, then the system’s average reward rate is:

Nhvh +Nlvl +Nllvll −Mhqh −Mlql . (1)

This reward rate can be translated into the profit
rate of a company running the on-demand multime-
dia/telecommunication service business. The problem
that we are interested in solving thus is to iden-
tify the best self-adjusting QoS control scheme un-
der which this performance metric is maximized,
as a function of model input variables, including
N,λh,λl ,µh,µl, vh, vl , vll , qh andql defined above.



340 S.-T. Cheng, I.-R. Chen / Information Processing Letters 83 (2002) 337–344

3. Self-adjusting QoS control

Our self-adjusting QoS control scheme partitions
the N resource slots into three parts:nh, nl and
nm, with nh being specifically allocated to high-
priority clients,nl being specifically allocated to low-
priority clients and the remainingnm slots being in
the designated “degraded QoS area” sharable to both
types of clients. Each slot is capable of servicing a
high-priority client or a low-priority client running at
theQmax level. The system always fills in the slots in
nh andnl for arriving high- and low-priority clients,
respectively, before filling in a slot innm.

In this proposed scheme, low-priority clients being
admitted into thenm part are the “designated” clients
vulnerable to QoS fluctuations. When a low-priority
client arrives, if there is a slot available in thenl

or nm part, then the low-priority client is accepted;
otherwise, it is rejected. Similarly, when a high-
priority client arrives, if there is a slot available
in the nh or nm part, then the client is accepted.
Otherwise, the system further checks if currently there
are at least 2 low-priority clients each occupying a
slot in the nm part, i.e., each being served at the
Qmax level. If no, then the arriving high-priority client
is rejected immediately. Otherwise, two such low-
priority clients in thenm part will each reduce their
QoS level fromQmax to Qmin, i.e., each occupying
only one half of a slot, thus giving up a slot in the
nm part to accommodate the newly arriving high-
priority client. Conversely, when a high-priority client
or a low-priority client running at theQmax level
departs in thenm part, if there exist two low-priority
clients each currently running at theQmin level, then
the QoS level of such two low-priority clients will
be increased toQmax, thus consuming the resource
released by the departing client. If the departing client
was only running at theQmin level, then only one low-
priority client can increase its QoS level toQmax, if it
exists.

Note that this self-adjusting QoS control scheme
encompasses the special case in which there is no
space specifically reserved for low-priority clients, i.e.,
nl = 0. In this special case, all low-priority clients
are equally treated, that is, they all have to compete
with high-priority clients in thenm part and all can
experience QoS fluctuations. A subcase of this special
case is that bothnl andnh are zero, in which case no

space is specifically reserved for high-priority clients
either.

3.1. Analysis

We derive an approximate solution of the average
reward rate obtainable based on an analytical model.
The solution is approximate because

(1) it does not keep track of the numbers of clients in
thenh, nm andnl parts globally and instead it only
takes the steady state spill-over rates from thenh

andnl parts as the arrival rates of clients into the
nm part; and

(2) it does not track the time periods in which a low-
priority client in thenm part stays at theQmax and
Qmin levels and thus it only calculates the reward
rate based the QoS level of the low-priority client
as the client departs.

The analytical model considers thenh andnl parts as
M/M/nh/nh and M/M/nl/nl queues, respectively,
and thenm part as a Markov chain with the arrival
rates of high-priority and low-priority clients into the
nm part as the “spill-over” rates from thenh part and
the nl part, respectively. The spill-over rates of high-
priority and low-priority clients are given by:

Λh = λh ×
1

nh !
(

λh

µh

)nh

1+∑nh

j=1
1
j !
(

λh

µh

)j
and

Λl = λl ×
1
nl !
(

λl

µl

)nl

1+∑nl

j=1
1
j !
(

λl

µl

)j .

The Markov model for thenm part takes into con-
sideration of arrivals and departures of both high-
and low-priority clients. In addition, it also models
QoS adjustment activities of low-priority clients. Let
(nll

m,nl
m,nh

m) be the state representation of the Markov
model wherenll

m is the number of low-priority clients
being served innm at Qmin, nl

m is the number of low-
priority clients being served innm at Qmax, andnh

m is
the number of high-priority clients innm, subject to
the constraint thatnll

m/2+ nl
m + nh

m � nm in any state.
Fig. 1 shows a Markov chain for the case in which
nm = 3. LetPj be the steady state probability that the



S.-T. Cheng, I.-R. Chen / Information Processing Letters 83 (2002) 337–344 341

Fig. 1. Markov model for the nm part withnm = 3.

nm part is in statej . Then, based on Eq. (1), the reward
rate out of thenm part,Rnm , is calculated by:

Rnm =
∑
∀j

Pj

(
nll

mµlvll + nl
mµlvl + nh

mµhvh

)

−
∑

∀j s.t. nll
m/2+nh

m=nm

Pj qlΛl

−
∑

∀j s.t. nll
m/2+nl

m+nh
m=nm

andnl
m<2

PjqhΛh, (2)

where the last two terms account for the penalties due
to rejecting clients when all slots are used up in thenm

part. In Fig. 1, the system rejects low-priority clients
in states (0,0,3), (2,0,2), (4,0,1) and (6,0,0) and
rejects high-priority clients in these same states plus
states (0,1,2), (2,1,1) and (4,1,0).

Combining the reward rate out of thenm part
as derived above with those from thenh and nl

parts, we obtain the approximate solution for the total
reward rate obtainable under a (nh,nm,nl ) partition as
follows:

nh∑
i=1

iµh × vh ×
1
i!
(

λh

µh

)i
1+∑nh

j=1
1
j !
(

λh

µh

)j
+

nl∑
i=1

iµl × vl ×
1
i!
(

λl

µl

)i
1+∑nl

j=1
1
j !
(

λl

µl

)j + Rnm. (3)

3.2. Multiple priority classes and QoS levels

Our scheme can be easily generalized to the case
when there exist more than two priority classes.
Assume that there areM priority classes, of which
class 1 is the highest priority class while classM is the
lowest. Classk,1� k � M, is characterized by its own
set of parameters(λk,µk, vk, qk). Under our scheme,
nm + ∑M

k=1 nk = N with nm being the designated
“degraded QoS area” into which all clients can be
admitted but only classM clients are subject to QoS
adjustment. The generalization is straightforward:

(1) the “spill-over” arrival rateΛk into the nm part
from clients in classk,1 � k � M, will be from
the correspondingM/M/nk/nk queue; and

(2) the Markov model for thenm part will have the
state representation(nll

m,nM
m , . . . , n2

m,n1
m).

The approximate solution for the reward rate obtain-
able is thus given by:

M∑
k=1

(
nk∑
i=1

iµk × vk ×
1
i!
(

λk

µk

)i
1+∑nk

j=1
1
j !
(

λk

µk

)j
)

+
∑
∀j

Pj

(
M∑

k=1

(nk
mµkvk) + nll

mµlvll

)



342 S.-T. Cheng, I.-R. Chen / Information Processing Letters 83 (2002) 337–344

−
∑

∀j s.t.
∑M

k=1 nk
m+nll

m/2=nm

and nM
m <2

Pj

(M−1∑
k=1

qkΛk

)

−
∑

∀j s.t.
∑M−1

k=1 nk
m+nll

m/2=nm

PjqMΛM. (4)

Recall that our scheme performs QoS adjustment
only to the lowest-priority clients. To generalize our
scheme to multiple QoS levels where different priority
clients may have different QoS requirements and the
lowest-priority clients may have more than 2 QoS
levels, we can consider another system parameterbk,
1 � k � M, such that a classk client would require
bk slots (out of the total ofN slots in the system)
to satisfy its (maximum) QoS requirement. We can
formulate the problem such that the minimum QoS
requirement (Qmin) of the lowest-priority client in
classM still requires exactly one slot and its maximum
QoS requirement (Qmax) would requirebM slots.
There can be a range of QoS levels in[1, bM] for
the lowest-priority clients in thenm part for QoS
adjustment, e.g.,bM , bM − 1, and so on till 1. Now
the problem becomes finding the best partition of
(N1,N2, . . . ,NM,Nm) such that

Nm +
M∑

k=1

Nk = N and Nk/bk = nk

(number of classk clients in theNk part). For the
Nm part, initially a classk client (including a class
M client) will needbk slots available to be admitted.
When there are not enough slots, the system can lower
the QoS of existing classM clients (if exist) from
bM to bM − 1 first, and subsequently frombM − 1 to
bM − 2 and so on until the QoS level of existing class
M clients all goes down to 1 in order to accommodate
new arrivals, after which new arrivals will be rejected.
The approximate solution can be obtained for this
extension by consideringM M/M/nk/nk queues
(with nk = Nk/bk) each describing theNk part, 1�
k � M, and a Markov model for describing theNm

part. The expression for the reward rate obtainable in
this case will be similar to Eq. (4) except that we obtain
theRnm term based on the new Markov model.

4. Simulation validation

The objective of the simulation study is to collect
performance data so as to demonstrate the validity
of our scheme and to compare the average reward
obtainable by the system as a result of executing the
self-adjusting QoS control scheme with those by two
other schemes:

• Baseline #1: this is the “degraded QoS area”
only scheme, i.e., the same self-adjusting QoS
control is applied to the “degraded QoS area” part;
however,nm is the only area in the system.

• Baseline #2: this is the “partitioning” only scheme,
i.e., the same partitioning of system resources is
applied; however, the “degraded QoS area” al-
though still admitting clients of all classes does
not perform QoS adjustment on any class.

We study the design of a multimedia system [8]
for the caseN = 32 to illustrate the applicability
of our proposed self-adjusting QoS control scheme.
For a selected (nh,nm,nl ) value set, we compute the
average reward rate obtained by the system due to
the self-adjusting QoS control scheme by thebatch
meansmethod. Under this method, the simulation
program is executed for a long run divided into
batches. A sample mean is computed in each batch.
Using these batch means, we then compute the grand
mean and the confidence interval. During a batch run,
we compute the accumulated reward as a rejection
or a departure occurs. A rejected high-priority (low-
priority) client takesqh (ql , respectively) of reward
away. A completed high-priority client addsvh of
reward. For a low-priority client, we keep track of
the proportion of time it is being served at theQmax
(Qmin) level. If a low-priority client had been served
with x time units atQmax andy time units atQmin
when it departed, then the reward added to the system
would bevl × x/(x + y)+ vll × y/(x + y). At the end
of each batch run, we divide the accumulated reward
by the batch run period to get the mean average reward
rate for that batch run. A sufficient number of batches
are run in the simulation study to make sure that the
grand average reward rate obtained has an accuracy of
5% at a 95% confidence level.

Table 1 lists the optimal (nh,nm,nl ) value sets
and reward rates obtained under the self-adjusting



S.-T. Cheng, I.-R. Chen / Information Processing Letters 83 (2002) 337–344 343

Table 1
Optimizing (nh,nm,nl ) set under the self-adjusting QoS control scheme forN = 32

(λh,λl ,µh,µl, vh, vl , vll , qh, ql ) Optimal Our scheme Our scheme Baseline #1 Baseline #2
(nh,nm,nl) reward rate reward rate reward rate reward rate

(analytical) (simulation)

(10,20,1,1,10,5,2,2,1) (0.32,0) 191.7 191.7 191.7 180.1
(10,40,1,1,10,5,2,2,1) (0,32,0) 185.0 185.0 185.0 167.9
(10,60,1,1,10,5,2,2,1) (1,31,0) 150.7 152.3 149.9 147.8
(10,120,1,1,10,5,2,2,1) (11,13,8) 86.5 87.7 66.0 87.2

(20,10,1,1,10,5,2,2,1) (0,32,0) 236.6 236.6 236.6 227.8
(20,20,1,1,10,5,2,2,1) (0,32,0) 236.8 236.8 236.8 219.1
(20,40,1,1,10,5,2,2,1) (19,13,0) 199.6 197.9 193.0 196.8
(20,60,1,1,10,5,2,2,1) (20,12,0) 176.5 175.8 150.7 176.0
(20,80,1,1,10,5,2,2,1) (21,11,0) 155.5 155.3 115.0 155.6
(20,60,1,1,10,10,2,2,1) (10,0,22) 246.9 246.9 161.7 253.2
(20,60,1,1,10,8,2,2,1) (16,0,16) 210.8 210.8 157.3 216.0
(20,60,1,1,10,6,2,2,1) (20,0,12) 184.2 184.1 152.9 187.7
(20,60,1,1,10,4,2,2,1) (21,11,0) 175.8 175.3 148.5 165.8
(20,60,1,1,10,2,1,2,1) (24,8,0) 156.5 156.3 104.1 149.5

QoS control scheme, with respect to some selected
sets of input model parameter values characterizing
various client workload possibilities to the server
system forN = 32. Under the column “our scheme
reward rate” we list values collected by simulation
and by calculation based on the analytical model
discussed in Section 3.2 for validation. We also listed
the reward rates obtained by two baseline schemes for
comparison.

From Table 1, we observe two results. First, the
self-adjusting QoS control scheme at the optimal point
can often outperform baseline scheme 1 by a signifi-
cant margin. The effect is especially pronounced when
the system is heavily loaded. This result indicates that
for a given set of workload conditions, there is always
an optimal way of allocating resources. Moreover, it is
better that we only open adesignateddegraded QoS
area (i.e.,nm) to apply QoS control instead of open-
ing up all resources (i.e., allN slots) undiscriminantly
as in baseline scheme 1 so that the system can adapt
to workload changes more effectively to maximize the
system reward. Second, the crossover point at which
the self-adjusting QoS control scheme starts to per-
form better than baseline scheme 2 in this case study
is whenvh + 2vll > 2vl − qh is true. This is so be-
cause the left hand side represents the reward obtained
by degrading the QoS level of two low-priority clients
running atQmax in the nm part to accommodate an
arriving high-priority client, while the right hand side

represents the reward which would have been obtained
had the QoS adjustment not been performed. The dif-
ference thus represents the reward gain by perform-
ing self-adjusting QoS control. Furthermore, when the
above condition is violated, the system tends to al-
locate more resource slots to low-priority clients in
the nl part to prevent self-adjusting QoS control in
the nm part from occurring so as to optimize the re-
ward rate. This is especially so when the arrival rate of
low-priority clients is much higher than that of high-
priority clients. In general, however, we do expect the
conditionvh +2vll > 2vl −qh holds true for most sys-
tems so that the system can use the results presented
in this paper to adjust the QoS of low-priority clients
in the nm part to accommodate more clients into the
system and to maximize the reward rate obtainable by
the system. Lastly, we should note that the values pre-
sented in Table 1 are rate parameters (e.g., reward per
time unit), so a difference of 1 can be significant, e.g.,
in terms of dollars/second.

References

[1] S. Brandt, G. Nutt, T. Berk, M. Humphrey, Soft real-time
application execution with dynamic quality of service assurance,
in: 6th International Workshop on Quality of Service, Napa, CA,
May 1998.

[2] E. Chang, A. Zakhor, Cost analysis for VBR video servers, in:
IEEE Multimedia, Winter 1996, pp. 56–71.



344 S.-T. Cheng, I.-R. Chen / Information Processing Letters 83 (2002) 337–344

[3] I.R. Chen, C.M. Chen, Threshold-based admission control
policies for multimedia server, Comput. J. 39 (9) (1996) 757–
766.

[4] L. Chen, S. Khan, K.F. Li, E. Manning, Building an adaptive
multimedia system using the utility model, in: Lecture Notes in
Comput. Sci., Vol. 1586, Springer, Berlin, 1999, pp. 289–298.

[5] W. Lee, B. Sabata, Admission control and QoS negotiation for
soft-real time applications, in: IEEE International Conference
on Multimedia Computing and Systems, Florence, Italy, June
1999, pp. 147–152.

[6] B. Li, K. Nahrstedt, A control theoretical model for quality of
service adaptation, in: 6th International Workshop on Quality of
Service, Napa, CA, May 1998.

[7] M.A. Marsan, S. Marano, C. Mastroianni, M. Meo, Performance
analysis of cellular communication networks supporting multi-
media services, in: ACM/Baltzer Mobile Networks and Appli-
cations, Vol. 5, 2000, pp. 167–177.

[8] H.M. Vin, A. Goyal, P. Goyal, Algorithms for designing
multimedia servers, Comput. Comm. 18 (3) (1995) 192–203.


